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Abstract

Several studies have focused on the importance of river bathymetry (channel geometry) in hydrodynamic routing along individual

reaches. However, its effect on other watershed processes such as infiltration and surface water (SW) – groundwater (GW)

interactions has not been explored across large river networks. Surface and subsurface processes are interdependent, therefore,

errors due to inaccurate representation of one watershed process can cascade across other hydraulic or hydrologic processes. This

study hypothesizes that accurate bathymetric representation is not only essential for simulating channel hydrodynamics but

also affects subsurface processes by impacting SW-GW interactions. Moreover, quantifying the effect of bathymetry on surface

and subsurface hydrological processes across a river network can facilitate an improved understanding of how bathymetric

characteristics affect these processes across large spatial domains. The study tests this hypothesis by developing physically-

based distributed models capable of bidirectional coupling (SW-GW) with four configurations with progressively reduced levels

of bathymetric representation. A comparison of hydrologic and hydrodynamic outputs shows that changes in channel geometry

across the four configurations has a considerable effect on infiltration, lateral seepage, and location of water table across the

entire river network. In addition, the results from this study provide insights into the level of bathymetric detail required

for accurately simulating flooding-related physical processes while also highlighting potential issues with ignoring bathymetry

across lower order streams such as spurious backwater flow, inaccurate water table elevations, and incorrect inundation extents.
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Abstract 18 

 Several studies have focused on the importance of river bathymetry (channel geometry) in 19 

hydrodynamic routing along individual reaches. However, its effect on other watershed processes 20 

such as infiltration and surface water (SW) – groundwater (GW) interactions has not been explored 21 

across large river networks. Surface and subsurface processes are interdependent, therefore, errors 22 

due to inaccurate representation of one watershed process can cascade across other hydraulic or 23 

hydrologic processes. This study hypothesizes that accurate bathymetric representation is not only 24 

essential for simulating channel hydrodynamics but also affects subsurface processes by impacting 25 

SW-GW interactions. Moreover, quantifying the effect of bathymetry on surface and subsurface 26 

hydrological processes across a river network can facilitate an improved understanding of how 27 

bathymetric characteristics affect these processes across large spatial domains. The study tests this 28 

hypothesis by developing physically-based distributed models capable of bidirectional coupling 29 

(SW-GW) with four configurations with progressively reduced levels of bathymetric 30 

representation. A comparison of hydrologic and hydrodynamic outputs shows that changes in 31 

channel geometry across the four configurations has a considerable effect on infiltration, lateral 32 

seepage, and location of water table across the entire river network. In addition, the results from 33 

this study provide insights into the level of bathymetric detail required for accurately simulating 34 

flooding-related physical processes while also highlighting potential issues with ignoring 35 

bathymetry across lower order streams such as spurious backwater flow, inaccurate water table 36 

elevations, and incorrect inundation extents.  37 
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1 Introduction 38 

River bathymetry is critical for simulating fluvial hydrodynamics accurately in flood 39 

inundation mapping. Several studies have investigated the impact of poor bathymetric 40 

representation on one- and two-dimensional flow models and concluded that river bathymetry 41 

affects hydraulic attributes significantly. Specifically, inaccurate estimation of channel storage 42 

capacity may lead to errors in predicting the depth and extent of inundation. Similarly, errors in 43 

estimating longitudinal slope affect the magnitude of streamflow and erroneous thalweg 44 

representation can contribute to poor estimation of shear and velocity (Cook and Merwade, 2009; 45 

Dey, 2016; Dey et al., 2019; Grimaldi et al., 2018; Saleh et al., 2012). However, these studies have 46 

only focused on the influence of river bathymetry on hydrodynamic simulations, usually along a 47 

single reach, and not the entire river network. The hydrodynamic models implemented by these 48 

studies ignore within reach hydrologic processes and route the flood wave along the river channel 49 

using known surface boundary conditions such as flow or stage hydrographs derived from gauges 50 

or estimated from loosely coupled hydrologic model. 51 

Fluvial systems involve a complex interplay between various hydrologic and hydraulic 52 

processes such as rainfall-generated surface runoff, infiltration and surface water – groundwater 53 

(SW-GW) interactions, in addition to hydrodynamic flow regimes along river channels.  54 

(Fleckenstein et al., 2010; Kollet and Maxwell, 2008; Saksena and Merwade, 2017a; Stewart et 55 

al., 1999). Several studies have shown that stream-aquifer interactions are sensitive to WSE 56 

fluctuations in the river (Flipo et al., 2014; Tran et al., 2020; Vergnes and Habets, 2018). The water 57 

table (GWT) at the floodplains is highly correlated with the WSE in the river (Claxton et al., 2003; 58 

Jung et al., 2004). Coupled with the fact that river geometry is one of the most important factors 59 

affecting WSE, errors in WSE estimation can propagate to these hydrologic processes. Therefore, 60 
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the inadequate topographic representation that results from excluding river bathymetry can 61 

influence how surface and subsurface processes interact with each other in a simulation model  62 

(Cardenas and Jiang, 2010; Wörman et al., 2006). The cascading effects of inaccurate bathymetric 63 

representation are obscured to some degree in loosely coupled hydrologic and hydrodynamic 64 

(H&H) models traditionally implemented in large-scale flood modeling applications because the 65 

upstream boundary conditions and lateral inflows for simulating river hydrodynamics are 66 

estimated separately using hydrologic models with simplistic surface routing (Baratelli et al., 2016; 67 

Follum et al., 2020; Rajib et al., 2020; Saleh et al., 2012; Vergnes and Habets, 2018). Loose 68 

coupling enables hydrologic fluxes such as discharge to move from land surface to river but 69 

ignores potential feedbacks such as backwater effects and hyporheic exchanges which might be 70 

exacerbated by the lack of river bathymetry, especially at large watershed scales (Brunner et al., 71 

2017; Käser et al., 2014; Mejia and Reed, 2011). 72 

There is an increasing interest in developing high-resolution flood models spanning 73 

regional or continental scales, owing to considerable advances in H&H model capabilities and data 74 

acquisition techniques (Altenau et al., 2017; Grimaldi et al., 2019; Käser et al., 2014; Saksena et 75 

al., 2019; Tijerina et al., 2021). However, river bathymetry information, which is essential for 76 

accurate flood modeling, is not available for river networks across large spatial domains. Field 77 

surveys for acquiring bathymetry are impractical for river networks spanning hundreds of 78 

kilometers, while remote sensing techniques such as bathymetric Lidar and photogrammetry are 79 

limited to shallow and clear river reaches only (Feurer et al., 2008; Gao, 2009; Legleiter et al., 80 

2015; Pan et al., 2015). A useful alternative for large-scale river bathymetry estimation is the 81 

application of conceptual models that can estimate bathymetry based on easily accessible data 82 

using functional surfaces. Several studies have implemented different bathymetric shapes ranging 83 
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from simplistic symmetric shapes such as rectangles, triangles and parabolas (Czuba et al., 2019; 84 

Grimaldi et al., 2018; Trigg et al., 2009)   to more complex functional surfaces based on hydraulic 85 

and geomorphologic concepts (e.g., Bhuyian et al., 2015; Brown et al., 2014; Merwade, 2004; 86 

Price, 2009). These conceptual models try to estimate shapes that reflect certain bathymetric 87 

characteristics of the actual riverbed (such as longitudinal slope, thalweg elevation) while ignoring 88 

other bathymetric characteristics as is the case for channel side-slope (bank slope) when 89 

rectangular channels are implemented. The underlying assumption for implementing these 90 

conceptual bathymetric models as an alternative to detailed bathymetric surveys in H&H models 91 

is that they contain just enough bathymetric detail to produce acceptable H&H simulations. Such 92 

an assumption requires a comprehensive understanding of the effect of bathymetric representation 93 

on flooding related physical processes to ensure that essential bathymetric characteristics are 94 

accurately incorporated. 95 

Several studies have analyzed the effect of bathymetry on channel hydrodynamics (Dey et 96 

al., 2019; Grimaldi et al., 2018; Saleh et al., 2012; Trigg et al., 2009), but they have ignored the 97 

effect of bathymetry on subsurface hydrological processes, especially for tightly coupled H&H 98 

models spanning large spatial domains. Prior works exploring the impact of river bathymetry on 99 

surface-subsurface interactions have been conducted on relatively small spatial scales such as 100 

across a meander or along a single reach. For example, Chow et al. (2018) used field measurements 101 

to show that appropriate representation of asymmetry in channel geometry is critical for accurate 102 

estimation of hyporheic exchanges at a river meander. Doble et al., (2012) demonstrated that the 103 

surface-subsurface interactions in the vicinity of the river are affected by the side-slope of river 104 

channels (riverbank slope) for a field-scale study. Similarly, Mejia and Reed (2011) demonstrated 105 

the importance of bathymetry in single reaches by implementing a loosely coupled hydrologic and 106 
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hydraulic modeling framework. These studies have shown that river bathymetry impacts the 107 

surface-subsurface hydrodynamics at the reach scale. Hydrologic and hydrodynamic processes 108 

aggregate and interact differently as we move from single reach to large river networks spanning 109 

an entire watershed (Saksena et al., 2021). Therefore, there is a need to evaluate the influence of 110 

river bathymetry on hydrologic processes across large river networks. Addressing this need is 111 

critical for enabling effective and parsimonious incorporation of river bathymetry in regional or 112 

continental scale models for flood simulations. 113 

Considering the above discussion, the overarching aim of this study is to provide a 114 

comprehensive understanding of the impact of river bathymetry on flooding-related surface and 115 

subsurface processes at a river network scale. Prior studies investigating this topic have either 116 

focused on river bathymetry’s effect on channel routing only, thereby ignoring the interdependence 117 

between surface and subsurface processes including SW-GW interactions or explored its effect on 118 

within reach subsurface hydrological processes at small spatial scales (reach scale or smaller). This 119 

study overcomes the limitations of prior studies by creating large-scale physically-based 120 

distributed models to demonstrate that the effect of river bathymetry on not just fluvial channel 121 

routing, but also SW – GW interactions and infiltration. Past studies have shown how the lack or 122 

inclusion of river bathymetry impacts the flood inundation estimation, but this study aims to shed 123 

light on its effect on the physical process affecting flood simulation across a river network thereby 124 

facilitating efficient bathymetry incorporation for accurately simulating large-scale flooding-125 

related surface and subsurface processes in data-sparse regions. Specifically, the objectives of this 126 

study are to: (i) quantify the effect of river bathymetry incorporation on surface and subsurface 127 

physical processes, including their interactions, across large river networks; and (ii) identify 128 

specific bathymetric characteristics, such as channel conveyance, channel asymmetry and channel 129 
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thalweg, that control surface and subsurface physical processes in floodplains. These objectives 130 

are accomplished by simulating the hydrology and hydrodynamics of two watersheds and 131 

analyzing the fluxes for four different levels of bathymetric details across the river network. 132 

2 Study Area and Data 133 

 The objectives presented in Introduction can be accomplished by using watersheds that are 134 

expected to produce significantly different SW-GW interactions. Accordingly, we selected two 135 

study areas in Indiana, presented in Figure 1(a) and Table 1, with distinct geomorphic, soil and 136 

land use characteristics, but similar climatological and geologic characteristics. The first study area 137 

is a portion of the Upper Wabash River Basin (referred to as the UWR) with an area of 1,757 km2. 138 

This study area contains the Wabash River, extending from the city of Logansport to Lafayette, 139 

and three major tributaries: Tippecanoe River, Wildcat Creek, and Deer Creek. These four streams 140 

vary in length, average width, and depth (Table 1). Additionally, Tippecanoe River and Wildcat 141 

Creek are highly sinuous compared to Wabash River and Deer Creek. This region has experienced 142 

several extreme events in 2005, 2008, 2013 and 2018, causing widespread flooding. The geology 143 

of the region consists of glacial till deposits, fertile soils, and shallow aquifers, with a deep 144 

confining layer of shale (Saksena and Merwade, 2017b). While there are some developed regions 145 

around Lafayette and Logansport, the area is primarily agricultural with high percentage of forest 146 

and agricultural land use in the floodplains as presented in Table 1.  147 

The second study area, with an area of 370 km2, is a part of the White River Basin (referred 148 

to as WHR), encompassing the City of Indianapolis and contains three major tributaries: Fall 149 

Creek, Williams Creek, and Crooked Creek. The streams in this area have smaller variability in 150 

geomorphologic characteristics (Table 1) compared to UWR. For example, the White River, 151 

Williams Creek and Crooked Creek all have similar sinuosities. Because this region is highly 152 
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urbanized, there are several drop structures, artificial lakes, and detention ponds in the floodplain 153 

of the White River. Additionally, the developed regions in the floodplain of White River are 154 

protected by levees.  155 

Topography, surface roughness (Manning’s n), and upstream boundary conditions are the 156 

primary inputs to hydrodynamic models, and so we obtained high-quality Lidar-based DEMs for 157 

both study areas from the Indiana Spatial Data Portal (ISDP). Additionally, bathymetric survey 158 

data are available for 26 cross-sections near the Tippecanoe-Wabash confluence (Figure 2). The 159 

DEM resolution for UWR and WHR is 9 m and 3 m, respectively. A relatively coarser DEM is 160 

used for UWR to address the computational constraints due to its size, which is approximately 5 161 

times larger compared to WHR. The analysis presented here primarily focuses on comparison of 162 

differences in hydrologic and hydrodynamic fluxes due to differences in bathymetric 163 

configurations in the same watershed. The DEM resolution used for creating different models 164 

belonging to a specific watershed remains unchanged to ensure consistency in comparing results 165 

from models with different bathymetric configurations. Additionally, the DEM resolutions for both 166 

watersheds are within the hyper-resolution range (< 10m) for flood models and are not expected 167 

to affect the results.  168 

  169 
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Table 1. Study area description 170 

Geomorphological Characteristics 

UWR 

Name 
Length  

(km) 

Average Width 

(m) 

Average Depth 

(m) 

Slope 

(× 10−3) 
Sinuosity 

Wabash River 83.01 136.0 1.74 0.3 1.22 

Tippecanoe River 30.76 84.2 1.52 0.5 1.93 

Wildcat Creek 8.59 54.6 0.70 0.7 2.06 

Deer Creek 8.03 34.6 0.76 1.2 1.28 

WHR 

Name 
Length  

(km) 

Average Width 

(m) 

Average Depth 

(m) 

Slope 

(× 10−3) 
Sinuosity 

White River 42.8 83.2 1.58 0.4 1.48 

Fall Creek 14.8 40.9 0.86 1.0 1.26 

Williams Creek 7.3 13.3 1.43 3.1 1.48 

Crooked Creek 2.5 15.6 1.45 2.3 1.49 

Landuse as per NLCD 2011 (%) 

Type 
UWR WHR  

Study Area Floodplain Study Area Floodplain  

Agricultural 77 50 3 4  

Forest 12 27 4 7  

Water 2 9 3 9  

Urban/Developed 10 14 89 81  

Soil Group as per NRCS gSSURGO (%) 

Soil Type UWR WHR  

A 13.8 0.1  

B 56.2 51.5  

C 29.8 48.3  

D 0.2 0.1  

 171 
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 172 
(a) 173 

 174 
(b) 175 

Figure 1. (a) Location map of the study areas and (b) field survey sites for GWT at UWR  176 

(WHR)

(UWR)
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The distributed hydrologic modeling approach used in this study requires data related to 177 

land use, streamflow, rainfall, soil properties and aquifer characteristics. The land use data are 178 

obtained from the National Land Cover Database (NLCD) from the Natural Resources 179 

Conservation Service (NRCS). The roughness values (Manning’s n) for the different land use 180 

classes in the study areas are obtained from Saksena and Merwade (2015). The upstream boundary 181 

condition for each stream is determined by incorporating streamflow hydrographs obtained from 182 

United States Geologic Survey (USGS) gages, which also provide river depth information at those 183 

locations. The rainfall data are obtained from the North American Land Data Assimilation System 184 

(NLDAS) at a 12-km grid resolution. The soil types are characterized using the Hydrologic Soil 185 

Group (HSG) classification provided in NRCS’s Gridded Soil Survey Geographic database 186 

(gSSURGO).  187 

The outlet of UWR (shown in Figure 1(a)) is located at the USGS gage 03335500 Wabash 188 

River at Lafayette, IN, and the outlet for the WHR is located at the USGS gage 03353000, White 189 

River at Indianapolis, IN. These outlet gages are used for validating the physically-based 190 

distributed models used in this study. Additionally, the GW component of the models is validated 191 

using within-reach observations of water table at specific locations. In WHR, there is a USGS 192 

gauge (USGS 394952086110901) which monitors GWT elevation near the White River (Figure 193 

1(a)). However, there is no such continuous GWT monitoring station in UWR. Therefore, site 194 

visits were organized for measuring water table depths at multiple locations in the Wabash River 195 

floodplain and near the Wabash River – Tippecanoe River confluence (Figure 1(b)). The water 196 

table was measured by using 2m deep piezometers in two different seasons: Winter 2018 (16th 197 

Dec 2018) across 8 locations (Points 1, 4, 5, 8 – 10, 13, and 14) and Summer 2019 (24th July 2019) 198 

across 9 locations (Points 2 – 4, 6 – 8 and 11 – 13).  199 
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 200 

Figure 2: Figure showing (a) the location of surveyed cross-sections in UWR, (b) close-up of the 201 
surveyed cross-sections, and (c) comparison of one of the surveyed cross-section and LiDAR 202 

DEM derived cross-section at that location 203 

 204 

3 Experimental Design 205 

A major constraint in quantifying the impact of river bathymetry impact on watershed 206 

processes is the absence of bathymetric data for river networks across large spatial domains. In 207 

this study, first a conceptual bathymetric model (described in Section 4) calibrated with surveyed 208 

bathymetric data is implemented to create a bathymetric representation comprising of asymmetric 209 

cross-sections with realistic side slopes (bank slopes).  This configuration, with the best 3D river 210 

network among all configurations, is designated as Control.  211 

Tippecanoe 

River

Wabash

River

(a)

(b)

(c)
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Next, two more bathymetric configurations are created by reducing the level of detail 212 

incorporated in the 3D river network. One configuration (M1) has a rectangular cross-section that 213 

preserves both the area (channel storage) and the depth (thalweg elevation) of cross-sections as 214 

compared to Control but ignores the side slope and the asymmetry in river cross-sections. It should 215 

be noted that information about channel conveyance capacity (bankfull area) is not readily 216 

available for river networks. However, some studies have developed alternative methods to 217 

estimate the channel conveyance capacity, including drainage area-based regionalization equations 218 

as well as the algorithms developed for the upcoming Surface Water and Ocean Topography 219 

(SWOT) mission(Rodríguez et al., 2020; Schaperow et al., 2019; Yoon et al., 2012). This 220 

configuration can provide insights into the suitability of such parsimonious methods for 221 

incorporating bathymetry as well as the role of channel asymmetry and side slope on subsurface 222 

hydrological processes in large-scale river networks.  223 

The next configuration (M2) also has a rectangular cross-section but only preserves the 224 

depth (thalweg elevation) of cross-sections but not the area (channel storage). This configuration 225 

has previously been deployed in studies where sufficient bathymetry data is not available from 226 

boat surveys that only capture the longitudinal channel profile (example: Czuba et al., (2019); 227 

Grimaldi et al., (2018)). Finally, the Lidar derived DEM without any bathymetry incorporation 228 

(M3) is also created. The inclusion of M3 can show what processes are significantly impacted (or 229 

not impacted) by the incorporation of river bathymetry and highlight a potential error source for 230 

H&H models in data sparse regions. This configuration is expected to perform poorly as compared 231 

to the other three configurations. This configuration is included for contextualizing the results of 232 

M1 and M2 with respect to “Control”.  233 
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These four configurations (Control, M1, M2 and M3) are simulated using a tightly coupled 234 

physically-based distributed model (described in Section 5) capable of capturing the complex 235 

interplay of various hydrologic and hydrodynamic processes that govern the movement of water 236 

in a watershed. The hydrologic and hydrodynamic outputs of M1, M2 and M3 are compared to 237 

those estimated by “Control” to provide insights into the role of bathymetric representation on 238 

surface and subsurface processes in the floodplains of a river network.    239 

 240 

4 Bathymetric Model Development 241 

Previous studies have implemented a wide range of functional surfaces as approximations 242 

for channel geometry ranging from standard geometrical shapes, such as parabola, rectangle or 243 

exponential curve (Czuba et al., 2019; Grimaldi et al., 2018; Trigg et al., 2009) to more intricate 244 

channel representations based on geomorphological concepts (e.g., Bhuyian et al., 2015; Brown et 245 

al., 2014; Merwade, 2004; Price, 2009). These conceptual models are designed for estimating 246 

bathymetry for a single reach only, which is usually the main stem of a river network. This study 247 

implements a network-scale river bathymetry generation called the System for Producing RIver 248 

Network Geometry (SPRING). Some features of this model have been adapted from Merwade 249 

(2004).  250 

SPRING first creates bathymetry for each individual reach (Step-1) following the 251 

procedure of Merwade (2004), and then these reach-scaled bathymetry datasets are joined by 252 

creating bathymetry at river confluences (Phase-2). The end result from SPRING is a 3D 253 

representation of the entire river network which can be burned into the DEM. The bathymetry 254 

generation process for each reach and confluence is briefly described below.  255 
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4.1 Bathymetry generation for individual reaches 256 

         To estimate the bathymetry of individual reaches, this study adapted the meandering 257 

thalweg based approach of the River Channel Morphology Model (RCMM: Merwade, 2004) 258 

because of its ability to account for channel anisotropy. The meandering of the thalweg is primarily 259 

caused by sediment deposition on the inner bank and erosion at the outer bank of a river bend. This 260 

process is conceptualized to create a set of equations (Equations 1-3) that can approximate a 261 

channel cross-section (Figure 3). The inputs, in this case, are channel centerline, banks, DEM, and 262 

depth of the river at multiple locations along the channel network. The methodology, adopted from 263 

Merwade (2004) and Dey et al., (2019),  is described briefly in Appendix A1.  264 

𝑡∗ = {
𝑎(𝑟∗)−𝑏 − 0.5, 𝑟∗ ≤ 2
0,                          𝑟∗ > 2

    (Equation 1) 265 

𝑧∗(𝑛∗) = {𝑓(𝑛∗|𝛼1, 𝛽1) + 𝑓(𝑛∗|𝛼2, 𝛽2)} × 𝑘  (Equation 2) 266 

𝑧(𝑛∗ × 𝑊) = 𝑧𝑏𝑎𝑛𝑘 − 𝑧∗(𝑛∗) × 𝑑𝑒𝑝𝑡ℎ   (Equation 3) 267 

where, 𝑟∗is the normalized radius of curvature of a river segment (𝑟∗ = 𝑟/𝑤), 𝑡∗ is the 268 

normalized thalweg location at a cross-section (𝑡∗ = 𝑡/𝑤), 𝑤 is the average width of the river 269 

segment, 𝑎 and 𝑏 are constants,  𝑧∗ is the normalized depth of the channel bed at a distance 𝑛∗ 270 

along the cross-section from the center of the channel, 𝑓(𝑛∗|𝛼1, 𝛽1) is the beta probability  271 

distribution function (pdf) with parameters 𝛼1and 𝛽1, 𝑓(𝑛∗|𝛼2, 𝛽2) is the beta pdf with parameters 272 

𝛼2 and 𝛽2 and 𝑘 is a scaling parameter. Using a linear combination of two beta pdfs enables 273 

SPRING to model asymmetric cross-section shapes by varying its parameters. The parameters of 274 

SPRING (𝑎, 𝑏, 𝛼1, 𝛼2, 𝛽1, 𝛽2) are calibrated using surveyed cross-sections using the Particle Swarm 275 

Optimization technique.  276 

 277 
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 278 

Figure 3. Workflow of SPRING to estimate bathymetry at individual reaches. (a) The input 279 
datasets; (b) estimating meandering thalweg from the radius of curvature of river centerline using 280 

Equation (1); (c) Estimating asymmetric cross-sections using Equations (2) and (3); and (d) 281 
creating a mesh to generate 3D representation of individual reaches. Note: Part of the figure is 282 

adapted from Dey, (2016). 283 

 284 

In the curvilinear axes adopted in this study, the lateral axis (running from left to right bank 285 

perpendicular to the centerline) is positive on the right side and negative on the left side when 286 

looking down the direction of flow of the river Merwade (2004). The center and radius of curvature 287 

(r) are determined by the three-point arc method. If the center of curvature lies to the left of the 288 

centerline, it means the river at the meander is turning to the left and the thalweg is located to the 289 

Linear combination

of 𝛽 functions

Linear combination

of 𝛽 functions

SPRING

Phase-1:
Individual 
Reaches

(a) (b)

(c)
(d)
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right side of the centerline (positive t*) and vice-versa. The elevation of the thalweg along the 290 

channel is estimated by linearly interpolating the thalweg elevation between “reference points” 291 

which are specified at locations where such information is available. Therefore, SPRING creates 292 

a piecewise linear thalweg profile with the reference points acting as points where the thalweg 293 

slope changes. Usually, reference points should be provided at the upstream and downstream ends 294 

of each reach, but SPRING can accommodate multiple references points along the same reach as 295 

well.  296 

4.2 Bathymetry generation at confluence 297 

       Once the bathymetry for individual reaches has been estimated, the next step is to connect 298 

these individual reaches by estimating the bathymetry at the river confluences. Figure 4 depicts 299 

the methodology for estimating the confluence boundary. First, SPRING locates the confluence as 300 

the point of intersection of three or more reach centerlines. It, then, categorizes the three centerlines 301 

as “downstream mainstem”, “upstream mainstem” and “tributary” channels (Figure 4(a)). This is 302 

decided based on the start and end point of the three centerlines and the drainage areas of each of 303 

the reaches draining into the confluence. The stream with the lowest drainage area is designated 304 

as a tributary. The reach downstream of the confluence is designated as the downstream mainstem. 305 

Next SPRING joins the banks of each stream to create the “confluence boundary” (Figure 4(b)). 306 

The region enclosed by the confluence boundary is used for estimating bathymetry at the 307 

confluence. 308 
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 309 

Figure 4. Figure showing the workflow for estimating channel geometry at confluences. (a) The 310 

input for Phase-2 (output of Phase-1); (b) estimating confluence boundary; (c) creating grid 311 

across confluence area; (d) interpolating geometry for Case-1 (Equation 4) for points on the other 312 
side of thalweg as the tributary; (e) interpolating geometry for Case-2 (Equation 4) for points on 313 

the same side of thalweg as the tributary, and (f) final output with hydraulically connected 314 
confluence geometry. 315 

 316 

         To estimate the bathymetry at the confluence, a variation of the inverse distance weighting 317 

(IDW) algorithm is used. SPRING creates a mesh of equidistant longitudinal lines running parallel 318 
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and transverse to the mainstem thalweg inside the confluence boundary (Figure 4(c)). For each 319 

point on the mesh, SPRING locates the closest point on each boundary cross-section. The 320 

elevations of these points on the boundary cross-sections are known from the reach bathymetry 321 

estimated in the first step (Section 3.1). The boundary cross-sections are expected to differ in 322 

geometry and maximum depth, due to the differences in drainage areas upstream and downstream 323 

of the confluence for the mainstem as well as variations in river characteristics between the 324 

tributary and the mainstem.  SPRING is designed to account for these variations in the geometry 325 

of boundary cross-sections while interpolating the bathymetry at confluences. 326 

If the mesh point is on the other side of the mainstem thalweg as compared to the tributary 327 

(Figure 4(d)), a two-point IDW is implemented between the upstream and downstream boundary 328 

cross-sections of the main stem (Case 1 in Equation 4). For mesh points lying on the same side of 329 

the mainstem thalweg as the tributary (Figure 4(e)), a three-point IDW is implemented to estimate 330 

the elevation of the mesh point as shown in Equation 4 (Case 2).  331 

𝑧 = {

𝑧1𝑑1
−1+𝑧2𝑑2

−1

𝑑1
−1+𝑑2

−1            , 𝐶𝑎𝑠𝑒 1

𝑧1𝑑1
−1+𝑧2𝑑2

−1+𝑧3𝑑3
−1

𝑑1
−1+𝑑2

−1+𝑑3
−1 , 𝐶𝑎𝑠𝑒 2

                                       (Equation 4) 332 

where z is the elevation of the current point in confluence mesh for which elevation is being 333 

estimated, z1, z2 and z3 are the elevations of the points closest to the current point on the cross-334 

sections upstream of confluence in the main river, downstream of the confluence in the main river 335 

and in the tributary just upstream of the confluence respectively, and d1, d2 and d3 are the distances 336 

of these three points from the current point. This process is repeated for all points in the confluence 337 

mesh to create a 3D representation of the confluence bathymetry. 338 

 The 3D mesh of the individual reaches and confluences together create a synthetic 339 

representation of bathymetry for the entire river network. The 3D mesh is converted to a DEM 340 
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using the Natural Neighbor interpolation technique. The final step involves burning this 3D mesh-341 

derived raster into the raw DEM (Lidar) to generate a DEM with improved bathymetric 342 

representation.  343 

5 Physically-based Distributed Model Description 344 

 In this study, physically-based Interconnected Channel and Pond Routing (ICPR) model 345 

(Saksena et al., 2020, 2019) that incorporates flood-related processes such as rainfall-runoff, 346 

infiltration, and SW-GW interactions in addition to surface routing is used (Figure 5). ICPR uses 347 

a flexible mesh structure to represent both the surface and the subsurface. The surface mesh 348 

comprises of 1D elements in the river channel and 2D elements elsewhere, and the subsurface is 349 

divided into three layers with each layer represented by a 2D mesh. The soil parameters governing 350 

the subsurface are tabulated in Table 2. At each timestep, the hydrology and hydraulics are 351 

simulated across each element of the surface mesh. Simultaneously, it computes the subsurface 352 

processes across the subsurface mesh and the interactions between the surface and subsurface 353 

meshes. Therefore, it can capture the interplay among surface hydrology, river hydrodynamics and 354 

subsurface processes, making it ideal for this study. For more information on ICPR and its 355 

implementation, please refer to the Appendix A-2 or the “C3” configuration in Saksena et al., 356 

(2019) or Saksena et al., (2020). 357 

 358 
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 359 

Figure 5. Conceptual illustration of physically based distributed modeling in ICPR (adapted 360 

from Saksena et al., (2019)) 361 

Table 2: Table of initial soil parameters in ICPR (adapted from Saksena et al., (2019)). Kv is 362 

vertical hydraulic conductivity, MC is the moisture content (fraction), PSI is the pore size index 363 

(dimensionless), and Ψ is the soil matric potential.  364 

Vadose 

Zone 

Soil 

Type 

Kv 

(mm/hr) 

Saturated 

MC 

Residual 

MC 

Initial 

MC 

Field Capacity 

MC 

Wilting 

Point MC 
PSI 

Ψ 

(cm) 

Layer 1 

50 cm 

A 15.24 0.300 0.069 0.128 0.128 0.107 0.518 38.3 

B 6.20 0.540 0.061 0.200 0.200 0.138 0.620 25.5 

C 2.34 0.458 0.051 0.300 0.300 0.225 0.296 59.2 

D 1.40 0.620 0.053 0.240 0.240 0.118 0.161 197.9 

Layer 2 

50 cm 

A 8.38 0.277 0.040 0.125 0.125 0.063 0.296 59.2 

B 3.10 0.280 0.070 0.170 0.170 0.135 0.316 67.5 

C 1.17 0.320 0.078 0.220 0.220 0.155 0.270 106.8 

D 0.80 0.360 0.080 0.200 0.200 0.090 0.161 197.9 

Layer 3 

50 cm 

A 2.10 0.120 0.030 0.090 0.090 0.060 0.540 30.7 

B 0.77 0.200 0.040 0.100 0.100 0.040 0.226 99.8 

C 0.29 0.180 0.045 0.120 0.120 0.075 0.161 168.4 

D 0.20 0.190 0.045 0.090 0.090 0.060 0.161 197.9 

GW 

Zone 
Type 

Effective Porosity, 

ηe 

Hydraulic Conductivity, K 

(mm/hr) 

 

Aquifer 

A 0.175 30.48 

B 0.270 12.40 

C 0.310 4.67 

D 0.360 6.35 

 365 
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 UWR is simulated for two continuous simulations events from 18th February 2016 to 30th 366 

April 2016 (72 days) and 10th February 2018 to 15th May 2018 (94 days). WHR is simulated for 367 

a one-month period from 25th May 2015 to 25th June 2015. The first 120 hours (5 days) for each 368 

simulation are used as model warmup period. The model parameters have not been calibrated and 369 

have been kept consistent across all four bathymetric configurations. Earlier studies using ICPR 370 

(Saksena et al., 2019; Saksena and Merwade, 2017a) have shown that the model is capable of 371 

producing accurate results without parameter calibration when the watershed’s physical 372 

description is adequately captured in the model with high-resolution input of surface and sub-373 

surface characteristics. Additionally, model calibration would alter the parameters to account for 374 

any shortcomings in the simulation of hydrologic or hydraulic processes for the different 375 

bathymetric configurations, thus affecting the model’s behavior and rendering comparison of 376 

model outputs inconsistent.  377 

6 Results and Discussion 378 

6.1 Bathymetry Incorporation 379 

 SPRING, described in Section 4, is implemented at both UWR and WHR to create DEMs 380 

with a complete 3D representation of river network bathymetry. The channel centerline and banks 381 

are digitized manually using the DEM and aerial imagery. The USGS gages provide depth of 382 

channel bed at gaged locations, which are then interpolated to create channel depth at unknown 383 

points along a river. The parameters of SPRING are calibrated using surveyed cross-sections. 384 

Figure 6 shows the change in cross-sections and confluence bathymetry for the two basins as 385 

estimated by SPRING while Figure 7 shows a comparison of the SPRING generated cross-sections 386 

for Control with surveyed cross-sections.  387 
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 388 
Figure 6 Examples of SPRING generated cross-sections exhibiting asymmetry in “Control” 389 

configuration and confluence topography incorporated in UWR 390 

 391 

 392 
 393 

Figure 7 Comparison of surveyed and SPRING estimated cross-section shapes for “Control” at 394 
different locations along the Wabash River. 395 

 396 
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Table 3 shows the comparison of the channel characteristics, namely channel conveyance 397 

capacity (volume) and surface area of the three bathymetric configurations (M1, M2 and M3) with 398 

Control. Control and M1 have the same channel conveyance capacity but have different shapes, 399 

which leads to a difference of 0.7% in surface areas of these two networks. M1 and M2 have the 400 

same surface area but M2’s channel conveyance capacity is 34.7% and 27.5% higher than Control 401 

(and M1) for UWR and WHR, respectively. The significantly larger differences in channel 402 

conveyance capacity as compared to the surface area among the bathymetric configurations is an 403 

effect of the high channel width to channel depth ratio for natural channels. Since natural river 404 

channels are much wider than they are deeper, the cross-sectional perimeter tends to be similar to 405 

the top width of the channel. Finally, M3 has the lowest surface area and channel conveyance 406 

capacity due to incomplete channel representation in the Lidar-derived DEMs.  407 

Table 3. Percentage change in bathymetric characteristics of M1, M2 and M3 with respect to 408 
Control for the two study areas. 409 

Study 

Area 

Bathymetric 

Characteristic 

Bathymetric Configuration 

M1 M2 M3 

UWR Volume 0.0 34.7 -18.0 

 Surface Area 3.1 3.1 -0.7 

WHR Volume 0.0 27.5 -27.5 

 Surface Area 6.4 6.4 -0.7 

 410 

Table 4 shows the change in longitudinal channel slope because of the incorporation of 411 

bathymetry. Except for Wildcat Creek in UWR, the change in slope is less than 4% for all other 412 

streams. SPRING generated channel networks have a piece-wise linear longitudinal profile with 413 

the upstream and downstream ends of the reaches having different depths due to differences in 414 

drainage areas at the two ends. Therefore, Control, M1 and M2 have identical slopes for each reach 415 

which is higher than the slopes of the reaches in M3.   416 
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Table 4. Change in longitudinal slope for each river due to bathymetry incorporation (Control, 417 

M1 and M2) 418 

River Name 
Slope in Control, M1 and 

M2 (× 10−4) 

Slope in M3 

(× 10−4) 
% Change  

UWR 

Wabash River 3.24 3.23 0.4 

Tippecanoe 

River 
5.02 4.90 2.4 

Deer Creek 12.33 11.94 3.3 

Wildcat Creek 7.09 6.39 10.9 

WHR 

White River 4.13 4.08 1.3 

Fall Creek 9.57 9.49 0.9 

Williams Creek 30.85 30.82 0.1 

Crooked Creek 22.57 22.32 1.1 

 419 

6.2 Validating Control 420 

 The model structure and parameters adopted in this study are validated by comparing the 421 

outlet streamflow and water table elevations estimated by Control against observed data. Figure 8 422 

shows the comparison of outlet hydrographs of Control for the three events and the observed 423 

hydrographs from USGS gauges at those locations. The performance of Control is also quantified 424 

using four performance metrics – the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), 425 

Percent Bias (PBias),  ratio of the root mean square error to the standard deviation of measured 426 

data (RSR) and error in magnitude of highest peak flow, which are tabulated in Table 5. RSR is a 427 

ratio of error in model estimate to variation in observed time-series which helps in comparing 428 

RMSE across different bathymetric configurations and hydrologic outputs (timeseries). Control 429 
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exhibits high NSE and low PBias, RSR and error in peak streamflow which indicates the 430 

acceptable performance of Control for all three events across the two basins.  431 

Table 5: Performance statistics for validating Control using USGS gauge measured streamflow 432 
at outlets and GWT timeseries 433 

Simulation Timeseries NSE PBias (%) RSR 
Error in 

Peak (%) * 

UWR (2016) Outlet Hydrograph 0.95 -7.2 0.23 -13.3 

UWR (2018) Outlet Hydrograph 0.96 -2.9 0.21 4.3 

WHR (2015) Outlet Hydrograph 0.95 -4.9 0.23 -8.7 

WHR (2015) GWT Elevation 0.77 -0.08 0.48 0.05 

*Error in peak corresponds to the highest peak in the simulation period 434 

The GW component of Control is validated by comparing GWT elevation estimates against 435 

GWT measurements (Figure 9). For WHR, GWT elevation timeseries observed at a USGS well is 436 

compared with the GWT estimates at that location for the 2015 simulation (Figure 9(c)) and the 437 

performance statistics are tabulated in Table 5. In the absence of USGS gauges measuring GWT 438 

in UWR, GWT is measured at 17 select locations in the floodplains of UWR by using 2m deep 439 

piezometers. Control was simulated for 21 days including the day of measurements and the GWT 440 

estimates were compared against those obtained from the piezometers. Out of these 17 datapoints, 441 

one measurement was reported as flooded (water table at the surface), and the water table was 442 

found to be deeper than 2 m (depth of piezometers) for seven cases. In all these eight cases, Control 443 

results corresponded with the observed situations. Comparison of the observed and estimated 444 

GWT elevations for the remaining nine observations where the GWT depth was within 2m is 445 

shown in Figure 9(b). RMSE for the simulated water table elevations is 0.43 m.  446 
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 447 
Figure 8: Comparison of outlet hydrograph of Control with observed hydrographs at the outlet 448 

of UWR for (a) 2016 simulation, (b) 2018 simulation, and (c) WHR for 2015 simulation. 449 
 450 
 451 

 
(a) 

 
(b) 

 
(c) 
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The aim of the validation is not to demonstrate that the model structure and parameters are 452 

accurate; rather the validation demonstrates that the model structure and parameters reasonably 453 

characterize the surface and subsurface hydrological processes. The overall performance with 454 

respect to the water table and outlet hydrograph suggests that Control can realistically approximate 455 

the surface and subsurface hydrological processes. Additionally, the SW-GW model structure 456 

(mesh resolution) adopted in this study follows the guidelines proposed in Saksena et al (2021) for 457 

effectively capturing SW-GW interactions in tightly coupled models by considering the intrinsic 458 

scales of the surface and subsurface processes in the model structure. It should be noted that the 459 

surface and sub-surface parameters are uncalibrated and are identical across different bathymetric 460 

configurations to avoid biasing the parameters towards any particular configuration. Therefore, 461 

changing the bathymetric representation while keeping the model structure and parameters 462 

constant enables consistent comparison across different bathymetric configurations and provide 463 

insights into the role of bathymetry in simulating SW-GW interactions. 464 

 465 

 466 
(a)              (b)  467 

Figure 9. Figure showing (a) the comparison of observed and simulated GWT for 9 locations in 468 

UWR where GWT depth is less than 2m, and (b) the comparison of observed and simulated 469 
GWT elevation timeseries for WHR at a USGS well. 470 

 471 
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6.3 Effect on Overland Flow 473 

To analyze the effect of bathymetry on surface routing, the streamflow hydrographs 474 

estimated at the outlets and the maximum inundation area estimated by M1, M2 and M3 are 475 

compared with those estimated by Control. While streamflow at the outlet is not entirely 476 

representative of the watershed response, especially for medium to large watersheds, it is a useful 477 

indicator of the overall water balance across different simulations. Figure 10 shows the streamflow 478 

hydrographs at the outlet for all three events corresponding to all four configurations. The relevant 479 

performance metrics for quantifying the performance of M1, M2 and M3 with respect to Control 480 

are tabulated in Table 6.  481 

Table 6: Performance metrics comparing the inundation area and outlet hydrographs estimated 482 

by M1, M2 and M3 with respect to Control  483 

Simulation Configuration 

Error in 

Inundation 

Area (%) 

Hydrograph Comparison at Outlet 

NSE 
PBias 

(%) 
RSR 

Error in Peak 

Flow (%) * 

UWR 

(2016) 

  

M1 -1.62 1.00 0.22 0.03 2.46 

M2 -6.84 1.00 0.24 0.05 2.58 

M3 25.36 0.81 6.19 0.44 39.76 

UWR 

(2018) 

  

M1 -2.78 0.97 -3.68 0.16 -10.87 

M2 -4.41 0.94 -5.56 0.24 -19.36 

M3 -0.31 0.93 0.62 0.27 -20.98 

WHR 

(2015) 

  

M1 1.11 0.99 1.90 0.09 6.76 

M2 -5.11 0.98 2.04 0.13 1.73 

M3 19.37 0.02 40.43 0.99 40.37 
*Error in peak flow corresponds to the highest peak in the simulation period 484 

  485 

 486 
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 487 
Figure 10: Comparison of outlet hydrographs of M1, M2 and M3 against Control of UWR for 488 

(a) 2016 simulation, (b) 2018 simulation and (c) WHR for 2015 simulation 489 
 490 

 
(a) 

 
(b) 

 
(c) 
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The performance metrics (Table 6) and the outlet hydrographs (Figure 10) show that the 491 

model performance depreciates with a reduction in bathymetric detail. In all cases, there is a 492 

decrease in NSE and an increase in RSR and Error in Peak Flow as the bathymetric representation 493 

changes from M1 to M2 and M3. The difference in performance levels is highest between M2 494 

(depth information only) and M3 (no additional bathymetric detail). The addition of accurate 495 

channel conveyance in addition to depth (M1 vs M2) leads to a small but not insignificant change 496 

in performance, especially in terms of maximum inundation area. Finally, the difference between 497 

the estimates of Control and M1 is small for both inundation area and outlet hydrographs.  498 

Incorporating accurate representation of thalweg elevation for M1 and M2 (with respect to 499 

Control) leads to an increase in the longitudinal slope of the river network (Table 4) as compared 500 

to M3. This increase in slope increases the flow velocities in the direction of river flow for Control, 501 

M1 and M2. Additionally, the channel conveyance capacity plays an important role in determining 502 

the volume of water that overflows the riverbanks into the floodplains as the flood wave propagates 503 

along the river network. The main river channel and the floodplains can have significantly different 504 

roughness characteristics, due to the different landuse and land cover in the watershed.  505 

UWR has a higher roughness in the floodplains because its floodplains are dominated by 506 

forests, shrubs and agricultural lands which have Manning’s n in the range of 0.18 – 0.24. 507 

Therefore, the water inundating into the floodplains experiences higher frictional forces thereby 508 

reducing the flow velocity in the floodplain when compared to the water in the main channel 509 

(Manning’s n: 0.035). The difference in channel conveyance capacities of M1, M2 and M3 lead to 510 

differences in the partitioning of flood wave between the main channel and the floodplains, which 511 

in turn leads to differences in the flow hydrographs at the outlet. For example, the 2016 simulation 512 

in UWR is a relatively small event where most of the water stays within the banks for Control, M1 513 
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and M2. However, M3’s inadequate conveyance capacity leads to a higher volume of water 514 

flowing through the floodplains. Figure 10(a) shows that the peaks for M1 and M2 are similar to 515 

those of Control, whereas M3’s peak is delayed by 24 hours as compared to Control (for the peak 516 

observed on 15th March 2016 (day 22)) due  to slow propagation of the excess water flowing 517 

through the floodplains. In the case of WHR, 89% of the floodplains (Table 1) are developed and 518 

have a smaller roughness (Manning’s n: 0.011 – 0.015). A higher percentage of developed 519 

(impervious) region causes the rainfall-induced surface runoff to travel through the floodplain 520 

faster before reaching the river channels, thereby, resulting in increased flow at the outlet as shown 521 

in Figure 10(c).  522 

It is expected that the configuration with higher bathymetric detail should perform better 523 

and that the performance should reduce with decreasing levels of bathymetric detail. However, for 524 

small within-channel events (< 2-year return periods) such as those in the 2016 simulation at UWR 525 

and the 2015 simulation at WHR, the decrease in model performance from M1 to M2 is negligible 526 

as compared to the decrease in model performance from M2 to M3. The additional channel 527 

conveyance in M2 as compared to M1 (and Control) does not adversely affect model performance 528 

since most of the flow is confined to the channel and the volume of water flowing through the 529 

floodplains is minimal. For medium-sized events (> 2-year events but < 25-year event) such as the 530 

2018 event in UWR, the partitioning of water becomes more important and both overestimated 531 

(M2) and underestimated (M3) channel conveyance leads to poorer model performance. For 532 

example, the RSR (Table 6) is 0.24 and 0.27 for M2 and M3, respectively while M1 has a better 533 

RSR of 0.16. In the case of events with much higher magnitude of streamflow (>50-year return 534 

period), the impact of additional channel conveyance and increased slope is less significant as the 535 

proportion of water in the main channel is relatively small when compared to the floodplains. 536 
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Therefore, for high magnitude flow, it can be argued that the difference in the volume of water 537 

routed through the floodplains for different configurations becomes insignificant resulting in 538 

similar model performance. 539 

In terms of maximum inundation extent, estimates of M1 are close to those of Control. M2 540 

has a higher channel conveyance capacity than Control which leads to a smaller inundation area 541 

whereas M3 has a smaller channel conveyance capacity than Control leading to an overestimation 542 

in the maximum inundation area. This behavior is consistent with previous findings on the effect 543 

of bathymetry on inundation extent (Dey et al., 2019; Grimaldi et al., 2018). One notable exception 544 

is M3 for 2018 simulation in UWR, where the overestimation in inundation area due to low channel 545 

conveyance capacity is countered by the lower peak in outlet hydrograph leading to similar 546 

inundation area estimates for M3 and Control.   547 

Overall, the results indicate that depth (slope) and channel conveyance (cross-sectional 548 

area), irrespective of the shape, act as important controls for overland flow especially for medium-549 

sized events and that the error due to overestimating channel conveyance reduces for small within 550 

bank events. Typically, hydrologic and hydrodynamic model parameters are calibrated against 551 

observed hydrographs at gauged locations. In the absence of bathymetry and adequate model 552 

physicality, such calibration would have resulted in the lack of channel storage in the river network 553 

being compensated by parameter values that characterize other physical processes. For example, 554 

in the absence of river bathymetry, an alternate approach is to assume simplified cross-sectional 555 

shapes to develop a hydrodynamic model and calibrate the depth of these cross-sections and the 556 

roughness characterization in the hydrodynamic model using observed hydrographs, stage or 557 

rating curves (Gichamo et al., 2012; Grimaldi et al., 2018; Neal et al., 2015; Price, 2009). Such an 558 

approach will not account for the effect of river bathymetry (depth) on streamflow generation 559 
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processes such as infiltration and lateral seepage. Instead, the calibrated values of depth and 560 

roughness try to compensate for the inaccurate representation of fluvial processes which may lead 561 

to additional error in the model when simulating different events. To further investigate these 562 

issues, the subsequent sections compare the estimates of infiltration, lateral seepage, backwater 563 

flow and inundation area between different bathymetric configurations. This will determine if the 564 

difference in watershed response to bathymetric representations is limited to surface routing only 565 

or if its effect extends to other fluvial processes such as SW-GW interactions. 566 

6.4 Effect on Infiltration 567 

 Results, presented in Figure 11 and Table 7, show that difference in infiltration rates 568 

estimated by M3 with respect to Control is the highest, followed by M2 and M1 which indicate 569 

that increasing bathymetric detail also improves the estimation of daily infiltration rates. M3’s 570 

performance is particularly poor which is reflected in the negative and near-zero NSE values. The 571 

estimates of daily infiltration rate improve drastically from M3 to M2, with a relatively smaller 572 

improvement from M2 to M1 as indicated by the increasing values of NSE and decreasing values 573 

of RSR (Table 7), which is similar to the behavior of SW fluxes during a flood event (Section 6.3). 574 

 Table 7. Performance metrics comparing the daily infiltration rates in the floodplain estimated 575 

by M1, M2 and M3 with respect to Control  576 

Simulation Configuration NSE Pbias (%) RSR Error in Peak (%) * 
 M1 0.98 -2.2 0.14 -5.24 

UWR (2016) M2 0.86 -8.9 0.38 5.94 
 M3 -3.19 59.3 2.03 74.14 
 M1 0.86 -14.8 0.37 -11.95 

UWR (2018) M2 0.71 -22.0 0.54 -14.51 
 M3 0.02 37.3 0.98 14.26 
 M1 0.84 1.6 0.39 21.96 

WHR (2015) M2 0.47 -7.3 0.71 20.75 
 M3 -0.40 23.5 1.16 35.70 

*Error in peak corresponds to the highest peak in the simulation period 577 



manuscript submitted to Water Resources Research 

 

35 
 

 578 
Figure 11: Daily infiltration rate in the floodplains of UWR for (a) 2016 simulation, (b) 2018 579 

simulation and (c) WHR for 2015 simulation. The observed outlet hydrograph is shown in grey 580 

line on secondary axis.  581 
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  582 

 Initially, as seen in Figure 11, the infiltration rates are similar for all configurations because 583 

the flow is confined to the saturated river channels. As the flood waves travel through the stream 584 

network, the lateral SW flux from the river channels to the floodplains increases. As demonstrated 585 

using a conceptual diagram in Figure 12, the SW flux into the floodplains is controlled by the 586 

channel conveyance capacity of the river network. High conveyance capacity not only leads to 587 

lower floodplain storage but also reduces the total volume of water available for infiltration into 588 

the subsurface leading to lower rates of infiltration and vice-versa. This effect can be seen in all 589 

three events, where M3 (lower channel conveyance capacity) is consistently overestimating the 590 

infiltration rate whereas M2 (higher channel conveyance capacity) is consistently underestimating 591 

the infiltration rates with respect to Control. M1 has a similar channel conveyance capacity to 592 

Control and is performing the best as evident from its high NSE. 593 

Further, once the flood wave starts receding, the SW fluxes recede from the floodplain 594 

back into the river channels. In this case, higher channel conveyance allows the water to recede 595 

faster from the floodplains leading to smaller residence times for surface water in the floodplains 596 

which further maintains the difference in the total infiltration volume even in the receding part of 597 

the flood event. This effect can be seen in Figure 11(b) where there are differences between the 598 

infiltration rates of the three configurations from Control even after the flood wave recedes, for 599 

example, between Day 30 (24th March 2016) and Day 36 (30th March 2016) for the 2016 event and 600 

between Day 25 (12th March 2018) and Day 35 (22nd March 2018) for the 2018 event in UWR. 601 
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 602 
Figure 12. Conceptual figure illustrating the difference in physical processes between two 603 

bathymetric configurations with (a) low and (b) high channel conveyance capacities. Low 604 

channel conveyance capacity leads to a higher inundation area, WSE and infiltration and lower 605 

lateral seepage as compared to a bathymetric configuration with higher channel conveyance 606 
capacity. 607 

 608 

In case of WHR (Figure 11(c)), the infiltration rates estimated by M1, M2 and M3 exhibit 609 

a similar trend to that of UWR – M1 is closest to Control with M2 underestimating the infiltration 610 

rate and M3 overestimating the infiltration rate. However, the difference between the estimates 611 

produced by the different bathymetric configurations is smaller for WHR when compared to UWR. 612 

This variation in WHR can be attributed to the different landuse patterns in the floodplains of 613 

WHR. There is a higher percentage of developed area in the floodplains (Table 1) of WHR leading 614 

to a lower available subsurface storage and lower infiltration capacity in the floodplains. 615 

Additionally, the water flows faster through the floodplains because of the lower roughness in 616 

developed regions allowing the water in the floodplains to recede faster into the main channel after 617 
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the flood peak passes through the river network. These two factors together lead to a smaller 618 

difference between the estimates of the different bathymetric configurations in case of WHR than 619 

in UWR. 620 

 It is evident that the effect of improper bathymetric representation is not limited to SW 621 

processes but also affects SW-GW interactions such as infiltration which can, in turn, affect the 622 

rainfall-runoff in a watershed since there is bi-directional feedback between these two processes. 623 

However, loosely coupled hydrologic and hydrodynamic models (Afshari et al., 2018; Follum et 624 

al., 2020; Rajib et al., 2020; Wing et al., 2017) neglect such feedbacks which may get compounded 625 

by improper bathymetric representation. Errors in bathymetric representation combined with 626 

simplistic routing procedure in the hydrologic model may lead to erroneous estimates of infiltration 627 

and streamflow which can propagate through the hydrodynamic model.  628 

6.5 Effect on Lateral Seepage 629 

The net lateral seepage is calculated as the difference in cumulative lateral seepage inflow 630 

and outflow for each day of the simulation. As such, a negative lateral seepage indicates that the 631 

river network is losing water into the subsurface, whereas a positive lateral seepage indicates that 632 

the river network is gaining water from the subsurface.  633 

As shown in Figure 13, the net lateral seepage is negative during the flood event as a large 634 

volume of water seeps into the subsurface due to higher heads in the river channels. However, after 635 

the flood wave recedes, the net lateral seepage becomes positive as the water that has seeped into 636 

the subsurface during the event starts recharging into the river channels. M1 provides decent 637 

estimates of lateral seepage rate when compared to Control, as is evident from high NSE, low RSR 638 

and low error in peak lateral seepage rate. M2’s performance is even worse than M3's. It has a 639 
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negative NSE for the 2018 event in UWR and exhibits large biases in the positive direction for all 640 

three events. 641 

Table 8. Performance metrics comparing the daily net lateral seepage rate in the floodplain 642 
estimated by M1, M2 and M3 with respect to Control  643 

Simulation Configuration NSE Pbias (%) RSR Error in Peak (%) * 
 M1 0.97 20.8 0.16 17.44 

UWR (2016) M2 0.32 183.0 0.82 57.83 
 M3 0.61 -69.8 0.62 26.71 
 M1 0.99 -7.2 0.10 -3.13 

UWR (2018) M2 -1.01 258.6 1.41 53.39 
 M3 0.90 -6.1 0.32 5.70 
 M1 0.87 -24.3 0.35 -3.91 

WHR (2015) M2 0.30 -65.0 0.82 -23.10 
 M3 0.40 -50.0 0.76 -50.00 

*Error in peak corresponds to the highest peak in the simulation period 644 

 645 
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 646 

Figure 13: Daily lateral seepage rate in the floodplains of UWR for (a) 2016 simulation, (b) 647 
2018 simulation and (c) WHR for 2015 simulation. The observed outlet hydrograph is shown in 648 

grey line on secondary axis.  649 
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The lateral seepage is controlled by the saturated area available for the exchange of fluxes 650 

between the river channel and GW and the head distribution in the channel and floodplains. As the 651 

flood wave propagates along the channel network, it pushes the old water in the channel as well 652 

as the GW in the floodplains away from the river channel. Similarly, as the water in the channel 653 

recedes, it creates a pulling effect that forces water from the surrounding GW in the floodplains to 654 

rush to the river channel. This leads to a high correlation between GWT elevation in the river 655 

channel and river channel heads (Jung et al., 2004). The WSE in the river channel is governed by 656 

both the volume of water flowing through the channel and the channel geometry (bathymetry). 657 

The overall channel bed elevations for M2 are lower than that of Control. It also has the highest 658 

channel conveyance capacity. WSE in the channel is lowest for M2, followed by those of Control 659 

and M1 and finally, M3 has the highest WSE. Lower the WSE in the channel, lower the SW head 660 

in the channel driving the lateral seepage. This leads to a less negative (more positive) lateral 661 

seepage rate for M2. This also explains the more negative estimates of M3 which has the lowest 662 

channel conveyance capacity and highest WSE of the three configurations. A similar scenario is 663 

observed for WHR, but a smaller difference in net lateral seepage is observed between the different 664 

bathymetric configurations due to WHR having a primarily developed landuse leading to limited 665 

SW-GW interactions. 666 

The saturated surface area in the river network (wetted perimeter in a cross-section) 667 

available for SW-GW exchange also plays a role in controlling the lateral seepage. M1 and M2 668 

have the same surface area but different channel conveyance capacity leading to significantly 669 

different performance in terms of lateral seepage rates. Also, as shown in Table 3, the difference 670 

in surface areas between the configurations is not as high as the difference between channel 671 

conveyance capacity. This indicates that incorporating channel geometry with accurate channel 672 
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conveyance capacity may suffice in accurately capturing the SW-GW processes for medium to 673 

large watersheds. 674 

In this study, Control incorporates the thalweg variability along a river network leading to 675 

better representation of thalweg-gegenweg and side slopes as recommended by Chow et al., (2018) 676 

and Doble et al., (2012), respectively to model the lateral seepage. The differences between 677 

estimates of Control and M1 (vertical side slopes and symmetric river channel geometry) are 678 

relatively small which indicates that these two bathymetric characteristics play a minor role in 679 

lateral seepage across large river networks. More importantly, the stark difference in the 680 

performance of M1 and M2 relative to Control indicates that channel conveyance capacity has a 681 

greater effect on the SW-GW fluxes at larger spatial domains incorporating river corridor or river 682 

networks (and beyond). 683 

6.6 Effect on Groundwater Table 684 

As shown in the previous sections, the incorporation of river bathymetry, specifically the 685 

channel conveyance, has a significant impact on subsurface processes such as infiltration and 686 

lateral seepage. Since both these processes are related to available subsurface storage, which is 687 

subsequently dependent on the water table depth, the effect of incorporating bathymetry on GWT 688 

elevation is analyzed in this section by comparing the maximum GWT elevation estimated by the 689 

three configurations with Control as shown in 13. The differences in maximum GWT elevations 690 

(ΔG𝑊𝑇𝑚𝑎𝑥) has been corrected for biases due to initial conditions as per the following equation 691 

(Equation 5). 692 

ΔG𝑊𝑇𝑚𝑎𝑥,𝑀𝑖 = 𝐺𝑊𝑇𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑚𝑎𝑥 − 𝐺𝑊𝑇𝑀𝑖,𝑚𝑎𝑥 − (𝐺𝑊𝑇𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐺𝑊𝑇 𝑀𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 693 

(Equation 5) 694 
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where ΔG𝑊𝑇max,Mi is the bias-corrected difference in maximum water table elevations 695 

estimated by the bathymetric configuration Mi (M1, M2 or M3) and Control, and 696 

𝐺𝑊𝑇𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝐺𝑊𝑇𝑀𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are the initial water table elevations for Control and Mi (M1, 697 

M2 or M3) respectively. Areas with a positive value of ΔG𝑊𝑇𝑚𝑎𝑥,𝑀𝑖 for a given configuration 698 

have a higher change in water table elevation for Control as compared to that configuration while 699 

negative values of ΔG𝑊𝑇𝑚𝑎𝑥,𝑀𝑖 indicate that the region has a higher change in water table 700 

elevation for that configuration compared to Control. If |ΔG𝑊𝑇𝑚𝑎𝑥,𝑀𝑖| < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then that 701 

region is said to have no meaningful difference in the maximum water table elevations estimated 702 

by M1 and M2. The threshold is implemented for filtering out small differences caused due to 703 

model discretization and conversion between unstructured mesh and gridded data. In this study, 704 

the threshold is set to 0.15m (6 inches) – an arbitrarily chosen value based on prior modeling 705 

experience. Since the only difference in the different configurations is the bathymetric 706 

representation, analyzing ΔG𝑊𝑇𝑚𝑎𝑥 across the study area demonstrates the spatial distribution of 707 

the effect of river bathymetry on GW processes. 708 

Figure 14 shows the areas in UWR where the maximum water table elevations are 709 

significantly different for the three configurations compared to Control for the 2018 simulation. 710 

M1 has the least differences in ΔG𝑊𝑇𝑚𝑎𝑥 compared to M2 and M3 as evident with a lesser 711 

percentage of green and red zones in Figure 14. M2 and M3 have contrasting distributions of 712 

ΔG𝑊𝑇𝑚𝑎𝑥 in the floodplains. M2 has a higher percentage of areas with positive ΔG𝑊𝑇𝑚𝑎𝑥 713 

whereas M3 has a higher percentage of negative ΔG𝑊𝑇𝑚𝑎𝑥 in the floodplains with the positive 714 

ΔG𝑊𝑇𝑚𝑎𝑥 mostly confined to the main river channel. This difference in the distribution of 715 

ΔG𝑊𝑇𝑚𝑎𝑥 for M2 and M3 can be attributed to differences in infiltration and lateral seepage rates 716 

of M2 and M3 (Section 6.4 and 6.5). The infiltration rate of M2 is lower than Control which means 717 
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M2 has a lower volume of water infiltrating into the GW leading to lower changes in GWT 718 

elevation as compared to Control leading to positive ΔG𝑊𝑇𝑚𝑎𝑥. On the other hand, M3 has a 719 

higher infiltration rate than Control leading to higher changes in GWT with respect to Control 720 

leading to negative ΔG𝑊𝑇𝑚𝑎𝑥. The difference in lateral seepage also further enhances the 721 

difference between Control and M2 or M3. M2 has a more positive lateral seepage which indicates 722 

that the river channel is gaining more (losing less) water from the GW, leading to smaller changes 723 

in GWT whereas M3 has a more negative lateral seepage indicating the stream losing more water, 724 

which causes higher changes in GWT in the floodplains. However, the volume of water being 725 

lost/gained due to lateral seepage is small as compared to the volume of water being gained through 726 

infiltration. 727 

 728 

 729 

Figure 14. Figure showing the spatial distribution of differences between change in water table 730 
elevations estimated by the different bathymetric configurations and Control at Wabash River 731 

Basin (UWR). Green regions have a positive Δ𝑊𝑇𝑚𝑎𝑥 which indicates that those regions have 732 
lower changes in water table elevation from initial water table elevations for a given bathymetric 733 

configuration as compared to Control, and vice-versa for the red regions. 734 
 735 

The spatial distribution of ΔG𝑊𝑇𝑚𝑎𝑥 also highlight the fact that the effect of bathymetric 736 

configuration on GWT is spread throughout the network and is not limited to the main stem of the 737 

river. Additionally, it highlights the fact that there is a need for incorporating the channel 738 
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conveyance capacity accurately since both underestimation (M3) and overestimation (M2) of 739 

channel conveyance capacity leads to significant differences in estimates of GWT elevation. This 740 

may be particularly relevant in the field of contaminant transport, wetland modeling and stream 741 

restoration (Banks et al., 2011; Cienciala and Pasternack, 2017; Czuba et al., 2019; Osman and 742 

Bruen, 2002).  743 

 Traditional hydrodynamic modeling cannot reflect the change in flow volume due to 744 

within-reach hydrologic processes. Therefore, hydrodynamic models have only been able to 745 

highlight the effect of poor bathymetric representation on SW fluxes. However, flooding-related 746 

physical processes are codependent on each other; they continuously influence each other directly 747 

or indirectly through feedback loops. The results presented in this study show that the impact of 748 

bathymetry is not limited to surface fluxes but also extends to subsurface processes and SW-GW 749 

interactions. Effective incorporation of bathymetric representation in data-sparse regions should 750 

focus on accurately estimating bathymetric characteristics rather than on the overall shape of the 751 

channel geometry. Specifically, the focus should first be on incorporating accurate estimates of 752 

channel conveyance capacity and thalweg elevation, followed by side slopes and channel 753 

asymmetry for accurately simulating the SW-GW processes in floodplains for river networks at 754 

large spatial domains.  755 

6.7 Effect on Backwater Flow at Confluence 756 

 At a river confluence, the two streams draining to the confluence may not have similar 757 

thalweg elevation, especially when lower order streams meet a higher order stream. Usually, the 758 

main river is deeper than the tributary, and the difference in thalweg elevation increases as the 759 

difference in the stream orders of the main river and its tributaries increases. This difference in 760 

thalweg elevation can affect the flow patterns near a confluence but this effect is usually ignored 761 
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in traditional hydraulic models. To investigate this effect, the streamflow hydrograph just upstream 762 

of the confluence is compared for M1, M2 and M3 against Control. Figure 15(a) shows the 763 

hydrograph at the downstream end of Wildcat Creek as it drains into the Wabash River. The figure 764 

shows that Wildcat Creek experiences backwater flow (negative flow) from the Wabash River on 765 

days 22 to 24 of the simulation (16th March 2015 to 18th March 2015) in case of M3, whereas M1 766 

and M2 do not exhibit this backflow – same as Control. This indicates that the backwater is 767 

spuriously induced by the incomplete representation of bathymetry in M3.  768 

 769 

 770 

Figure 15. Figure showing hydrographs at the downstream (DS) end of tributary at (a) the 771 
Wildcat Creek – Wabash River confluence (UWR) and (b) the Crooked Creek – White River 772 

confluence (WHR) for all three configurations.  773 
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 774 

All three configurations (M1, M2 and M3) have differences in bathymetric characteristics. 775 

M3 is based on the original Lidar where the entire river network is characterized by a flat surface 776 

with a very mild longitudinal slope. The thalweg elevations are the same for Control, M1 and M2 777 

but are different from those of M3. The fact that only M3 is exhibiting such a behavior can be 778 

attributed to the difference (or lack thereof) in thalweg elevation of the main stem and the tributary. 779 

In case of Control, M1 and M2, the thalweg is higher for Wildcat Creek (155.7 m) as compared to 780 

Wabash River (154.8 m) at the confluence, which acts as a barrier to the flow of water from 781 

Wabash River to Wildcat Creek, thereby reducing the backwater flow in the channel. This 782 

elevation difference between Wabash River and Wildcat Creek is not present in M3 where the 783 

thalweg elevation for both the channels is 156.2 m. This allows the water from the Wabash River 784 

to travel upstream along Wildcat Creek, thereby leading to backwater flow. A similar effect can 785 

also be observed in WHR at the confluence of Crooked Creek and White River, as demonstrated 786 

by Figure 15(b) where Control, M1 and M2 have a difference of 0.7 m in the thalweg of Crooked 787 

Creek and White River at the confluence but M3 has no difference in thalweg elevation at the 788 

confluence.  789 

This difference in flow patterns is not observed at every confluence. For example, the 790 

difference in flow at the downstream end of the Tippecanoe River (just upstream of the Wabash-791 

Tippecanoe confluence) is negligible. The Wabash River – Tippecanoe River confluence has a 792 

smaller difference in thalweg elevation at the confluence (0.5m) than the Wabash River – Wildcat 793 

Creek confluence (0.9 m). Figure 15 also shows that the backwater flow exists for only one of the 794 

peaks at the Wabash River – Wildcat Creek confluence. This difference in behavior can be 795 

explained by the relative difference in magnitude of flow along the tributary and the main channel. 796 
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Surface routing of water is governed by the total head of water, which in turn, depends on the 797 

thalweg elevation and water depth. The water depth depends on the volume of water flowing 798 

through the channel. If the flood wave traveling along a tributary is comparable to the flood wave 799 

of the main river at the confluence, the flood wave in the tributary may act as a further barrier to 800 

backwater flow. This may compensate for the lack of difference in thalweg elevation in M3 and 801 

impede backwater flow. Therefore, the relative size of the channels meeting at a confluence and 802 

the difference in flow through them may be responsible for the backwater effect to be important at 803 

confluences.  804 

If two streams at a confluence have a large difference in thalweg elevations of main channel 805 

and tributary or the events are of different magnitudes, the absence of bathymetry at confluences 806 

can result in highly erroneous streamflow at the watershed outlet due to backwater flow. The 807 

spurious backwater flow in the absence of bathymetry can lead to erroneous localized flooding 808 

around the confluence. Therefore, confluence geometry with appropriate representation of 809 

differences in thalweg elevations between the tributary and main river at the confluence must be 810 

incorporated to ensure accurate hydrodynamic connectivity along the river network, particularly 811 

for large-scale applications spanning large networks which have confluence between rivers with 812 

markedly different bed elevations (Mejia and Reed, 2011; Tran et al., 2020; Trigg et al., 2009).  813 

7. Summary and Conclusion 814 

Bathymetry is critical for accurate modeling of fluvial systems. However, traditional river 815 

modeling has focused on evaluating the effect of bathymetry on surface routing processes along 816 

single reaches, usually the main stem of the river network. Fluvial systems comprise of co-817 

dependent surface and subsurface physical processes which affect hydrodynamic variables 818 

significantly, especially at large watershed scales. This study evaluates if the effect of river 819 
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bathymetry extends beyond surface processes to subsurface processes such as seepage and 820 

infiltration. Additionally, the study analyzes the bathymetric characteristics that control these 821 

processes to provide insights into effective ways to incorporate bathymetry across large river 822 

networks in data-sparse regions. To answer these research questions, a conceptual bathymetric 823 

model, SPRING, which can generate bathymetry for entire river networks, is implemented on two 824 

watersheds with distinct physical characteristics (agricultural and urban). Physically-based 825 

distributed models are created for four different bathymetric configurations with successively 826 

reduced bathymetric detail: Control (highest level of detail – calibrated asymmetric cross-sections 827 

with realistic side slope), M1 (depth, channel conveyance capacity and vertical side slope), M2 828 

(depth and vertical side slope) and M3 (original Lidar with no additional bathymetric detail). 829 

Analysis of hydrologic and hydrodynamic outputs from the four configurations leads to the 830 

following conclusions: 831 

1) The application of SPRING in the Wabash (UWR) and White River (WHR) basins 832 

demonstrate its ability to estimate bathymetry for tributaries as well as the main river stem in a 833 

river network. Additionally, it can maintain hydraulic connectivity among channels with proper 834 

representation of bathymetry at confluences. Bathymetry incorporation can lead to a significant 835 

increase in channel conveyance capacity across the river network and overall longitudinal slope of 836 

the channel but the change in the surface area remain relatively small.  837 

2) A comparison of the streamflow prediction at the outlet using the four configurations 838 

indicates that depth (slope) and channel conveyance (cross-sectional area), irrespective of the 839 

shape, play an important role in accurately simulating flood events across river networks. Channel 840 

conveyance capacity controls the partitioning of the flood wave between the main channel and the 841 

floodplains. Because of a significantly different roughness distribution in the floodplain compared 842 
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to the main river channel, the water routed through the floodplains can either slow down or speed 843 

up (depending on the land use in the floodplain). While the absence of bathymetry leads to poor 844 

performance for all events, small events may be captured accurately by incorporating accurate 845 

channel depth (thalweg elevation) only. However, for medium-sized events, both channel 846 

conveyance and depth need to be incorporated for adequately capturing the watershed response. 847 

3)  The impact of bathymetry on subsurface processes is demonstrated by the difference in 848 

infiltration rates across the four configurations. The infiltration rates remain similar when the 849 

channel conveyance capacity and depth are adequately incorporated. In the absence of adequate 850 

bathymetric detail, lower (higher) channel conveyance capacity causes higher (lower) influx of 851 

water into the floodplain during flood events, which increases (decreases) the floodplain residence 852 

time, thereby increasing (decreasing) the infiltration. The influence of bathymetry in infiltration is 853 

also affected by the landuse of floodplains, with developed regions showing lesser but still 854 

significant differences in infiltration. 855 

4) Lateral seepage depends on the head distribution in the river network and the saturated 856 

area available for SW – GW interaction. A higher channel conveyance capacity lowers the water 857 

surface elevation and may increase the wetted area in the river network. Therefore, it leads to 858 

increased seepage from the GW into the channel, and its underestimation leads to overestimation 859 

in seepage from the channel into the GW. Lateral seepage is particularly sensitive to bathymetric 860 

detail as the result demonstrated that incorporating inaccurate channel conveyance can lead to even 861 

poorer estimates of lateral seepage as compared to not incorporating any bathymetric information. 862 

5) The differences in infiltration and lateral seepage rates due to bathymetric configurations 863 

contribute to significant differences in water table elevations throughout the river network. Lack 864 

of bathymetry, especially underrepresenting the channel conveyance capacity can lead to 865 
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overestimation in water table elevations and vice-versa. This indicates that errors in bathymetry 866 

can propagate to surface and subsurface processes as well as the interaction between these 867 

processes.  868 

6) The overall performance of the bathymetric configurations across both watersheds 869 

indicate that channel conveyance capacity and thalweg elevation (longitudinal slope) play a critical 870 

role in accurately capturing both surface and subsurface processes in H&H models. Therefore, in 871 

estimating conceptual bathymetry for data sparse regions, the focus should be on incorporating 872 

accurate channel conveyance and thalweg elevation. Additional information regarding channel 873 

side slope and channel asymmetry may further improve the accuracy of H&H model. 874 

7) The bathymetry at river confluences plays a critical role in determining the flow patterns 875 

in the region. In the absence of bathymetry, the tributary may experience significant backwater 876 

flow. After bathymetry incorporation, the thalweg elevations of the main channel and tributary just 877 

upstream of the confluence may be significantly different. This acts as a barrier to backwater flow 878 

from the main channel moving upstream of the tributary. This effect seems to be localized to the 879 

vicinity of the confluences and the extent of backwater flow also depends on the relative size and 880 

timing of the flood wave arriving at the confluence from the tributary and main river.  881 

8. Limitation and Future Work 882 

This study demonstrates the effect of incorporating bathymetry across large river networks 883 

on watershed processes using physically-based distributed modeling. There are certain limitations 884 

to the results presented here. While the proposed framework for generating bathymetry (SPRING) 885 

can be applied to every reach including lower-order streams, this study only analyzes the effect on 886 

the main stem and three of its major tributaries at both sites. This is primarily due to the lack of 887 

accurate thalweg elevations and channel volumes across the river network. Since accurate depth 888 
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and channel volume are critical to generating accurate bathymetry, future studies should focus on 889 

estimating these bathymetric characteristics for all channels in a network. In this regard, remote 890 

sensing-based methods such as the FREEBIRD algorithm, hydraulic modeling based 891 

depth/volume calibration, or remote sensing-based at-a-station equations may be particularly 892 

useful (Grimaldi et al., 2018; Legleiter et al., 2011; Price, 2009). Additionally, implementing 893 

SPRING for large-scale application across river networks spanning hundreds or even thousands of 894 

kilometers requires the automated generation of input datasets such as river centerline and banks. 895 

While public datasets such as the National Hydrography Database (NHD) do exist, they suffer 896 

from inaccurate spatial correspondence with the DEM. Such large-scale implementation 897 

necessitates the use of high-performance computing and parallelization. Therefore, future work 898 

also includes developing an automated and efficient algorithm that can create these input datasets 899 

for SPRING and use parallelization methods for computational efficiency at large scales. 900 

Additionally, large-scale application of SPRING also requires evaluation of the data requirements 901 

of calibrating the parameters of SPRING as well as spatial transferability of the parameter set 902 

across different river networks.  903 

The results presented here indicate that the difference due to bathymetry incorporation may 904 

be dependent on the scale of the main river, its tributaries, the magnitude and intensity of the event, 905 

and overall spatial extent and landuse distribution of the watershed. Future forays in this direction 906 

should consider researching the appropriate spatial scales at which the impact of bathymetry 907 

becomes more or less significant in the context of hydrologic and hydraulic processes. This may 908 

provide insights into when and where bathymetry incorporation is necessary and if there exist 909 

circumstances where bathymetry incorporation may be neglected for certain streams. This is 910 

particularly important in the context of developing large-scale accurate flood models. 911 
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Appendix A1: Estimating river bathymetry at individual reaches 923 

This section gives a brief explanation of the procedure followed by SPRING to estimate 924 

river geometry for individual reaches. For more details, please refer to Dey, (2016) or Merwade, 925 

(2004). 926 

For each river reach in the network, the channel centerline is divided into small segments, 927 

which are 10-14 times the width of the channel. The depth at each of these segments is estimated 928 

by linearly interpolating between the known depth at the USGS gage locations within the river 929 

network. For each segment, a normalized cross-section is created which has unit width and unit 930 

depth. First, the radius of curvature (r) of the centerline segment is estimated using the three-point 931 

arc method. Then the width of the channel (w) is calculated by measuring the average distance 932 

between the banks for that centerline segment. The thalweg position (t), which is the distance of 933 

the thalweg from the channel centerline along a river cross-section, is determined using an 934 

exponential function relating the normalized radius of curvature (𝑟∗ = 𝑟/𝑤) to normalized 935 

thalweg position (𝑡∗ = 𝑡/𝑤) as shown in Equation 1. The sign of the thalweg position (left of 936 

centerline: negative, right of centerline: positive) is determined by the direction in which the river 937 

meanders. If the river meanders (turns) to the left, there is more erosion on the right bank (outer 938 

bank) and more deposition on the left bank (inner bank). Consequently, the thalweg is positioned 939 

on the right side of the centerline (positive thalweg location). SPRING determines the position of 940 

the thalweg by locating the center and radius of curvature of the meander using the three-point 941 

rule. If the center of curvature of the meander is to the left of the centerline, the thalweg is located 942 

on the right side of the centerline, that is, the thalweg position is positive and vice-versa. In 943 

summary, the position of the center of curvature of the meander relative to the centerline 944 
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determines the sign (direction) of the thalweg position and the radius of curvature determines the 945 

distance between the centerline and the thalweg position. 946 

Finally, asymmetric cross-sections having unit depth and unit width are estimated based 947 

on the thalweg position, using a linear combination of beta-functions as shown in Equation 2. The 948 

scaling parameter, k, in Equation 2 is introduced in the equation to remove the constraint of total 949 

area in a cross-section. The area under a pdf is always equal to 1, so the area under the sum of two 950 

pdfs cannot be greater than 2. However, this constraint is not applicable to a normalized river 951 

cross-section of unit width and unit depth. The introduction of scaling parameter in the equation 952 

removes the area constraint and increases the flexibility of SPRING to create cross-sections of 953 

different shapes. The parameters of SPRING can be estimated from surveyed cross-sections 954 

available for a different section of the same river or from a different river with similar 955 

characteristics as the river in question. Finally, the width and bank elevation of the river channel 956 

for that segment is estimated using the bank lines and DEM. These are used to rescale the 957 

normalized cross-section shape to actual cross-section using Equation 3. After creating cross-958 

sections for each centerline segment using SPRING, longitudinal 3D lines (called profile lines) are 959 

drawn along the channel intersecting the cross-sections. Channel bed elevations are interpolated 960 

between the estimated cross-sections along these profile lines in a channel centered curvilinear 961 

coordinate system (Glenn et al., 2016; Merwade et al., 2006) to create a 3D mesh depicting the 962 

channel bathymetry.  963 

  964 
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Appendix A2: Integrated Channel and Pond Routing 965 

This section provides supplementary information on the computational framework used in 966 

Integrated Channel and Pond Routing (ICPR), a physically based tightly coupled distributed model 967 

capable of simultaneously estimating flooding related surface and subsurface processes in a 968 

watershed. Information provided in this section has been adapted from Saksena et al., (2021, 2020, 969 

2019) and Streamline Technologies, (2018).  970 

The basic modeling framework consists of 1D nodes and links to represent overland flow 971 

along the river network, a 2D flexible mesh for simulating surface water (SW) flow in rest of the 972 

watershed (including the floodplains), a 2D flexible mesh for modeling groundwater (GW) flow 973 

and a storage layer between the overland and groundwater meshes representing vadose zone 974 

processes. All these elements can interact with each other which allows for a single fully-integrated 975 

system of equations. Precipitation received by the overland region is partitioned between the 976 

overland region and vadose zone. The water in the overland region is routed through the overland 977 

mesh while the water that enters the soil column is stored in the vadose zone. Water from the 978 

vadose zone flows into GW from where it can either remain stored in GW, move to the overland 979 

region through seepage or return to vadose zone.  980 

The river network is discretized in the form of 1D nodes which are connected by 1D links 981 

which transport water from one node to another. The links can be modified to include hydraulic 982 

structures such as weirs, culverts or bridges. The 1D river network interacts with the overland flow 983 

in the floodplains (and the rest of the watershed) through the 1D-2D interface along the channel 984 

boundary (banks). The 2D overland flow is characterized by a triangular mesh of flexible 985 

resolution also known as a triangular irregular network (TIN). The modeler ensures that all 986 

topographic features relevant to overland flow of water are adequately represented in TIN. Each 987 
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vertex of the TIN has a honeycomb shaped subbasin which is created by joining the midpoints of 988 

the triangle sides to the geometric center of the triangular element in the TIN. These honeycombs 989 

are further divided into control volumes (CV) by intersecting them with the geospatial datasets 990 

used for parametrization. This ensures that the sub-grid variability in the geospatial datasets within 991 

each element of the TIN is conserved. Each CV acts as a subbasin where all hydrologic 992 

computations occur. The 2D overland flow occurs along the edges of the TIN. ICPR implements 993 

a finite volume discretization for conservation of mass as depicted in Equations A1-A4.  994 

 995 

𝑑𝑧 = (
(𝑄𝑖𝑛−𝑄𝑜𝑢𝑡)

𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒
) 𝑑𝑡    (Equation A1) 996 

𝑍𝑡+𝑑𝑡 = 𝑍𝑡 + 𝑑𝑧     (Equation A2) 997 

𝑄𝑖𝑛 = ∑ 𝑄𝑙𝑖𝑛𝑘𝑖𝑛
+ ∑ 𝑄𝑟𝑢𝑛𝑜𝑓𝑓 + ∑ 𝑄𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + ∑ 𝑄𝑠𝑒𝑒𝑝𝑎𝑔𝑒  (Equation A3) 998 

𝑄𝑜𝑢𝑡 = ∑ 𝑄𝑙𝑖𝑛𝑘𝑜𝑢𝑡
+ ∑ 𝑄𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛   (Equation A4) 999 

                                                                                              1000 

where,  𝑑𝑧 = incremental change in stage (L); 𝑑𝑡= computational time-step (T); 𝑄𝑖𝑛= total 1001 

inflow rate (L3T-1); 𝑄𝑜𝑢𝑡= total outflow rate (L3T-1); 𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = wet surface area (L2); 𝑍𝑡+𝑑𝑡 = 1002 

current water surface elevation (WSE) (L); 𝑍𝑡 = previous WSE (L);  ∑ 𝑄𝑙𝑖𝑛𝑘𝑖𝑛
= sum of all link 1003 

flow rates entering a control volume (L3T-1); ∑ 𝑄𝑙𝑖𝑛𝑘𝑜𝑢𝑡
= sum of all link flow rates leaving the 1004 

control volume (L3T-1); ∑ 𝑄𝑟𝑢𝑛𝑜𝑓𝑓 = sum of catchment area runoff (L3T-1); ∑ 𝑄𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = sum of 1005 

all inflows from external sources such as streamflow gages (L3T-1); ∑ 𝑄𝑠𝑒𝑒𝑝𝑎𝑔𝑒= sum of lateral 1006 
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seepage inflow from groundwater model (L3T-1); ∑ 𝑄𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 = sum of water pulled out of the 1007 

system for irrigation (L3T-1). 1008 

The overland flow along the 1D link is governed by the energy equation. The flow along 1009 

the edges of the 2D TIN is governed by diffusive wave equation. The roughness characterization 1010 

(Manning’s n) is governed by an exponential decay function relating Manning’s n to surface depth. 1011 

The relevant equations are given below (Equations A6-A9).   1012 

 𝑄 = {
𝑍1−𝑍2

𝛥𝑥𝐶𝑓
}

1/2

     (Equation A6) 1013 

𝑛 =  𝑛𝑠ℎ𝑎𝑙𝑙𝑜𝑤𝑒(𝑘)(𝑑)     (Equation A7) 1014 

𝑘 =  
𝑙𝑛(

𝑛𝑑𝑒𝑒𝑝

𝑛𝑠ℎ𝑎𝑙𝑙𝑜𝑤
)

𝑑𝑚𝑎𝑥
     (Equation A8) 1015 

𝑆𝑓𝑎𝑣𝑔
=  

4𝑄2

(𝐾1+𝐾2)2     (Equation A9) 1016 

where 𝑄 =flow rate (L3T-1); 𝛥𝑥 =length of channel (L); Z1, Z2= WSE at upstream end of 1017 

link, WSE at downstream end of link, respectively (L); Cf = conveyance factor; 𝑛 = Manning’s 1018 

roughness at depth d; 𝑛𝑠ℎ𝑎𝑙𝑙𝑜𝑤 = Manning’s roughness at ground surface; 𝑛𝑑𝑒𝑒𝑝 = Manning’s 1019 

roughness at depth = dmax; k = exponential decay factor; d = depth of flow; 𝑑𝑚𝑎𝑥 = user specified 1020 

maximum depth for transitioning to 𝑛𝑑𝑒𝑒𝑝; K1 and K2 = channel conveyance (L3T-1) at two cross-1021 

sections; and 𝑆𝑓𝑎𝑣𝑔
 = average friction slope across two cross-sections. 1022 

The vadose zone processes are represented through soil moisture accounting and recharge. 1023 

ICPR uses a vertical layer method where the vadose zone (region between the ground surface and 1024 

water table (GWT)) is divided into three vertical layers. Each layer has its own unique soil 1025 
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characterization which allows ICPR to account for the heterogeneity in soil properties with depth. 1026 

Each layer is further subdivided into ten cells (total of 30 cells) to track the movement of water 1027 

through the vadose zone. Water enters the vadose zone from the ground surface (infiltration) and 1028 

moves in the downward direction through the cells. This movement is governed by the unsaturated 1029 

conductivity and moisture content of each cell starting from the top cell to the bottom cell as per 1030 

the Brooks-Corey method (Equation A10).  1031 

 
𝐾(𝜃)

𝐾𝑠
=  (

𝜃−𝜃𝑟

𝜑−𝜃𝑟
)

𝑛

    (Equation A10) 1032 

where, θ = current moisture content; 𝜃𝑟 = residual moisture content; φ = saturated moisture 1033 

content; 𝐾(𝜃) = unsaturated vertical conductivity at θ; 𝐾𝑠 = saturated vertical conductivity; 𝑛 = 1034 

3 + 
2

𝜆
 ; and 𝜆 = pore size index. 1035 

If the moisture content of the bottom cell exceeds its saturation capacity (saturated moisture 1036 

content), the extra flux is delivered to the groundwater and the bottommost cell’s moisture content 1037 

is set to saturation. Next, a mass balance is performed from the bottommost cell to the topmost cell 1038 

to update the moisture content each cell to ensure that the moisture content in the cells do not 1039 

exceed saturation capacity. This allows fluxes to move in both direction (surface to GW and GW 1040 

to surface) and reflects the drying or wetting of the vadose zone based on the hydraulic fluxes. If 1041 

the GWT elevation exceeds the elevation of a cell, that cell is removed from the vadose zone and 1042 

becomes a part of the GW. If, on the other hand, the GWT elevation decreases, additional cells 1043 

with field capacity may be added to the vadose zone to account for the drying.  1044 

The GW is represented as a TIN (2D flexible mesh) similar to the overland 2D flow. GW 1045 

is bounded vertically by the vadose zone at the top and a bedrock layer at the bottom. The bedrock 1046 
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layer is assumed to be impenetrable. The movement in water is represented by a finite element 1047 

formulation of the continuity equation depicting 2D unsteady phreatic flow (Equation A11) 1048 

𝑛
𝜕ℎ

𝜕𝑡
=  −

𝜕(𝑢ℎ)

𝜕𝑥
−  

𝜕(𝑣ℎ)

𝜕𝑦
    (Equation A11) 1049 

where, 𝑛 is the fillable porosity (or specific yield); h is the GW elevation (piezometric 1050 

head); u, v are the velocity vector components; t is time; and x, y are the Cartesian coordinates. 1051 

The velocity vectors for isotropic media are represented by Equation A12.  1052 

𝑢 =  −𝐾.
𝜕ℎ

𝜕𝑥
 ; and, 𝑣 =  −𝐾.

𝜕ℎ

𝜕𝑦
    (Equation A12) 1053 

where 𝑛 is the fillable porosity (or specific yield); h is the GW elevation (piezometric head, 1054 

L); u, v are the velocity vector components (LT-1); t is time (T). Equation A11 and A12 are solved 1055 

simultaneously using Galerkin approximation and Green’s Theorem to develop a set of partial 1056 

differential equations. The partial differential equations are solved for six nodes of the GW TIN 1057 

(three vertices of each triangular element and midpoint of each side of the triangle) using a 1058 

quadratic interpolation function shown in Equation A13.  1059 

ℎ = 𝐴𝑥2 +  𝐵𝑦2 + 𝐶𝑥𝑦 + 𝐷𝑥 + 𝐸𝑦 + 𝐹   (Equation A13) 1060 

where x, y are the Cartesian coordinates (L); K is the permeability (conductivity) of the 1061 

porous media; A – F = coefficients of the six-point quadratic function. The set of equation is solved 1062 

using the Cholesky method and provides estimates of water transport, storage variation, and 1063 

external flows into the vadose zone and overland flow region across the entire GW TIN. Finally, 1064 

the seepage rates are calculated using Equation A14. 1065 

𝑄𝑠𝑒𝑒𝑝𝑎𝑔𝑒 =  
(ℎ1−ℎ2)×(𝐴)×𝜑𝑏

𝑑𝑡𝑔𝑤
    (Equation A14) 1066 
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where 𝑄𝑠𝑒𝑒𝑝𝑎𝑔𝑒 = seepage rate (L3T-1); ℎ1= calculated GWT elevation (L); ℎ2 = ground 1067 

surface elevation at node (L); 𝐴𝑔𝑤= groundwater control volume surface area (L2); 𝜑𝑏 = below 1068 

ground fillable porosity; and 𝑑𝑡𝑔𝑤 = groundwater computational time increment (T). 1069 

  1070 
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