
P
os
te
d
on

22
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
17
50
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Approximation of the Boundary-to-Solution Operator for the

Groundwater Transport Equation in a Toth Basin

Jingwei Sun1, Jun Li1, Yonghong Hao1, Huazhi Sun1, Chunmei Ma1, Yi sun2, Gurcan
Comert3, Negash Negashaw3, and Qi Wang2

1Tianjin Normal University
2University of South Carolina
3Benedict College

November 22, 2022

Abstract

We develop a deep learning approach to learn the boundary-to-solution operator, i.e., to establish the boundary to steady solution

mapping, in the Toth basin of arbitrary top and bottom topographies and two types of prescribed boundary conditions.

The machine-learned mapping is represented by a DeepOnet, which takes the geometrical data and boundary conditions as the

inputs and produces the steady state solution as the output. In this approach, we approximate the top and bottom boundaries

by either truncated Fourier series or piecewise linear representations. The DeepOnet maps directly the finite dimensional

representations of the boundaries to the steady state solution of the ground water transport equation in the Toth basin. We

present two different implementations of the DeepOnet: 1) the Toth basin is embedded in a rectangular computational domain,

and 2) the Toth basin with arbitrary top and bottom boundaries is mapped into a rectangular computational domain via a

nonlinear transformation. We implement the DeepOnet with respect to the Dirichlet and Robin boundary condition at the top

and the Neumann boundary condition at the impervious bottom boundary, respectively. Both implementations yield the same

results, showcasing a new deep learning approach to study ground water transport phenomena.
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Abstract

We develop a deep learning approach to learn the boundary-to-solution operator, i.e., to es-
tablish the boundary to steady solution mapping, in the Toth basin of arbitrary top and bottom
topographies and two types of prescribed boundary conditions. The machine-learned mapping
is represented by a DeepOnet, which takes the geometrical data and boundary conditions as the
inputs and produces the steady state solution as the output. In this approach, we approximate
the top and bottom boundaries by either truncated Fourier series or piecewise linear representa-
tions. The DeepOnet maps directly the finite dimensional representations of the boundaries to
the steady state solution of the ground water transport equation in the Toth basin. We present
two different implementations of the DeepOnet: 1) the Toth basin is embedded in a rectangular
computational domain, and 2) the Toth basin with arbitrary top and bottom boundaries is
mapped into a rectangular computational domain via a nonlinear transformation. We imple-
ment the DeepOnet with respect to the Dirichlet and Robin boundary condition at the top and
the Neumann boundary condition at the impervious bottom boundary, respectively. Both im-
plementations yield the same results, showcasing a new deep learning approach to study ground
water transport phenomena.

Keywords: Machine learning, Poisson equation, Boundary-to-solution mapping, Toth basin, Deep-
Onet, Ground water transport.

1 Introduction

The Toth groundwater analysis was a seminal theoretical attempt to relate surface topography
and the associated hydrological boundary conditions with the steady state groundwater flow field
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driven by gravity in a small drainage basin, known as the Toth basin [1, 2]. It involved solving
an elliptic boundary value problem for a given surface topography not far from a horizontally flat
surface with the associated Dirichlet boundary condition on a rectangular domain approximately.
For a general non-rectangular drainage basin with a surface topography far from a flat surface, the
elliptic boundary value problem would have to be solved numerically. The Toth water table analysis
demonstrated the impact of surface topography and the associated water potential at the boundary
on the ground water transport in the basin domain approximately. The traditional numerical solver
for the solution, while the surface topography is given, only produces one solution for each given
topographical surface. When one studies another Toth basin with a different surface topography,
the solution would have to be recalculated. One thus wonders if there exists a ”solver”, that once
obtained can map the surface topography directly to the solution in the interior so that the ”solver”
can produce the solution from a given surface topography.

In the past, one study had been conducted to optimize the Toth theory by refining the co-
efficient of permeability or the viscosity of the fluid in porus media, or to examine the influence
of temperature [3]; and another focused on investigating the influence of depth and systematic
heterogeneity [4]. A couple of other studies focused on generalizing the Toth theory to other set-
tings, like the more realistic three-dimensional space [5] and unsteady situations [6] etc. But these
works didn’t examine the impact of the top surface topography on the solution in the Toth basin
holistically when it is of an arbitrary shape.

In this paper, we extend the Toth water table study to a domain with an arbitrary piecewise
smooth top and bottom boundaries and appropriate boundary conditions, and propose a novel
idea to establish a mapping from surface topographies (top alone or top+ bottom) to the solution
of the governing system of equations for ground water transport in the Toth basin directly using
a deep learning method. This is an analogue of a solution formula for an initial-boundary value
problem for partial differential equations (PDEs) in terms of deep learning, where the solution of the
initial-boundary value problem is expressed as a function of the domain, the boundary conditions
and the nonhomogeneous forcing term. This approach will produce a solution ”solver” that maps
the prescribed initial and boundary conditions as well as the forcing term to the solution directly,
suitable for any geophysical basins that share the same transport property such as the mobility
coefficient in the transport equation.

The recent advancement in deep learning with neural networks makes the development of such a
desired mapping plausible [7–13]. Given that a neural network is a mapping composed of compound
functions with specific structures, the mapping should be able to be established should we propose
the proper architecture of the deep neural network in principle [14,15]. We note that the governing
steady state equation for ground water transport in porus media is a Poisson equation. Given
a boundary and physically consistent boundary conditions, a solution can be represented by an
integral containing the Green’s function [16]. The integral with the Green’s function yields the
mapping from the initial-boundary conditions and the source term to the solution theoretically.
Motivated by this connection between the domain boundary, boundary conditions and the source
of the steady state equation, we represent the mapping using a new form of neural network, known
as the DeepOnet. The DeepOnet has been shown to have the capacity to establish the mapping
between the model parameters, its boundaries (including boundary conditions) to the solution in
the domain [17]. It is therefore an appropriate tool for us to establish the desired mapping.

Specifically, we will address the following questions in this study using deep learning:

� What is the influence of the surface topography and the geometry of the Toth basin to the
steady flow field through the water potential in Toth basin Ω?

� What is the specific effect of both the top and bottom boundary conditions to the solution
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in the Toth basin? We will focus on two types of top boundary conditions: (i) the Dirichlet
boundary condition in which the water potential is prescribed at the top boundary related
to the altitude of the location: h = gϕ(x), where h is the water potential, g is a gravity
acceleration, and y = ϕ defines the top boundary; and (ii) the Robin boundary condition:
∂h
∂n(x)+ γh(x) = gϕ(x), where γ is a rate parameter whose reciprocal represents the penetra-
tion length. The latter simply states a balance law between the cross boundary flux and the
difference between the water potential and a saturated water potential at the top surface.

� What’s the direct mapping from the surface topography and basin geometry to the steady
state Darcy velocity field in the basin?

We will address these issues altogether by solving the PDE boundary value problem with respect to
two distinct boundary conditions using the DeepONet [8,18]. The presentation is given for steady
states without a source term. However, the method extends readily to transient situations and
also the transport phenomenon with a source. We note that for a completely new Toth basin, an
analogous boundary-to-solution mapping to describe ground water flows in porous media can be
developed using transfer learning, which could be more efficiently done.

We present three implementations of the DeepOnet in which the boundaries of arbitrary shapes
are represented using a piecewise linear interpolant, a truncated Fourier series, or mapped to a flat
surface via a nonlinear transformation. Without loss of generality, we will detail the latter two
implementations.

2 Mathematical formulation

We first present the model derivation and give a brief discussion on consistency of boundary
conditions with the governing equation. Then, we discuss three distinctive neural network models
for mapping the surface topography together with the prescribed boundary condition to the solution
of the governing equation for ground water transport in steady states.

2.1 Model formulation

We first formulate the ground water transport model in a general time-dependent setting. We
consider transport of ground water in a given domain Ω with piecewise smooth boundary ∂Ω, in
which some parts are impervious. We denote the water potential by h(x, t) at location x and time
t. It is related to the hydrostatic pressure through

h(x, t) = gy +

∫ p

p0

1

ρ
dp, (2.1)

where g is the gravity acceleration, y is the height of the water basin measured from the bottom
impervious layer, ρ(p) is the density of water assumed a function of pressure p, p0 is the atmospheric
pressure at the top surface and p(x, t) is the hydrostatic pressure at x. Since the water potential is
a gauge variable, we choose the origin of the coordinate system at the lower impervious layer so that
the water potential at the surface is determined by the altitude of the top surface relative to the
impervious layer. We remark that the origin for y is chosen as the lowest point along the bottom
surface when it is not flat. The transport equation of h(x, t) is given by the following continuity
equation:

S
∂h

∂t
= ∇ · v +Q, (2.2)
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where S is the storage rate, Q is the source term, v is the effective velocity or the Darcy velocity.
It follows from (2.1) that

∇h = ∇(gy) +
1

ρ
∇p. (2.3)

The constitutive equation between water potential h and Darcy velocity v is given by the
Darcy’s law [19]:

v = K · ∇h, (2.4)

where K is the mobility coefficient tensor. We note that (2.4) can be viewed as a force balance
equation, where the inverse, K−1, serves as the friction coefficient. It follows from (2.2) and (2.4)
that

S
∂h

∂t
= ∇ · (K · ∇h) +Q. (2.5)

This is the governing equation for water potential h from which the Darcy velocity is inferred.

2.2 Dirichlet boundary value problem

In a water basin Ω, this partial differential equation is accompanied by a set of boundary
conditions over domain boundary Γ = ∂Ω. We consider the following 2D domain with boundary
conditions given below (see Figure 2.4),

n ·K · ∇h|Γb,l,r
= 0, h(x, ϕ(x)) = gϕ(x), (2.6)

where n = 1√
1+ϕ2

x

(−ϕx, 1) is the unit external normal to the boundary, Γb,l,r are the boundaries at

the bottom, left and right side of domain Ω, respectively, and equation y = ϕ(x) defines the top
boundary. The lateral boundaries are assumed vertical line segments in domain Ω while the top and
bottom ones can be of arbitrary shapes. We name this domain the Toth basin for its origin in the
Toth’s seminal paper on the Toth water table. Notice that the lateral boundaries and the bottom
one are assumed impervious in the Toth basin while the top one is not [2]. When the bottom
boundary is flat and top boundary inclined with a small slope, Toth calculated his well-known
Toth water table in [20] using an approximate analytical method based on an asymptotic analysis
on a rectangular domain.

Given any boundary conditions along ∂Ω, we need to check their consistence with the governing
equation in Ω [21]. We integrate equation (2.5) over Ω to obtain∫

Ω
[S

∂h

∂t
− (∇ · (K · ∇h) +Q)]dx =

∫
Ω
[S

∂h

∂t
−Q]dx−

∫
∂Ω

n · (K · ∇h)ds = 0. (2.7)

It imposes a consistent condition between the boundary conditions on h and the solution in the
interior. If boundary conditions are given in (2.6), the consistent condition reduces to∫

Ω
[S

∂h

∂t
−Q]dx−

∫
Γt

n · (K · ∇h)ds = 0, (2.8)

where Γt is the top boundary of Ω. In steady states and without the source term, in particular,
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the consistent condition further reduces to∫
Γt

n · (K · ∇h)ds = 0. (2.9)

The consistent condition is a crucial constraint for the equation to have a steady state solution.
Physically, this condition indicates that the net-flux across the top boundary in steady state must
be zero. For the given top boundary y = ϕ(x), the unit external normal n couples ϕ to solution
h(x) obtained in Ω through (2.9).

We summarize the mixed boundary value problem with the Dirichlet boundary condition on
the top as follows

∇ ·K · ∇h = 0,x ∈ Ω,

n ·K · ∇h|Γb,l,r
= 0, h(x, ϕ(x)) = gϕ(x).

(2.10)

Assuming the boundary problem is well-posed, h is a solution of (2.10), and ĥ is another function
of the same regularity as h, ĥ satisfies the following estimate:

∥ĥ− h∥Ω ≤ C1∥∇ ·K · ∇ĥ∥Ω + C2∥n ·K · ∇ĥ∥Γ−Γt + C3∥ĥ− gϕ∥Γt , (2.11)

where the norms are some proper norms defined in their respective spaces and Ci, i = 1, 2, 3 are
positive constants [22]. Then,

h = argmin
ĥ

∥ĥ− h∥Ω = argmin
ŷ

[C1∥∇ ·K · ∇ĥ∥Ω + C2∥n ·K · ∇ĥ∥Γ−Γt + C3∥ĥ− gϕ∥Γt ]. (2.12)

Thus, we use the righthand side to define the loss function in this case.

Loss = C1∥∇ ·K · ∇ĥ∥Ω + C2∥n ·K · ∇ĥ∥Γ−Γt + C3∥ĥ− gϕ|Γt . (2.13)

In this case, finding the solution of (2.10) is turned into a minimization problem of the residues
in (2.13). This is the foundation of the physic-informed machine learning (PIML) formulation [7].
The crucially important part in this formulation is the choice of the norms in the loss function so
that it is consistent with the well-posedness proof of the initial boundary value problem [23].

2.3 Robin boundary value problem

A more physical boundary condition in steady states at the top boundary perhaps should be

n ·K · ∇h = −γ(h− gϕ(x)), (2.14)

where γ is the rate parameter. It indicates that the flux through the top boundary is proportional
to the difference of the water potential and the saturated steady state water potential. If γ = 0,
(2.14) reduces to the impervious Neumann boundary condition; whereas it reduces to the Dirichlet
one if γ → ∞.

If we assume that the Robin boundary value problem is well-posed, h is a solution, and ĥ a
function in H1(Ω), it follows from the well-posedness that

∥h− ĥ∥ ≤ C1∥∇ ·K · ∇ĥ∥Ω + C2∥n ·K · ∇ĥ∥Γ−Γt + C3∥n ·K · ∇h+ γ(h− gϕ(x))∥Γt , (2.15)
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where Ci, i = 1, 2, 3 are positive constants. The loss function can then be devised as follows

Loss = C1∥∇ ·K · ∇ĥ∥Ω + C2∥n ·K · ∇ĥ∥Γ−Γt + C3∥n ·K · ∇h+ γ(h− gϕ(x))∥Γt . (2.16)

This loss function penalizes all the residues in the equation and the boundary conditions.
The steady state governing equation without the source together with boundary condition (2.14)

yields the following consistency condition:∫
Γt

γ(h− ϕ)ds = 0. (2.17)

(2.9) and (2.17) are two constraints for the solution to satisfy the Dirichlet and the Robin boundary
condition, respectively.

2.4 Nondimensionalizaton

In order to solve the equations together with the boundary conditions numerically, we need
to nondimensionalize them. We introduce length scale in x: Lx, in y: Ly, and time scale: T ,
respectively. The dimensionless variables are defined by

x̃ =
x

Lx
, ỹ =

y

Ly
, t̃ =

t

T
, h̃ =

h

h0
, ϕ̃ =

ϕ

Ly
, (2.18)

where h0 is a characteristic water potential. We denote the characteristic storage rate by S0. The
dimensionless model parameters are defined by

S̃ =
S

S0
, K̃ =

T

L2
yS0

A ·K ·A, Q̃ =
TQ

S0h0
, (2.19)

where

A =

 ϵ 0

0 1

 , (2.20)

ϵ =
Ly

Lx
is the aspect ratio of the basin.

The transport equation in the dimensionless form is given by

S̃
∂h̃

∂t̃
= ∇ · K̃ · ∇h̃+ Q̃. (2.21)

The top Dirichlet boundary condition is given by

h̃ =
gLy

h0
ϕ̃. (2.22)

We choose

h0 = gLy, (2.23)

and drop the˜from the dimensionless equations to obtain the dimensionless equation and boundary
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conditions as follows:

S ∂h
∂t = ∇ ·K · ∇h+Q,x ∈ Ω,

h = ϕ(x),x ∈ Γt, n ·K · ∇h = 0,x ∈ ∂Ω− Γt.
(2.24)

The consistent condition (2.9) retains.
Analogously, we obtain the dimensionless Robin boundary condition at the top boundary as

follows

n ·K∇h = −γ̃(h− ϕ), (2.25)

where γ̃ = γLx. We drop the tilde over γ for brevity.
In this paper, we consider K = Diag(K11,K22) as a diagonal mobility matrix, x ∈ [0, 1], and

0 < ϕ2(x) < ϕ(x) ≤ 1 in the dimensionless equation and boundary conditions, where y = ϕ2 is the
bottom boundary.

(a)

Figure 2.1: Toth basin Ω and the prescribed boundary conditions over ∂Ω embedded in a rectangular
domain [0, 1] × [0, 1]. The top and bottom boundaries are given by y = ϕ(x) and y = ϕ2(x),
respectively.

Next, we present three DeepOnet implementations for the mapping from specified boundary
and the boundary conditions (2.6) to the steady state water potential solution and thereby the flow
field via the Darcy’s law in Ω [17].

3 DeepONet for the boundary-to-solution mapping

For the boundary value problem in the Toth basin, we would like to establish a mapping
from the boundary and the associated boundary condition to the steady solution in the domain.
We adopt the physics-informed machine learning approach and use the DeepOnet as the neural
network to represent the mapping. The DeepOnet is specifically designed for this purpose [17].
For the Toth basin, we are interested in a domain with flat lateral, arbitrary top and bottom
boundaries. Firstly, we consider the bottom boundary is also flat and impervious so that the zero
Neumann boundary conditions are valid at all lateral and bottom boundaries. The top boundary
is defined by y = ϕ(x) with aspect ratio ϵ. We construct a mapping from the top surface boundary
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condition of the water potential to the steady state solution of the governing equation in the
Toth basin. Owing to the special boundary condition in this particular problem, the boundary
representation and the boundary condition coincide. So, we only need to learn a mapping from
top boundary y = ϕ(x) to the solution of the steady state governing equation in Ω. We present
three different approaches to accomplishing this goal using two distinct representations of the top
boundary y = ϕ(x), respectively.

3.1 Piecewise polynomial interpolation of the top boundary

Firstly, we represent the top boundary, y = ϕ(x), using n discrete points xi = (xi, ϕ(xi)), i =
1, · · · , n, uniformly distributed in the x-coordinate, where xi = (i − 1)∆x,∆x = 1

n−1 . We denote
the approximate solution of this mixed boundary value problem in the interior of Ω by a DeepONet
G(ht, ϵ,x) as follows

G(ht, ϵ,x) =

p∑
k=1

q∑
i=1

cki σ(
n∑

j=1

ξkijϕ(xj) + ξki0ϵ+ θki )σ(Wk · x+ ζk) + b0, (3.1)

where cki , ξ
k
ij ,Wk are weights and θki , ζk, b0 are biases of the neural network, ht = (ϕ(x1), · · · , ϕ(xn)) ∈

Rn denotes the uniformly distributed, y-coordinates of the interpolating points at the top bound-
ary, and n, p, q are positive integers. We use the DeepOnet to learn the mapping from ht, ϵ to
the solution. We choose nl, nr, nb, ni points at the left, right, bottom boundary, and the interior
randomly.

We denote nt = n (odd) as the number of points at the top boundary. The loss function of the
machine learning model is given by (2.13) with the L2 norms. We evaluate the integral norms using
the Monte Carlo sampling. For the randomly chosen points along the boundary and in the interior,
{xi

j , i = l, r, b,xj}, and a well-defined uniform division of [0, 1], {xj , j = 1, · · · , nt},xt
j = (xj , ϕ(xj)),

the specific expression of the loss function is given by

L(θ,ht, ϵ) =
1
n

∑n
i=1(ϕ(xi)−G(ht, ϵ,x

t
i))

2 + 1
ni

∑ni
j=1(∇ ·K · ∇G(ht, ϵ,xj))

2+

1
nl

∑nl
i=1(

∂
∂xG(ht, ϵ,x

l
i))

2 + 1
nr

∑nr
i=1(

∂
∂xG(ht, ϵ,x

r
i ))

2 + 1
nb

∑nb
i=1(

∂
∂yG(ht, ϵ,x

b
i))

2

+[∆x
3

(
F (ht, ϵ,x1) + 4

∑
i even∈{2,··· ,n−1} F (ht, ϵ,x

t
i) + 2

∑
i odd∈{3,··· ,n−2} F (ht, ϵ,x

t
i) + F (ht, ϵ,x

t
n)
)
]2,

(3.2)

where {xj}ni
j=1 are the interior points and {xk

i }
nk
i=1 are boundary points, k = t, l, r, b represent the

top, left, right, and bottom boundary, respectively, and the boundary mass flux is given by

F (ht, ϵ,x) = n(t) ·K · ( ∂

∂x
G(ht, ϵ,x),

∂

∂y
G(ht, ϵ,x))

T = −K11ϕx(x)Gx(ht, ϵ,x) +K22Gy(ht, ϵ,x).(3.3)

The Simpson’s quadrature formula is employed [24] to ensure the integral is accurate up to the fourth
order in ∆x. This is the PIML formulation of the problem where the residues in the equation and
boundary conditions are penalized in the loss function in the L2 norm. This loss function is defined
for each given top boundary parameterized by ht and a set of randomly selected points from other
parts of the domain. We note that this loss also includes a penalization term for constraint (2.9)
to enforce consistency.
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In the practical implementation, we modify the loss function by re-balancing the weights. The
loss function is then modified into

L(θ,ht, ϵ) =
λ1
n

∑n
i=1(ϕ(xi)−G(ht, ϵ,x

t
i))

2 + λ2
ni

∑ni
j=1(∇ ·K · ∇G(ht, ϵ,xj))

2+

λ3
nl

∑nl
i=1(

∂
∂xG(ht, ϵ,x

l
i))

2 + λ4
nr

∑nr
i=1(

∂
∂xG(ht, ϵ,x

r
i ))

2 + λ5
nb

∑nb
i=1(10×

∂
∂yG(ht, ϵ,x

b
i))

2

+λ6[
∆x
3

(
F (ht, ϵ,x1) + 4

∑
i even∈{2,··· ,n−1} F (ht, ϵ,x

t
i) + 2

∑
i odd∈{3,··· ,n−2} F (ht, ϵ,x

t
i) + F (ht, ϵ,x

t
n)
)
]2,

(3.4)

where the weights are re-balanced as follows in each iteration

losstop =
1
n

∑n
i=1(ϕ(xi)−G(ht, ϵ,x

t
i))

2, losseq =
1
ni

∑ni
j=1(∇ ·K · ∇G(ht, ϵ,xj))

2,

lossleft =
1
nl

∑nl
i=1(Gx(ht, ϵ,x

l
i))

2, lossright =
1
nr

∑nr
i=1(Gx(ht, ϵ,x

r
i ))

2,

lossbottom = 1
nb

∑nb
i=1(Gy(ht, ϵ,x

b
i))

2,

losscon = [∆x
3

(
F (ht, ϵ,x1) + 4

∑
i even∈{2,··· ,n−1} F (ht, ϵ,x

t
i) + 2

∑
i odd∈{3,··· ,n−2} F (ht, ϵ,x

t
i) + F (ht, ϵ,x

t
n)
)
]2,

lossi−1 = (lossi−1
top + lossi−1

eq + lossi−1
right + lossi−1

left + lossi−1
bottom + lossi−1

con )/6,

λi
1 = lossi−1

top / lossi−1, λi
2 = lossi−1

eq / lossi−1, λi
3 = lossi−1

right/ lossi−1,

λi
4 = lossi−1

left/ lossi−1, λi
5 = lossi−1

bottom/ lossi−1, λi
6 = lossi−1

con/ lossi−1

(3.5)

For a given set of randomly chosen top boundary dataset in ht: h
(1)
t , · · · ,h(m)

t , and the aspect
ratio ϵ(l), l = 1, · · · , L, we define the total loss function as follows

L(θ) =
1

m

L∑
l=1

m∑
i=1

L(θ,h
(i)
t , ϵ(l)). (3.6)

We remark that the numbers of randomly selected interior and boundary points at each given ht

and ϵ(l) are not the same so that L(θ,h
(i)
t , ϵ(l)) can have different number of terms in the square

sums. Note that the choices of activation functions are important to the performance of machine
learning model. In this model, we use tanh as the activation function. If one uses DeepONet to
solve non-linear equations, it’s better off to use smooth activation functions. Our experience with
ReLU for this problem is not as good as the one using the tanh function as the activation function.

3.2 Spectral representation of the boundary

Alternatively, we represent the continuous top boundary ϕ(x) using a truncated Sine Fourier
series together with a linear interpolation function as follows [16]:

ϕ(x) = ϕ(0) +
ϕ(L)− ϕ(0)

L
x+

m∑
j=1

bj sin
jπ

L
x, (3.7)
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where m is the number of modes in the spectral expansion and bj is the jth Sine Fourier coefficient
given by

bj =
2

L

∫ L

0
[ϕ(x)− ϕ(0)− ϕ(L)− ϕ(0)

L
x] sin(

jπ

L
x)dx. (3.8)

We then construct a mapping from the top boundary given by (3.7) to the solution in the Toth
basin. We represent the top boundary using m + 2 discrete values ht = (ϕ(0), ϕ(L), b1, · · · , bm) ∈
Rm+2, consisting of the Sine Fourier coefficients and the two end point values. Given the boundary
condition at the top boundary ϕ(x), we want to learn a mapping from ht to the solution of the
steady state governing equation in Ω.

We denote the solution of the boundary value problem in the interior of Ω by a DeepONet
G(ht,x) as follows:

G(ht, ϵ,x) =

p∑
k=1

q∑
i=1

cki σ(

m+2∑
j=1

ξkijht,j + ξki0ϵ+ θki )σ(Wk · x+ ζk) + b0, (3.9)

where cki , ξ
k
ij ,Wk are weights and θki , ζk, b0 are biases.We randomly sample nl, nr, nb points from

the left, right and bottom boundary respectively, ni points in the interior of Ω. We divide [0, 1]
uniformly into n − 1 intervals, separated by xi = (i − 1)∆x,∆x = 1

n−1 , i = 1, · · · , n. We use the
DeepOnet to learn the mapping from ht to solution h(x, t) in Ω. The cost function in the model
for each given top boundary, the randomly chosen points along the boundary and in the interior,
{xi

j , i = l, r, b,xj}, a well-defined uniformed division of [0, 1], {xj , j = 1, · · · , nt}, that defines the
top boundary points xt

j = (xj , ϕ(xj)), and aspect ratio ϵ is then defined by

L(θ,ht, ϵ) =
1
ni

∑ni
j=1(∇ ·K · ∇G(ht, ϵ,xj))

2 + 1
nt

∑nt
j=1[ϕ(x

t
j)−G(ht, ϵ,x

t
j)]

2

+ 1
nl

∑nl
i=1(Gx(ht, ϵ,x

l
i))

2 + 1
nr

∑nr
i=1(Gx(ht, ϵ,x

r
i ))

2 + 1
nb

∑nb
i=1(Gy(ht, ϵ,x

b
i))

2

+[∆x
3

(
F (x1, ϵ) + 4

∑
i even∈{2,··· ,n−1} F (xt

i, ϵ) + 2
∑

i odd∈{3,··· ,n−2} F (xt
i, ϵ) + F (xt

n, ϵ)
)
]2,

(3.10)

where xj are the interior points and xk
j , k = t, l, r, b are boundary points at the top, left, right,

and bottom boundary, respectively. In the practical implementation, we once again re-balance the
“local loss” as alluded to earlier.

For the bounded Toth basin, we can rescale or transform the bounded, arbitrary physical domain
into a rectangular domain and then solve the equation in the rectangular domain. We call this the
domain mapping approach.

3.3 Domain mapping

We present an alternative approach to establish the mapping from the top boundary to the
solution in the Toth basin using a nonlinear domain mapping. We assume the top boundary is
given by y = ϕ(x) > 0 for x ∈ [0, L]. We introduce a change of variable from (x, y) to (x, z) as
follows

x = x, z =
y

ϕ(x)
, y ∈ [0, ϕ(x)]. (3.11)
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The gradient operator in 2D in the new coordinate is given by

∇∗ = (
∂

∂x
,
∂

∂z
) = (

∂

∂x
+

y

ϕ
ϕx

∂

∂y
, ϕ

∂

∂y
). (3.12)

Or equivalently,

∇ = ( ∂
∂x ,

∂
∂y ) = ( ∂

∂x − y
ϕ2ϕx

∂
∂z ,

1
ϕ

∂
∂z )

=

 1 − y
ϕ2ϕx

0 1
ϕ(x)

 · ∇∗.
(3.13)

We denote

D =

 1 − y
ϕ2ϕx

0 1
ϕ(x)

 =

 1 − z
ϕϕx

0 1
ϕ(x)

 . (3.14)

The Laplace equation is rewritten into

(D · ∇∗) ·K · (D · ∇∗)h = 0. (3.15)

The boundary conditions of h is given by

n ·K · ∇h|Γl,r,b
= n ·K · (D · ∇∗)h|Γl,r,b

= 0,

h(x, 1)Γtop = ϕ(x) (Dirichlet), n ·K · (D · ∇∗)h|Γtop = −γ(h− ϕ) (Robin), x ∈ [0, 1].
(3.16)

In this study, we limit ourselves to

K = Diag(K11,K22). (3.17)

Then,

n ·K · (D · ∇∗)h|Γl,r
= K11

∂h
∂x |Γl,r

= 0,

n ·K · (D · ∇∗)h|Γb
= K22

ϕ
∂h
∂z |Γb

= 0.
(3.18)

These imply

∂h

∂x
|Γl,r

= 0,
∂h

∂z
|Γb

= 0, (3.19)

where the bottom boundary is assumed flat.
The steady state governing equation without a source is given by

(D · ∇∗) ·K · (D · ∇∗)h

= K11[
∂2h
∂x2 − ∂

∂x(
zϕx

ϕ
∂h
∂z )−

zϕx

ϕ
∂2h
∂x∂z + zϕx

ϕ
∂
∂z (

zϕx

ϕ
∂h
∂z )] +

K22
ϕ

∂
∂z (

1
ϕ
∂h
∂z ) = 0.

(3.20)
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The consistent condition becomes∫
z=1

[n(t) ·K · (D · ∇∗)h] dx =

∫
z=1

[K22
hz
ϕ

−K11ϕx(hx −
ϕx

ϕ
hz)]dx = 0, (3.21)

where n(t) = (−ϕx, 1). We then construct a mapping from the dimensionless (and also parame-
terized) equation to the solution in the Toth basin. We represent the top boundary using m + 2
discrete values ht = (ϕ(a), ϕ(b), b1, · · · , bm) from the truncated Sine Fourier series approximation.
Given the boundary condition at the top boundary z = 1, we want to learn a mapping from ht to
the solution of the steady state governing equation in Ω.

We denote the solution in the interior of Ω by the DeepONet G(ht,x) defined in (3.9). The
loss function for each given top boundary ht, the randomly chosen points along the boundary and
in the interior, {xi

j , i = l, r, b,xk}, and a well-defined uniform division of [0, 1], {xj , }, that defines
the top boundary points xt

j = (xj , 1), is then defined by

L(θ,ht, ϵ) =
1
ni

∑ni
j=1[(D · ∇∗) ·K · (D · ∇∗)G(ht, ϵ,x

t
j)]

2 + 1
nt

∑nt
j=1[ϕ(x

t
j)−G(ht, ϵ,x

t
j)]

2

+ 1
nl

∑nl
i=1[K11Gx(ht, ϵ,x

l
i)]

2 + 1
nr

∑nr
i=1[K11Gx(ht, ϵ,x

r
i )]

2 + 1
nb

∑nb
i=1[n ·K · (D · ∇∗)G(ht, ϵ,x

b
i)]

2

+[∆x
3 (F (ht, ϵ,x

t
1) + 4

∑
i even∈{2,··· ,nt−1} F (ht, ϵ,x

t
i) + 2

∑
i odd∈{3,··· ,nt−2} F (ht, ϵ,x

t
i) + F (ht, ϵ,xnt))]

2,

(3.22)

where xj are the interior points and xk
j , k = t, l, r, b are boundary points at the top, left, right, and

bottom boundary, respectively,

F (x, ϵ) = K22
Gz

ϕ
−K11ϕx(Gx −

ϕx

ϕ
Gz). (3.23)

In the practical implementation, we adopt a modified loss function, in which we add a weight
to each term in the loss. The modified loss function is given by

L(θ,ht, ϵ) =
λ1
nt

∑nt
j=1[ϕ(x

t
j)−G(ht, ϵ,x

t
j)]

2 + λ2
ni

∑ni
j=1[(D · ∇∗) ·K · (D · ∇∗)G(ht, ϵ,xj)]

2

+λ3
nl

∑nl
i=1[Gx(ht, ϵ,x

l
i)]

2 + λ4
nr

∑nr
i=1[Gx(ht, ϵ,x

r
i )]

2 + λ5
nb

∑nb
i=1[10× n ·K · (D · ∇∗)G(ht, ϵ,x

b
i)]

2

+λ6[
∆x
3 (F (xt

1, ϵ) + 4
∑

i even∈{2,··· ,nt−1} F (xt
i, ϵ) + 2

∑
i odd∈{3,··· ,nt−2} F (xt

i, ϵ) + F (xnt , ϵ))]
2,

(3.24)
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where the weights are re-balanced as follows in each iteration

losstop =
1
nt

∑nt
i=1(ϕ(x

t
i)−G(ht,x

t
i))

2, losseq =
1
ni

∑ni
j=1((D · ∇∗) ·K · (D · ∇∗)G(ht,xj))

2,

lossleft =
1
nl

∑nl
i=1(Gx(ht,x

l
i))

2, lossright =
1
nr

∑nr
i=1(Gx(ht,x

r
i ))

2,

lossbottom = 1
nb

∑nb
i=1(

K22
ϕ Gz(ht,x

b
i))

2,

losscon = [∆x
3 (F (xt

1) + 4
∑

i even∈{2,··· ,nt−1} F (xt
i) + 2

∑
i odd∈{3,··· ,nt−2} F (xt

i) + F (xnt))]
2

lossi−1 = (lossi−1
top + lossi−1

eq + lossi−1
right + lossi−1

left + lossi−1
bottom + lossi−1

con )/6,

λi
1 = lossi−1

top / lossi−1, λi
2 = lossi−1

eq / lossi−1, λi
3 = lossi−1

right/ lossi−1,

λi
4 = lossi−1

left/ lossi−1, λi
5 = lossi−1

bottom/ lossi−1, λi
6 = lossi−1

con/ lossi−1.

(3.25)

The total loss is defined in (3.6) for a given set of top boundaries. In the rescaled domain, the
variable coefficient Poisson equation is solved in a rectangular domain.

3.4 Arbitrary bottom boundary

When the bottom boundary is varying in space as well, we denote it as ϕ2(x). We rescale the
physical domain in the y direction as follows

z =
y − ϕ2(x)

ϕ(x)− ϕ2(x)
, y ∈ [ϕ2(x), ϕ(x)]. (3.26)

This mapping transforms the Toth basin into a rectangular domain in a new coordinate. The
gradient operator is transformed as follows

∇ = (
∂

∂x
− (

z

ϕ− ϕ2
(ϕ− ϕ2)x +

ϕ2,x

ϕ− ϕ2
)
∂

∂z
,

1

ϕ− ϕ2

∂

∂z
) = D · ∇∗, (3.27)

where

D =

 1 −( z
ϕ−ϕ2

(ϕ− ϕ2)x +
ϕ2,x

ϕ−ϕ2
)

0 1
ϕ−ϕ2

 . (3.28)

The Laplace equation is rewritten into a variable coefficient one as follows

(D · ∇∗) ·K · (D · ∇∗)h = 0, (3.29)

where

(D · ∇∗) ·K · (D · ∇∗)h = K11[
∂2

∂x2 − ∂
∂x((

z
ϕ−ϕ2

(ϕ− ϕ2)x +
ϕ2,x

ϕ−ϕ2
) ∂
∂z )− ( z

ϕ−ϕ2
(ϕ− ϕ2)x

+
ϕ2,x

ϕ−ϕ2
) ∂2

∂z∂x + ( z
ϕ−ϕ2

(ϕ− ϕ2)x +
ϕ2,x

ϕ−ϕ2
) ∂
∂z ((

z
ϕ−ϕ2

(ϕ− ϕ2)x +
ϕ2,x

ϕ−ϕ2
) ∂
∂z )] +K22

1
(ϕ−ϕ2)2

∂2

∂z2
= 0.

(3.30)
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The boundary conditions of h are given by

n ·K · ∇h|Γl,r,b
= n ·K · (D · ∇∗)h|Γl,r,b

= 0,

h(x, 1)Γtop = ϕ(x) (Dirichlet), n ·K · (D · ∇∗)h|Γtop = −γ(h− ϕ) (Robin), x ∈ [0, 1],
(3.31)

where n = (±1, 0) are the unit external normal of the lateral surfaces, n = 1√
1+ϕ2

2,x

(−ϕ2,x, 1) is the

external unit normal of the bottom surface. Namely,

∂h

∂x
|left,right = 0, n ·K · (D · ∇∗)h|bottom = 0. (3.32)

The consistent condition for the boundary conditions is∫
z=1

n(t) ·K · (D · ∇∗)hdx =

∫
z=1

[
K22

ϕ− ϕ2
hz −K11ϕx(hx −

ϕx

ϕ− ϕ2
hz)]dx = 0. (3.33)

We define

F (x, ϵ) = [
K22

ϕ− ϕ2
hz −K11ϕx(hx −

ϕx

ϕ− ϕ2
hz)]. (3.34)

Analogous to the treatment of the top boundary, we expand ϕ2 in its truncated Fourier Sine series

ϕ2 = ϕ2(a) +
ϕ2(b)− ϕ2(a)

L
(x− a) +

m∑
i=1

ci sin(iπ
x

L
). (3.35)

We denote

ht = (ϕ(a), ϕ(b), b1, · · · , bn, ϕ2(a), ϕ2(b), c1, · · · , cm). (3.36)

The DeepOnet is defined by the following:

G(ht, ϵ,x) =

p∑
k=1

q∑
i=1

cki σ(
n+m+4∑
j=1

ξkijht,j + ξk10ϵ+ θki )σ(Wk · x+ ζk) + b0. (3.37)

The loss function is given by

L(θ,ht, ϵ) =
1
ni

∑ni
j=1[(D · ∇∗) ·K · (D · ∇∗)G(ht, ϵ,x

t
j)]

2 + 1
nt

∑nt
j=1[ϕ(x

t
j)−G(ht, ϵ,x

t
j)]

2

+ 1
nl

∑nl
i=1[Gx(ht, ϵ,x

l
i)]

2 + 1
nr

∑nr
i=1[Gx(ht, ϵ,x

r
i )]

2 + 1
nb

∑nb
i=1[

1
ϕGz(ht, ϵ,x

b
i)]

2

+[∆x
3 (F (xt

1, ϵ) + 4
∑

i even∈{2,··· ,nt−1} F (xt
i, ϵ) + 2

∑
i odd∈{3,··· ,nt−2} F (xt

i, ϵ) + F (xnt , ϵ))]
2.

(3.38)

where xj are the interior points and xk
j are boundary points at the top, left, right, and bottom

boundary, respectively. The total loss is given by (3.6) when a set of top and bottom boundaries
are given. In practice, the modified loss function is used analogous to what we alluded to earlier.
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4 Results and discussion

We present the numerical results in two scenarios. In the first scenario, we learn the mapping
from an arbitrary surface topography to the solution in the basin while the bottom boundary is
flat. In the second, we allow the bottom boundary to be an arbitrary shape as well. We have
implemented all the methods using Pytorch. For simplicity, we present the results obtained using
the spectral representation and the domain mapping method only in the following. We remark that
the different surface representations produce the same results.

4.1 Results with an arbitrary top boundary

We first present the results obtained using the spectral representation method.

4.1.1 Sampling of the top boundary representation

The top boundary is given by (3.7) with coefficients or parameters ht. The sampling of the
coefficients in the approximate function is carried out as follows

� We sample ϕ(a) uniformly from [0.7, 0.8] and ϕ(b) uniformly from [ϕ(a) − 0.2, ϕ(a) + 0.2] to
ensure that fluctuations of the boundary function are reasonable geographically.

� For h0(x) =
∑8

j=1 bj sin(jπx), we sample b1, · · · b8 uniformly from [−1, 1], respectively.

� We calculate hmax = maxx∈[0,1] ϕ(x), hmin = minx∈[0,1] ϕ(x), and hd = hmax − hmin. We
sample λ ∈ [0, 0.2] and then update coefficients bj := λbj/hd, j = 1, · · · , 8.

� Then, the top boundary surface is well-represented by vector ht = (ϕ(a), ϕ(b), b1, · · · , b8).

This sampling method makes sure the top boundary fluctuates in 0.5 < ϕ(x) ≤ 1. The larger
fluctuation can be done, but it may not be necessary for the realistic geography.

4.1.2 The dataset

The Loss function is defined by summing up all the squared residues of the equation and the
boundary conditions as well as a consistent condition that depends on ht. We denote the input to
the neural network in the loss function as follows:

z = (ht,x), (4.1)

where x is a long vector containing randomly chosen points from the boundaries and the interior of
the basin underneath the top boundary represented by ht which are chosen after the top boundary
is specified. We sample I number of representing vectors of top boundaries in hi

t, i = 1, · · · , I.
For each 1 ≤ i ≤ I, we have well-defined top boundary y = ϕi(x). For the ith top boundary, we

randomly choose Li data points xl,i
j , j = 1, · · · , Li on the left boundary, Ri points x

r,i
j , j = 1, · · · , Ri

on the right boundary, Bi points xb,i
j , j = 1, · · · , Bi on the bottom, and Ji points in the interior

xi
j ∈ [0, 1]× [0, ϕ(x)], j = 1, · · · , Ji, M uniform points xj , j = 1, · · · ,M in [0, 1].
We divide the dataset into the training and test sets by randomly dividing {1, · · · , I} into two

subsets Itrain and Itest. We generate 140 top boundary topographies using the spectral represen-
tation. For 100 boundary topographies, we sample 14000 points randomly, 10000 interior points
and 4000 boundary points. For the rest 40 boundary topographies, we put them in the test set.
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Finally, we choose M = 101 points uniformly in [0, 1] to calculate the consistent condition in the
loss function.

In the DeepONet, the width of branch and trunk net is 200, the depth of the branch net is 4, and
the depth of the trunk net is 3. We use the Adam algorithm for the first 1000 epoch optimization
step with learning rate 10−4 and weight decay 10−7. For the remaining epoch, we use the LBFGS
algorithm with learning rate 0.1. For the parameters in the model, we use characteristic length
scales Ly=1000 m and Lx=10000 m, which lead to k11=0.01 and k22=1. All model parameters are
summarized in Table 4.1.

Table 4.1: Model Parameters

Parameter Values

Width of trunk net 200

Width of branch net 4

Weight decay 10−7

Learning rate for the first 1000 epoch 10−4

Learning rate for the remaining epoch 0.1

Lx 1000 m

Ly 10000 m

k11 0.01

k22 1
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4.1.3 Results obtained using the spectral representation

After learning the mapping consisting of the DeepOnet, we present several representative results
obtained using the DeepONet to show the steady state solution in the Toth basin. Figure 4.1 depicts
the flow field in a Toth basin with sloped top surface topographies of slight variations. There are two
factors that impact the flow patterns in the Toth basin: one is the average slope and the other is the
local variation of the surface. A larger average slope tends to promote long distance transport of the
flow at the bottom of the basin in addition to the compartmentalized or localized circulatory flow
patterns near the top surface. When local variations in the top surface are larger, the long distance
transport near the bottom tends to be blocked by localized circulations penetrated downward from
the top. Figure 4.1 shows a typical steady state flow pattern due to the surface topography with
a fixed average slope and varying local surface variations in space. The two features identified are
shown clearly.
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(a) ht = (0.75, 0.95, 0, 0, 0, 0, 0, 0, 0, 0.015).

(b) ht = (0.75, 0.95, 0, 0, 0, 0, 0, 0, 0, 0.03).

(c) ht = (0.75, 0.95, 0, 0, 0, 0, 0, 0, 0, 0.045).

Figure 4.1: The steady state flow patterns in streamlines in the Toth basin with a sloped and
varying spatial variations at the top boundary represented by a spectral representation. (a). The
slow varying surface topography promotes long distance transport at the bottom of the basin due to
the slope. (b). The number of compartmentalized circulations increases when the localized spatial
variation in the top is enhanced. But there are still some cross-compartment flows, traveling across
two compartments. (c). When spatial variations in space are enhanced further at the top surface,
flows are all blocked to compartmentalized circulations so that the long distance transport is halted.

In agreement with Toth’s results [2], our solutions also show that the smaller average slope in
the topography and small fluctuation in spatial variations apparently promotes compartmentalized
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circulations. Figure 4.2 shows two cases of the flow field with smaller average slopes of the top
surface. A top surface with an average zero slope but some spatial variation creates several fully
compartmentalized flow patterns correlated with the wave form of the top boundary.

(a) ht = (0.75, 0.85, 0, 0, 0, 0, 0, 0, 0, 0.015).

(b) ht = (0.75, 0.75, 0, 0, 0, 0, 0, 0, 0, 0.015).

Figure 4.2: Steady state flows with top surface of smaller slopes. Smaller slopes in the surface
topography with small surface fluctuations lead to compartmentalized circulations. A top boundary
with a zero average slope separates all flows into compartmentalized circulations of nearly equal
width.
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(a)

(b)

Figure 4.3: (a). The curvature is smaller on the left than that on the right. Parameter values are
ht = [0.75, 0.95, 3.619 × 10−3,−1.561 × 10−16,−4.418 × 10−3, 4.224 × 10−16, 5.858 × 10−3, 1.472 ×
10−16,−1.526 × 10−2, 2.25 × 10−2]. (b). The curvature enahnces on the left in this plot. Param-
eter values are ht = [0.5, 0.7,−1.276 × 10−6, 2.679 × 10−6,−4.382 × 10−6, 6.69 × 10−6,−1.028 ×
10−5, 1.717× 10−5,−3.732× 10−5, 0.025].

We observe that local curvatures in the top surface affect flow patterns in the Toth basin. The
larger local curvature tends to create more localized flow patterns while the smaller one promotes
more global flow transport patterns in the bottom of the basin. Figure 4.3 depicts a case where
the magnitude of the curvature at the left is smaller than that on the right of the basin. As the
result, the flow patten is more localized on the right than on the left of the basin. We note that
it is the overall slope of the surface topography that dominates the overall flow pattern, while the
local curvature limits the flow pattern to be more localized. There apparently exists a competition
between the local curvature effect and the overall slope of the top boundary. The flow pattern
in the classical Toth water table resembles the flat topographical surface shown in Figure 4.3-b
since it was an asymptotic study over a near flat top boundary. This study indeed extends the
asymptotic analyses in [2] to the truly nonlinear topography of potentially large spatial variations.
With the boundary-to-solution mapping given by the DeepONet, we can literally calculate any
solution pattern so long as we know the top surface topography.
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4.1.4 Results obtained by the domain mapping method

Here we report the results obtained using the domain mapping method on the same two top
boundaries. The results are the same as expected. Figure 4.4 shows two calculated flow fields using
the DeepOnet obtained from the domain mapping method.

(a) ht = (0.75, 0.95, 0, 0, 0, 0, 0, 0, 0, 0.015).

(b) ht = (0.75, 0.75, 0, 0, 0, 0, 0, 0, 0, 0.015).

Figure 4.4: Steady state solutions obtained using the domain mapping method. (a). This is
identical to the one with the same parameters in Figure 4.1-a. (b). This is identical to the one
with the same parameters in Figure 4.2-b. Thus, the two methods produce the same results.

4.2 Results with arbitrary top and bottom boundaries

In this paper, we also use the domain mapping method to study the case where the bottom
boundary is of an arbitrary shape. The bottom boundary is sampled the same as the top boundary,
except that some coefficients/parameters are different. Specifically, ϕ2(a) is sampled uniformly from
[0.14, 0.24], ϕ2(b) uniformly from [ϕ(a)−0.14, ϕ(a)+0.14], λ ∈ [0, 0.1]. Compared to the case where
the bottom boundary is flat, we are interested in two issues here: 1. how does the depth between the
top and the bottom boundaries affects the flow pattern in the basin? 2. how does the morphology
of the bottom boundary affect the flow field in the basin in addition to that of the top boundary?

When the bottom is flat, a decrease in the depth of the basin does not seem to impact much to
the overall flow pattern except that the localized/compartmentalized circulation is enhanced at the
top and the depth of the circulation region becomes larger as shown in Figure 4.5. When the flat
bottom boundary is inclined in the same direction as the top boundary does, the local circulatory
flow seems to increase near the top boundary as shown in Figure 4.5. When the bottom is inclined
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opposite to that of the top boundary, the increased depth in the far right end alleviates the small
scale circulatory motion to a slightly long distance transport pattern across a scale much larger than
the previously confined circulatory region (see Figure 4.5). When the bottom boundary is wavy,
it does not seem to add any new features to the already known flow patterns alluded to earlier.
Figure 4.7 depicts two cases where the bottom boundaries are wavy with different amplitudes of
spatial variations.

(a) ht = (0.14, 0.14, 0, 0, 0, 0, 0, 0, 0, 0).

(b) ht = (0.24, 0.24, 0, 0, 0, 0, 0, 0, 0, 0).

Figure 4.5: The steady state solution in the Toth basin with given top and bottom boundaries
represented by spectral representations obtained using the domain mapping approach. (a). The
flow pattern is altered compared to Figure 4.1. With the bottom lifted so that the basin becomes
shallower, the flows are compressed. (b). With the bottom lifted further, the flows are compressed.
However, the flow pattern does not seem to differ from (a) qualitatively.
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(a) ht = (0.14, 0.28, 0, 0, 0, 0, 0, 0, 0, 0).

(b) ht = (0.24, 0.38, 0, 0, 0, 0, 0, 0, 0, 0).

(c) ht = (0.38, 0.24, 0, 0, 0, 0, 0, 0, 0, 0).

(d) ht = (0.28, 0.14, 0, 0, 0, 0, 0, 0, 0, 0).

Figure 4.6: The steady state solution in the Toth basin with a given top and bottom boundaries
represented by spectral representations obtained using the domain mapping approach. (a). The
flow has a tendency to flow to the left in long distance due to the increasing slope over there. (b).
The flow tends to travel long distance down the bottom boundary to the left analogous to (a).
There is no qualitative difference between (a) and (b) where the depth of the basin is different. (c).
Flows are more compartmentalized due to the shallow basin. (d). As the depth increases in the
basin, the longer range of transport is observed near the bottom.

23



(a) ht = (0.14, 0.28, 0, 0, 0, 0, 0, 0, 0, 0.015).

(b) ht = (0.24, 0.38, 0, 0, 0, 0, 0, 0, 0, 0.015).

(c) ht = (0.14, 0.28, 0, 0, 0, 0, 0, 0, 0, 0.03).

(d) ht = (0.24, 0.38, 0, 0, 0, 0, 0, 0, 0, 0.03).

Figure 4.7: The steady solution in the Toth basin with a wavy top and bottom boundaries rep-
resented by spectral representations obtained using the domain mapping approach. (a). The flow
has a tendency to flow to the trough of the bottom, when bottom boundary isn’t flat. (b). A slight
decrease in depth does not make much qualitative difference in the flow pattern. (c). The tendency
in (a) become more obvious due to the increase in the fluctuating amplitude in the bottom surface.
(d) The pattern is similar to that in (b).
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4.3 Robin boundary value problem

For the Robin boundary condition given in (2.14), we define the loss function as follows:

L(θ,ht, ϵ) =
1
ni

∑ni
j=1(∇ ·K · ∇G(ht, ϵ,xj))

2 + 1
nt

∑nt
j=1[−γ(ϕ(xt

j)−G(ht, ϵ,x
t
j))+

n ·K · ∇G(ht, ϵ,x
t
j)]

2 + 1
nl

∑nl
i=1(Gx(ht, ϵ,x

l
i))

2 + 1
nr

∑nr
i=1(Gx(ht, ϵ,x

r
i ))

2+

1
nb

∑nb
i=1(Gy(ht, ϵ,x

b
i))

2 + [∆x
3

(
F (x1, ϵ) + 4

∑
i even∈{2,··· ,n−1} F (xt

i, ϵ)+

2
∑

i odd∈{3,··· ,n−2} F (xt
i, ϵ) + F (xt

n, ϵ)
)
]2,

(4.2)

where xj are the interior points and xk
j are boundary points at the top, left, right, and bottom

boundary, respectively, n = 1√
1+ϕ2

x

(−ϕx, 1), and F (x, ϵ) = G(ht, ϵ,x)− ϕ(x).

The model parameters are the same as we used above. γ can be identified as the reciprocal
of the penetration length: the larger γ is, the smaller its impact to the flow in the bottom of the
basin. Hence, it is expected that the flow pattern should be similar to the case of the Dirichlet
boundary condition when γ is large. γ is treated as a hyperparameter, which we must set before
training to construct the loss function. It could be treated as an input variable for the DeepOnet
though. But, it would take much longer time to train the neural network which we decide not to
pursue in this study. For the Robin boundary condition, we are interested in what change it brings
to the steady state flow patterns in comparison to the previous case.

By examining the numerical results, we observe that when γ ≥ 10, the flow patterns in the three
cases with different slopes and spatial variations are pretty much independent of the increase in
values of γ. Namely, the patterns in Figure 4.8 (γ = 10) are nearly the same as those in Figure 4.9
when γ = 107. While γ becomes smaller however, the flow patterns change quite dramatically, the
number of localized flow patterns descreses and long distance transport becomes more prominent.
This is because the penetration length is reduced in this case so that the flow patterns near the
bottom are less affected by the top boundary condition. We expect that the solution is going to be
a constant as γ → ∞. The steady states we have calculated do support the trend.
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(a) ht = (0.75, 0.95, 0, 0, 0, 0, 0, 0, 0, 0.015).

(b) ht = (0.75, 0.85, 0, 0, 0, 0, 0, 0, 0, 0.015).

(c) ht = (0.75, 0.75, 0, 0, 0, 0, 0, 0, 0, 0.015).

Figure 4.8: Steady state solution patterns at three selected slopes of the top boundary with γ = 10.
(a). The top boundary of a higher slope produces long-distance transport near the impervious
bottom boundary. (b). Compartmentalization becomes more prominent as the slope reduces and
in the meantime the number of circulatory flow cell increases. (c) When the average slope of the top
surface is zero, the long distance transport completely ceases and compartmentalized flow patterns
dominates.
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(a) ht = (0.75, 0.95, 0, 0, 0, 0, 0, 0, 0, 0.015).

(b) ht = (0.75, 0.85, 0, 0, 0, 0, 0, 0, 0, 0.015).

(c) ht = (0.75, 0.75, 0, 0, 0, 0, 0, 0, 0, 0.015).

Figure 4.9: Steady state solution patterns at three selected slopes of the top boundary with γ = 107.
(a). The top boundary of a higher slope produces long-distance transport near the impervious
bottom boundary. (b). Compartmentalization becomes more prominent as the slope reduces and
in the meantime the number of circulatory flow cell increases. (c) When the average slope of the top
surface is zero, the long distance transport completely ceases and compartmentalized flow patterns
dominates. The results are similar to those in Figure 4.8.
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(a) ht = (0.75, 0.95, 0, 0, 0, 0, 0, 0, 0, 0.015).

(b) ht = (0.75, 0.85, 0, 0, 0, 0, 0, 0, 0, 0.015).

(c) ht = (0.75, 0.75, 0, 0, 0, 0, 0, 0, 0, 0.015).

Figure 4.10: Steady state solution patterns at three selected slopes of the top boundary with
γ = 0.2. (a). The top boundary of a higher slope produces long-distance transport near the
impervious bottom boundary. (b). Compartmentalization appears near the top locally. (c) When
the average slope of the top surface is zero, the long distance transport across the entire bottom
of the basin ceases. However, the compartmentalized flow cells are larger than in the case where
γ ≥ 10.

5 Conclusion

We have developed a novel approach to study the surface topography-steady state flow relation
in a Toth basin with arbitrary surface topographies by establishing a boundary to solution mapping
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employing the DeepOnet. Once the parameters in the governing transport equation are given, the
mapping can be used repeatedly to map out the underground steady state flow field for any given
surface topography and the underneath impervious boundary of arbitrary shapes. It provides
a novel means to study transport phenomena in complex geophysical systems. In particular, if
the geophysical parameters are approximately the same, it can be used to estimate ground water
transport patterns in a new Toth basin. Even when applied to other geographical locations where
the geophysical parameters change, new models can be machine-learned through transfer learning.
With additional computational efforts, the model parameters can also be treated as an input to
the DeepOnet so that the mapping can be established for a wider class of transport equations with
a range of parameter values. Therefore, the resulting DeepONet can be used as the well-trained
”knowledgeable” boundary-to-solution predictor. This perhaps can be viewed as a realization of
meta-learning in geophysical applications.
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