PO.DAAC Migrates to the Cloud and the River

Cassandra Nickles¹, Catalina Oaida¹, Alireza Farahmand¹, Suresh Vannan², Jinbo Wang¹, Mike Gangl¹, Frank Greguska¹, and Cedric David³

¹NASA Jet Propulsion Laboratory ²Jet Propulsion Laboratory, California Institute of Technology ³Jet Propulsion Laboratory

November 22, 2022

Abstract

The Physical Oceanography Distributed Active Archive Center (PO.DAAC) has traditionally hosted NASA's Earth Observing System oceanography datasets, but is expanding its archive to include hydrology datasets from satellites like the upcoming Surface Water and Ocean Topography (SWOT) mission. The SWOT mission, expected to launch later this year (2022), will deliver approximately 20 TB of data per day! Though hydrologic and water resources applications will be enabled at a greater scale than ever before, an increase in data volume requires more efficient and scalable data management technologies. Cloud computing tools and services can help pave the way toward efficiency. By June 2022, PO.DAAC will have enabled all its data to be accessed in the NASA Earthdata Cloud hosted in Amazon Web Services (AWS). Other NASA DAACs are also in the process of migrating their Earth observations to the Earthdata Cloud, which will support seamless access across DAACs and disciplines. PO.DAAC desires to make data access, pre-processing, and analysis as seamless as possible for data users, supporting science and applications users alike with relevant tools and resources. In this presentation, after introducing the PO.DAAC, we highlight a new SWOT-specific data search mechanism (searching via the SWOT River Database (SWORD) pre-defined river reaches) and showcase a cloud computing workflow in the context of hydrologic applications by accessing and analyzing a proxy SWOT dataset, Pre-SWOT Making Earth System Data Records for Use in Research Environments (MEaSUREs) river heights. This cloud workflow can be easily adapted to other PO.DAAC datasets, or further developed with other DAAC data, offering effective guidance and support for a variety of science use cases and applications.

Jet Propulsion Laboratory California Institute of Technology Physical Oceanography Distributed Active Archive Center

PO.DAAC Migrates to the Cloud and the River

Cassandra Nickles¹, Catalina Oaida¹, Alireza Farahmand¹, Suresh Vannan¹, Jinbo Wang¹, Michael Gangl¹, Frank Greguska¹, Cedric David¹

1 Jet Propulsion Laboratory, California Institute of Technology

https://podaac.jpl.nasa.gov/

23 June 2022 Frontiers in Hydrology Meeting: The Potential of the SWOT Satellite Mission for Hydrologic Science

© 2022 California Institute of Technology. Government sponsorship

Physical Oceanography Distributed Active Archive Center (PO.DAAC)

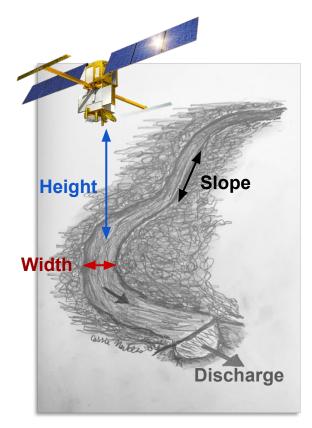
https://podaac.jpl.nasa.gov/

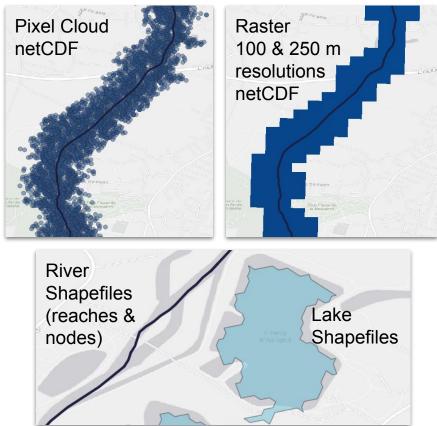
NASA data archive hosting:

- Ocean Datasets including
 - SMAP
 - JASON Series
 - MODIS: AQUA/TERRA
 - GRACE/GRACE-FO
 - ECCO
 - Sentinel-6 Michael Freilich
 - SWOT (Launching Nov. 2022)
 - etc.

aphy Distributed Active Archive Cente

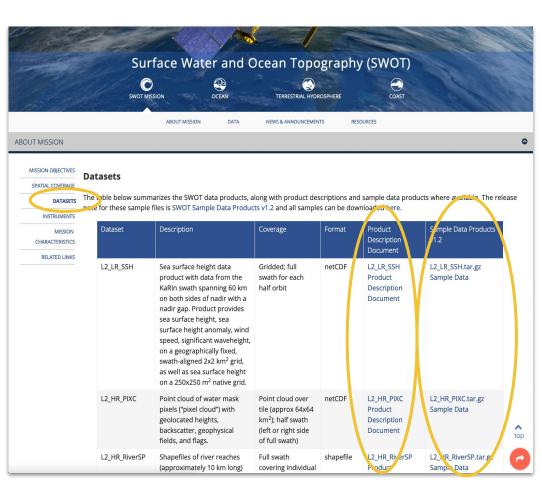
• Terrestrial Hydrosphere Datasets


- GRACE/GRACE-FO
- SWOT (Launching Nov. 2022)


PO.DAAC SWOT Website: https://podaac.jpl.nasa.gov/SWOT

SWOT Hydrology Measurements & Data Products

SWOT Data Product Descriptions & Sample Data


Product Description Documents

Sample files

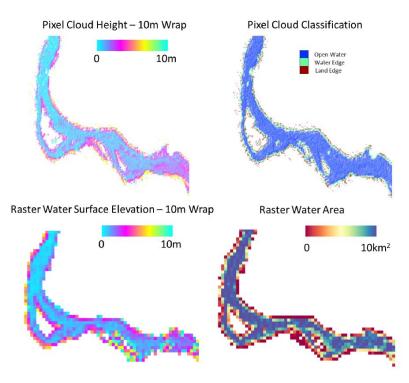
hysical Oceanography Distributed Active Archive Center

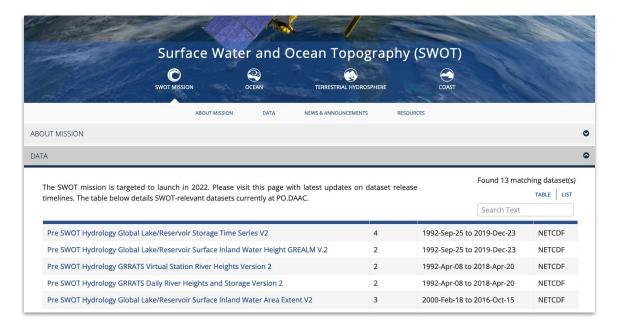
- For getting accustomed with the format only
- 1-2 sample files for most of the products available

Will be getting some more comprehensive sample files in the cloud of products for an example 21-day cycle over the US soon!

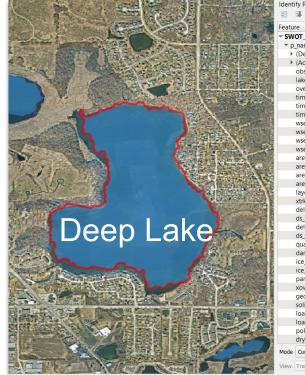
PO.DAAC Tool: On-demand Raster Generation

- Under Development
 - SWOT Standard Data Products (SDP) are limited to 100m and 250m resolutions
 - PO.DAAC will offer On-demand Data Product (ODP) raster generation allowing projection, resolution, and overlap customization
 - PO.DAAC to integrate output products with existing value added services (e.g. reformatting to cloud optimized geotiff)

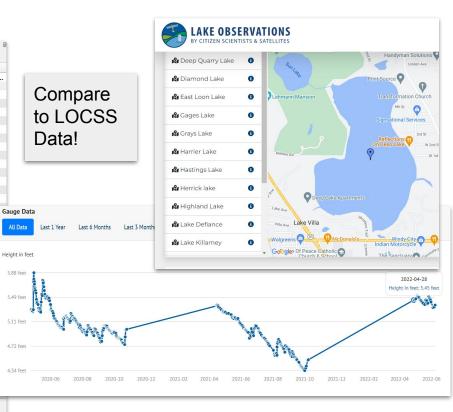



Figure 1. Example pixel cloud height (top left), and classification (top right) from which a raster product is produced, and the resulting raster water surface elevation (bottom left) and water area (bottom right). Note that this image shows layers from a 100 m raster in the UTM projection. Via D-56416 SWOT Product Description L2 HR Raster 20201105.pdf

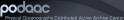
Current SWOT-Relevant Data


Hydrology Focus

- MEaSUREs Pre-SWOT lake extent, virtual station river height
- GRACE/GRACE-FO Water
 Equivalent Thickness Surface
 Mass Anomaly
- CYGNSS soil moisture
- LOCSS lake observations by citizen scientists & satellites coming to PO.DAAC this summer



Example Future Use Case



	11 11 11	💫 😥 🐵 🥂 👻 🔧 🚺
		10 B - A 10
atu	re	Value
w	OT_L2_HR_L	akeSP_Obs_006_509_NA_20220801T1
p	name	DEEP LAKE
٠	(Derived)	
۲	(Actions)	
	obs_id	742229L000396
	lake_id	7421075812
	overlap	98
	time	712670273.131
	time_tai	712670241.131
	time_str	2022-08-01T11:57:53
	wse	39.748
	wse_u	0.159
	wse_r_u	0.159
	wse_std	0.03
	area_total	0.94272
	area_tot_u	0.004488
	area_detct	0.79658
	area_det_u	0.004158
	layovr_val	-999999999999.000
	xtrk_dist	-41061.035
	delta_s_l	-999999999999.000000
	ds_l_u	-9999999999999.000000
	delta_s_q	-9999999999999.000000
	ds_q_u	-9999999999999.000000
	quality_f	-999
	dark_frac	15.501967
	ice_clim_f	-999
	ice_dyn_f	-999
	partial_f	0
	xovr_cal_q	-999
	geoid_hght	-34.739662
	solid_tide	0
	load_tidef	0
	load_tideg	0
	pole_tide	0
	dry_trop_c	-9999999999999.000000
de	Current Layer	·
w	Tree 💌	

1540...

https://www.locss.org/

PO.DAAC Migrates to the Cloud

NASA Earthdata Cloud Hosted in Amazon Web Services (AWS)

- Can download data to local machines or perform analysis in the cloud
- NASA data access and download is and will continue to be free, per NASA's open data policy.

Cloud offers the opportunity:

- to manage large data volumes
- to co-locate synergistic datasets
- for user analysis next to the data
- Leverage AWS cloud parallel computing

Cloud Data Tools & Services

Search and Access:

- Geospatial search in Earthdata Search by
 - River gauge location (point)
 - HUCs (polygons)
 - User-defined shapefile (polygons)
 - SWORD IDs (SWOT river IDs)
- PO.DAAC Data Subscriber and Downloader
 - https://github.com/podaac/data-subscriber
- API based access to data Common Metadata Repository (CMR)

Subsetting data:

- Subset SWOT data by: time, space, variables, shapefiles (*Under development Expect Aug./Sept. 2022*)
- APIs to subset, merge subsetted datasets, and transform data

Services that enable science and applications from and within the cloud, for oceanography, coastal and hydrology applications

SWORD River Reach Database

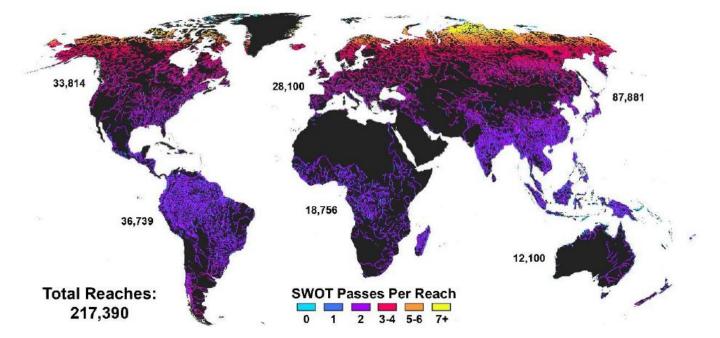
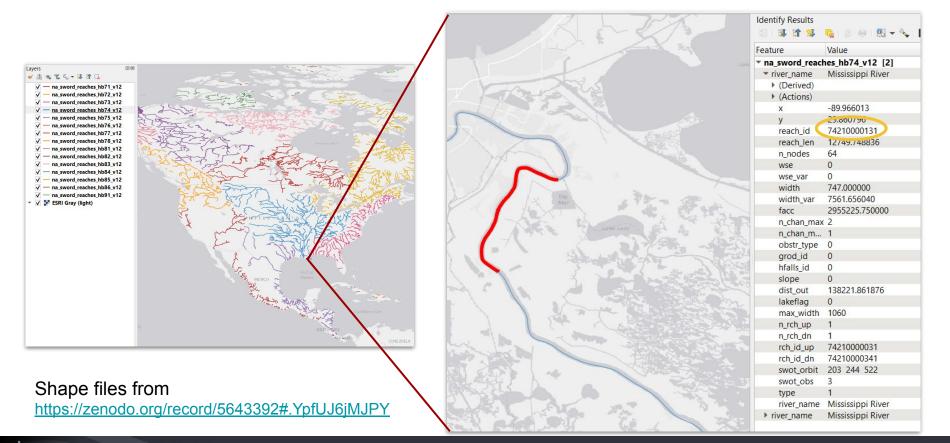



Figure 1: SWORD reach numbers per continent (not including ghost reaches). Colors display the number of SWOT passes per reach during the 21-day orbit cycle.

SWORD River Reaches - finding IDs

Earthdata Search by S	Try it out! We'd love	
Advanced Search	5,630 Matching Collections	feedback!
Search by Feature	SENTINEL-1A_SLC No image available GEOSS SENTINEL-1A_SLC v1 - ASE	н
74210000131 Exact match Search	SENTINEL-18_SLC No image available GEOSS SENTINEL-18_SLC v1 - ASF	
	SENTINEL-1A_DUAL_POL_GRD_HIGH_RES No image available SENTINEL-1A_DUAL_POL_GRD_HIGH_RES 177 Granules • 2014-04-03 ongoing • Sentinel-1A Dual-pol ground proje cted high and full resolution images +	
Advanced Search	GEOSS SENTINEL-1A_DP_GRD_HIGH_v1 - ASF SENTINEL-1B_DUAL_POL_GRD_HIGH_RES 3 Granules • 2016-04-25 ongoing • Sentinel-1B Dual-pol ground projecte d high and full resolution images GEOSS SENTINEL-1B_DP_GRD_HIGH_v1 - ASF	New Orleans
Select a region from the list below to filter your search results. REACH 74210000131 <i>Mississippi River</i>	HLS Landsat Operational Land Imager Surface Reflectance and TOA Brightness Daily Global 30m v2.0 378 Granules + 2013-04-11 ongoing • The Harmonized Landsat Sentinel- 2 (HLS) project provides consistent surface reflectance (SR) and top of atm osphere (TOA) brightness data from a virtual constellation of satellite sens	

11-

Physical Oceanography Distributed Active Archive Center

mafin

Programmatic Search via SWORD IDs

Plot a Single River Reach

In this section, we query the Feature Translation Service (FTS) SWORD service using a single Reach ID (from SWORD). In this example, we use the river Reach ID 13227000061. This ID represents a specific reach along the Kasai River, a tributary of the Congo River in Africa.

```
[5]: response = requests.get("https://fts.podaac.earthdata.nasa.gov/rivers/reach/13227000061")
featureCollection = response_to_FeatureCollection(response)
```

```
pprint.pprint(response.json(), compact=True, width=60, [7]: fig.show()
```

Now we can plot this reach and calculate the center of the reac

https://github.com/podaac/tutorials/blob/master/ notebooks/SWORD_River_Demo.ipynb

aphy Distributed Active Archive Cente

Can query datasets spatially programmatically via SWORD IDs (global)

Useful for regional studies over time accessing multiple files

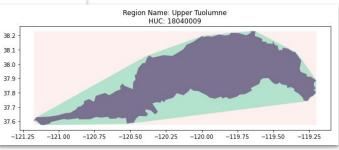
Searching via HUC watersheds

HUC Feature Translation Service (FTS) Examples

This Jupyter Notebook contains examples related to geospatial search using the PO.DAAC *HUC Feature Translation Service (FTS)*, previewing (viusualizing) the queried region of interest, and using FTS results to query data through NASA's Common Metadata Repository (CMR).

Example Use Case: Check if data is available over my region of interest using HUCs. In this example we are using the FTS-HUC API (https://fts.podaac.earthdata.nasa.gov/) to geospatially define our region of interest, namely the Upper Tuolumne River Basin in the San Joaquin River Basin in California's Sierra Nevada Mountains, searching by HUC or region name, and then using those geospatial bounds (coordinates) to query Sentinel-1 data in CMR.

- 1. use FTS to define geographic region of interest (query by partial or exact HUC or HUC region name)
- 2. preview query
- 3. use coordinates returned by FTS to query Sentinel-1 data in CMR, by polygon or bounding box.

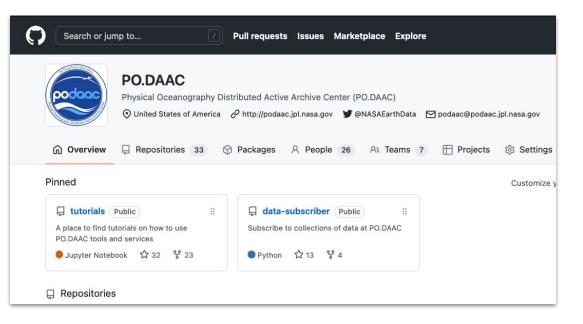

Resources

Distributed Active Archive Center

USGS Hydrologic unit map to help identifiy region of interest (e.g. HUC value or name) can be found h https://water.usgs.gov/GIS/regions.html

https://github.com/podaac/tutorials/blob/master/notebooks/HUC%20Feature%20Translation%20Service%20Examples-updated-20210804.ipynb

Can query names/partial names of basin or exact HUC ID matches (over U.S.)


THANK YOU!

Check out our tutorials at https://github.com/podaac

Example Tutorial: River Heights Jupyter Notebook

Contact us: podaac@podaac.jpl.nasa.gov cassandra.l.nickles@jpl.nasa.gov catalina.oaida@jpl.nasa.gov

vsical Oceanography Distributed Active Archive Center

Reference

Altenau, E. H., Pavelsky, T. M., Durand, M. T., Yang, X., Frasson, R. P. d. M., & Bendezu, L. (2021). The surface water and ocean topography (SWOT) mission river database (SWORD): A global river network for satellite data products. *Water Resources Research*, 57, e2021WR030054. https://doi.org/10.1029/2021WR030054

Extra Slides

Resources & User Community Support

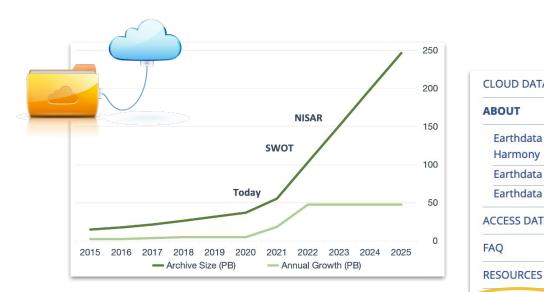
- One stop for PO.DAAC Cloud Information: <u>Cloud Data page</u> with About, Cloud Datasets, Access Data, FAQs, Resources and Migration information
- Ask questions or find resources: <u>PO.DAAC in the CLOUD Forum</u>
- Cloud user migration overview, guidance, and resources: <u>PO.DAAC Webinar</u>
- Search and get access links: <u>Earthdata Search Client</u> and <u>guide</u>
- Search and get access links: <u>PO.DAAC Cloud Earthdata Search Portal</u>
- Browse cloud data in web-based browser: <u>CMR Virtual Browse</u> and <u>guiding video</u>
- Scripted data search end-point: <u>Earthdata Common Metadata Repository (CMR) API</u>
- Enable data download or access: Obtain Earthdata Login Account
- Download data regularly: <u>PO.DAAC Data Subscriber Access video</u> and <u>PO.DAAC Data Subscriber</u> instructions
- Bulk Download guide
- <u>OPeNDAP in the cloud</u>

hysical Oceanography Distributed Active Archive Center

- PO.DAAC scripts and notebooks: PO.DAAC Github
- How to get started in the AWS cloud (e.g. set up an instance): Earthdata Cloud Primer
- How to set up your own Jupyter Hub, Jupyter Lab, or Jupyter Notebooks in AWS cloud.
- Basic How-To tutorials for searching for cloud data and accessing data in the cloud (<u>AGU workshop</u> <u>2021</u>):
 - Search and get access links from Earthdata Search
 - Earthdata login Authentication (scripted)
 - Direct data access in the cloud (without download)

https://podaac.jpl.nasa.gov/cloud-datasets

Search or jump to	/ Pull requests Issues Marketplace Explore	
	y Distributed Active Archive Center (PO.DAAC) ica & http://podaac.jpl.nasa.gov ¥ @NASAEarthData ⊠ podaac@podaac.j © Packages A People 26 A. Teams 7 ⊞ Projects	ipi.nasa.gov
Pinned		Customize your public pins
Lutorials Public A place to find tutorials on how to use PO.DAAC tools and services Jupyter Notebook	G data-subscriber Public H Subscribe to collections of data at PO.DAAC ●Python ☆ 13 ♀ 4	
📮 Repositories		

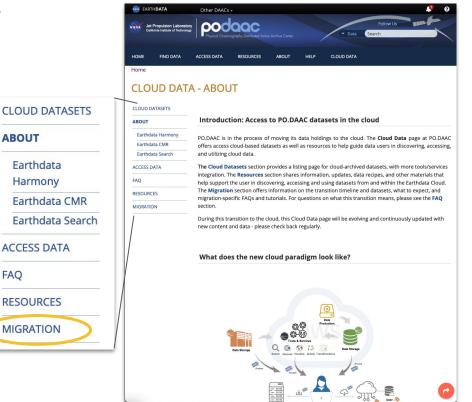

https://github.com/podaac

Physical Oceanography Distributed Active Archive Center (P.DAAC) https://podaac.jpl.nasa.gov/ FARTHDATA Other DAACs -

Earthdata

Harmony

MIGRATION



All (678) datasets (~30 PB) archived at PO.DAAC will be in the cloud by June 2022.

Learn more at

https://podaac.jpl.nasa.gov/cloud-datasets/migration

hysical Oceanography Distributed Active Archive Center

益

Tutorial introducing working in the AWS cloud

Potential workflow: River Heights Jupyter Notebook

Mississippi River Heights Exploration:

Working with In Situ Measurements and Satellite Hydrology Data in the Cloud

Learning Objectives

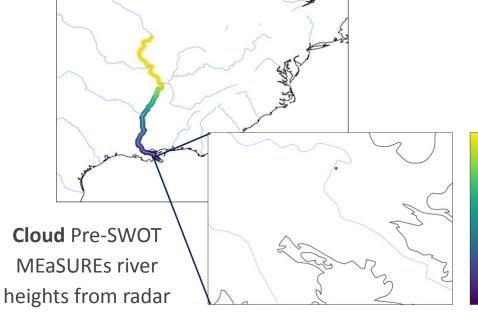
- · Access data from the cloud (Pre-SWOT MEaSUREs river heights) and utilize in tandem with locally hosted dataset (USGS gauges)
- Search for products using Earthdata Search GUI
- Access datasets using xarray and visualize

This tutorial explores the relationships between satellite and in situ river heights in the Mississippi River using the data sets listed below. The notebook is designed to be executed in Amazon Web Services (AWS) (in us-west-2 region where the cloud data is located).

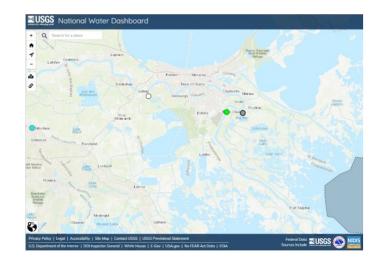
Datasets

The tutorial itself will use two different datasets:

1. PRESWOT_HYDRO_GRRATS_L2_DAILY_VIRTUAL_STATION_HEIGHTS_V2

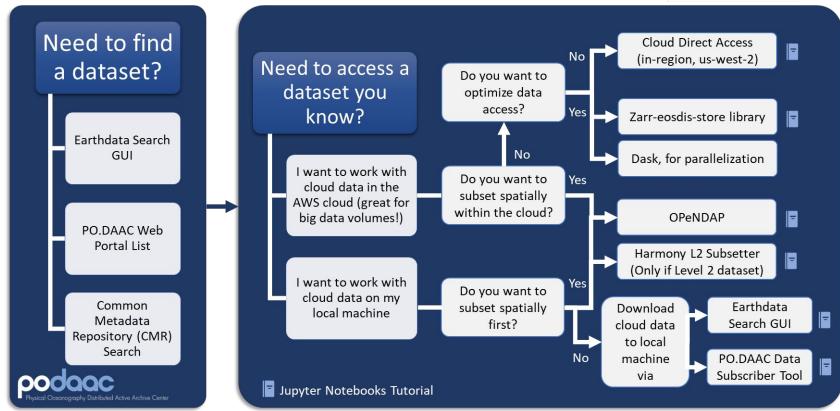

DOI: https://doi.org/10.5067/PSGRA-DA2V2

The NASA Pre-SWOT Making Earth System Data Records for Use in Research Environments (MEaSUREs) Program virtual river height gauges from various altimeter satellites.


2. USGS Water Data for the Nations River Gauges

Cloud Use Case: Dataset Validation

In-situ river heights from United States Geological Survey (USGS) gage



altimetry

sical Oceanography Distributed Active Archive Cente

CHOOSE YOUR CLOUD ADVENTURE

Jet Propulsion Laboratory California Institute of Technology

