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Key Points:7

• Aquaplanet simulations are performed in a global atmospheric general circulation8

model at progressively finer resolution from 50km to 6km.9

• The stronger resolved precipitation at finer resolution cannot be explained by changes10

in the vertical velocity amplitudes.11

• The simulated tropical precipitation becomes more organized at the planetary scale12

in models with the finer resolution.13
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Abstract14

We performed a series of aquaplanet simulations at the horizontal resolution from 50km15

to 6km with identical parameterization settings using the Geophysical Fluid Dynamics16

Laboratory’s Atmosphere Model version 4 implemented with the two-moment Morrison-17

Gettelman cloud microphysics with prognostic precipitation (GFDL AM4-MG2). At the18

finer resolution, the global mean resolved-scale precipitation increases and that from cu-19

mulus parameterization decreases. The model also simulates less/thinner clouds over the20

low latitudes and more/thicker clouds over the high latitudes as the resolution increases.21

The precipitation over the deep tropics is investigated in detail. We find little resolution22

sensitivity in the daily mean precipitation extremes. Changes of the equatorial resolved23

precipitation with resolution cannot be fully explained by the resolution dependence in24

the vertical velocity amplitude. We report a robust sensitivity in the convective organ-25

ization over the deep tropics to the model resolution. In simulations of finer resolution,26

the localized convection is suppressed, and the organized convective system associated27

with large-scale circulations becomes more prominent.28

Plain Language Summary29

Convection and precipitation events are important components of the climate sys-30

tem, but they are often too small to be directly resolved by a typical climate model. In-31

creasing the resolution is therefore desirable but does not automatically solve all the model32

biases. Here, we seek a more physical understanding of how the simulated climate by a33

climate model is affected by its horizontal resolution. We systematically increased the34

horizontal resolution in a global atmospheric model from 50km to 6km. The difference35

between the high and low resolution simulations is not only evident in the small scales,36

but also evident in the large scales as well. In particular, our model with finer resolu-37

tion simulates a closer relationship between convection events and large-scale circulation.38

1 Introduction39

The advance of the general circulation models (GCMs) is accompanied by increas-40

ing resolutions. It has recently become computationally feasible to simulate the global41

atmospheric general circulation at a horizontal resolution of a few kilometers for exten-42

sive periods of time. This is the so-called convective “gray-zone” resolution at which con-43

vection, especially the deep one, starts to be explicitly resolved (e.g., Shin & Hong, 2015;44

Jeevanjee, 2017; Gao et al., 2017). This new generation of models is referred to as global45

storm resolving models (GSRMs), global cloud resolving models (GCRMs), or global convection-46

permitting models in the literature. They generally show notable improvements com-47

pared to the current generation of GCMs with a typical resolution of ∼100km, especially48

with regards to precipitation and convection (e.g., Stevens et al., 2019; Satoh et al., 2019;49

Caldwell et al., 2021). However, considerable inter-model spread and model biases still50

exist among these GSRMs (Stephan et al., 2019; Heim et al., 2021; Judt et al., 2021; Roh51

et al., 2021; Lang et al., 2021), and there is no consensus regarding when to turn off cu-52

mulus parameterization or how to make the cumulus parameterization scale-aware at the53

gray-zone resolution (e.g., Gao et al., 2017; Arnold et al., 2020; Satoh et al., 2019). Sort-54

ing out this chaos requires a physical understanding of the model’s sensitivity to reso-55

lution.56

Several studies have investigated the resolution sensitivity in GCMs, most of which57

pushes the horizontal resolution up to 25km or 0.25◦. A common feature of the resolu-58

tion sensitivity found in these GCM simulations is that the resolved precipitation increases59

with model resolution while the parameterized precipitation decreases (e.g., Wehner et60

al., 2014; Herrington & Reed, 2017; Terai et al., 2018; Herrington & Reed, 2020). The61

stronger mean resolved precipitation at the finer resolution is often manifested in an in-62

tensification of the precipitation extremes, and the stronger extremes persist when the63
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precipitations are coarse-grained and sampled at daily frequency (Li et al., 2011; Wehner64

et al., 2014; O’Brien et al., 2016; Rios-Berrios et al., 2020). Studies have attributed the65

stronger mean resolved precipitation and stronger precipitation extremes to the stronger66

amplitude of vertical velocity at the finer scales (Li et al., 2011; Rauscher et al., 2016;67

Herrington & Reed, 2017, 2020). The reduced parameterized precipitation is in response68

to changes in the background state due to the resolved processes (Herrington & Reed,69

2020).70

While the increase of vertical velocity magnitude with horizontal resolution is com-71

monly observed in various model simulations and well established in theory (Jeevanjee,72

2017, and references therein), there are several factors that may potentially counteract73

its effect on the resolved precipitation. Precipitation is expected to increase with pre-74

cipitable water (e.g., Bretherton et al., 2004; Ahmed & Schumacher, 2015; Terai et al.,75

2018), but many models simulate a decrease in precipitable water with resolution at least76

for the global average (Williamson et al., 1995; Herrington & Reed, 2017; Terai et al.,77

2018). Mean and extreme precipitation are also affected by precipitation efficiency. Re-78

duced precipitation efficiency with finer resolution is reported in cloud resolving mod-79

els (Lutsko & Cronin, 2018; Jeevanjee & Zhou, 2022). Studies also found the precipita-80

tion extremes to be strongly affected by the degree of convective aggregation and organ-81

ization (Bao et al., 2017; Pendergrass, 2020, and references therein). Simulations from82

idealized cloud resolving models under the radiative-convective equilibrium typically show83

that coarser resolution is favored for self-aggregation (Muller & Held, 2012; Muller & Bony,84

2015), indicating a potential resolution dependence of precipitation via changes of con-85

vective organization. However, it is worth noting that these cloud resolving models are86

generally at the resolution of sub-kilometer or finer, and the resolution sensitivity found87

in those models may not extend to the lower resolution regime.88

In addition to precipitation, previous studies also reported resolution sensitivity89

in Hadley cell strength (Williamson et al., 1995), location of the eddy driven jet (Lu et90

al., 2015), and switching from single to double intertropical convergence zone (ITCZ; Yu91

et al., 2014; Benedict et al., 2017; Retsch et al., 2019). But these results appear to be92

more model dependent.93

Here, we start with a state-of-art atmospheric GCM, and systematically increase94

the horizontal resolution from a typical GCM value to a GSRM one. We perform aqua-95

planet simulations using a non-hydrostatic dynamical core and document the model be-96

havior as it approaches the convective gray-zone. At higher resolutions than previous97

GCM studies, we find that some of the previously reported resolution sensitivities no longer98

hold and new resolution sensitivity emerges in our simulations. In the following, section99

2 describes the model and the simulation design, section 3 presents the results and a sum-100

mary and discussion are given in section 4.101

2 Model description and experiment setup102

We performed aquaplanet simulations using an updated version of the Geophys-103

ical Fluid Dynamics Laboratory (GFDL) Atmosphere Model version 4 (AM4) referred104

to as AM4-MG2 (Guo et al., 2021). AM4-MG2 is built upon GFDL’s most recent at-105

mospheric model AM4.0 (Zhao et al., 2018a, 2018b), replacing the original Rotstayn-Klein106

microphysical scheme (Rotstayn, 1997; Jakob & Klein, 2000; Donner et al., 2011) with107

the more sophisticated MG2 scheme (Gettelman & Morrison, 2015). This two-moment108

bulk cloud microphysics scheme with prognostic precipitation improves simulations of109

coastal stratocumulus. AM4-MG2 also implements a new mineral dust and temperature-110

dependent ice nucleation scheme (Fan et al., 2019). Same as AM4.0, AM4-MG2 utilizes111

the GFDL finite-volume cubed-sphere dynamical core (FV3, Harris, Zhou, Chen, & Chen,112

2020), a double-plume convection scheme (Zhao et al., 2018b), the Tiedtke scheme for113

cloud amount (Tiedtke, 1993), and the Lock scheme for planetary boundary layer (Lock114
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et al., 2000). Detailed configuration of AM4-MG2 and its performance are documented115

in Guo et al. (2021).116

Different from the simulations presented by Zhao et al. (2018a) or Guo et al. (2021),117

we use the nonhydrostatic solver described by Harris, Chen, et al. (2020) instead of a118

hydrostatic one. Hydrostatic approximation starts to break down at the scale of a few119

kilometers and leads to large errors for sub-kilometer resolutions (Jeevanjee, 2017). While120

solutions from a hydrostatic solver may not differ much from those from a nonhydrostatic121

one for most of the resolutions considered here, we use the nonhydrostatic solver for all122

resolutions for consistency.123

The model is run in aquaplanet configuration by prescribing a zonally symmetric124

sea surface temperature profile (“Control” in Neale & Hoskins, 2000), which is invari-125

ant in time. The aquaplanet simulations are widely used for evaluating the performance126

of the atmospheric models (e.g., Neale & Hoskins, 2000; Blackburn et al., 2013; Medeiros127

et al., 2015; Merlis & Held, 2019). Aquaplanet simulations using AM4.0 have been used128

to study tropical cyclones (G. Zhang et al., 2021) and have contributed to the Cloud Feed-129

back Model Intercomparison Project (CFMIP) (Silvers et al., 2018). By using an ide-130

alized lower boundary, the aquaplanet simulations are simpler and therefore easier to un-131

derstand than the more realistic simulations while preserving the general behavior of the132

more realistic models, especially for tropical phenomena such as the ITCZ, tropical cy-133

clones and convectively coupled equatorial waves. But we note that the aquaplanet set-134

tings ignore any resolution sensitivity arising from resolving topography and surface con-135

ditions.136

This is different from the simulations proposed in the DYnamics of the Atmospheric137

general circulation Modeled On Non-hydrostatic Domains (DYAMOND) project and its138

successor DYAMOND2, which intends to compare GSRMs developed around the world139

under the real world settings with each other and against observations (Stevens et al.,140

2019). In particular, the GFDL System for High-resolution prediction on Earth-to-Local141

Domains (SHiELD, Zhou et al., 2019; Harris, Zhou, Lin, et al., 2020) is a participant of142

the DYAMOND project. SHiELD has been configured to run at different resolutions and143

its performance at a globally uniform 3km grid (X-SHiELD configuration) has been re-144

ported by F. Zhang et al. (2019) and Harris et al. (2023). The AM4-MG2 model used145

here shares the same dynamical core as SHiELD, but the physics packages in the two146

models are generally disparate. We hope that our idealized aquaplanet simulations at147

similar resolutions may help to understand the simulations by SHiELD and to interpret148

the inter-model differences and model biases seen in DYAMOND simulations (Heim et149

al., 2021; Judt et al., 2021; Roh et al., 2021; Lang et al., 2021).150

We perform a series of simulations with varying horizontal resolutions. AM4 model151

grid has cubed-sphere topology and its horizontal resolution is denoted by the number152

of grid boxes along the side of each cubed face such that a resolution of Cn signifies n×153

n grid boxes per cubed face. Simulations are done at the resolutions of C192, C384, C768154

and C1536, corresponding to a nominal resolution of about 50km, 25km, 13km, and 6km,155

respectively. As listed in Table 1, both physical and dynamical time steps are reduced156

to accommodate the increased resolution. Note that the radiation time step is different157

from physical time step in this model, which does not change with resolution (3 hours158

for longwave and 1 hour for shortwave). The vertical resolution are kept identical for all159

these simulations. The model consists of 33 model levels with a model top at 1 hPa (see160

Open Research for specification). We use the fourth order divergence and vorticity damp-161

ing with the same non-dimensional damping coefficients for all simulations here, which162

effectively yield weaker damping for higher resolution runs. A more detailed description163

regarding the diffusion settings can be found in the appendix. All the tuning parame-164

ters (including those used in cumulus parameterization) are kept identical for all the sim-165

ulations considered here. The detailed configuration of each simulation is included in the166

Open Research section. We use the same parameters as Guo et al. (2021) for their his-167
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Table 1. Experiment setting

Experiment ∆x (km) ∆t phy (s) ∆t dyn (s)
C192 50 1200 75
C384 25 600 28.6
C768 13 300 16.7
C1536 6 200 8.3

torical AMIP simulations at the resolution of C96(100km). For a fair comparison, the168

outputs from all experiments are remapped to the same 0.5◦ × 0.5◦ grid. The spatial169

remapping is done conservatively using fregrid (https://github.com/NOAA-GFDL/FRE170

-NCtools). We use the coarse-grained data to evaluate the climatology, and evaluate vari-171

ability using both coarse-grained and raw data.172

The model is set to be on the perpetual equinox and run for one year. The first173

three months are considered as spin-up and discarded. Greenhouse gases concentrations174

are set to constant values (CO2: 348 ppmv, CH4: 1.65 ppmv, N2O: 0.306 ppmv, CFC−175

11: 264.325 ppbv, CFC−12: 536 pptv, CFC−113: 82.765 pptv, HCFC−22: 13.455176

pptv), and the solar constant is 1365 W/m2. Aerosol emissions are set to the year 1860177

level based on the CMIP6 forcing data (Eyring et al., 2016). Aerosol emissions include178

a seasonal cycle. We note that the simulated precipitation shows strong hemispherical179

symmetry and weak seasonal dependence despite the asymmetric and time-varying aerosol180

emissions.181

3 Results182

3.1 Climatology183

We start by calculating a few globally integrated indices representing the basic hy-184

drological, radiative and dynamical climatology simulated in these experiments. Table185

2 lists the global mean total precipitation rate (PREC tot), precipitation at the resolved186

scale (PREC res), precipitation from the deep plume in the cumulus parameterization187

(PREC deep) and precipitation from the shallow plume (PREC shallow). The global mean188

resolved precipitation increases with resolution. The parameterized precipitation, on the189

other hand, decreases with resolution, which mostly comes from the deep plume. This190

divergent response to resolution changes between the resolved and parameterized pre-191

cipitation is consistent with previous studies (e.g., Wehner et al., 2014; Herrington & Reed,192

2017; Terai et al., 2018; Herrington & Reed, 2020). Changes in the total precipitation193

with resolution is in general small and insignificant, but statistically significant reduc-194

tion is found at the highest resolutions considered (from C768 to C1536), which hints195

at a regime shift.196

The latitudinal distribution of the precipitation is plotted in Fig. 1. The param-197

eterized precipitation from the deep plume shows consistent reduction with resolution198

at all latitudes, while changes in the shallow plume are less coherent across latitudes and199

generally weak. The latitudinal structure of the resolved precipitation changes is more200

complex. The resolved precipitation climatology shows a strong peak at the equator and201

a secondary peak centered around 40◦. As the resolution increases, the mid-latitude peak202

becomes wider but little changes in the peak amplitude. The equatorial precipitation peak,203

on the other hand, responds to model resolution variations mainly via its amplitude but204

not the width. The equatorial resolved precipitation increases with resolution from C192205

to C768, but decreases slightly from C768 to C1536. The total precipitation from both206

resolved and parameterized processes shows a similar two-peak structure as the resolved207

precipitation, but its variations across resolution is generally subtle.208
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Given these changes in precipitation as resolution varies, other components in the209

hydrological cycle are expected to vary with resolution as well. Herrington and Reed (2017)210

reported a drying atmosphere with resolution in terms of total precipitable water and211

cloud fraction. We see a similar reduction in the global mean precipitable water (mea-212

sured by water vapor path WVP) and cloud fraction with resolution (Table 2). We fur-213

ther examined the clouds simulated in these experiments by evaluating the cloud liquid214

and ice water path (LWP, IWP) as well as the cloud radiative effect (CRE). Most liq-215

uid water resides in the low cloud and exerts its radiative effects in the shortwave bands,216

while ice water mostly resides in the high clouds and has stronger effects in the longwave217

bands. As shown in Fig. 1, finer resolution runs show less cloud water and weaker CRE218

over regions equatorward of ∼ 35◦, but more cloud water and stronger CRE on the pole-219

ward side. This compensation between the lower and higher latitudes is more substan-220

tial for the ice phase and the longwave CRE, which show appreciable resolution depen-221

dence locally (Figs. 1e, h) but trivial changes in the global mean (Table 2). The LWP222

and shortwave CRE, on the other hand, is dominated by changes over the subtropics.223

A reduction of 12 W/m2 in the global mean shortwave CRE is seen from C192 to C1536.224

Table 2 also list the global mean outoing longwave radiation (OLR) and upward short-225

wave radiation at the top of the atmosphere (SWUP TOA). Changes in these all-sky ra-226

diative flux are largely driven by changes in clouds, whereas the variation in the global227

mean clear-sky radiative flux across resolutions does not exceed 0.5 W/m2 (not shown).228

We also evaluate the general circulation simulated in these simulations. Following229

Lu et al. (2015), we diagnose the intensity of the extratropical eddy-driven jet by the max-230

imum zonal mean zonal wind speed at 250 hPa (Umax250) and the location of the jet231

by the latitude of where the maximum zonal mean zonal wind occurs at 850 hPa (ϕumax850).232

Lu et al. (2015) reported that the extratropical jet tends to be weaker but more pole-233

ward as the resolution increases, but converges for resolutions finer than 50km. Here,234

we find no monotonic relationship between the jet intensity or location with the reso-235

lution, which are all at or finer than 50km. The Hadley cell is diagnosed using the zonal236

mean mass flux stream function at 500 hPa following Lu et al. (2007). We find that nei-237

ther the intensity nor the width of the Hadley cell shows any strong or robust sensitiv-238

ity to the resolution changes considered here.239

In short, we find a similar resolution dependence in the globally averaged precip-240

itation and other hydrometeors as reported in earlier GCM studies, that is, an increase241

in the resolved precipitation with resolution and a decrease in the parameterized pre-242

cipitation, total precipitable water and cloud fraction. However, we find that changes243

in these hydrometeors are not uniform across latitudes and several cloud-related vari-244

ables show opposite sensitivity between low and high latitudes. In addition, we note that245

our model simulates a larger cloud fraction and a smaller global mean precipitation than246

earlier aquaplanet simulations (Williamson et al., 2012, 2013), which may not only arise247

from differences in model resolution but also from differences in model physics. We de-248

fer discussions on such inter-model difference in climatology to a future study. In the fol-249

lowing subsections, we will provide a thorough investigation on the resolution dependence250

of the equatorial precipitation.251

3.2 Precipitation intensity distribution in the deep tropics252

In this subsection, we focus on the resolved precipitation in the deep tropics. This253

is the region where the strongest precipitation and deepest convection occur. Results of254

this subsection are based on one month of data (the 6th month) and are insensitive to255

the choice of the month. We analyze data on the lat-lon grid between 5.5◦N and 5.5◦S.256

For data on the native model grid, we analyze a swath of grids centered at the equator,257

that is 24 × 768 grids in C192, 48 × 1536 grids in C384, 96 × 3072 grids in C768 and258

192×6144 grids in C1536. These grids roughly correspond to a latitude band between259

5.56N-5.56S covering all longitudes. Note that the area of each native model grid and260
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Table 2. Summary of mean climate diagnostics. Bold font indicates the difference against its

immediate lower resolution counterpart is statistically significant, based on the Student’s t test of

monthly data at 95% confidence level. Orange color indicates a positive difference and blue color

indicates a negative difference. The statistics are evaluated using monthly mean data. See text

for the definitions of the variables.

C192 C384 C768 C1536
PREC tot (mm/day) 2.56 2.59 2.58 2.52
PREC res (mm/day) 1.81 2.00 2.20 2.22
PREC deep (mm/day) 0.42 0.26 0.07 0.02

PREC shallow (mm/day) 0.33 0.33 0.32 0.28
OLR (W/m2) 211.73 212.64 213.63 212.55

SWUP TOA (W/m2) 115.86 114.12 108.74 103.44
Longwave CRE (W/m2) 43.66 43.12 42.29 43.07
Shortwave CRE (W/m2) -79.74 -78.15 -73.00 -67.80

WVP (kg/m2) 20.76 20.45 20.07 20.02
LWP (g/m2) 72.08 69.92 65.59 59.97
IWP (g/m2) 63.52 63.04 61.12 61.44

cloud fraction (%) 80.49 79.1 76.09 73.89
Umax250 (m/s) 47.96 44.96 47.41 48.33

ϕumax850 39.49◦ 41.94◦ 41.97◦ 42.55◦

Hadley cell strength (1011kg/s) 1.58 1.64 1.64 1.59
Hadley cell edge 27.06◦ 27.79◦ 27.88◦ 27.75◦

0° 20° 40° 60° 80°

100
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c768
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Figure 1. Zonal mean hemispherically-averaged climatology of (a) total precipitation, (b)

precipitation at the resolved scale, (c) precipitation from the parameterized deep convection, (d)

precipitation from the parameterized shallow convection, (e) longwave cloud radiative effect, (f)

shortwave cloud radiative effect, (g) cloud liquid water path, and (h) cloud ice water path.
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Figure 2. Normalized distribution of resolved precipitation intensity calculated from (a)

instantaneous data at the native model grid, (b) 3 hourly averaged data at the native model

grid, (c) daily averaged data at the native model grid). (d-f) As in (a-c) except that precipita-

tion conservatively remapped to 1◦x1◦ for C192, 0.5◦x0.5◦ for C384, 0.25◦x0.25◦ for C768 and

0.125◦x0.125◦ for C1536. (g-i) As in (a-c) except that precipitation is conservatively remapped to

0.5x0.5 grid. Precipitation is in units of mm/day. All histograms are in unit of 1.

lat-lon grid varies with location, but we treat them equally when calculating distribu-261

tion.262

We first calculate the probability distribution of the resolved precipitation inten-263

sity and explore how it is affected by spatial and temporal sampling. We considered three264

temporal samplings: instantaneously every 6 hours, 3 hour mean, and daily mean; as well265

as three spatial samplings: at native model grid, remapped to a lat-lon grid that is roughly266

half of the model grid resolution, and remapped to 0.5◦ × 0.5◦ lat-lon grid. The time267

averaging is done for all time step and is equivalent to the accumulated precipitation.268

The spatial remapping employs a conservative algorithm (available in Open Research).269

As shown in Fig. 2, the intensity of the extreme precipitation is sensitive to the sampling270

method. We see a stronger extreme in the finer resolution simulations for instantaneously271

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

na
tiv

e 
gr

id

instantaneous
(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ha
lf 

re
s

(d)

10 4 10 1 102
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.
5°

x0
.5

°

(g)

3hr
(b)

(e)

10 4 10 1 102

(h)

daily
(c)

(f)

10 4 10 1 102

(i)

C192
C384
C768
C1536

Figure 3. As in Fig. 2 but the histograms are calculated over 100 bins spaced evenly on log

scale between 10−6-102.8 mm/day. The thin vertical lines marked the averaged values from all

samples. All histograms are in units of %.
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precipitation at the native model grid (Fig. 2a), which is consistent with earlier stud-272

ies (Herrington & Reed, 2020). However, such resolution dependence does not hold for273

instantaneous precipitation remapped to the 0.5◦ × 0.5◦ grid (Fig. 2g). Similarly, av-274

eraging in time also distorts the resolution dependence in the extreme precipitation. For275

3 hourly averaged resolved precipitation, similar distribution is found among C384, C768276

and C1536 runs, whereas C192 shows a shorter tail than other (Fig. 2b). All four sim-277

ulations show similar intensity for extremes in the daily averaged precipitation (Fig. 2c).278

When coarse-graining is done in both space and time, it is C1536, the highest resolution279

run, that shows the weakest extreme (Fig. 2i). Unlike earlier studies reporting that the280

stronger extremes in finer resolution simulation persist with coarse-graining and daily281

averaging (Li et al., 2011; Wehner et al., 2014; O’Brien et al., 2016; Rios-Berrios et al.,282

2020), we find an absence and even a reversal of the resolution dependence in the daily283

precipitation extremes.284

To illustrate changes in the resolved precipitation at weaker intensity, we calculate285

the probability distribution over log-scaled bins. We find that the distributions in the286

high resolution runs are sensitive to the temporal and spatial averaging. For C768 and287

C1536 simulations, the instantaneous resolved precipitation at the native model grid shows288

a relatively flat distribution across all bins (Fig. 3a). Both remapping to the 0.5◦×0.5◦289

grid (Fig. 3g) and daily averaging (Fig. 3c) lead to a narrower distribution and a higher290

mode value. Applying both spatial coarse-graining and daily averaging results in a dis-291

tinct single peak located near the mean values (Fig. 3j). On the other hand, the spa-292

tial and temporal averaging has less effect on the low resolution simulations. The dis-293

tribution function of C192 shows similar structure for the different sampling strategies294

considered here, that is a strong peak centered between 10−3 and 10−2 mm/day and a295

much muted secondary peak centered between 1 and 10 mm/day. As a result, the tem-296

porally and spatially coarse-grained resolved precipitation shows a robust resolution de-297

pendence that the finer resolution simulations produce more precipitation stronger than298

0.1mm/day and less weaker precipitation.299

Our simulations clearly show that the intensity distribution of the resolved precip-300

itation depends on the sampling and the higher resolution simulations show a stronger301

sensitivity to the sampling method. Both the conservative spatial remapping and tem-302

poral averaging considered here effectively take an average of the samples within a sub-303

set. If the variation within each subset is comparable to the variation among all sam-304

ples, then averaging of a subset yields a value similar to the all-sample mean, and the305

resulting distribution of the re-sampled data will be a delta function centered at the all-306

sample mean value. On the other hand, If the variation within the subset is small, the307

re-sampled data would have a similar distribution to the raw data. Here, a 0.5◦×0.5◦308

grid roughly corresponds to 1 C192 model grid, but 64 C1536 model grids. Naturally,309

there is stronger variance within each 0.5◦×0.5◦ subset for the C1536 run than the C192310

run. Correspondingly, the spatial remapping of the C1536 data leads to a large reduc-311

tion of the extreme (Fig. 2 a vs g) and narrowing of the distribution (Fig. 3 a vs g), while312

the same remapping has little impacts on the C192 data. What is less expected is that313

the finer resolution runs shows a stronger sensitivity to the temporal averaging as well,314

which implies a resolution dependence in the temporal variance. To measure the sub-315

daily variance, we calculate the correlation between the daily mean precipitation and the316

instantaneous at the first time step of each day. The correlation is calculated over all days317

and all native model grid points considered here. A strong correlation of 0.71 is found318

for C192, indicating sampling the data instantaneously would not differ too much from319

the daily average. This correlation decreases monotonically with resolution, coming to320

0.57 for C384, 0.44 for C768, and 0.36 for C1536, confirming that stronger sub-daily vari-321

ance is simulated in models of finer resolution. While a smaller time step is used in the322

finer resolution runs, the physical time step in all simulations are much smaller than the323

time averaging length (1 day). We therefore suspect that the more time steps per day324

in the high resolution runs are not the main reason for the stronger sub-daily variance.325
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Table 3. Statistics of the deep tropical precipitation, gross upward mass flux (Mup) and gross

upward moisture flux (Q flux) evaluated using the instantaneous variables at the native model

grids over the region 5.56◦N-5.56◦S for the 6th month. The precipitation area is defined as the

fraction of grids where non-zero precipitation occurs. The ascent area is defined as the fraction of

grids where the vertical velocity is larger than 0.

C192 C384 C768 C1536
mean precip total 11.25 12.11 12.06 11.60
(mm/day) resolved 7.87 9.59 10.64 10.63

deep 2.49 1.71 0.58 0.22
shallow 0.89 0.81 0.83 0.75

precip area total 99.66 99.21 98.53 98.27
(%) resolved 99.53 98.83 97.87 97.72

deep 49.51 40.39 13.36 4.25
shallow 51.82 55.19 55.47 50.72

848.8 hPa ascent area (%) 59.96 55.67 51.12 49.79
Mup (×0.01 kg/m2/s) 1.57 1.99 2.69 3.54

Q flux (×10−4 kg/m2/s) 2.12 2.68 3.56 4.66
532.5 hPa ascent area (%) 45.06 45.79 46.71 47.18

Mup (×0.01 kg/m2/s) 1.21 1.52 1.89 2.41
Q flux (×10−4 kg/m2/s) 0.68 0.82 0.96 1.19

Instead, the intrinsic time scale of the precipitation variance changes with model reso-326

lution. In other words, resolving the high frequency variance is not limited by the model’s327

time step but by the grid size since the high frequency variance are often of small spa-328

tial scales.329

For completeness, we also calculate the distribution of the total precipitation and330

the parameterized precipitation from the deep and shallow plumes shown in Fig. 4. For331

simplicity, we only show the distribution using the instantaneous data at the native model332

grid and daily averaged coarse-grained data. At the native model grid, the deep plume333

precipitation intensity shows a similar mode across resolutions, but the fraction of model334

grids with non-zero deep plume precipitation drastically reduced (Fig. 4h). As listed in335

Table 3, the deep plume precipitation area decreases from 49.5% in C192 to 4.2% in C1536.336

The distribution of the shallow plume precipitation generally shows little sensitivity to337

varying resolution, except that C192 shows a slightly wider range than others. The ex-338

tremes of the combined precipitation from both resolved and parameterized processes339

largely come from the resolved precipitation and thus show a similar sensitivity to res-340

olution (Figs. 4a vs 2a, 4d vs 2i).341

3.3 Relationship between the resolved precipitation and vertical veloc-342

ity343

Previous studies have attributed the resolution dependence in the resolved precip-344

itation to changes in the vertical velocity amplitude (Rauscher et al., 2016; Herrington345

& Reed, 2017, 2020). The strongest vertical velocity intensifies at finer resolutions, which346

produces a stronger gross upward moisture flux at the cloud base. The resolved precip-347

itation is found to be proportional to the gross upward moisture flux (Rauscher et al.,348

2016; O’Brien et al., 2016; Herrington & Reed, 2020). Therefore, an intensification of349

the strongest precipitation is expected following the intensification of the strongest as-350

cent. Herrington and Reed (2020) further showed that the enhancement of the mean re-351

solved precipitation in simulations of higher resolution mainly comes from precipitation352

of the strongest intensity that is co-located with the strongest upward motion.353
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Figure 4. Normalized distribution of (a, d, g, j) total precipitation intensity, (b, e, h, k) pa-

rameterized precipitation from the deep plume, and (c, f, i, l) parameterized precipitation from

the shallow plume. (a-c) Distribution is calculated using instantaneous data at the native model

grid over 200 bins spaced evenly on linear scale. (d-f) As in (a-c) but using daily averaged data

conservatively remapped to 0.5◦ × 0.5◦ grid. (g-i) Distribution is calculated using intantaneous
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daily averaged data conservatively remapped to 0.5◦ × 0.5◦ grid.
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We verify this argument in our simulations over the deep tropics. Table 3 lists the354

gross upward mass flux, the gross upward moisture flux along with the areal averaged355

precipitation. These quantities are calculated from the instantaneous fields sampled at356

the native model grid. Consistent with earlier studies (Herrington & Reed, 2017, 2020),357

stronger gross upward mass flux and stronger gross upward moisture flux are found at358

the cloud base level as well as at mid-troposphere in simulations of finer resolution. Each359

resolution doubling leads to roughly 30% increase in the upward mass flux at 848.8 hPa,360

and roughly 25 % increases at 532.5 hPa. This stronger upward mass flux does not come361

from changes in the ascent area but is driven by the stronger intensity of the vertical ve-362

locity. The gross upward moisture flux generally scales with the mass flux, confirming363

that changes in the moist flux is driven by the vertical velocity. The resolved precipi-364

tation, on the other hand, does not scale with the upward mass flux or the moisture flux.365

It increases by 22% when the resolution doubles from C192, but only 11% for the sec-366

ond resolution doubling, and decreases slightly for the third resolution doubling. Such367

disproportion between resolved precipitation and vertical velocity is also seen in the ex-368

treme and mode values as evident in Fig. 5a vs Fig. 2a and Fig. 5b vs Fig. 3a.369

To probe into the relationship between the vertical velocity and the resolved pre-370

cipitation, we sort the data points according to the vertical velocity and calculate the371

fraction of data points and the mean resolved precipitation in each bin, denoted as fi372

and Pi, respectively. The temporal and areal averaged precipitation over the deep trop-373

ics can be written as the sum over bins: P =
∑

i fiPi. We further calculate fi⟨Pi⟩ and374

⟨fi⟩Pi, where ⟨⟩ indicates the average among the 4 experiments. Comparing fiPi against375

fi⟨Pi⟩ and ⟨fi⟩Pi answers the question whether changes in the precipitation are driven376

by changes in the vertical velocity intensity. Similar decomposition is carried out by Terai377

et al. (2018) and Herrington and Reed (2020). As shown in Fig. 6a, the resolution de-378

pendence of precipitation is contributed by both strong and weak ascent bins. Changes379

in the strong ascent bins mainly comes from a larger fraction of grid points in those bins380

with strong ascent, but the mean precipitation in those bins changes little with resolu-381

tion. This is consistent with the aforementioned mechanism and the results shown by382

Herrington and Reed (2020). Change in the weak ascent bins, on the other hand, mainly383

comes from a weaker mean precipitation intensity in those bins rather than changes in384

fi. Changes in fi alone lead to a ∼30% increase of the deep tropical mean precipitation385

from each resolution doubling (Fig. 6c), which is consistent with changes in the gross386

upward mass flux and the gross upward moisture flux listed in Table 3. This is compen-387

sated by changes in Pi over weak ascent bins, and the actual resolved precipitation re-388

sponse to resolution is much more muted, especially for simulations at finer resolutions.389

Similar calculations are done for the daily averaged coarse-grained data. Note that390

the daily averaged coarse-grained vertical velocity is different from the averaged upward391

motion. The discrepancy between the two is small for the extreme strong ascent but large392

for mean weak ascent. As shown in Fig. 6d, varying resolution mainly affects precipi-393

tation in bins with weak vertical velocity but not in bins with strong ascent. The larger394

contribution to precipitation under the weak vertical velocity condition in higher reso-395

lution simulations is brought by the stronger precipitation intensity sampled at the same396

vertical velocity. On the other hand, the fraction of data points in each vertical veloc-397

ity bin is similar among simulations except for C1536, which shows larger fraction in weak398

velocity bins and smaller fraction in strong velocity bins (Fig. 6f). This precipitation de-399

composition using the coarse-grained data is consistent with results by Terai et al. (2018),400

who reported that the resolution dependence in the resolved precipitation mainly comes401

from changes in the precipitation irrespective to vertical velocity. This breakdown based402

on the daily averaged coarse-grained data highlights the precipitation changes over weak403

ascent regions, which cannot be explained by the resolution dependence in the vertical404

velocity amplitude.405
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Figure 5. Normalized distribution of vertical velocity at 532 hPa sampled instantaneously

every 6 hours at the native model grid (a) over 200 bins spaced evenly on linear scale between -3

and 15 m/s in units of 1, (b) over 50 bins spaced evenly on log scale between −100.4 and −10−4

m/s and 50 bins between 10−4 and 100.4 m/s in units of %.

3.4 Precipitation organization in the deep tropics406

We examine the organization of precipitation and its associated circulation in the407

deep tropics. We use daily averaged data coarse-grained to the 0.5◦×0.5◦ grid over the408

entire 9 months after spin-up. The precipitation is further averaged over 5◦N and 5◦S.409

As will be shown below, the dominant variance after these temporal and spatial aver-410

aging is mostly Kelvin wave.411

Figure 7 shows the Hovmöller plot for precipitation averaged over 5◦N-5◦S. In all412

experiments, the eastward propagating Kelvin waves is manifested in the parallel stripes413

of strong precipitation in the Hovmöller plots. The dominance of the Kelvin waves is con-414

firmed in the space-time spectra of precipitation and OLR shown in Fig. 8. The east-415

ward propagating Kelvin waves are readily seen in both resolved and parameterized pre-416

cipitation. The phase speed of the Kelvin wave indicated by the slope of the precipita-417

tion stripes are similar among different experiments and precipitation components. In418

the C192 experiment, the resolved precipitation shows localized extreme intensity, and419

the precipitation stripe is frequently interrupted. These popcorn-like pockets are greatly420

suppressed as the resolution increases, and the precipitation stripes become smoother421

and more continuous (Fig. 7e-h). The smoother precipitation stripes at the finer reso-422

lution are also seen in the precipitation from the parameterized deep plume (Figs. 7i-423

l) and shallow plume (Figs. 7m-p). The suppression of the popcorn pockets and the more424

continuous precipitation indicate a stronger role of the large-scale circulation.425

This transition from the localized popcorn convection to the more organized con-
vection is evident in the one-point correlation maps against the equatorial precipitation.
The correlation is calculated as:

r(θ,∆ϕ) =
[(x(t, θ, ϕ+∆ϕ)− [x])(y(t, ϕ)− [y])]√

[(x− [x])2]
√

[(y − [y])2]
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Figure 6. (a) Resolved precipitation amount binned with respect to the vertical velocity at

532 hPa evaluated using the instantaneous data at the raw model grid. It is calculated as the

product of the mean precipitation intensity in each bin Pi and the fraction of data points in

each bin fi. The sum of fiPi from each experiment is listed in the legend, corresponding to the

monthly mean areal mean resolved precipitation intensity in units of mm/day. The vertical ve-

locity is divided into 100 bins linearly ranging from -2 m/s to 7.5 m/s. (b) As (a), but assuming

a common fractional distribution among vertical velocity bins ⟨fi⟩ for all experiments. (c) As

(a), but assuming a common mean precipitation intensity in each vertical velocity bin ⟨Pi⟩ for
all experiments. (d)-(f) As (a)-(c) except for using the daily mean coarse-grained data and the

vertical velocity is divided into 100 bins linearly ranging from -0.15 m/s to 0.9 m/s.
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where x is the variable, y is the equatorial precipitation averaged over 5◦N-5◦S, t is time,426

θ is latitude, ϕ is the reference longitude, ∆ϕ is the longitudinal distance from the ref-427

erence, and [ ] indicates a zonal mean over all longitudes and time mean over the entire428

9 months after spin-up.429

Since the variance of this precipitation index is dominated by strong intensities,430

the one-point correlation maps show how precipitation is organized around a local pre-431

cipitation maximum, which often results from a deep convection core. Note that the rel-432

ative distance in longitude is equivalent to the relative sequence in time here given that433

the eastward moving Kelvin wave is the dominant variance. Features found to the east434

of the deep convection core (relative longitude>0) occur prior the deep convection, and435

vice versa.436

In the C192 experiment, high correlation is found at the same location where the437

precipitation index is defined, but near-zero correlation is found anywhere else. This is438

consistent with the localized popcorn convection seen in Figs. 7a, 7e, 7i, 7m. As the res-439

olution increases, correlations start to emerge outside the location where the precipita-440

tion index is defined. The longitudinal scale of the correlation patterns becomes wider441

and the non-local correlations becomes stronger. These non-local correlations indicate442

modulations from the large-scale circulation associated with the deep convection. At the443

resolution of C1536, the correlation maps of the total (Fig. 9d) and the resolved precip-444

itation (Fig. 9h) show a Gill-type response to the deep convection (Gill, 1980): positive445

correlation is found over a tongue extending to the east of the deep convection core and446

a pair of patches centered off-equator to the west. Negative correlations are found along447

the equator, corresponding to the descending branch of the Gill-type circulation anomaly.448

The precipitation from the parameterized deep and shallow plumes both show a pattern449

of zonal wave number 1. For the deep plume (Fig. 9l), stronger parameterized precip-450

itation is found to the west or after the deep convection core. Contrarily, the shallow plume451

produces stronger precipitation to the east or prior of the deep convection core (Fig. 9p).452

To examine the organization in the circulation associated with the precipitation,453

we calculate similar one-point correlation maps between the precipitation index and var-454

ious variables. As shown in Figs. 11 and 10, all these one-point correlation maps show455

stronger non-local correlations as the model resolution increases. A longitudinal expan-456

sion is evident as resolution increase from C192 to C384, though further expansions are457

more subtle for higher resolutions. These common features among all variables indicate458

a robust sensitivity in the organization state of the equatorial convection to the model459

resolution. In particular, we see a closer relationship between the large-scale circulation460

and the deep convection core at finer resolution, which provides more favorable condi-461

tions for convection organization.462

A common structure seen in all convective coupled equatorial waves is the shallow463

convection occurring prior the deep convection and the stratiform clouds and precipi-464

tation trailing the deep convection, which distinguish them from the isolated unorganized465

convection (Kiladis et al., 2009, and references therein). This shallow-to-deep-to-stratiform466

transition is associated with a slantwise circulation as well as vertical displacement of467

convective and radiative heating, which all contribute to the maintenance and propaga-468

tion of convective waves. Similar shallow-to-deep-to-stratiform transition is also impor-469

tant for the mesoscale convective systems (MCSs) (e.g., Houze, 2004; Moncrieff, 2010).470

Properly simulating this shallow-to-deep-to-stratiform transition is therefore crucial for471

simulating these equatorial waves and the organized convective system in general (e.g.,472

Frierson et al., 2011; Seo et al., 2012). Such transition is clearly manifested in vertical473

velocity (Figs. 10a-b), cloud fraction (Figs. 10e-h), relative humidity (Figs. 10i-l) and474

moist static energy (MSE; Figs. 10m-p). We see that on the east side of the deep con-475

vection core, the lower troposphere is moist and of high MSE, upward motion is largely476

confined within the lower troposphere and clouds are forming below ∼750 hPa, all of which477

indicate shallow convection. On the west side of the deep convection core, MSE and hu-478
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midity are higher over the upper troposphere than the lower troposphere, and upward479

motion and clouds are found over the upper troposphere, signaling the stratiform phase.480

The parameterized convection also contribute to the shallow-to-deep-to-stratiform tran-481

sition as indicated by the convective mass flux from the deep plume (Figs. 10q-t) and482

the shallow plume (Figs. 10u-x). The parameterized shallow plume varies inversely with483

the convective inhibition (CIN) in our model, which is tightly linked to the low level hu-484

midity. Thus, the high low-level relative humidity prior the deep convection indicates485

a low CIN and a stronger shallow plume from the parameterization. In the deep plume486

parameterization, the fractional lateral mixing rate decreases with the free troposphere487

column relative humidity. Higher free troposphere relative humidity is found at the deep488

convection core and over the stratiform region, which reduces lateral mixing there and489

promotes a stronger deep plume.490

We further show the one-point correlation on the latitude-longitude plane in Fig.491

11. The low surface pressure anomalies to the east of precipitation and high anomalies492

to the west (Figs. 11e-h) are consistent with the theoretical prediction for the equato-493

rial Kelvin waves (Matsuno, 1966). OLR anomalies (Figs. 11a-d) largely reflect the clouds494

anomalies associated with convective system: low OLR anomalies come from the strat-495

iform anvil clouds and high OLR anomalies are found over the region where there is lit-496

tle high clouds. The column-integrated MSE anomalies (Figs. 11i-l) are dominated by497

moisture anomalies over the lower troposphere, showing high MSE anomalies prior pre-498

cipitation at the equator. Similar to the one-point correlations shown above, all three499

variables show a clear longitudinal expansion with resolution. On the other hand, the500

latitudinal scales of these precipitation-associated anomalies do not vary much with res-501

olution.502

All the variables shown in Figs. 9, 10 and 11 manifest a robust resolution depen-503

dence in the convective organization. The shallow-to-deep-to-stratiform transition is barely504

discernible in the C192 run but expands to a much wider system in longitudes at the finer505

resolutions, and the non-local effects of the convection becomes stronger as the resolu-506

tion increases. Whether the convection is dominated by the organized system or the un-507

organized popcorn would lead to different relationship between precipitation and the lo-508

cal vertical velocity. For a localized convection, strong ascent is always co-located with509

strong precipitation. For a convective system, strong precipitation and strong ascent are510

found at the deep convection core, but precipitation also forms over the shallow convec-511

tion and stratiform region, which is less controlled by the local vertical velocity. As the512

model resolution increases, the convective system becomes stronger, and more moder-513

ate precipitation forms over the shallow and stratiform region, which might explain the514

precipitation changes irrespective of vertical velocity seen in Fig. 6e.515

Note that the zonal wavenumber-1 structures apparent in these one-point corre-516

lation maps are not contradictory to spectra analysis showing power over a range of zonal517

wavenumbers (Fig. 8). This is because precipitation does not vary along longitude as518

a sinusoidal wave but more as individual solitons. Fourier transform of a single soliton519

project powers on a range of zonal wavenumbers. It is also worth noting that the stronger520

organization at finer resolution is not only contributed by the resolved processes but by521

the parameterized ones as well, despite the fact that the cumulus parameterization here522

is not directly “scale-aware”. These resolution dependence in the parameterized convec-523

tion reflects the modulation of the large-scale circulation to the parameterized convec-524

tion via the mean states, mostly the relative humidity.525

4 Summary and discussion526

We performed a series of aquaplanet simulations using the GFDL AM4-MG2 model527

with horizontal resolution ranging from 50km to 6km. As the resolution increases, the528

globally averaged precipitation at the resolved scale intensifies while the precipitation529
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Figure 7. Hovmöller plot of daily mean precipitation averaged over 5◦N-5◦S over the 6th and

7th months for (a-d) total precipitation, (e-h) resolved precipitation, (i-l) parameterized deep

plume precipitation, and (m-p) parameterized shallow plume precipitation. (a, e, i, m) show re-

sults for C192, (b, f, j, n) for C384, (c, g, k, o) for C768, and (d, h, l, p) for C1536. Precipitation

is in units of mm/day.
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Figure 8. The 10 base logarithm of the ratio between the symmetric component and the

background spectra in (a-d) total precipitation, and (e-h) OLR following Wheeler and Kiladis

(1999). The spectra is calculated using the daily mean coarse-grained data over 15◦N-15◦S over

the entire 9 months. The gray lines indicate the theoretical dispersion relationship for Kelvin

waves corresponding to equivalent depths of 12, 25, and 50 m. The black dashed lines mark the

period of 3, 6 and 30 days. (a, e) show results for C192, (b, f) for C384, (c, g) for C768 and (d,

h) for C1536.
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Figure 9. Correlation against the total precipitation averaged over 5◦N-5◦S at a reference

longitude for (a-d) total precipitation, (e-h) precipitation at the resolved scale, (i-l) precipitation

from the parameterized deep plume, and (m-p) precipitation from the parameterized shallow

plume. (a, e, i, m) show results for C192, (b, f, j, n) for C384, (c, g, k, o) for C768, and (d, h, l,

p) for C1536.

produced by the cumulus parameterization weakens. This is consistent with earlier stud-530

ies using models of resolutions coarser than 25km (e.g., Wehner et al., 2014; Herrington531

& Reed, 2017; Terai et al., 2018; Herrington & Reed, 2020). The resolved precipitation532

seems to approach convergence for resolutions finer than 13km in our simulations, es-533

pecially over the deep tropics. The precipitation from the parameterized deep plume de-534

creases by an order as the resolution increases from 50km to 6km, while variations in the535

shallow plume across resolution are generally weak. More and/or thicker clouds are sim-536

ulated at the finer resolution over high latitudes, and less and/or thinner clouds are found537

over low latitudes.538

Studies have attributed the enhancement of the mean resolved precipitation with539

resolution to the intensification of the extreme precipitation, which is linked to the in-540

tensification of the strongest ascent (Rauscher et al., 2016; O’Brien et al., 2016; Herring-541

ton & Reed, 2017, 2020). Our simulations at higher resolution suggest that the resolu-542

tion dependence in the resolved precipitation cannot be fully explained by the intensi-543

fication of the strongest ascent. Changes in the precipitation with resolution occurs not544

only over the extreme intensity range but also over weak and moderate intensity range545

and outside of the strongest ascent region. Intensification of the extreme precipitation546

with resolution is only seen in instantaneous samples but not in the daily averaged one.547

We report a robust resolution sensitivity in the convective organization state in our model,548

which has not been reported in previous GCM studies. A stronger correlation is found549

between the local precipitation event and the large-scale circulation in simulations at finer550

resolution. As the large-scale convective system takes over, the localized popcorn con-551

vection is suppressed, moderate precipitation is enhanced, but the extreme precipitation552

is less affected.553
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We show that the precipitation extremes and intensity distribution simulated in554

the higher resolution model is strongly affected by whether precipitation has been spa-555

tially coarse-grained and/or averaged over time, whereas the lower resolution models show556

less sensitivity to the re-sampling. This explains why earlier GCM studies at the reso-557

lution lower than 25km reported similar resolution dependence in extreme precipitation558

regardless of whether data is sampled at native model grid or coarse-grained, instanta-559

neously or daily averaged (e.g., Li et al., 2011; Wehner et al., 2014; O’Brien et al., 2016;560

Rios-Berrios et al., 2020; Herrington & Reed, 2020). On the other hand, recent model561

studies at higher resolutions reported distinction between extremes in instantaneous and562

daily precipitation (Bao & Sherwood, 2018; Bao & Windmiller, 2021; O’Gorman et al.,563

2021).564

Besides model resolution, the precipitation extremes and convective organization565

are also sensitive to the diffusive damping setting in the dynamical core. Anber et al.566

(2018) evaluated the sensitivity in convection organization and precipitation extremes567

to the damping settings in a radiative-convective equilibrium (RCE) configuration based568

on the same FV3 dynamical core used here. They found a weaker damping setting (ei-569

ther by using a higher order damping or a weaker damping coefficient) leads to weaker570

extremes in the 6-hourly averaged precipitation. As discussed in the appendix, the dy-571

namical core setting in our simulations may be too diffusive for the finer resolution runs.572

If higher order damping and/or weaker damping coefficients to be used in the finer res-573

olution runs, we expect the daily precipitation extremes to reduce even more in the finer574

resolution runs, leading to a further departure from the estimation based on vertical ve-575

locity. On the other hand, the simulations by Anber et al. (2018) are limited to a small576

domain of 32km x 32km so that convective organization on the larger scales are ignored.577

The sensitivity to diffusion settings found in their model may not hold in a global sim-578

ulation. Given the complex coupling across different scales, how artificial diffusion af-579

fects convection in a global model may be counter-intuitive as discussed by Zhao et al.580

(2012).581

This work highlights the complexity to understand the global simulations at the582

convective gray zone resolution, where the underlying physics may be different from the583

conventional GCMs or the cloud-resolving models and the Large Eddy Simulations (LES)584

of limited domain. Since it remains challenging to run the global simulation at a reso-585

lution fully resolving convection and clouds in the foreseeable future, more investigations586

are called for to understand the resolution dependence and the interaction between the587

parameterized and resolved convection at the convective gray zone resolution.588

Appendix A Diffusion Settings589

Numerical diffusion is an indispensable component of the dynamical core, repre-590

senting the viscous dissipation of kinetic energy cascading towards molecular scales by591

the unresolved turbulent eddies. This is achieved implicitly from the advection opera-592

tor as well as explicitly by adding artificial damping. Choices of these diffusion settings593

would certainly affect the characteristics of the simulated circulation. A detailed doc-594

umentation of the numerical diffusion settings in the FV3 dynamical core as well as guide-595

lines for choosing these diffusion settings can be found in Harris et al. (2021, Chapter596

8). Here, we provide a short summary of the diffusion settings used in our simulations.597

We use a monotonic operator for advection in our simulations, which is more dif-
fusive than the unlimited or positive-definite operators. More specifically, we use the third-
order piecewise-parabolic method with the “fast monotonicity constraint” of S.-J. Lin
(2004) for tracers. Horizontal advection of momentum, vorticity, potential temperature
and mass uses the quasi-monotone constraint proposed by Huynh (1997), which is sig-
nificantly less diffusive than the one used for tracers. For the explicit damping, we use
separate damping on the divergent and rotational components of the flow. The diver-
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gence damping is applied to horizontal winds as following:

vn+1 = vn + . . .+ (−1)NνD
δx(∇2ND)

∆x

where v is the vector of horizontal wind, n is the time index, δx is a centered-difference598

operator, D is the divergence of horizontal winds, ∆x is the horizontal grid length, and599

νD is the damping coefficient. νD is calculated in the model as (d2N∆Amin)
N+1, in which600

∆Amin is the global minimum grid-cell area and d2N is a specified non-dimensional con-601

stant. Such formulation is equivalent to a ∇2N+2 form of hyper diffusion for the diver-602

gence field (i.e., (2N+2)-th order damping), and νD/∆t is equivalent to the dimensional603

hyperviscosity coefficient (∆t is the dynamical time step). We use N = 1 and d2N =604

0.15 for all our simulations, that is a 4th order damping with hyperviscosity coefficient605

of 6.32× 1014m4s−1 for C192, 1.03× 1014m4s−1 for C384, 1.10× 1013m4s−1 for C768606

and 1.38×1012m4s−1 for C1536. Vorticity damping is of the same order as the diver-607

gence damping, and the vorticity damping coefficient νv is calculated in a similar fash-608

ion to νD, that is νv = (dv∆Amin)
N+1. We use dv = 0.02 for all our simulations, which609

corresponds to a dimensional damping coefficient of 1.12×1013m4s−1 for C192, 1.84×610

1012m4s−1 for C384, 1.96× 1011m4s−1 for C768 and 2.45× 1010m4s−1 for C1536.611

As discussed in Harris et al. (2021, Chapter 8), the choices of the diffusion settings612

should be chosen for desirable simulation features rather than objectively determined.613

A model with high resolution typically employs a less diffusive advection operator and614

a higher-order artificial damping scheme that is more scale selective, whereas a conven-615

tional climate model often employs a more diffusive advection operator and a lower-order616

damping scheme to improve the large-scale circulation features. But this is not always617

the case. The diffusion setting used in this study follows the setting used in the C192618

AM4 climate simulations runs (Zhao, 2020), which choose a lower order divergence damp-619

ing than in the lower resolution ones (4th order in C192 vs 6th order in C96) to improve620

simulations of tropical cyclones. We note that the diffusion settings here may not be the621

optimal choice for high resolution runs. As shown in Fig. A1, the k−5/3 slope in the hor-622

izontal kinetic energy spectra is barely resolved even in our high resolution simulations,623

suggesting that our model setting is too diffusive to fully resolve the mesoscale energy624

cascade. Takahashi et al. (2016) argue that the dimensional damping coefficients of a 4th625

order damping should scale with ∆x3.22 to properly resolve the mesoscale kinetic energy,626

which leads to a decrease by an order of magnitude in the damping coefficient for each627

resolution doubling. Our explicit dimensional divergence and vorticity damping coeffi-628

cients do decrease as resolution increases but not as much as the scaling proposed by Takahashi629

et al. (2016), which may partly explain the early departure from the k−5/3 slope in our630

simulations. However, one should note that the strength of the diffusion is not solely de-631

termined by the damping coefficients. Choices of the advection operator and the order632

of the damping also affect how diffusive the model is, and their effects are usually im-633

plicit, nonlinear and not straightforward to quantify. For example, a much better resolved634

k−5/3 slope is seen in simulations by the FV3 dynamical core with a less diffusive ad-635

vection operator (“virtually-inviscid” scheme vs monotonic scheme), a higher order di-636

vergence damping (8th vs 4th) and a similar non-dimensional damping coefficient (e.g.,637

S.-J. Lin et al., 2018).638
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Ullrich, P. A. (2016). Resolution dependence of precipitation statistical fi-820

delity in hindcast simulations. J. Adv. Model. Earth Sy., 8 , 976-990. doi:821

10.1002/2016MS000671822

O’Gorman, P. A., Li, Z., Boos, W. R., & Yuval, J. (2021). Response of extreme823

precipitation to uniform surface warming in quasi-global aquaplanet sim-824

ulations at high resolution. Phil. Trans. R. Soc. A., 379 , 20190543. doi:825

10.1098/rsta.2019.0543826

Pendergrass, A. G. (2020). Changing degree of convective organization as a mech-827

anism for dynamic changes in extreme precipitation. Curr. Clim. Change Rep.,828

6 , 47-54. doi: 10.1007/s40641-020-00157-9829

Rauscher, S. A., O’Brien, T. A., Piani, C., Coppola, E., Giorgi, F., Collins, W. D.,830

& Lawston, P. M. (2016). A multimodel intercomparison of resolution effects831

on precipitation: simulations and theory. Clim. Dyn., 47 , 2205-2218. doi:832

10.1007/s00382-015-2959-5833

Retsch, M. H., Mauritsen, T., & Hohenegger, C. (2019). Climate change feedbacks834

in aquaplanet experiments with explicit and parameterized convection for hori-835

zontal resolutions of 2525 up to 5km. J. Adv. Model. Earth Sy., 11 , 2070-2088.836

doi: 10.1029/2019MS001677837

Rios-Berrios, R., Medeiros, B., & Bryan, G. H. (2020). Mean climate and trop-838

ical rainfall variability in aquaplanet simulations using the Model for Pre-839

diction Across Scales-Atmoshere. J. Adv. Model. Earth Sy., 12 . doi:840

10.1029/2020MS002102841

Robinson, T., Radhakrishnan, A., & Underwood, S. (2022). NOAA-GFDL/AM4:842

Non-hydrostatic aquaplanet MG (version highres aquaplanet 2022) [software].843

Zenodo. Retrieved from https://doi.org/10.5281/zenodo.7476908 doi:844

10.5281/zenodo.7476908845

Roh, W., Satoh, M., & Hohenegger, C. (2021). Intercomparison of cloud properties846

in DYAMOND simulations over the Atlantic Ocean. J. Meteorol. Soc. Jpn.,847

99 , 1439-1451. doi: 10.2151/jmsj.2021-070848

Rotstayn, L. D. (1997). A physically based scheme for the treatment of stratiform849

clouds and precipitation in large-scale models. I: description and evaluation of850

the microphysical processes. Q. J. Roy. Meteorol. Soc., 123 , 1227-1282. doi:851

10.1002/qj.49712354106852

Satoh, M., Stevens, B., Judt, F., Khairoutdinov, M., Lin, S.-J., Putman, W. M., &853
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