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Abstract

The tool of phase-field modeling for the prediction of chemical as well as microstructural evolution during crystallization from

a melt in a mineralogical system has been developed in this work. We provide a compact theoretical background and introduce

new aspects such as the treatment of anisotropic surface energies that are essential for modeling mineralogical systems. These

are then applied to two simple model systems - the binary olivine-melt and plagioclase-melt systems - to illustrate the application

of the developed tools. In one case crystallization is modeled at a constant temperature and undercooling while in the other

the process of crystallization is tracked for a constant cooling rate. These two examples serve to illustrate the capabilities of

the modeling tool. The results are analyzed in terms of crystal size distributions (CSD) and with a view toward applications

in diffusion chronometry; future possibilities are discussed. The modeling results demonstrate that growth at constant rates

may be expected only for limited extents of crystallization, that breaks in slopes of CSD-plots should be common, and that the

lifetime of a given crystal of a phase is different from the lifetime of a phase in a magmatic system. The last aspect imposes

an inherent limit to timescales that may be accessed by diffusion chronometry. Most significantly, this tool provides a bridge

between CSD analysis and diffusion chronometry - two common tools that are used to study timescales of magmatic processes.
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Abstract11

The tool of phase-field modeling for the prediction of chemical as well as microstructural12

evolution during crystallization from a melt in a mineralogical system has been devel-13

oped in this work. We provide a compact theoretical background and introduce new as-14

pects such as the treatment of anisotropic surface energies that are essential for mod-15

eling mineralogical systems. These are then applied to two simple model systems - the16

binary olivine-melt and plagioclase-melt systems - to illustrate the application of the de-17

veloped tools. In one case crystallization is modeled at a constant temperature and un-18

dercooling while in the other the process of crystallization is tracked for a constant cool-19

ing rate. These two examples serve to illustrate the capabilities of the modeling tool. The20

results are analyzed in terms of crystal size distributions (CSD) and with a view toward21

applications in diffusion chronometry; future possibilities are discussed. The modeling22

results demonstrate that growth at constant rates may be expected only for limited ex-23

tents of crystallization, that breaks in slopes of CSD-plots should be common, and that24

the lifetime of a given crystal of a phase is different from the lifetime of a phase in a mag-25

matic system. The last aspect imposes an inherent limit to timescales that may be ac-26

cessed by diffusion chronometry. Most significantly, this tool provides a bridge between27

CSD analysis and diffusion chronometry - two common tools that are used to study timescales28

of magmatic processes.29

1 Introduction30

Physical chemistry is used to quantify the reading of the rock record to decipher31

processes that took place in and on the Earth. Thermodynamic analysis of complex chem-32

ical systems that correspond to bulk chemistry of diverse igneous and metamorphic rock33

types is now commonplace. Such analyses predict the stable mineral assemblages as well34

as the modal abundance and composition of the minerals as a function of intensive ther-35

modynamic variables such as pressure, temperature, and fugacities of various species (e.g.36

fO2
, fH2O). Petrological attributes of the rock record also include textural and microstruc-37

tural characteristics, but a quantitative thermodynamically consistent approach to han-38

dle that is not yet available.39

The situation is analogous to kinetic analysis. Studies of processes such as diffu-40

sion, nucleation, or crystal growth address these processes in individual mineral systems,41

or populations of crystals in some cases (e.g. nucleation and growth in molten systems),42

but in a manner that is generally decoupled from quantitative thermodynamic phase re-43

lations. In the best of cases, modeling efforts include alternating updates of thermody-44

namic and kinetic parameters, but without a means of ensuring physico-chemical con-45

sistency between these. Previous models for the simulation of texture evolution during46

crystallization processes in rocks were stochastic approaches, which were developed to47

validate theoretical models of the crystal size distribution with constant growth rates and48

an exponential nucleation rate (Marsh, 1988; R. V. Amenta, 2001, 2004; R. Amenta et49

al., 2007; Hersum & Marsh, 2006, 2007; Spillar & Dolejs, 2015). However, these mod-50

els do not take into account thermodynamic conditions and operate with artificially im-51

posed growth rates.52

The emerging tool of phase-field (PF) modeling and analysis provides a means of53

addressing these problems (Langer, 1980; Karma, 2001; Boettinger et al., 2002; Chen,54

2002; Steinbach, 2009; Kundin et al., 2015; Kundin & Steinbach, 2019). Notably, the method55

considers the energetics of surfaces and interfaces to couple these with more regularly56

considered bulk volume properties. The minimization of overall free energy taking these57

aspects into account allows the calculation of not only the stable configurations of solids58

and liquids in terms of their chemistry and abundance but also geometrical features such59

as grain size, shape, and distribution. Thus, commonly used tools such as crystal size60
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distribution (CSD) may be placed on a more quantitative foundation than has been pos-61

sible until now.62

As a tool, the phase-field method has hardly been applied to mineralogical systems.63

In this work, we introduce and develop the tool for some simple mineralogical systems64

to illustrate the approach and its possibilities. We begin by describing the theoretical65

background of the model. This part includes some newer developments that are more66

relevant for mineralogical systems, such as the exploration of the role of anisotropy of67

surface / interfacial energies in non-cubic systems. This is followed by some examples68

of numerical calculations of growth/ dissolution of faceted crystals in selected systems69

(plagioclase – melt and olivine – melt). We conclude by discussing some implications of70

our results for real geological systems, comparisons with currently available models of71

CSD-analysis, and considering some potential future applications.72

2 Phase-field method73

2.1 Phase field and diffuse interface74

A complete phase-field (PF) method calculation includes a thermodynamic mod-75

ule (calculation of phase equilibria and deviations from equilibrium), a diffusion mod-76

ule (calculation of transport timescales), and an interface module that accounts explic-77

itly for interfacial energies, i.e. capillarity. The last module permits the modeling of mo-78

bile interfaces between different phases or crystals of different orientations, and thereby,79

the evolution of microstructures and textures. This aspect is responsible for the novelty80

of the tool. In the following, a brief introduction is provided to how interfaces are han-81

dled, and references to works where more details may be found are provided, followed82

by a description of the method used in this study.83

The method is based on two basic concepts: “Phase field” and “Diffuse interface”.84

The Phase field is a field in space and time of an order parameter (usually denoted by85

φ(x, t)) that indicates the phase state of the system at each point within the (heteroge-86

neous) volume of interest (see Fig. 1). Knowing the phase state (as indexed by the phase-87

field variable) one easily determines its properties of interest (chemical composition, state88

of strain, geometry of grain boundaries, etc.). The phase fields themselves evolve in time89

based on the demand for minimization of the free energy of the system. This aspect leads90

to a few major advantages that make Phase-field models particularly useful: (a) the evo-91

lution of the system occurs while maintaining internal thermodynamic consistency, (b)92

interfaces between grains and phases, which are indexed by individual phase fields φα,93

α = 1...N for N grains belonging to the same, or different crystallographic phases, do94

not need to be tracked individually, (c) grains of different orientations can be modeled95

separately by their ”own” phase-filed parameters, and (d) one deals with scalar quan-96

tities rather than vectors with multiple components (see below for more on this). “Dif-97

fuse interface” is a phenomenological approach where an interface (say, between two crys-98

tals, or a crystal and a liquid) is considered to possess a finite width instead of being sharp.99

In terms of energetics, the consequences are that (a) the interface is a region of finite ex-100

tent, (b) the interface can possess its ”own” properties (e.g. diffusivity) that are distinct101

from those of the phases bounding an interface, and (c) the phase fields vary smoothly102

across the boundary and may be represented by continuous, differentiable functions, rather103

than show a discontinuity at the interface (where the property “jumps” from the value104

in one phase to that in the adjacent phase). The third aspect provides the fundamen-105

tally important characteristic that the gradient of a phase field (which is defined as a dif-106

ferentiable function) can be related to the velocity of an interface quantitatively in a ther-107

modynamically consistent manner.108
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Figure 1. Scheme of a solidifying mush (upper part, solid in black, liquid in white). Mea-

suring the composition along the line scan gives the saw tooth thread profile as displayed in the

lower part of the figure, alternating between the composition in solid, cβ , and liquid, cα. Normal-

izing this profile between 0 and 1 gives the phase-field profile φ(x). Note that we have drawn the

profile in the interface in a “diffuse” manner, with an artificial width compared to the atomistic

scale of a real interface. Consequently, the phase field shows a diffuse profile between the phases.

2.2 Free energy functional109

A key aspect of the “diffuse interface” models is that they are based on a free en-
ergy functional which depends not only on the properties at a given point in the system
but also on the local gradient of the phase field around that point

F =

∫
V

[
ε2

2
|∇φ|2 + f0(φ))

]
dV. (1)

Here, in some constant, non-homogeneous, reference volume V , F is the total Gibbs110

or Helmholtz Free Energy Functional of the system. It is composed of the sum of free111

energy per constituent of the homogeneous system, f0(φ), and the contribution due to112

the inhomogeneity, ε2

2 (∇φ)2. The inhomogeneity is also called the “gradient energy.” Roughly113

speaking, it is a measure of the energy barrier for transformation between the phases and114

related to the interface energy as well as the driving force for transformation, see below.115

ε is the gradient energy coefficient, which is also related to the interface energy between116

grains of different orientations or of different phases.117

Equation (1) was originally introduced by Landau (Hohenberg & Halperin, 1977)
to describe the phase transition in superconductivity. Then it was introduced by Cahn
and Hilliard (1958) to describe the phase transformation in particular for spinodal de-
composition. Later Kobayashi (1993) introduced the model for dendrite solidification in
metals where f0(φ) is constructed as a sum of two terms: the potential, fDW (φ) and the
driving force for phase transformation ∆g multiplied with the model function h(φ):

f0(φ) =
γ

4
fDW (φ) + ∆g h(φ). (2)

fDW (φ) is responsible for phase separation and the creation of the interface since it pe-
nalizes intermediate values of the phase field 0 < φ < 1 with an energy proportional
to the positive material parameter, γ. Here the original form of a double well potential
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fDW (φ) = φ2(1−φ)2 is used. ∆g h(φ) is the chemical energy part, which is responsi-
ble for the driving force of the phase transformation between phases with a bulk energy
difference ∆g and a coupling function h(φ) = φ2(3 − 2φ) which varies monotonously
between 0 and 1. The functional (1) reads, translated in physical units (for details see
appendix of (Steinbach, 2009)):

F
∫
V

[
σ

η

(
η2

2
|∇φ|2 + 18φ2(1− φ)2

)
−∆gφ2(3− 2φ)

]
dV. (3)

Here σ is the interface energy in units of energy per area, η is the interface width, ∆g,118

as before, the bulk energy difference between the equilibrium and non-equilibrium state119

in units of energy per volume and h(φ) is the coupling function. A main feature of the120

functional is that the energy f0(φ) has local minima in the liquid and in the solid phases121

at φ = 0 and 1. The first term (gradient) and the second term (potential) contribute122

to the interface energy, in particular, the surface energy between liquid and solid phases.123

The illustration of the functional terms is shown in Fig. 2. One important aspect is that124

for the minimum solution of the phase field, the gradient and the potential terms show125

identical forms (|∇φ|2 = 36
η2φ

2(1−φ)2). The proof for this is also given in the appendix126

of Steinbach (2009).127

Figure 2. Mesoscopic interpretation of the free energy functional. From left to right the

subsequent panels illustrate the first second and third terms in eq. (3), η is the interface width.

Depending on the application one may start from different thermodynamic func-128

tionals such as the Helmholtz free energy, or the Gibbs free energy. Here we treat only129

problems of phase transformations with fixed temperature and pressure and therefore130

we use the Gibbs free energy. The chemical part of the free energy density ∆g is, in gen-131

eral, defined by the total Gibbs energy of a material point composed of different phases132

and depends on the composition (in simple binary systems it is simply the concentra-133

tion c). It has been typically taken from thermodynamic databases such as CALPHAD134

(Lukas et al., 2007) for many metallic systems and ceramics and may be connected to135

databases such as MELTS (M. S. Ghiorso, n.d.; S. R. O. Ghiorso Mark S., 1995) for mineral-136

melt systems.137

2.3 Evolution equations138

The introduction of the gradient of the phase field in the energy functional makes
the formulation non-local and allows changes in the environment of a point to influence
the evolution of the system. With this aspect, the time evolution of the order param-
eter is governed by the demand for free energy minimization, called the “time-dependent
Ginzburg-Landau models” (here written for a single phase field, the generalization to mul-
tiple phases will be presented in section 2.7):

φ̇ = −Mφ
δF(φ)

δφ
. (4)
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Here Mφ is the interface mobility with units of inverse time multiplied by inverse energy139

density.140

In the same way, we can write down the evolution equation for concentration, which
is a conserved order parameter. This equation also referred to as the Cahn Hilliard equa-
tion (Cahn & Hilliard, 1958)

φ̇ = ∇Mc∇
δF(c)

δc
, (5)

where Mc is an atomic mobility.141

In more technical terms, conserved quantities (e.g. mass or concentration) are treated
using eq. (5) and non-conserved quantities (e.g. phase-field order parameters, geomet-
rical properties – Euler angles to characterize interfaces) are treated using eq. (4). The
calculation of the temporal evolution of a system requires the use of derivatives of the
free energy in the above form, leading to the use of functionals (roughly, a function of
a function) and variational derivatives which are defined as

δF
δφ

=
∂f

∂φ
−∇ · ∂f

∂∇φ
, (6)

where f is the energy density which is under the sign of the volume integral in eq. (1).142

The equation of motion for a non-conserved order parameter (4) with the functional143

(1) and (3), now referred to as the time-dependent Ginzburg-Landau models, is also known144

as the Allen-Cahn equation (Allen & Cahn, 1979). Cahn and Hilliard (1958) first stud-145

ied systems with locally uniform stable states and a conserved order parameter. The cor-146

responding equation of motion (5) which is based on the Onsager relations (Onsager, 1931)147

is known today as the Cahn-Hilliard equation. Details may be found also in (Wang et148

al., 1993; Steinbach, 2009; Cheng et al., 2012).149

Applying Eq. (4) to the functional (3), we obtain

φ̇ = µ

[
σ

(
∇2φ+

36

η2
φ(1− φ)(2φ− 1)

)
− 6

η
∆g φ(1− φ)

]
. (7)

The first two terms within the brackets correlate to the curvature of the interface, the150

last term is the transformation driving force. The evolution equation in the steady-state151

case without driving force, φ̇ = 0, has the solution in one dimension, which gives the152

tangential form of the diffuse interface (see Fig. 2).153

Here we define new interface mobility µ = ηMφ with units of velocity multiplied154

by inverse energy density. Note that for the double obstacle potential µ =
8η

π2
Mφ.155

2.4 Interface mobility156

The phase-field models define the velocity of the moving interface by the so-called
Gibbs-Thomson equation, which relates the velocity of the interface to the kinetic un-
dercooling (Steinbach, 2009; Karma, 2001)

vn = µ(∆g − σκ). (8)

Here, vn is the velocity in the direction normal to the interface at a given point, µ is mo-157

bility, σ is the interfacial energy for isotropic systems, ∆g is the constant part of the ther-158

modynamic driving force and κ is the mean curvature of the interface.159

Expression for the interface mobility, µ, of a solid-liquid interface for a diffusion-160

controlled process (in this case the physical interface mobility is expected to be high) was161

given by Karma and Rappel (1998); Steinbach (2009); Kundin and Steinbach (2019). For162

interface-controlled processes, the physical interface mobility is expected to be smaller163

and µ may be estimated by making use of the Gibbs-Thomson equation.164
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In the case of pure grain growth, the grain boundary energy and the grain bound-
ary mobility can be estimated from kinetic coefficients K that are measured in exper-
iments on growth kinetics (average grain size versus time):

K = γµσ, (9)

where γ is a constant, which depends on the form of grains, µσ is called the “reduced165

interface mobility”.166

2.5 Thermodynamic driving force167

The thermodynamic driving force for a phase transformation is defined as the slope
of the Gibbs energy versus the progress of the transformation, ∆g = ∂G

∂ξ . In the phase-
field model ξ is the phase-field order parameter. Using the mass conservation law in the
form of a mixture concentration

c = cαφ+ cβ(1− φ), (10)

where cα is the phase concentration in the α phase, and the Lagrange multiplier method,
one can write the Gibbs energy as a function of the phase-field order parameter

g = gαφ+ gβ(1− φ) + µeq(c− cαφ− cβ(1− φ)), (11)

where gα is the Gibbs energy density in the α phase. The derivative of g versus φ gives168

the driving force as the difference in diffusion potentials,169

∆g = gα − gβ − µeq(cα − cβ) = (cα − cβ)(µ− µeq), (12)

where µ =
gα − gβ
cα − cβ

is a non-equilibrium diffusion potential and µeq =
∂gα
∂cα

=
∂gβ
∂cβ

is170

a quasi equilibrium diffusion potential. The driving force between liquid and solid phases171

can be expressed in terms of the entropy change on melting as:172

∆gLS = ∆SLSmL(cL − ceqL ), (13)

where ∆SLS is the entropy change between liquid and solid phases, mL is the liquidus173

slope (Eiken et al., 2006).174

2.6 Anisotropy of surface energy175

Grain boundary energies of only a few minerals are known, but it is now becom-176

ing possible to calculate grain boundary energies for different crystals using ab-initio sim-177

ulations, and some examples in the material science literature include (Lee & Choi, 2004;178

Kim et al., 2011).179

For faceted crystals, the growth velocity is inversely proportional to the surface en-180

ergy for a particular facet. The surface energy anisotropy (the dependency of growth rate181

on the crystal plane) can be estimated using different experimental methods, for exam-182

ple: (i) using experimental crystal growth velocity in different crystal directions, (ii) the183

relative values of the surface energy for different faces can also be estimated using the184

shape of the crystal. The distance from the center to a crystal face is proportional to the185

surface energy, (iii) The absolute value of surface energy can be calculated by atomistic186

methods (e.g. ab-initio calculations). The surface energy of olivine was calculated, for187

example, by de Leeuw et al. (2000); Bruno et al. (2014). (iv) There are also experimen-188

tal methods for the definition of grain boundary anisotropy based on the relative abun-189

dance of different grain boundary planes in an aggregate (e.g. see Saylor et al. (2000)190

for an example in MgO, and Marquardt et al. (2015) for olivine). A single experimen-191

tal study is available on the measurement of interfacial energy between olivine and a basaltic192

melt (Cooper & Kohlstedt, 1982).193
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In the anisotropic model used in the present work, the surface or grain boundary194

energies in eqs. (7) and (8) change to the stiffness, σ∗. Due to anisotropy, the surface195

energy in the functional (3) is a function of an inclination angle θ, which is the angle be-196

tween a crystal direction in a crystal lattice and the normal to the interface n = ∇φ/|∇φ|.197

Hence, σ(θ) is a function of gradients, ∇φ, and by means of eq. (6), it transforms to the198

’stiffness’ σ∗(θ) = σ+σ′′, where σ′′ is the second derivative of σ with respect to θ. Note199

that the stiffness as well as the surface energy is a characteristic of each face of a crys-200

tal.201

2.7 Multi-phase-field model202

The multi-phase field model is described in details in the work of Steinbach (2009).203

The model can treat an arbitrary number of crystals by using a set of phase-field vari-204

ables φα(x, t), limited only by available computer resources. As before, phase-field or-205

der parameters are defined as φα = 1 in the bulk α phase and φα = 0 in other phases.206

The time evolution of phase-field parameters in the multi-phase formalism is con-
structed following eq. (4) as a sum over all dual interactions between the phases

φ̇α = −
Ñ∑
β=1

Mαβ

Ñ

(
δF
δφα
− δF
δφβ

)
, (14)

where Mαβ is the interface mobility, defined separately for each pair of phases, Ñ is num-207

ber of phases on the interface. In a contact point, we have to treat Ñ phases simulta-208

neously, Ñ = 3 for a triple junction, Ñ = 4 for a quadruple junction and so on.209

3 Multi-phase-field model adopted for the simulations of the olivine210

and plagioclase crystal growth211

3.1 Governing equations212

In the present study, the multi-phase field model of Steinbach (2009) has been ap-213

plied using the open source library OpenPhase (ICAMS, Department “Scale Bridging214

and Thermodynamic Simulation”, Ruhr-Universtuy Bochum, n.d.). Here we consider a215

monomineralic system with N − 1 crystals with the same phase but different orienta-216

tions growing in a liquid phase. The crystals can come in contact with each other and217

form solid-solid interfaces of different misorientations. Individual orientations of crys-218

tals are defined in 3D by three Euler angles.219

The free energy of a multi-phase system with N phase-field order parameters is for-
mulated based on the Ginzburg-Landau functional eq. (1)

F =

∫
V

 N∑
α 6=β

4σαβ
η

{
− η

2

π2
∇φα · ∇φβ + φαφβ

}

+
X(T )

2
(c− ceq(T ))

2

)
dV, (15)

where the first two terms within the brackets set the interface energy σαβ between the220

phase fields φα and φβ , the second term within the brackets is the double obstacle po-221

tential, and the last term is the chemical part which depends on concentrations and tem-222

perature T (as well as pressure, P , in principle, but variations of P are not considered223

in this study).224

The chemical part of the free energy density is the total Gibbs energy of the phases
and is defined as a parabolic function of the chemical composition (Kundin et al., 2015).
Here, c is the mixture concentration, ceq is the equilibrium concentration of the mixture,

–8–
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defined as a weighted sum on the interface

ceq = ceqS

N∑
α6=L

hα(φα) + ceqL (1−
N∑
α6=L

hα(φα)), (16)

where ceqS and ceqL are equilibrium concentrations in solid and liquid phases, hα(φα) is
a special model function whose derivative over φα is ∂hα/∂φα =

√
φα(1− φα), that

appears further in eq. (19). The full definition of h(φ) is given in the work of Steinbach
(2009). The sum in eq. (16) is taken over all N−1 solid grains, which are the crystals
of the same solid phase and have the same equilibrium concentration but different ori-
entations. Furthermore, X is the mixture thermodynamic factor which is defined as a
weighted sum

X =

(
1

XS
φS +

1

XL
(1− φS)

)−1
=

XL

kφS + (1− φS)
(17)

with XL, XS being the thermodynamic factors of liquid and solid phases, φS =
∑N
α 6=L φα225

being the sum of all solid phases on a space point, k = XL/XS is the partition coef-226

ficient. It can be seen that X becomes XL in the liquid and XS in the solid phase.227

In the olivine system considered in this study, the temperature is assumed to be228

homogeneous and constant during simulation. In the plagioclase system, the cooling rate229

is constant and cooling is considered as series of isothermal steps (see contrasting exam-230

ples of olivine vs. plagioclase below). The binary phase diagrams are linearized , i.e., the231

slopes of the liquidus and solidus are approximated as linear within the range of inter-232

est with a partition coefficient, k, that describes the distribution of components between233

a solid and a coexisting liquid (i.e., k = cS/cL at equilibrium). With these approxima-234

tions, the equilibrium concentration ceqα in a phase α at a temperature T is calculated235

as236

ceqα = ceqα (T0) +
(T − T0)

mα
, (18)

where mα = ∂T/∂ceqα and T0 is the liquidus temperature. The linear dependency can237

be also changed to non-linear functions corresponding to the specifics of any phase di-238

agram.239

After substitution of the functional (1) in eq. (14), we obtain the resulting kinetic
equation for a phase field

φ̇α =

Ñ∑
β 6=α

µαβ

Ñ

 Ñ∑
γ 6=α,β

[
σ∗βγ − σ∗αγ

] [
∇2φγ +

π2

η2
φγ

]

+
π

η
∆g
√
φα(1− φα)

)
. (19)

The mobility µαβ is related to Mαβ in eq. (14) as µαβ =
8η

π2
Mαβ . In this paper, we have240

used constant mobility for all interfaces, i.e., µαβ = µ. Of course, different mobilities241

of different interfaces can have a strong influence on the shapes of crystals and the evo-242

lution of the microstructure - this could be explored in a future study. The method can243

be consistently extended to provide various driving forces, address different extents of244

anisotropic surface energy, and to consider various grain boundary effects.245

Here ∆g is the thermodynamic driving force introduced above, which is the deriva-246

tive over the phase-field variables of the chemical part of the free energy.247

∆g =
XL(ceqS − c

eq
L )(c− ceq)

kφS + (1− φS)
=

∆SmL(c− ceq)
kφS + (1− φS)

. (20)
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∆S = XL(ceqS −c
eq
L )/mL is the entropy change between the solid and liquid phases,248

mL is the liquidus slope. Eq. (20) shows two variants to calculate the driving force, first249

in terms of the thermodynamic factors and second in terms of the difference in the en-250

tropy (see Kundin et al. (2015), for details). Both variants are appropriate for our study.251

σ∗βγ and σ∗αγ are the stiffness’s of the interfaces which appear due to the surface252

energy anisotropy. We use the anisotropic model because we have to calculate highly anisotrop-253

ically faceted crystals. The calculation of the stiffness for anisotropic faceted crystals is254

described below.255

By substitution of the energy functional eq. (15) in Cahn-Hilliard equation (5), one256

obtains the diffusion equation for the concentration field257

∂c

∂t
= ∇ ·

[
D∇ (c− ceq)

kφS + (1− φS)
+ jat

]
. (21)

Here jat is the anti-trapping current, which is used for the case where the rate of diffu-258

sion in the solid is very slow, D = McX ∼= (DSφS+DL(1−φS))(kφS+(1−φS)) is the259

mixture diffusion coefficient with DL and DS being the diffusion coefficients in the liq-260

uid and solid phases, respectively, and Mc is the mixture atomic mobility.261

3.2 Modeling of the anisotropic surface energy for faceted crystals262

The anisotropic surface energy is responsible for equilibrium shapes of the individ-
ual faceted crystals growing in melts and is given by the Wulff construction, which min-
imizes the total surface energy of the system. The anisotropic model used in this work
was suggested by McFadden et al. (1993) and successfully implemented by Salama et al.
(2020) for 3-D grain growth. The solid-liquid interface energy of a crystal α is defined
as a function of the inclination angle θα which is defined in its turn in each point of the
moving interface as an angle between the interface normal nα and the nearest facet nor-
mal kαijk. The facet normals are defined at the beginning of the simulation for each par-
ticular crystal α depending on its orientation and are represented by Miller indices {ijk}.
The surface energy is then calculated by the anisotropic function of the inclination an-
gle

σα(θα, (ijk)) = σijk

√
sin2 (θα) + κ2 cos2 (θα), (22)

where σijk is the maximum surface energy of a facet (ijk), κ is the anisotropy param-263

eter which is smaller for larger anisotropy. This function produces the flat faces of crys-264

tals which grow by propagation of planar interfaces in a manner that is different from265

the mechanism for dendritic growth models.266

The different crystal facets have different areas at equilibrium, which should be smaller
for facets with larger surface energies. That is because of the minimization of energy dur-
ing crystal growth. Furthermore, the growth rate should be faster for a facet with a larger
surface energy and smaller surfaces area. In order to capture these relationships, we de-
fine the maximum surface energy of a facet (ijk) as a function of the surface area ratio,
i. e.,

σijk = σ001
A001

Aijk
, (23)

where Aijk and A001 are the areas of the facets (ijk) and (001), respectively, and σ001
is the maximum surface energy of the (001) facet which is used as reference energy. In
the phase-field model, the growth rate is inversely proportional to stiffness, hence we can
assume that the stiffness is directly proportional to the area of a facet. Based on this as-
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sumption, we calculate the stiffness σ∗ concerning the inclination angle as

σ∗α(θα, {ijk}) =
A2
ijk

A2
001

(σα(θα) + σ′′α(θα))

= σ001
Aijk
A001

κ2
(
sin2 (θα) + κ2 cos2 (θα)

)− 3
2 . (24)

Note that the assumption for the stiffness suggested here is a simplification with a clear267

physical meaning.268

The model above is valid for single crystals in melts. To calculate the interface en-
ergy between two crystals that are in contact, we define a solid-solid interface energy σαβ
as a mean value of two solid-liquid interfaces

σαβ =
rsl
2

(σα + σβ), (25)

where rsl is the ratio between solid-solid and solid-liquid interface energies. Usually, the
energy of solid-solid interface is larger, resulting in rsl > 1. The stiffness for a solid-
solid interface is defined than in a similar man

σ∗αβ =
rsl
2

(σ∗α + σ∗β). (26)

In the case of small misorientation angles, the interface energy has a minimum. To269

mimic this behavior, we define the ratio rsl for misorientations θα − θβ < 5◦ equal to270

rmsl = 1.271

3.3 Evaluation of crystal size distribution (CSD)272

The crystal size distribution (CSD) is defined by the number of crystals within a
given size interval per unit area divided by the length interval (bin width) (Higgins, 2000,
2006), i.e.,

nV (L) =
N(LXY )

|LX − LY |V
, (27)

where N(LXY ) is the total number of crystals in the simulation domain in the size in-273

terval LX to LY , |LX − LY | is the bin width, and V is the domain volume.274

The parameter nV (L) is called the population density and has units of 1/L4. The275

corresponding CSDs are usually plotted as ln(population density) versus crystal size (Marsh,276

1988; Cashman, 2020).277

4 Numerical results278

We illustrate the capabilities of phase-field modeling using two common petrolog-279

ical systems – the olivine - melt system and the plagioclase - melt system. We under-280

score that interfacial energies playing a central role in phase-field calculations are not281

well known in most mineralogical systems. For illustration here, we have guessed val-282

ues for the relevant energies that may yield textural appearances that correspond to those283

frequently observed in natural systems. The values for olivine were chosen to be in the284

range expected from the study of Cooper and Kohlstedt (1982). The point of this ex-285

ercise is two-fold. First, to encourage the experimental measurement of the relevant pa-286

rameters given the availability of this tool. Second, in natural systems where all other287

parameters may be independently contrained, model fits may be used to infer/constrain288

the values of the relevant interfacial energy parameters. The second exercise may pro-289

vide a means of evaluating the range of variability of interfacial energy parameters in nat-290

ural systems, and help to identify critical systems for detailed experimental studies.291
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4.1 Olivine – melt system292

The model parameters are listed in Table 1. The calculations were carried out for293

for a melt of composition 73 wt.% Forsterite with a constant undercooling of 50 K (i.e.294

at a constant temperature of 1725◦ C). The diffusion coefficient is chosen as in silicate295

melts circa 10−12 m2/s (Dingwell, 2006). The mean growth rate of olivine crystals, vn296

is assumed as 10−5 m2/s (Zieg & Lofgren, 2002). The interface mobility is defined at the297

undercooling 50 K as µSL = vn/|∆S(T0 − T)| ∼ 10−13 m4(Js)−1. No flux boundary298

conditions in all directions are chosen for all fields. A ratio between solid-solid and solid-299

liquid interface energies is chosen as rsl = 1.5. The partition coefficient is taken from300

(Ford et al., 1983), and the entropy and liquidus slope from MELTS.301

Parameter Symbol Value Units

Grid spacing ∆x 1× 10−4 m
Time steps ∆t 5× 10−1 s
Interface width w 1.6∆x m
Surface energy σ001 0.05 J m−2

Ratio between energies rsl 1.5 and 4 -
Anisotropy strength κ 0.2 -
Interface mobility µSL 2.2× 10−13 m4 (J s)−1

Diffusion coefficient in liquid DL 3× 10−12 m2 s−1

Diffusion coefficient in solid DS 3× 10−16 m2 s−1

Partition coefficient k 0.3 -
Initial concentration in melt C0 = CeqL (T0) 73 wt. % Fo
Equilibrium concentration in melt at T CeqL (T ) 62 wt. % Fo
Initial concentration in nuclei CinS 80 wt. % Fo
Equilibrium concentration in crystals CeqS (T ) 90 wt. % Fo
Liquidus slope mL -1 K/wt%
Entropy change ∆S 0.16 J cm−3 K−1

Undercooling T0 − T 50 K

Table 1. Model parameters for olivine system.

4.1.1 Single olivine crystal shape302

To model the shape of the real olivine crystals, we use the following surface area303

ratios estimated from the experimental pictures (Welsch et al., 2012)304

faces (001) (100) (010) (101) (110) (021)

Aijk/A001 1 0.5 1.67 0.83 2.33 2.26
305

The simulated shape of a single olivine crystal is shown in Fig. 3. It is formed by306

using a driving force that depends on the change of the crystal volume by ∆G ∼ (V−307

V0)/V0, where V0 is an initial crystal volume. An initially round crystal of radius 20∆x308

was placed in a cubic domain of size 66× 66× 128∆x. After 2000 time steps (ts), the309

crystal shape transforms to the equilibrium one following the chosen anisotropic surface310

energy parameters. In the numerical simulations, we will use this algorithm to equili-311

brate the shape of nuclei before to start the main simulation runs.312
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Figure 3. 3-D views of olivine crystals simulated with the (001), (010), (101), (110), and

(021) faces.

4.1.2 Solidification of a system of olivine crystals313

In the following, we present the simulation of the monomineralic solidification of314

olivine crystals in a basaltic melt. Exponential nucleation is modeled by the generation315

of nuclei of random sizes that are randomly distributed in space. The random size of nu-316

clei is defined as R0 = (7 + 0.5 · 101.3 δ)∆x, where δ is a random number from 0 to 1.317

This method produces an exponential distribution of nuclei which then results in a lin-318

ear crystal size distribution, as used in the theoretical models of crystallization in rocks319

(Higgins, 2000). To avoid the contact of nuclei (pure homogeneous nucleation), the dis-320

tance between the nuclei is limited to 20∆x. The scheme of the phase diagram with the321

initial composition C0 and the solidification temperature T0 is shown in Fig. 4. We as-322

sume that nuclei are formed at higher undercooling, and hence they have initial com-323

positions that are different from the equilibrium composition at temperature T .324

Figure 4. Phase diagram of the Fo-Fa system and the thermodynamic history used in the

simulation of olivine crystals.

Simulation 1 was carried out in a cubic domain of size 1863∆x with 320 nuclei. The325

simulated microstructure is shown in Fig. 5 as 3-D views at the different time steps (ts):326

50 s (3000 ts), 300 s (8000 ts), and 700 s (16000 ts). The corresponding 2-D slices through327

the 3-D microstructure with the concentration field are shown in the second row of Fig.328

5.329

In Simulation 2, the system size is increased to 2763∆x and the number of nuclei330

to 580. The simulated microstructure as 3-D views and 2-D slices of the concentration331

field is shown in Fig. 6 at different time steps. The CSDs for both tests are shown in Fig.332

7. It can be seen that CSDs similarly change with time in both simulations. Hence the333

system size does not influence the texture. The initial number of crystals decreases dur-334
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Figure 5. 3-D view of the microstructure of the olivine crystals and 2-D slices with the con-

centration fields of fayalite in Simulation 1 at 50 s, 300 s and 700 s. The colors represents the

phase-field order parameters.

ing crystallization that results in the transformation of the exponential to a uniform dis-335

tribution. This is because the growth rate depends on the crystal size and the curvature336

of faces. Therefore, the small crystals dissolve and the larger crystals grow faster. The337

time evolution of the solid phase for Simulations 1 and 2 are compared in Fig. 8. The338

solid fraction goes to its equilibrium value for the given undercooling. In the second test,339

we start with a finer solid fraction, but the slope of the time dependence is similar to the340

first simulation test, reflecting a similar average growth rate.341

4.1.3 Effect of the solid-solid interface energy342

The ratio between solid-solid and solid-liquid interface energies affects the ability343

of crystals to bind to each other. In order to study this behavior, we carried out the sim-344

ulations in the domain size of 1863∆x with 480 initial nuclei of random size. The ratio345

between solid-solid and solid-liquid interface energies is increased to rsl = 4. The sim-346

ulated microstructure is shown in Fig. 9 at times 50 s, 300 s, and 750 s that correspond347

to the solid fractions 19%, 35%, and 61% respectively. The corresponding 2-D slices are348

shown in Fig. 9 on the bottom. The main difference with the previous simulation runs349

is that the crystals do not bond to each other, and a thin layer of melt of size from 4 to350

5∆x remains between the crystals. The CSDs and the crystal fraction evolve with time351

in the same manner as in previous tests.352

Future work is necessary to compare the simulated microstructures with experi-353

mental data and estimate the ratio between the solid-solid and solid-liquid interface en-354

ergies. Furthermore, one should take into account the minimum interface energy at small355

misorientations between crystals that results in the formation of groups of intergrown356

crystals of the same orientation as it was observed in the work of Welsch et al. (2012).357
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Figure 6. 3-D view of the microstructure of the olivine crystals and 2-D slices with the con-

centration field of fayalite in Simulation 2 at 50 s, 300 s and 700 s. The colors represents the

phase-field order parameters.
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Figure 7. CSD in Simulation 1 (a), Simulation 2 (b).

4.2 Plagioclase – melt system358

The model parameters that were used in the calculations are listed in Table 2. The359

anisotropy of the triclinic symmetry of a plagioclase crystal is modeled by two facets (100)360

and (001) with different surface energies. In contrast to the previous example, here we361

track the crystallization in the plagioclase system for a closed system with a constant362

bulk composition of 74 wt.%An for a constant cooling rate of 2 K/s. The numerical sim-363

ulation was carried out in a rectangular domain of size 200×520∆x (2000×5200 µm).364

The phase diagram of the plagioclase – melt system and the initial composition are il-365

lustrated in Fig. 10. Fig. 11 shows a series of stages (abundance of phases, orientation366

of crystals and compositions of crystals and melt in each case) in the calculated evolu-367

tion of the system for different temperatures. We introduce 44 nuclei, each 60 µm in size,368

at random positions in the system.369
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Figure 8. Time evolution of the crystal fraction in Simulations 1, 2.

Figure 9. 3-D microstructure of the olivine crystals and 2-D slices of the olivine crystals with

the concentration field at times 50 s, 300 s, and 750 s in the simulations with the large ratio

rsl = 4. The color represents the orientation of crystals.

At T2 = 1390°C where 13% of the system should crystallize at equilibrium, the370

nuclei begin to grow and the shapes of crystals (in accordance with the chosen difference371

in interfacial energies – see Table 2) and their compositions are shown in Fig. 11. At T3 =372

1360°C, 28% of the system crystallizes at equilibrium, and the calculation shows growth373

of crystals to larger sizes. Noticeable is the fact that the composition of the liquid at a374

particular point in space depends on the thermodynamic (and kinetic, through diffusion)375

interaction with the neighbouring grains. Such interaction influences the growth rate of376

any given crystal and its shape. With further evolution, at T4 = 1280°C (68% crys-377

tallization), the growth continues and the crystal size distribution becomes more dispersed.378

The competition of growth between crystals produces some very large as well as some379

very small crystals. At T5 = 1235°C (90% crystallization) one has a compact crystal380

mush where the local compositional variation is very apparent. This has important im-381

plications for the compositions and shapes of subsequent plagioclase that grows from the382
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Figure 11. 2-D microstructure of the plagioclase and crystals with the concentration field

(top row) and phase field (bottom row) at different time steps corresponding to different temper-

atures during the cooling. The color represents the orientation of crystals.

melt. At T6 = 1195°C, the solidus is reached and there should be no remaining liquid383

in equilibrium. However, there is still liquid present in the simulation, which can be so-384

lidified through additional nucleation if necessary. Beyond this point, there are no sig-385

nificant changes in grain size of crystals but the compositions of the zoned crystals con-386

tinue to evolve by diffusion. The extent of this depends obviously on the cooling rate and387

is an important parameter for diffusion chronometry. Fig. 12 shows the crystal size dis-388

tribution in the system as the number of crystals in a size interval (one bin of the his-389

togram equals 80 µm) in figure (a), and as crystal population density by eq. (27) in fig-390

ure (b). Overall, the crystal size distribution evolves to larger sizes and becomes more391
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Parameter Symbol Value Units

Grid spacing ∆x 1× 10−4 m
Time steps ∆t 5× 10−1 s
Interface width w 1.6∆x m
Surface energy σ100 1 J m−2

Surface energy σ001 0.12 J m−2

Ratio between energies rsl 4 -
Anisotropy strength κ 0.2 -
Interface mobility µSL 1× 10−15 m4 (J s)−1

Diffusion coefficient in liquid DL 1× 10−9 m2 s−1

Diffusion coefficient in solid DS 1× 10−21 m2 s−1

Initial concentration in melt C0 = CeqL (T0) 74 wt. % An
Initial concentration in nuclei CinS 20 wt. % An
Liquidus slope mL 1–2 K/wt%
Entropy change ∆S 0.16 J cm−3 K−1

Cooling rate Ṫ 2 K/s

Table 2. Model parameters for plagioclase – melt system

dispersed with progressive crystallization in the system. The change in crystal size dis-392

tribution is a direct consequence of the competition between crystals for growth as the393

available volume of liquid reduces with progressive crystallization, as well as the attempt394

to minimize surface energies in the overall system through processes such as Ostwald ripen-395

ing. During this evolution, some early formed smaller crystals disappear to enable the396

growth of larger crystals. Thus, the lifetime of a given crystal in the system is variable,397

and this aspect has important implications for diffusion chronometry.398
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Figure 12. CSD in plagioclase system during the cooling process with linear (a) and logarith-

mic scale (b) on the y-axis.

Features such as the extent to which local melt compositions get trapped in grow-399

ing crystals, whether they crystallize according to the locally available composition or400

approach the expected equilibrium composition, and whether the distribution of melts401

wets grain boundaries or form more isolated pockets depend on the values of the var-402

ious thermodynamic and kinetic parameters and their relative magnitudes (e.g. cooling403

rate, interfacial energies, diffusion rates in melts, among others).404
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5 Discussion and conclusion405

The results above demonstrate that a formal quantitative structure that permits406

the calculation of textural evolution taking thermodynamic constraints into account for407

complex, anisotropic mineralogical systems is in place. The parameters that are neces-408

sary to perform such calculations have been enumerated, and gaps in knowledge – mainly409

in our knowledge of various surface energy / interfacial energy parameters – have been410

identified. We have also outlined various approaches that may allow these quantities to411

be determined. This includes the possibility of documenting the distribution of grain bound-412

aries of different orientations in natural rocks to infer the relative magnitude of anisotropy413

in interfacial energies in a mineral (e.g. see Marquardt et al. (2015) for the method).414

A main advantage of the approach outlined here is that although nucleation be-415

havior remains externally imposed (i.e. arbitrary), the growth rates obey local thermo-416

dynamic and geometrical constraints. Our calculations show that the form of crystal size417

distributions (CSD) depends on the imposed nucleation laws. However, growth in phase-418

field modeling results from a competition between the thermodynamic driving forces and419

surface energy terms that try to reduce the energetic costs of creating surfaces, partic-420

ularly surfaces with higher energies (in an anisotropic system). As a result, growth rates421

depend on sizes of crystals and are inversely related to the curvature of a crystal surface.422

We note that this aspect remains irrespective of whether the growth overall is by diffusion-423

controlled or an interface-controlled process. The general outcome is that growth rates424

are not constant during the evolution of a system, and that can result in a change of slope425

in a CSD plot. Cashman (2020) discusses various possibilities that may give rise to such426

breaks in natural systems, the results obtained here provide additional alternatives. Lin-427

ear CSD patterns may be expected only for limited extents of crystallization. A num-428

ber of new behaviors emerge as a consequence of non-constant growth rates. For exam-429

ple, some smaller crystals dissolve to facilitate the growth of larger crystals (a process430

akin to Ostwald ripening) and growth rates react to depletion / enrichment of certain431

components in the melt in the immediate vicinity of a growing crystal (e.g. see Fig. 6).432

This extent of depletion / enrichment is controlled, in turn, by the diffusivity of the rel-433

evant elements in the melt and factors that control its physical dynamics (e.g. viscous434

flow, buoyancy effects) – thus, these models provide a connection between growth rates435

and the behavior of the melt in the system in which growth takes place. All of these as-436

pects would influence the textural evolution of a natural system.437

In the simulations in this study we produced the nuclei with considerable under-438

cooling, so that the composition of the nuclei were far removed from the equilibrium com-439

positions expected at the given temperature. This automatically produces composition-440

ally zoned crystals because subsequently grown sections of the crystals form with the equi-441

librium compositions. The nature of such zoning is controlled by (a) the degree of un-442

dercooling, (b) the rates of diffusion of the relevant elements in the crystals, and (c) the443

time available for evolution (e.g. cooling rate, annealing time). These controls on the com-444

positional zoning pattern observed in a crystal are critical inputs in diffusion chronom-445

etry but have not been explored yet in this context to any large extent. We demonstrate446

that phase-field modeling provides a path toward that.447

Our results with different values of interfacial energies, keeping other factors the448

same (e.g. Fig. 9) show how melt films may separate two adjacent crystals for the cer-449

tain values of this parameter. This aspect, and also the local enrichment / depletion ef-450

fects discussed above, may cause a variety of different compositions to be trapped as melt451

inclusions in crystals growing in a closed system. In other words, external input of melt452

of a different composition is not necessarily required to produce melt inclusions with a453

wide range of compositions (see Wieser et al. (2020) for some related situations).454

The phase-field simulations track the orientation of crystals of necessity, because455

surfaces play a central role in these calculations. Therefore, calculations such as those456
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shown in Fig. 6 may be used to distinguish between mush zones that have crystallized457

in situ, vs. cumulate piles that may have been produced by sinking crystal in a magma458

reservoir (e.g. see Wieser et al. (2019)). How the combination of expected compositional459

zoning and orientation distributions of crystals differ in those two situations would be460

a particularly powerful petrogenetic tool.461

Finally, and perhaps most importantly from the perspective of studies of timescales462

of magmatic processes, this tool promises to provide a bridge between determination of463

timescales using CSD analysis and diffusion chronometry. Both, CSD patterns and com-464

positional zoning patterns are calculated as part of the same internally consistent and465

thermodynamically valid calculation. We find, for example, that crystals do not grow466

monotonously since their time of nucleation. Instead, the population evolves through dis-467

solution of some crystals and growth of others, and with different growth rates in dif-468

ferent parts of the system. The direct consequence of this is that crystals of different sizes469

may have different growth zoning patterns and may have experienced diffusion for dif-470

ferent lengths of time. The important consequence is that the lifetime of a given phase471

(say, olivine or plagioclase in the simulations considered in this study) in a system is dif-472

ferent from the lifetime of a particularly crystal of the phase. In a magma reservoir re-473

siding for, say, 50 years at conditions defined by a given set of intensive thermodynamic474

variables (P, T, fO2,. . . etc.) a phase such as olivine may be stable; but textural matu-475

ration involving dissolution and growth of crystals may have been completed much later,476

such that a given crystal of olivine may have been in place for, say, only 10 years. Then,477

10 years is the maximum timescale that may be obtained from diffusion chronometry of478

olivine, using any chemical element. Thus, there is an inherent upper limit to timescales479

that may be accessible by diffusion chronometry of a given phase. This aspect has not480

been recognized yet – these simulations provide a means of exploring that limit.481
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