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Abstract

Although water availability strongly controls gross primary production (GPP), the impact of soil moisture content (wilting

point) is poorly quantified on regional and global scales. In this study, we used 10-year observations of solar-induced chlorophyll

fluorescence (SIF) from the GOSAT satellite to estimate the wilting point of a semiarid grassland on the Mongolian Plateau.

Radiative-transfer model inversion and soil-vegetation-atmosphere transfer simulation were jointly conducted to distinguish the

drought impacts on physiology from changes in leaf-canopy optical properties. We modified an existing inversion algorithm

and the widely used SCOPE model to adequately evaluate dryland features, e.g., sparse canopy and strong convection. The

modified model with retrieved parameters and calibrated to GOSAT SIF predicts realistic GPP values. We found that (1)

the SIF yield estimated from GOSAT shows a clear sigmoidal pattern in relation to drought, and the estimated wilting point

matches ground-based observations within ˜0.01 m3 m-3 for the soil moisture content, (2) tuning the maximum carboxylation

rate improves SIF prediction after considering changes in leaf-canopy optical properties, implying that GOSAT detected drought

stress in leaf-level photosynthesis, and (3) the surface energy balance has significant impacts on the grassland’s SIF; the modified

model reproduces observed SIF radiance well (mean bias = 0.004 mW m-2 nm-1 sr-1 in summer), whereas the original model

predicts substantially low values under weak horizontal wind (unstable) conditions. Some model-observation mismatches in the

SIF suggest that more research is needed for fluorescence parametrization (e.g., photoinhibition) and additional observation

constraints.
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Key Points:

• Satellite-observed chlorophyll fluorescence showed a nonlinear wilting pat-
tern in response to soil droughts on the Mongolian Plateau.

• We modified the SCOPE model and its ancillary radiative-transfer inver-
sion algorithm to adequately evaluate dryland features.

• The modifications enabled assessing the physiological control of photosyn-
thesis and retrieving the wilting point of the study area.

•

Abstract

Although water availability strongly controls gross primary production (GPP),
the impact of soil moisture content (wilting point) is poorly quantified on
regional and global scales. In this study, we used 10-year observations of
solar-induced chlorophyll fluorescence (SIF) from the GOSAT satellite to es-
timate the wilting point of a semiarid grassland on the Mongolian Plateau.
Radiative-transfer model inversion and soil-vegetation-atmosphere transfer sim-
ulation were jointly conducted to distinguish the drought impacts on physiology
from changes in leaf-canopy optical properties. We modified an existing inver-
sion algorithm and the widely used SCOPE model to adequately evaluate dry-
land features, e.g., sparse canopy and strong convection. The modified model
with retrieved parameters and calibrated to GOSAT SIF predicts realistic GPP
values. We found that (1) the SIF yield estimated from GOSAT shows a clear sig-
moidal pattern in relation to drought, and the estimated wilting point matches
ground-based observations within ~0.01 m3 m−3 for the soil moisture content,
(2) tuning the maximum carboxylation rate improves SIF prediction after consid-
ering changes in leaf-canopy optical properties, implying that GOSAT detected
drought stress in leaf-level photosynthesis, and (3) the surface energy balance
has significant impacts on the grassland’s SIF; the modified model reproduces
observed SIF radiance well (mean bias = 0.004 mW m−2 nm−1 sr−1 in sum-
mer), whereas the original model predicts substantially low values under weak
horizontal wind (unstable) conditions. Some model-observation mismatches in
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the SIF suggest that more research is needed for fluorescence parametrization
(e.g., photoinhibition) and additional observation constraints.

Plain Language Summary

Solar-induced chlorophyll fluorescence, a weak radiation emitted as a byprod-
uct of photosynthesis, can potentially assess physiological status, which is espe-
cially promising to evaluate poorly-quantified soil drought (wilting) impacts on
the carbon cycle. However, the potential of satellite-observed fluorescence to
improve the wilting prediction by vegetation models has not been sufficiently
explored because of the confounding of plants’ physiological stress and visible
damages (i.e., leaf browning and defoliation). In this study, we distinguished
physiological wilting from visible damages by estimating leaf pigment contents
and total leaf amounts from satellite-observed reflectance with the aid of a ra-
diative transfer model and a state-of-the-art vegetation model. We found that
some model modifications were necessary to adequately evaluate dryland fea-
tures, e.g., sparse vegetation cover and thermally induced atmospheric flow. The
observed fluorescence showed a clear nonlinear response to the soil moisture con-
tent, which is characteristic of wilting. Model-based analysis suggested that the
nonlinear response resulted from physiological stress, and the estimated wilting
point quantitatively matched well with ground-based observations. Since our
approach is based on biophysical theories and satellite data, our findings and
methods should help to understand and predict the terrestrial water and carbon
cycles in other regions.

1 Introduction

Drought is a critical hazard for human society and ecosystems. For example, the
recent rapid warming and long-lasting drought over the Mongolian Plateau have
reduced water resources (e.g., Brutsaert & Sugita, 2008), caused land degrada-
tion and frequent dust storms (Lee & Sohn, 2011), and enhanced the risk of
livestock mortality by reducing pasture production (Nandintsetseg et al., 2018).
Since gross primary production (GPP) is fundamental and changes in advance
of other biological processes, monitoring and modeling of the impacts of drought
on GPP have received great attention (e.g., Fisher et al., 2020; J. Huang et al.,
2017; A. Verhoef and Egea, 2014).

Satellite remote sensing has played a pivotal role in quantifying the terrestrial
carbon and water cycles. However, satellite-based diagnostic GPP products,
most of which depend on the Moderate Resolution Imaging Spectroradiometer
(MODIS), often fail to track dryland interannual dynamics (Biederman et al.,
2017; Stocker et al., 2019). This error may result from insufficient parametriza-
tion of the wilting point, i.e., the soil-moisture content (SMC) effect, which is
frequently neglected in diagnostic GPP products. Introducing the wilting effect
to the diagnosis potentially reduces estimates of the GPP by 10–19% globally
and increases the interannual variability by more than 100% across one-fourth
of vegetated lands (Stocker et al., 2019). The nonlinear feature of the wilting
point is also poorly constrained in prognostic models (Rogers et al., 2017), and
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it is a major driver of carbon cycle uncertainty between the earth system models
(ESMs) investigated in the CMIP5 model intercomparison project (Trugman et
al., 2018).

Spaceborne observations of solar-induced chlorophyll fluorescence (SIF) have at-
tracted attention since its first global measurements by the Greenhouse gases
Observing Satellite (GOSAT) launched in 2009 (Frankenberg & Berry, 2018).
SIF is a weak radiation emitted as a byproduct of photosynthesis, and satel-
lites often observe SIF reductions associated with drought (Jonard et al., 2020).
However, the mechanistic links to GPP are still unclear; some leaf-level stud-
ies have shown that SIF is insensitive to (or even increases with) short-term
droughts (see reviews; Jonard et al., 2020; Magney et al., 2020). Since drought
directly affects CO2/H2O exchange while SIF is rooted in radiative transfer and
photochemistry, it is important to distinguish leaf-level processes linked to the
former (e.g., stomatal closure, carboxylation-capacity reductions) and the latter
(e.g., photoinhibition, chlorophyll reductions) from canopy-level processes such
as defoliation. Physical leaf-canopy radiative-transfer model inversion (e.g., W.
Verhoef et al., 2018; Weiss & Barret, 2016) and the SCOPE model (Soil-Canopy
Observation of Photosynthesis and Energy fluxes, van der Tol et al., 2009; Yang
et al., 2021) can serve as the bases for process-oriented studies, such as those for
the forthcoming FLEX satellite (Mohammed et al., 2014). Mechanistic links are
essential to go beyond mere correlation and utilize SIF with prognostic models.

In this study, we attempted to estimate the wilting point of a semiarid
grassland from satellite SIF, combined with observed spectral reflectance
and radiative-transfer inversion, to separate optical property changes (e.g.,
defoliation and chlorophyll reductions) from other factors. Furthermore, we
demonstrated how satellite SIF signals constrain grassland GPP through
soil-vegetation-atmosphere transfer (SVAT) simulation by modifying the widely
used SCOPE model. We proposed simple but important modifications to
both the inversion algorithm and the SCOPE model, which are necessary to
utilize satellite SIF products with relatively large footprints (GOSAT here) and
evaluate the energy, water, and carbon fluxes in grassland ecosystems.

2 Study Area and Climate

The study area is the eastern end of the Mongolian Plateau (46–52◦N;
110–122◦E; elevation 700–1,000 m), which has experienced rapid warming and
drought since the late 1990s (Xu et al., 2015). Figure 1 illustrates the land
cover map, according to the International Geosphere-Biosphere Programme
(IGBP) (Friedl & Sulla-Menashe, 2019). Typical plant species are cool-season
C3 grasses (Y. Yan et al., 2018).
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Figure 1. IGBP land cover map of the study area for 2015. Abbreviations repre-
sent evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), de-
ciduous broadleaf forests (DBF), mixed forests (MXF), closed shrublands (CSH),
open shrublands (OSH), woody savannas (WSA), savannas (SAV), grasslands
(GRA), wetlands (WET), croplands (CRO), urban areas (URB), agricultural
mosaics (AGM), snow and ice (SNO), barren areas (BAR), and water bodies
(WAT).

According to the Modern-Era Retrospective Analysis for Research and Applica-
tions, Version 2 (MERRA-2) reanalysis product (Gelaro et al., 2017), the annual
precipitation is approximately 400 mm, and the maximum and minimum values
of the 2-m air temperature are 35◦C and −35◦C, respectively. The study area
boundaries were determined by hierarchical cluster analysis (Badr et al., 2015)
using the monthly means of the MERRA-2 air temperature, precipitation, va-
por pressure deficit, and the top-of-canopy (TOC) irradiance of photosynthetic
active radiation (PAR) during 2009–2018. Since SMC products generally have
large uncertainty (Li et al., 2021) and the MERRA-2 SMC is not assimilated
with observational data, the reliability was confirmed by comparison with other
datasets (Text S1 and Figure S1). We found that the MERRA-2 SMC is better
than or as good as the other products.

3 Strategies of Inverse and Forward Simulations

Figure 2 overviews the model calibration procedure. Radiative-transfer model
inversion and SVAT simulation were jointly conducted to distinguish the drought
impacts on physiology from changes in leaf-canopy optical properties.
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Figure 2. Schematic diagram of the model calibration procedure.

3.1 Inverting the RTMo Soil-Leaf-Canopy Radiative-Transfer Model

3.1.1 Overview and Modifications

We carried out inversion analysis to retrieve the canopy structural, leaf opti-
cal, and soil parameters of the grassland. The optical radiative transfer model
(RTMo) is a submodule of the SCOPE model. It is composed of the PROSPECT
leaf model (Jacquemoud & Baret, 1990), the 4SAIL canopy model (W. Verhoef,
1998), and the BSM soil model (Yang et al., 2020). The inversion algorithm
based on RTMo (van der Tol et al., 2016; W. Verhoef et al., 2018) enables re-
trieval of the parameters from TOC spectral reflectance (400–2400 nm). We
used the RTMo retrieval code version itc2020 with the Optipar2017_ProspectD
library. This library was also used in the forward simulation. The RTMo pa-
rameters were retrieved from the MODIS bidirectional reflectance factor (BRF)
(Lyapustin & Wang, 2018) by convolving with its spectral response function.

We have modified the RTMo retrieval code as follows.

1. While the original code retrieves the parameters from the
TOC hemispherical-directional reflectance factor or top-of-
atmosphere radiance, we modified it to enable retrieval from
TOC BRF to use the MODIS BRF data.

2. The original code assumes a horizontally homogeneous canopy,
which is generally invalid at the > 1-km scale, especially for
sparse vegetation in drylands. Therefore, we introduced frac-
tional vegetation cover (FVC) as a new canopy structural param-
eter to adjust landscape-level clumping. Linear spectral mixing
of vegetated and nonvegetated lands was assumed as in the lit-
erature (e.g., Weiss & Baret, 2016).

3. We implemented procedures to calculate model parameter er-
rors (Rodgers, 2000) used in the optimization process in the
Bayesian inversion to avoid overfitting to observed reflectance
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and improve retrieval robustness (detailed in Text S2).

3.1.2 Retrieval Procedure

The cost function 𝜒2 of the RTMo retrieval is based on a Bayesian inversion
approach,

𝜒2 = ∑𝑛
𝑖=1 ( 𝑅obs

𝑖 −𝑅mod
𝑖 (x)

𝜎𝜖, 𝑖
)

2
+ ∑𝑚

𝑗=1 ( 𝑥𝑗−𝜇𝑗
𝜎𝑎,𝑗

)
2
, (1)

where Ri is the reflectance in the ith bands of a spectroradiometer (MODIS
BRF here, n = 12); superscripts designate observation (obs) and RTMo (mod).
�𝜖 denotes the root-sum-square of instrumental noise and model uncertainty (Eq.
S1). � denotes the a priori values, and x denotes the RTMo parameters to be
retrieved. The uncertainty (i.e., standard deviation) �𝑎 of the a priori values was
set to the default or quantified by assuming uniform probability distributions
as in W. Verhoef et al. (2018) (but based on the strict definition here; 𝜎2

𝑎 =
∫UB
LB

(𝑥−𝜇)2

𝑈𝐵−𝐿𝐵dx). Tables 1 and S1 summarize the settings. Minimization of
the cost function (Eqs. 1 & S1) was iteratively solved using the trust-region-
reflective method. The posterior uncertainty �𝑝 = [𝜎𝑝,1, 𝜎𝑝,2, … , 𝜎𝑝,𝑚]𝑇 can be
expressed as

[𝜎2
𝑝,1, 𝜎2

𝑝,2, … , 𝜎2
𝑝,𝑚]𝑇 = diag [(K𝑇 S−1

𝜖 K + S−1
𝑎 )−1], (2)

where S𝜖 and S𝑎 are the (diagonal) covariance matrices of the measurement
error and the priori uncertainty, respectively (the diagonals are 𝜎2

𝜖,𝑖 and 𝜎2
𝑎,𝑗,

respectively), and K = 𝜕R
𝜕x is the Jacobian matrix. The values of �𝑝 depend

on the assumptions in S𝑎 but provide insights into which retrievals are more
strongly constrained by observation.

Table 1. Retrieval Settings for Vegetation Parameter Estimation.

Definition Unit 𝜇 𝜎𝑎 LB UB
B Soil brightness [-] 0.45 0.26 0 0.9
BSMlat Dry soil spectral shape [-] 28*1 4*1 - -
BSMlon [-] 56*1 4*1 - -
SMC Volumetric water content in surface soil [vol%] MERRA-2 5*2 - -
Cab Chlorophyll a + b content [µg cm−2] 15*3 45 0 100
Cca Carotenoid content [µg cm−2] f (Cab) *4 4 0 25
Cant Anthocyanin content [µg cm−2] 0 1 - -
Cdm Dry matter content [g cm−2] 0.005 0.008 0 0.02
Cw Equivalent water thickness [cm] 0.01 0.02 0 0.05
Cs Brown pigments content [-] 0.1 1.4 0 2.5*5
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Definition Unit 𝜇 𝜎𝑎 LB UB
N Leaf structure parameter [-] 1.4 1 - -
LAI Leaf area index [m2 m−2] MCD15 C6 *6 0 7
LIDFa Average leaf inclination [-] −0.5*7 0.76 - -
LIDFb Bimodality of the leaf angle distribution [-] −0.5*7 0.76 - -
FVC Fractional vegetation cover [m2 m−2] MOD44 C6 0.1*8 0 1

Note: 𝜇 is the a priori mean, 𝜎𝑎 is the a priori standard deviation, and LB and
UB are the lower and upper boundaries, respectively. The retrieved parameters
in the vegetation parameter estimation step are shown in bold face.
*1Table S1; *2Reichle et al. (2017); *3Minimum value of green leaves defined
by Weiss & Baret (2016); *4The regression line from Sims & Gamon (2002,
Figure 7); *5Pacheco-Labrador et al. (2021); *6max[1/3, standard deviation of
MCD15 LAI]. 1/3 is based on the 3� rule and the difference between MCD15
LAI and observed total LAI (K. Yan et al., 2016); *7Plagio-erectophile with
65° average leaf inclination (W. Verhoef, 1998); *8Climatological mean of the
standard deviation of the MOD44 FVC in the study area.

The RTMo retrieval was applied to the averaged BRF within a GOSAT foot-
print of 10.5 km diameter, and the parameters to be retrieved were determined
as follows. An example spectrum observed on 7 July 2012 is shown in Figure 3
(left); the right panels show the spectrum of the Jacobian matrix for the same
datum and show clear implications. (1) It is obvious that the dominant param-
eter is the leaf area index (LAI), and the other parameters for the structure of
the canopy or leaf (LIDF, FVC, and N) have similar spectral shapes, suggesting
the difficulty of retrieving these parameters simultaneously. (2) The sensitivity
to SMC is weak, and its spectral shape is similar to that of soil brightness (B)
except for the signs. (3) The 1st- and 2nd-peak positions of the brown pigments
Cs overlap with the peaks of the soil parameter BSMlat and chlorophyll content
Cab, respectively. Therefore, (1) we included the a priori LAI and FVC using
MODIS products (MCD15A2H, Myneni et al., 2015; MOD44B, Dimiceli et al.,
2015) to constrain these parameters and fix the other structural parameters, (2)
we fix the SMC value to that of MERRA-2, and (3) adopt a 2-step retrieval
strategy. First, for preparation, BSMlat and BSMlon values were retrieved us-
ing only summer data with homogeneous green cover (LAI > 1 and FVC >
0.75) by assuming Cs = 0. Then, we retrieved vegetation properties with fixed
values of BSMlat and BSMlon obtained in the 1st step. The uncertainty in
unretrieved parameters was explicitly considered using Eq. S1 in both steps.
The root mean square error (RMSE) of the modeled spectrum in Figure 3 (left),
obtained by these procedures, was 0.004; this is comparable to previous studies
that used high-resolution images (e.g., Bayat et al., 2018).
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Figure 3. (left) Observed and simulated BRF spectrum for MODIS bands 1–12
on a typical summer day (LAI = 1.9 m2 m−2, Cab = 23 µg cm−2). (right) The
corresponding Jacobians (𝜕 𝐵RF

𝜕 𝑥) for each model parameter 𝑥. Dashed lines in
the right panels indicate the position of the GOSAT SIF retrieval window (758
nm).

3.2 Modifications to the SCOPE Soil-Vegetation-Atmosphere Trans-
fer Model

3.2.1 Overview and Bug Fixing

The multilayer SVAT model SCOPE can predict spectral and directional ra-
diative transfer, including the emissions of SIF (van der Tol et al., 2019) and
thermal infrared radiation. We used the latest version, SCOPE2.1. This model
has two options for the photosynthesis-fluorescence scheme, TB12 and MD12,
and we used the latter because of its more process-based nature (Mohammed
et al., 2014). The MD12 scheme is composed of the photosynthesis model of
Farquhar et al. (1980) and the MD12 quantum yield parametrization (Dayyoub,
2011) as follows:

Φ𝐹 = min [ΦPQ
𝐹 , ΦNPQ

𝐹 ] , (3)

ΦNPQ
𝐹 = Φ𝑃

𝑘𝐹
𝑘PSII

1
𝑞Ls− 𝐽𝑎

𝐽max
, (4)

where ΦF and ΦP are quantum yields of fluorescence [superscripts designate pho-
tochemical (PQ) and nonphotochemical quenching (NPQ)] and photochemistry,
respectively. Under moderate- to high-light conditions expected at satellite
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overpass times, plants are generally in the ‘NPQ-phase’ (Magney et al., 2020).
k is the rate constant [fluorescence (F) and the intrinsic (i.e., fully open and
functional) rate of photosystem II (PSII)], the values of which were adopted
from Thum et al. (2017). qLs is the fraction of the functional reaction center
(= 0.95 in this study), Jmax is the maximum electron transport rate, and Ja
is the actual electron transport rate under the colimitation with the carboxyla-
tion rate. ΦP is a function of Ja and the PAR absorbed by chlorophylls, and
the values of Ja and Jmax are predicted by the photosynthesis model; the Jmax
value at 25 °C was determined from the maximum carboxylation rate V cmax
using the empirical relationship derived by Leuning (1997). Additional details
are provided in Thum et al. (2017).

We found the following issues in SCOPE2.1 that can lead to significant errors in
drylands. The first two were reported by Dutta et al. (2019) and have been fixed
in the TB12 scheme since v1.73; however, they remain in the MD12 scheme.

1. The iteration to converge intercellular CO2 concentration is
omitted in MD12, which eliminates the minimum stomatal con-
ductance (g0).

2. An exponential Q10 function was still used in MD12 to express
the effect of leaf temperature on respiration, which results in a
steep decrease in stomatal conductance under hot conditions.

In this study, we fixed the above along with the implementations in TB12. In
addition, we found two other issues.

1. The density of air �a is fixed to 1.2047 kg m−3 (i.e., dry air at
20 °C and 101 kPa).

2. Leaf boundary layer resistance is implicitly neglected since v2.1.

A third issue is simple but significant in regions at high altitudes and a non-
temperate climate (e.g., the Mongolian Plateau); this results in large bias in
the leaf temperature because sensible and latent heat fluxes are proportional to
�a. A fourth issue is that the leaf temperature is forced close to the air tem-
perature, resulting in bias, diminishing heat stress and exaggerating stomatal
control, especially in grasslands (Jarvis & McNaughton, 1986).

After fixing these issues, we further modified SCOPE2.1 to adequately evaluate
GPP and SIF signals in semiarid grasslands. We present an outline of the
modified code below. Table 2 summarizes the parameter settings, including the
newly implemented settings.

Table 2. Primary Parameter Settings in SVAT Simulation.

Definition & Unit Reference
Aerodynamics and Canopy Geometry
d Zero-plane displacement height [m] ~0.4 in summer*1 MERRA-2
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Definition & Unit Reference
zo Roughness length for momentum [m] f (d, LAI) *2 CLM5
hc Canopy height [m] f (d, LAI) *2 ”
lw Leaf characteristic length [m] 0.04 ”
CO2/H2O Exchange
V cmax Maximum carboxylation rate at 25 °C [µmol m−2 s−1] {20, 80, 20} Rogers (2014)
kV Decaying coefficient for vertical V cmax distribution [-] f (V cmax) *3 CLM5
Tyear Growth temperature (Kattge & Knorr, 2007) [°C] 30
g1M Medlyn slope parameter [kPa1/2] {4.61, 5.89, 0.64}*4 CABLE & CLM5
g0 Minimum stomatal conductance [mol (H2O) m−2 s−1] 0.01
�c SMC at which V cmax,app starts to decrease [vol%] {14, 18, 1}
�w SMC at which V cmax,app becomes zero [vol%] {8, 14, 2}
Fluorescence
fqe Fluorescence yield at dark-adopted conditions [-] 0.012*5 JSBACH
qLs Fraction of functional reaction centers [-] 0.95*6 Porcar-Castell (2011)
kNPQs Rate constant of sustained NPQ [-] 0 ”
Soil
I Thermal inertia [J m−2 s−1/2 K−1] 620 Bennet et al. (2008)
�sat Porosity [vol%] 45.3 Montzka et al. (2017)
�sat Air entry hydraulic head [cm] 9.9*7 ”
b Clapp-Hornberger parameter [-] 1.92*7 ”

Note: Newly added variables from SCOPE2.1 are shown in bold face. Search
ranges for the values of V cmax, g1M, 𝜃𝑐, and 𝜃𝑤 are shown in brackets.
*1Not assimilated, from GEOS-5; *2Equations 5.125–127 of Lawrence et al.
(2020); *3Lloyd et al. (2010); *4The 95% CI range for C3 grassland from de
Kauwe et al. (2015, Table 1); *5Thum et al. (2017); *6The value in sum-
mer, most unstressed conditions; *7Converted from the values of van Genuchten
parameters in the study area using the relationship proposed by Rawls et al.
(1992).

3.2.2 Introducing the Drought Stress Function

Wilting reduces the mesophyll conductance of CO2 diffusion, which apparently
(temporary) reduces V cmax (Zhou et al., 2013). Because SCOPE2.1 does not
predict this phenomenon, we expressed it by multiplying a piecewise-linear func-
tion by V cmax (hereafter, V cmax denotes the values under wet conditions),

𝑉𝑐𝑚𝑎𝑥,𝑎𝑝𝑝 = 𝑉cmax • 𝑚𝑎𝑥 [min [ 𝜃−𝜃𝑤
𝜃𝑐−𝜃𝑤

, 1] , 0]. (5)

The predictions of the SCOPE model, such as the surface energy balance and
the values of GPP and SIF, were calculated using the apparent value V cmax,app.
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Here, � is the volumetric water content of the rhizosphere, and we assumed it
is identical to the MERRA-2 surface SMC (�5cm) and SMC in RTMo. The
empirical parameters �c and �w are linked with the soil-plant hydraulic system
properties, but we used Eq. 5 for brevity; note that the SCOPE model has
no hydrological module. We assumed that SMC affects SIF through Ja and
ΦP (Eqs. 3–4) but does not affect Jmax since Eq. 5 was used to express meso-
phyll diffusion. This nonstomatal limitation parametrization is in line with the
observed weak relationship between SIF and stomatal closure (Magney et al.,
2020).

In addition, we replaced the Ball-Berry stomatal conductance model used in
SCOPE2.1 with the model of Medlyn et al. (2011) because the relative humidity-
based Ball-Berry model is too sensitive to atmospheric aridity (see Paschalis et
al., 2017, for example).

3.2.3 Replacing the Models of Aerodynamic Resistance and Soil Evaporation

We also replaced the submodels of aerodynamic resistance and soil evaporation
used in SCOPE2.1 with those used in the Community Land Model version 5
(CLM5; Lawrence et al., 2020) for the following reasons.

• In addition to the issue with the leaf boundary layer, the SCOPE model
does not predict the boundary layer resistance for the soil surface. Fur-
thermore, the SCOPE model neglects large-eddy mixing in the convective
boundary layer, while CLM5 considers it through a parametrization using
the Deardorff velocity.

• Although a parametrization of soil surface resistance for evaporation (va-
por diffusion in soil pore space) is implemented in SCOPE2.1, it only
depends on the SMC and does not consider physical fundamentals such
as the soil porosity and temperature. The dry surface layer model used in
CLM5 considers all these fundamentals.

Since both SCOPE and CLM5 explicitly calculate the energy balance of the soil
surface, we were able to introduce these submodels in a manner compatible with
CLM5. See Chapter 5 of the CLM5 documentation (Lawrence et al., 2020) for
details.

4 Data Processing

4.1 GOSAT SIF

We used the SIF data from GOSAT obtained during 2009–2018. The relatively
long record and high accuracy of GOSAT SIF, which has been previously verified
(Oshio et al., 2019; Doughty et al., 2022), are preferable to evaluate dryland in-
terannual dynamics. The data processing used here was basically the same as in
Oshio et al. (2019), but the data-filtering thresholds were modified as described
in Text S3. We used the L1B product, radiance data, version V201.202 of the
Thermal And Near infrared Sensor for carbon Observation – Fourier Transform
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Spectrometer (TANSO-FTS) onboard GOSAT and retrieved SIF from a spec-
tral window of 756.0–759.1 nm using the spectral fitting method (Frankenberg
& Berry, 2018). Since the location of GOSAT observational points depends on
the period, we selected the observations with 100% grassland in the IGBP land
cover and < 15% woodland cover in MOD44B. Approximately 20–60 observa-
tions per month were obtained after filtering and screening.

To interpret the observed SIF radiance F [W m−2 nm−1 sr−1] at a retrieval
wavelength � (�758 nm here), an expression analogous to Monteith’s light-use
efficiency model is frequently adopted (Frankenberg & Berry, 2018):

�F(𝜆) = 𝐼PAR • 𝑓PAR • 𝜀𝐹 (𝜆) • 𝑓esc(𝜆), (6)

where IPAR is the TOC irradiance in the PAR, fPAR is the fraction of the PAR
absorbed by green leaves, �F is the SIF-emission efficiency (∝ Φ𝐹 ), and f esc
is the fraction of SIF escaping from the canopy. The SIF yield (= 𝜀𝐹 •𝑓esc

𝜋 ) is
commonly used to remove the contribution of APAR (= 𝐼PAR • 𝑓PAR). The
corresponding APAR value to the GOSAT SIF was obtained from the MODIS
fPAR (MCD15A2H, averaged within each GOSAT footprint) and the MERRA-
2 IPAR (0.5° lat × 0.625° lon) at 13:30 local time (LT) (the overpass time of
GOSAT) of the same day as the GOSAT observations.

4.2 Experimental Setups and SIF-based Calibration of the SCOPE
Model

Three experiments were conducted to demonstrate model improvement. The
control (CTRL) run was based on the modified SCOPE model with V cmax = 60
µmol m−2 s−1, the Medlyn slope parameter g1M = 5.25 kPa1/2 (typical values
for C3 grass; Table 2), and the well-watered assumption. The ‘SCOPE2.1’ run
was based on the original code with almost the same parameter values as the
CTRL run; the Ball-Berry slope g1B was set to 9 [unitless]. The ZEXP run is
a virtual ‘zero thermal expansion’ simulation; the settings are the same as the
CTRL run except convection was turned off (both the Monin-Obukhov stability
correction and convective boundary layer mixing), and �a = 1.2047 kg m−3 was
fixed as the original code.

The benefit of constraining SIF for GPP estimation was tested using the mod-
ified model. Four physiological parameters (V cmax, �c, �w, and g1M) were cali-
brated by minimizing the RMSE of SCOPE SIF from GOSAT SIF through a
grid search. The search ranges of parameters were determined based on the
settings for C3 grasslands in ESMs (Table 2). First, V cmax and g1M values
were calibrated using wet data (�5cm > 19 vol%). Calibration was separately
conducted for June–August (JJA) and the remainder of the year to distinguish
drought impacts from phenology. The run using the best parameter set was
named the calibrated (CAL) run.

4.3 Forcing and Benchmarking Datasets
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The modified and original SCOPE models were forced by MERRA-2 meteorol-
ogy at the 10-m height and the atmospheric CO2 concentration at the surface-
pressure level obtained from the GOSAT L4B product version V02.07. The spec-
tral shape of the TOC irradiance was fixed to the default (FLEX-S3_std.atm),
and broadband MERRA-2 irradiance data were used to scale the magnitude;
the direct and diffuse components were separately scaled by making a minor
modification to the code. Continuous 16-hour simulations during the daytime
were conducted for each GOSAT observation because accurate ground heat flux
calculations require a soil temperature history. We used the retrieved RTMo
parameters but replaced the uncertain Cab data (�p > 20 µg cm−2) with its
monthly mean value.

The performance of the models was evaluated by comparison with the MERRA-2
latent heat flux of evapotranspiration (lEtotal), the MODIS land surface temper-
ature (LST) (MYD11A1, Wan et al., 2015), and the MODIS GPP (MYD17A2H,
Running et al., 2015). Since the study area has sparse vegetation, we adopted a
‘mosaic’ approach; a total surface flux was evaluated as a weighted sum of the
fluxes from vegetated and nonvegetated surfaces weighted by FVC.

5 Results

5.1 Observed Seasonal and Interannual Dynamics

Figure 4 shows the 10-year time series of MERRA-2 meteorology and satellite
data (MODIS LAI and FVC, and GOSAT SIF). The monthly means of the
cloud fraction within the field of view of the GOSAT FTS were < 20% in general
(Figure 4d), and the monthly means of SIF758 approached zero in winter, almost
within the margin of the 90% confidence interval (CI), except in February 2010
and 2015. These results supported data consistency and quality during the
growing season.

The monthly means of the 2-m air temperature fall below 0 °C for approximately
half of the years, and most precipitation falls during short periods in summer
(Figure 4a). The precipitation showed large interannual variations, and the SMC
decreased in early summer in 2011, 2016, 2017, and 2018 when precipitation
was delayed (Figure 4b). On a monthly basis, the precipitation was strongly
correlated with the MODIS LAI (r = 0.90), and the LAI was strongly correlated
with the SIF (r = 0.76). However, even when the LAI did not decrease, the SIF
dropped below 0.15 mW m−2 nm−1 sr−1 when the mean SMC among GOSAT
footprints fell below �15–16 vol%, for example, in August 2010, June 2013, July
2016, and July 2017.

There is no clear relationship between the SIF values and the phase angle �GOSAT
(i.e., hot spot). However, this does not mean surface homogeneity, as seen by
large variations in the MODSI FVC values (Figure 4c); the FVC values dropped
below 50% frequently in 2014 and 2018.
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Figure 4. (a, b) Time series of MERRA-2 meteorology and (c) MODIS LAI
and FVC, representing the mean quantities within each GOSAT footprint (cir-
cles) and within the grassland in the study area boundary (bars and lines):
precipitation (bars in a), monthly mean air temperature T2m (line in a), and
predawn SMC at depths of 0–5 cm (blue symbols in b) and 10–100 cm (dashed
line in b). (d) Monthly means of GOSAT SIF758 (squares) and ancillary data:
dark and light shades indicate the standard error and the 90% CI of the SIF,
respectively; colors in squares indicate the cloud fraction (CF) in the field of
view; and dashed lines indicate the phase angle 𝛾GOSAT.

5.2 Inversion Results and Justification of the Forward Model

Among the three modifications to the RTMo retrieval code, the introduction
of FVC had the largest impacts on retrievals. When FVC was neglected (i.e.,
FVC = 1 is fixed), this bias was compensated by underestimation in LAI and
Cab (see the Jacobian in Figure 3), and the values of Cab dropped below 10 �g
cm−2 in most cases (Figure S2).

Figure 5 shows the inversion results using the modified RTMo retrieval code.
The RMSE in the modeled BRF increased in winter (not shown) and ranged
from 0.0025 to 0.0287. The retrieved values of LAI and FVC are higher than
those of the a priori MODIS products in general (Figures 5a–b); the increase
in LAI was remarkable in low-LAI cases. The LAI results were expected since
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the MODIS algorithm retrieves green LAI (K. Yan et al., 2016), whereas RTMo
retrieves the total LAI, including brown leaves. All the retrieved LAI values
fall within the range of ±1 m2 m−2 from the priors. Figures 5c–d show the
time series of the retrieved chlorophyll content Cab and brown pigments Cs,
respectively (see Figure S3 for Cw and Cdm). They exhibit clear seasonality,
and the Cab values reach 20–40 �g cm−2 in summer and do not clearly decrease in
the drought years of 2015–2017. In general, the retrieved Cs shows the opposite
phase to that of Cab.

Figure 5. (a, b) Comparison between the a priori (MODIS products) and the a
posteriori values for LAI and FVC. (c, d) Time series of the retrieved chlorophyll
content Cab and brown pigments Cs. Error bars indicate the standard deviation
of the a posteriori values.

Using these 10-year retrievals, the f esc at 758 nm was predicted by the SCOPE
model (Figure 6). The f esc decreased from 0.55 to 0.2 with the increase in
Cs, which strongly absorbs 758-nm SIF (Figure 3). Higher LAI (i.e., fewer
canopy gaps) increases the canopy interceptance of photons, but the relationship
between LAI and f esc was not clear in the grassland.
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Figure 6. Simulated escape ratio f esc at 758 nm for GOSAT observations
throughout the study period and the relationships to retrieved Cs and LAI.

Figure 7a shows the evapotranspiration difference between the modified and
original models. The SCOPE2.1 run substantially overestimated lEtotal com-
pared with MERRA-2 (r = 0.60, mean bias = +129 W m−2), while the CTRL
run tracked it better (r = 0.85, mean bias = +30 W m−2). Figures 7c–d show
diurnal changes in the simulated SIF758 and canopy average temperature Tc,ave
on a calm summer day (23 July 2010). The CTRL run predicted a monotonic
peak in SIF758, whereas the SCOPE2.1 and ZEXP runs predicted clear midday
depression. At the time of the GOSAT overpass (13:30 LT), the SIF758 value in
the CTRL run reached 250% of the prediction by SCOPE2.1. This substantial
difference results from the canopy temperature; the peak value of Tc,ave around
noon was ~35 °C in the CTRL run, whereas it reached ~50 °C in the other two
runs. Some of these differences are caused by aerodynamic resistance, as shown
in Figure 7b. The above-canopy aerodynamic resistance in SCOPE2.1 (gray
circles) steeply increased when the 10-m horizontal wind speed dropped below
2 m s−1, whereas the CTRL run predicted more stable changes.
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Figure 7. Model comparison results. (a) The latent heat of evapotranspiration
lEtotal at 13:30 LT throughout the study period. (b) Relationship between
above-canopy aerodynamic resistance raa and 10-m horizontal wind speed U10
at 13:30 LT. Gray and colored circles indicate the results from the original
model (SCOPE2.1) and the control (CTRL) run, respectively. (c, d) Diurnal
patterns of nadir-view SIF758 (c), U10 (dashed line in d), and average canopy
temperature Tc,ave (continuous lines in d) for the CTRL, ZEXP (zero thermal
expansion) and SCOPE2.1 runs (see Sect 4.2) on a calm summer day (23 July
2010). Vertical dotted lines indicate the overpass time of GOSAT (13:30 LT).

5.3 Drought Impacts on SIF and GPP

Figure 8 shows the relationships between GOSAT SIF and SMC, considering
APAR as a controlled variable. The SIF increased with APAR, while its slope
(= SIF yield) increased with �5cm (Figure 8a); the threshold of �5cm = 15.4 vol%
resulted in the largest difference between the SIF yields obtained under dry- and
wet-SMC conditions. The mean ± standard error [10−6 nm−1 sr−1] of the SIF
yields were 2.78 ± 0.14 (wet) and 2.09 ± 0.21 (dry). Furthermore, the monthly
means of the SIF yield and �5cm show a nonlinear pattern (Figure 8b). Although
the SIF-yield values have large errors, the smoothing curve for the throughout
10-year data depicts a clear sigmoidal pattern, which is characteristic of wilting.
There is no clear relationship between this SMC-associated change and Cab
values.
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Figure 8. (a) Box-whisker plot of GOSAT SIF against APAR binned at 30
W m−2 intervals. Blue and white boxes indicate the data with 𝜃5𝑐𝑚 > 15.4
vol% and < 15.4 vol%, respectively. (b) Relationship between monthly means
of SIF yield and 𝜃5𝑐𝑚. Error bars indicate the standard error. The smoothing
curve is the local regression; the smoothing span was determined by 5-fold cross-
validation that minimizes RMSE within a range that produces a monotonic
relationship of SIF yield and 𝜃5𝑐𝑚. The shading indicates the 95% CI.

The model calibration was conducted through a series of forty-four 10-year sim-
ulations. The best parameter set was found to be V cmax = 60 (JJA) and 20
(other) µmol m−2 s−1, g1M = 4.61 kPa1/2, �c = 16 vol%, and �w = 10 vol%
[RMSE = 0.754, mean bias = 0.004 mW m−2 nm−1 sr−1 (JJA)]. Notably, the
modified model outperformed MERRA-2 in LST prediction when Aqua/MODIS
was used as a reference. The mean bias was +1.16 K in the CAL run, +0.98 K
in the CTRL run, and −4.4 K in MERRA-2.

Figure 9a shows the differences in SIF758 between the CTRL and CAL runs.
The improvement is obvious in 2016 and 2017, whereas the CAL run slightly
underestimated SIF758 in the summers of 2009 and 2010. The underestimation
in July 2009 was statistically significant (p < 0.05). The predicted GPP dy-
namics (Figure 9b) were similar to the LAI dynamics. The mean ratio of the
around-noon (13:30 LT) GPP values in the CAL run to that in the CTRL run
was 73% in entire seasons and 91% in JJA, which indicates that SIF constrained
GPP mostly through the tuning of phenology in V cmax in ordinary years. How-
ever, in the drought years of 2016 and 2017, the ratio in JJA drops to 80% due
to wilting (i.e., tuning V cmax,app). Figure 10 shows a comparison of daily GPP
between the CAL run and the MYD17 MODIS product. The CAL run tended
to predict larger GPP than the MODIS product; the ratio was 1.35 on average.
The data are scattered around the line of the 1:1 relationship when GPP < ~2.5
gC m−2 d−1, while in high-GPP cases, the CAL run predicted approximately
1.5 times the MODIS GPP (dashed line). The wilting effect in the CAL run
was evident, and the predicted GPP values sometimes became zero.
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Figure 9. Comparison between uncalibrated (CTRL) and calibrated (CAL)
run predictions for (a) SIF758 and (b) GPP at 13:30 LT. Circles and error bars
in (a) indicate the monthly mean GOSAT SIF and its 90% CI, respectively.
Gray and colored circles in (b) indicate the CTRL and CAL runs, respectively.

Figure 10. Relationships between simulated GPP (CAL run, see text) and the
MODIS GPP. The dashed line corresponds to the estimation of Madani et al.
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(2014) for the FLUXNET grassland sites across North America.

6 Discussion

6.1 Comparison with Previous Studies and Key Findings

The CAL run predicted larger GPP values than the MODIS product (Figure
10), which is partly due to the increase in LAI and FVC (Figure 5). The
range of LAI increase from the a priori (< 1 m2 m−2) falls within the product’s
uncertainty (Table 1; K. Yan et al., 2016), which is natural since we set the
a priori uncertainty based on K. Yan et al. (2016). The increase in FVC
(< ~10% pt) was not an expected result but is reasonable, as S. Huang &
Siegert (2006) noted that MOD44B underestimated the FVC by 12.5% pt in
the Mongolian Plateau compared with their on-site calibrated estimation. Note
that the normalized difference vegetation index was the most influential input
for the machine-learning-based MOD44B (see the algorithm document), which
may indicate that the MOD44B FVC is close to the ‘green fraction’ rather than
the vegetation fraction. The magnitude of the GPP increase (Figure 10) is
also within a reasonable range compared with recent satellite GPP products
calibrated to ground observations (e.g., Zheng et al., 2020). Notably, Madani
et al. (2014) compared the GPP obtained from the MODIS product and the
FLUXNET grassland sites across North America and reported that the tower
GPP is 1.5 times as large as the MODIS GPP under unstressed conditions. This
is highly consistent with our estimation.

The key findings of the present study can be summarized in three points. The
first is observational evidence that GOSAT can detect the grassland wilting
point (Figure 8). We found a nonlinear decrease in the GOSAT SIF when
the surface SMC dropped below 15.4 vol%. The model-based analysis (i.e.,
estimated values of �c and �w) showed that the grassland GPP started to decrease
at 16 vol% SMC and became almost zero at 10 vol% SMC. These values are close
to the eddy-covariance results of Li et al. (2005) conducted at a site near our
study area; in that study, the net ecosystem exchange was classified according
to surface SMC levels. The thresholds were >15 vol% and <10 vol%, which
agrees with our estimation within ~1 vol% (~0.01 m3 m−3) SMC.

The second finding is the corroboration that the observed wilting point can
be attributed to physiology (through apparent V cmax as in Eq. 5) after con-
sidering changes in canopy structure and leaf optical properties. Two model
studies showed that satellite SIF could potentially be linked with root distri-
bution (Forkel et al., 2019) or the wilting point for stomata (Qiu et al., 2018).
However, chlorophyll reductions and turnover (Cs) effects on f esc have not been
evaluated, which significantly impact SIF (van der Tol et al. 2019) but have lit-
tle impact on GPP. We retrieved these properties (Figures 5 and 6) and showed
that (apparent) V cmax tuning further improves SIF758 prediction (Figure 9),
which means that GOSAT SIF could provide an additional constraint on GPP
that could not be derived from optical reflectance.

The third finding is the importance of surface energy balance and turbulent
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transport when evaluating SIF. As shown in Figure 7, the grassland SIF pre-
dicted by SCOPE 2.1 was substantially lower than that of the CTRL run (150%
error). Verma et al. (2017) also reported that SCOPE (v1.61, TB12) predicts
substantially low SIF radiance compared with that retrieved by the Orbiting
Carbon Observatory-2 (OCO-2) satellite in a C4 grassland (~200% error in the
worst case). Considering that the CAL run reproduced the GOSAT SIF758 well
(Figure 9a), we regard these discrepancies to be due to underestimation of the
original SCOPE model and not due to bias in GOSAT and OCO-2.

6.2 Limitations and Future Implications

However, there are some uncertainties in photosynthesis-fluorescence schemes
in model simulations. SIF-based retrievals of V cmax attracted early attention,
but up-to-date studies reported their weak relationship (e.g., Koffi et al., 2015;
van der Tol et al., 2016; Verma et al., 2017; Pacheco-Labrador et al., 2019; see
also the review by Frankenberg & Berry, 2018). Figures 9 and 10 apparently
contradict the up-to-date studies—the key difference was the use of the MD12
scheme here, which is more sensitive to physiology than the generally used TB12
(Verrelst et al., 2015). A leaf-scale model comparison study reported that MD12
outperforms TB12 (Mohammed et al., 2014), but their performance at a larger
scale is unclear because MD12 is rarely used. Another problem is the uncertainty
in the fraction of functional reaction center qLs that dominate the SIF predicted
by MD12 (Verrelst et al., 2015). To our knowledge, the study of Porcar-Castell
(2011) is the only report of the measurement of this parameter. Care needs to be
taken that all results presented here are based on qLs = 0.95, which is adopted
from the most unstressed condition in the study of Porcar-Castell (2011). The
underestimation of SIF758 in July 2009 (Figure 9) was potentially caused by
reductions in qLs (see Eq. 4), i.e., drought-induced photoinhibition (Cornic &
Massacci, 1996).

The retrieved Cab values were scattered, as shown in Figure 5c. Although the
SCOPE SIF saturates to changes in Cab when it exceeds ~20 µg cm−2 (Koffi
et al., 2015), the retrieved Cab values dropped below this threshold frequently
in the summers of 2009 and 2010. Figure 9 shows that the predicted SIF758
values in the CAL run moderately match those of GOSAT in 2010 but were
underestimated in 2009; this may be caused by retrieval error in Cab. Due
to this error, we cannot assert that the observed wilting pattern is definitively
caused by physiology. However, this limitation results from the overlap of sen-
sitive wavelengths between RTMo parameters (Figure 3). In other words, the
limitation results from the optical nature of vegetation and soil. To increase the
robustness of satellite-based GPP estimation, it is promising to combine SIF
with thermal infrared radiation (e.g., Pacheco-Labrador et al., 2019) and/or X-
band microwaves. LST-based GPP estimation is preferable in its insensitivity
to errors in Cab but requires fine tuning for aerodynamic resistance, SMC, and
soil heat conduction; therefore, LST complementary works with SIF. We high-
light that adequate modeling of surface energy balance and turbulent transport
are fundamental to the application of this multiple-constraint approach and the
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evaluation of drought signals, as shown in this study.
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