
P
os
te
d
on

24
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
17
05
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Transforming in-situ measurements allows robust estimation of the

spatial average of soil moisture despite sensor failures

Felix Pohl1, Martin Schrön1, Corinna Rebmann2, Luis E. Samaniego3, and Anke
Hildebrandt4

1Helmholtz Centre for Environmental Research GmbH - UFZ
2Helmholtz Centre for Environmental Research - UFZ
3UFZ-Helmholtz Centre for Environmental Research
4Friedrich Schiller University Jena

November 24, 2022

Abstract

Robust estimation of average soil water content with spatial resolution of a few tens to a few hundreds of meters is essential

for evaluating models or data assimilation products. Due to the high spatial variability of soil moisture at the point scale,

sufficient coverage of spatial observations is required to estimate a robust field average. If sensors fail over time, averaging the

remaining measurements risks the introduction of artificial shifts in the resulting time series. Here, we explore the problem

of using incomplete soil moisture observations to estimate spatial averages and propose a correction accounting for temporal

persistence of spatial patterns. By transforming, i.e. upscaling, each sensor measurement to the field scale using information

from time periods with sufficient coverage, the dependence on full spatial coverage can be decreased. The transformed values

allow to build a more robust approximation to the spatial mean, even when spatial coverage becomes sparse. We found that

high temporal stability of the sensors does not necessarily guarantee that the transformed time series will provide a good

estimate of the mean and therefore recommend the use of robust statistics to derive the field mean, which requires at least

three estimates per observation time. The proposed protocol is applicable for observational time series with varying sample

size across a given spatial extent, and it can be adopted for other variables exhibiting a temporally stable bias between the

individual point observations and field scale average.
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Key Points:10

• The multi-sensor average of soil moisture data is prone to substantial bias as sen-11

sors fail over time.12

• Reference estimates can be used to transform single sensor measurements, thus13

reducing the number of required sensors.14

• CDF matching with dynamic piecewise linear regression can robustly transform15

measurements, also in the presence of extreme events.16
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Abstract17

Robust estimation of average soil water content with spatial resolution of a few tens to18

a few hundreds of meters is essential for evaluating models or data assimilation prod-19

ucts. Due to the high spatial variability of soil moisture at the point scale, sufficient cov-20

erage of spatial observations is required to estimate a robust field average. If sensors fail21

over time, averaging the remaining measurements risks the introduction of artificial shifts22

in the resulting time series. Here, we explore the problem of using incomplete soil mois-23

ture observations to estimate spatial averages and propose a correction accounting for24

temporal persistence of spatial patterns. By transforming, i.e. upscaling, each sensor mea-25

surement to the field scale using information from time periods with sufficient coverage,26

the dependence on full spatial coverage can be decreased. The transformed values allow27

to build a more robust approximation to the spatial mean, even when spatial coverage28

becomes sparse. We found that high temporal stability of the sensors does not neces-29

sarily guarantee that the transformed time series will provide a good estimate of the mean30

and therefore recommend the use of robust statistics to derive the field mean, which re-31

quires at least three estimates per observation time. The proposed protocol is applica-32

ble for observational time series with varying sample size across a given spatial extent,33

and it can be adopted for other variables exhibiting a temporally stable bias between the34

individual point observations and field scale average.35

1 Introduction36

Soil moisture is a key variable for the assessment of climate change effects on ecosys-37

tem functioning (Vereecken et al., 2008; Humphrey et al., 2018; Green et al., 2019; Humphrey38

et al., 2021). Although its share of the global water resources is small, soil moisture plays39

an essential role for maintaining transpiration, plant productivity and plant health (Jaleel40

et al., 2009; C. Wang et al., 2019). Especially the observation of changes in soil water41

balance and temporal trends are of key importance, e.g., for the further development of42

monitoring, early warning, and projection systems related to drought or flood events (Hao43

et al., 2018; Bordoni et al., 2021; Rakovec et al., 2022), for the identification of param-44

eters in hydrological models (Cuntz et al., 2015), and for improving the parameteriza-45

tion of land surface models (Samaniego et al., 2017). Remote sensing products and land46

surface models can provide large-scale information (e.g., Babaeian et al., 2019; Yao et47

al., 2021), but they require robust reference data for validation and error quantification48

(Gruber et al., 2020).49

Spatial reference estimates of soil moisture are usually derived from in-situ mea-50

surements (Gruber et al., 2020). Even modern techniques to directly measure field-average51

water content, such as cosmic-ray neutron sensing or remote sensing, typically require52

multiple in-situ measurements for calibration (Colliander et al., 2017; Schrön et al., 2017).53

To bridge the ”support gap” between reference measurements (point scale) and target54

product (spatial scales from meters to kilometers) requires a transfer of the information55

from the lower hierarchical level to the grid scale of the target product (Y. Pachepsky56

& Hill, 2017). Depending on the heterogeneity of the area of interest, multiple spatial57

measurements are needed to estimate its spatial average soil water content reliably. Due58

to the strong effect of local factors on soil water dynamics, randomly located single sen-59

sor measurements are usually not representative of the entire extent (Brocca et al., 2009;60

Heathman et al., 2012; Zhu et al., 2018). Based on literature review, Crow et al. (2012)61

concluded that on an area of about 800m2 on average 10–20 sensors are required to ob-62

tain the field mean with an accuracy of 2 vol.% (1σ) in the top layer. Depending on the63

site-specific characteristics, such as topography, vegetation or climate, the actual num-64

ber of required sensors can range from 1–12 sensors (Hupet & Vanclooster, 2002) to 4265

sensors (C. Wang et al., 2008) in extreme cases.66
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Even if sufficient coverage of an area is achieved by a spatial sensor setup, contin-67

uous monitoring is always prone to sensor failures or measurement errors (e.g., through68

frost, cracks or preferential flow). The corresponding gaps disrupt the integrity of the69

representative ensemble, which can lead to shifts, biases, and increased uncertainties in70

the determination of the field mean (Y. A. Pachepsky et al., 2005; Guber et al., 2008;71

Cosh et al., 2016). The reason is that soil moisture conditions at a given location are sub-72

ject to local and non-local controls (Vereecken et al., 2014; Fatichi et al., 2015; Hu et al.,73

2017) that can cause drier or wetter conditions on the point scale compared to the spa-74

tial average. Vachaud et al. (1985) demonstrated that this bias between point and field75

scale can be persistent in time, a phenomenon commonly referred to as temporal sta-76

bility (TS), or also temporal persistence, rank stability, or rank order (Chen, 2006; Van-77

derlinden et al., 2012). Since, numerous studies confirmed TS of soil water content (e.g.,78

Kachanoski & de Jong, 1988; Rolston et al., 1991) and utilized it for various hydrolog-79

ical applications, e.g., for data assimilation (Pan et al., 2012; Baatz et al., 2021) and model80

development (Brocca et al., 2017). The finding of TS was also essential for developing81

strategies to reduce the need for multiple spatial measurements when deriving reference82

values for the spatial mean. Here, TS can be used to identify locations that are repre-83

sentative of the area of interest (Grayson & Western, 1998; Jacobs, 2004; Brocca et al.,84

2009; Ran et al., 2017) or to correct the individual point-to-field scale bias when mea-85

suring at non-representative locations (De Lannoy et al., 2007; Crow et al., 2012; K. C. Ko-86

rnelsen et al., 2015)87

In a comprehensive review on TS, Vanderlinden et al. (2012) found that 29% of88

all investigated datasets had a bias in their calculation of the mean relative difference,89

and concluded that it was likely caused by incomplete observations. Several statistical90

and data-driven methods to fill missing values in soil moisture time series have been tested91

(Bárdossy et al., 2005; Dumedah & Coulibaly, 2011; K. Kornelsen & Coulibaly, 2014;92

Shao et al., 2017) ranging from fairly simple techniques such as monthly average replace-93

ment to more advanced approaches such as k-NN, local variance reducing techniques,94

artificial neural networks or evolutionary polynomial regression. While the performance95

of the studied methods differed, all have in common that they are only suitable for clos-96

ing relatively short gaps. For example, K. Kornelsen and Coulibaly (2014)recommend97

only filling gaps that are no longer than 72–100 hours since accuracy decreases with in-98

creasing gap length. Similarly, Dorigo et al. (2013) reported that the automated qual-99

ity control system from the International Soil Moisture Network is incapable of handling100

large data gaps.101

The objective of this study is to assess a strategy to create robust spatial averages102

in the presence of spatially and temporally irregularly distributed data gaps. In partic-103

ular, we demonstrate our approach based on soil moisture data from a distributed mon-104

itoring network (∼ 1 ha) installed in a deciduous forest in Germany, in which most of105

the sensors failed over time, resulting in spatial data gaps of > 80% in comparison to106

the originally installed setup. Previous work has shown that only a certain number of107

active sensors are required to reliably estimate the spatial mean (Brocca et al., 2010; Crow108

et al., 2012; Gao et al., 2013; S. Lv et al., 2020), suggesting that the mean can still be109

estimated after sensor failure, provided enough sensors remain active. By estimating the110

minimum number of required sample size (MNRS), the data set can be split into refer-111

ence and application period. We hypothesize that a transformation of the measurements112

is required outside of the reference period because the temporal stability of the spatial113

patterns can lead to bias in the time series if sensors fail (Y. A. Pachepsky et al., 2005;114

Guber et al., 2008). We use the reference period to estimate parameters for the trans-115

formation of the remaining sensor measurements. The upscaled data can then be used116

to robustly approximate the spatial average, even from a small subset of the full mon-117

itoring network. An overview of our proposed procedure can be found in Fig. 1. Addi-118

tionally, we also assess the temporal stability of the sensors and discuss how it affects119

the accuracy of the transformation.120
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mean       of
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Figure 1. An overview of our proposed procedure to estimate the average field scale water

content from in-situ measurements with gaps in space and time.

2 Methods and data121

2.1 Soil moisture monitoring122

Data is gathered within a 1 ha fenced area of the forest ’Hohes Holz’ (DE-HoH, N52◦05′123

E11◦13′, 193m above sea-level) which is located in the northern area of the Bode wa-124

ter catchment near Magdeburg in Central Germany (Wollschläger et al., 2017). Soil wa-125

ter content sensors from a distributed monitoring network (SoilNet-WSN with SPADE126

sensors, sceme.de GmbH, Germany, Bogena et al., 2010) were originally installed in the127

frame of a trenching experiment (Marañón-Jiménez et al., 2021) in April 2014 and dis-128

tributed considering patches with low and high tree (and thus root) density (21 nodes,129

see Fig. A1) for 15 locations. The six sensors of a node were installed in vertical pro-130

files ranging from 10 cm to 60 cm depth. Additionally, sensors of six more nodes were dis-131

tributed in the shallow layer between 10 cm and 30 cm to cover the higher soil moisture132

dynamics of this zone. Of the total setup described in Marañón-Jiménez et al. (2021),133

only sensors without soil treatment were used for our analysis. Data were acquired ev-134

ery 10min via the network coordinator and stored on a field computer. In addition soil135

moisture was also measured with CS616 sensors (Campbell Scientific Inc., Logan, Utah,136

USA) in two additional profiles. Those data were also acquired and stored as 10min av-137

erages by a CR1000 data logger (Campbell Scientific Inc., Logan, Utah, USA). More in-138

formation on the research site are given in Appendix A.139

Physically unrealistic data were removed by semi-automated procedures that check140

for limit exceedances (values below zero or above local average porosity) and spikes un-141

related to precipitation. Daily averages were calculated per sensor if more than 20% of142

data per day was available. For the present analysis we worked with the daily averages143

of the period from April 2014 to April 2021. Sensors that provided data on less than 30144

days were omitted to avoid low statistical power. In total, the data used here consists145

of measurements from 30 sensors in 10 cm, 15 sensors in 20 cm, 24 sensors in 30 cm, 16146

sensors in 40 cm and 16 sensors in 50 cm. After sequential sensor failures, between 1 and147

10 sensors remained in operation per layer as of 2018. We present results mainly for the148

10 cm and 50 cm layers because they show the largest differences. The 60 cm layer only149

consisted of very few sensors in the original setup and was therefore not considered in150

this work.151
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2.2 Evaluation of temporal stability152

Given are a number A of active measurements of volumetric soil water content, θ,153

at locations x ∈ (1, ..., A) and times t ∈ T during a total measurement period T . The154

arithmetic spatial and temporal mean soil water contents are calculated as follows:155

θ̄t =
1

A

∑
x∈A

θt,x , (1)156

where θ̄t is the spatial arithmetic mean over all active sensors at time t and157

θ̄x =
1

T

∑
t∈T

θt,x , (2)158

where θ̄x is the temporal average of all observations by a sensor at location x.159

To quantify temporal stability (TS), the mean relative difference (MRD) and its160

standard deviation (SDRD) are commonly used (Vachaud et al., 1985; Vanderlinden et161

al., 2012). MRD indicates the average deviation of the point measurement from the field162

mean, i.e., whether a particular location is drier or wetter on average than the field mean,163

and is defined as:164

RDx,t =
θx,t − θ̄t

θ̄t
, (3)165

166

MRDx =
1

nx

nx∑
t=1

RDx,t , (4)167

where RDx,t is the relative difference of θ at the location x and observation time t, and168

nx is the number of observation days of each location. Small absolute values of RDx,t169

indicate locations that are near the spatial average. The standard deviation of the rel-170

ative difference (SDRD) can be used to describe the TS of a location, with lower values171

indicating high stability or temporal persistence of the soil moisture conditions at that172

location. SDRD is defined as:173

SDRDx =
1√

nx − 1

nx∑
t=1

(RDx,t −MRDx)
2 . (5)174

Jacobs (2004) defined a single metric that combines the information of MRD and175

SDRD, that can be used to define representative locations for the target area. We fol-176

low the suggestion of Zhao et al. (2010) and use the term index of time stability (ITS)177

instead of RMSE proposed by Jacobs (2004) to avoid confusion with the general RMSE.178

ITS can be calculated as:179

ITSx =

√
MRD2

x + SDRD2
x . (6)180

The smaller the value for ITS, the better a sensor location reflects the spatial av-181

erage.182

2.3 Definition of the reference period183

We assume that the estimation error for θt is small if the sample is sufficiently large,184

which implies that the identity of the sample (i.e., which sensors are active at time t)185

has little effect on the estimate of θt. Obviously, due to the TS of soil moisture patterns,186

with increasing sensor loss the fluctuating identity of the sample leads to different bi-187

ases and increases the estimation error of θt. In order to investigate the relation between188

sample size and error, for each depth we randomly selected 20 days with the largest sam-189

ple size, i.e., the amount of active sensors at time t. From those, we removed randomly190

–5–
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(bootstrap with replacement, n = 1000) some of the active sensors (b = 5% · · · 95%),191

and calculated spatial averages θt,b. We then related the coefficient of variation of the192

bootstrapped averages for each sampling stage b to the sample size. We determined the193

threshold for the minimum required sample size (MNRS) based on the ratio between in-194

crease in the coefficient of variation and the change in the sample size. Sample sizes at195

which the increase in CV was equal to or greater than the decrease in the sample size196

(Zanella et al., 2017) was used as the MNRS to estimate the spatial mean as reference.197

The ensemble of all measurement intervals t, at which the amount of active sensors is198

equal or greater than the estimated MNRS, forms the reference period (Tref).199

2.4 Statistical transformation200

We use a non-linear transformation to estimate the field scale average from the point201

scale in situ measurements. This transformation is commonly known as ”cumulative dis-202

tribution function (CDF) matching” when its applied to soil moisture data (Reichle, 2004;203

Drusch, 2005; De Lannoy et al., 2007; Liu et al., 2011; Han et al., 2012; S. Wang et al.,204

2018) and as ”quantile mapping” when it is used to correct output of climate models (Thrasher205

et al., 2012; Maraun, 2013; Cannon et al., 2015). Gudmundsson et al. (2012) discuss even206

more formulations that can be found in the literature. To avoid further confusion, we207

will use the term ”statistical transformation” as it correctly represents the technical pro-208

cedure without undermining previous studies, as suggested by Gudmundsson et al. (2012).209

We attempt to correct for the point-to-field scale bias of each sensor by finding a210

function h that transforms the distribution of each sensor measurements to match the211

distribution of the observed spatial average:212

θsp,x = h(θx) = F−1
sp (Fx(θx)), (7)213

where F is the CDF of the spatial (sp) and point scale soil water content, respec-214

tively, and F−1 is the inverse CDF. We solve Eq. 7 by using the empirical CDF of the215

in situ measurements and the reference spatial average (θ̄ref). Previous soil moisture re-216

lated works estimated h through least square fits of a third (Drusch, 2005; De Lannoy217

et al., 2007; Han et al., 2012; Gao et al., 2019; Tian et al., 2020) or fifth (Brocca et al.,218

2011; Gao et al., 2017; Zhuang et al., 2020) order polynomial equation or by a 2-parametric219

linear transformation (Scipal et al., 2008). Liu et al. (2009) realized the CDF matching220

by dividing the CDFs into eight segments with breaks at the 5th, 10th, 25th, 50th, 75th,221

90th and 95th percentile, and then applying a simple linear regression for each segment222

to adjust the data. This approach has been adopted by, e.g., Liu et al. (2011) and (Xu223

& Cheng, 2021) with slightly different segments.224

We adopt piecewise linear regression (PLR) to implement CDF matching because225

PLR has some advantages over polynomial models: (1) it is very flexible and therefore226

allows better fits when the data to be modeled do not follow a polynomial equation, and227

(2) it avoids the extrapolation problem of polynomial models since these can have strong228

inflections outside the domain of the data used for matching. However, instead of using229

fixed breaks for the segments, we estimated the breakpoints individually for each sen-230

sor because there is no objective reason why a break in the regression model should be231

expected at a certain percentile. This ensures that segments are built on breaks in the232

relationship of the data and are not limited to a specific percentile.233

Breakpoint or change point detection can be realized in various ways (van den Burg234

& Williams, 2020). We used the r-package ”dpseg” which offers a dynamic programming235

approach by incrementally finding local optima of a score function (Machne & Stadler,236

2020):237

Sj = max
i≤j

(Si−J + score(i, j))− P with J ∈ {0, 1} , (8)238
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where S is the j-th breakpoint, J is a binary jump parameter defining whether discon-239

tinuous jumps between adjacent segments are allowed, P is a penalty parameter tuning240

the allowed variance per segment, and score(i, j) is a scoring function quantifying the241

goodness-of-fit between points i and j. The negative variance of residuals is used as the242

scoring function:243

score(i, j) = −s2r . (9)244

Examples of the derived breakpoints and transformation functions can be found in Ap-245

pendix B.246

3 Results247

3.1 Minimum required sample size and temporal stability248

We present spatially distributed soil moisture measurements at measurement depths249

of 10 cm and 50 cm. Detailed information about the particular structure of the available250

(respectively missing) data is given in panel A of Fig. 2. Measurements of 30 sensors in251

the 10 cm layer and 16 sensors in the 50 cm layer were available for our study. While some252

sensors delivered data for up to 98% of the entire observation period, other sensors pro-253

vided measurements only on up to 5% of all days (or the data were rejected due to un-254

realistic values). Spatial data gaps are lowest at the beginning of the field study in April255

2014, with most sensors failing especially during or after the winter of 2017. From 2018256

on, about six to eight sensors were still operating in the 10 cm layer, while only three sen-257

sors remained in continuous operation in the 50 cm layer.258

To get an idea of how the sensor failure affects the reliability of the spatial aver-259

age (shown in panel A), we bootstrapped the mean of the sensors on the days with the260

highest data availability and then artificially reduced the sample size. The coefficient of261

variation (CV) of the mean is displayed in panel B in Fig. 2. The change in the CV with262

decreasing sensor availability shows that the CV hardly deteriorates when only a few sen-263

sors are removed, but then increases sharply when the number of sensors is small. We264

determined the threshold for the minimum number of required samples (MNRS) based265

on the ratio between increase in the coefficient of variation and the change in the sam-266

ple size. The resulting MNRS is six sensors for 10 cm and five sensors for 50 cm. On these267

sample days with maximum data availability, the CV is less than 10% when the MNRS268

is reached. It follows that the threshold ideally ensures that the CV does not exceed 10%269

throughout the reference period. It also follows that in 10 cm the MNRS is given for for270

most of the observation period, while in 50 cm only data up to 2017 can be considered271

as reference.272

Panel C in Fig. 2 presents the rank-ordered mean relative difference (MRD), its273

standard deviation (SDRD) and the index of time stability (ITS) of each sensor. Note274

that here we have only used the previously estimated reference period with days that275

meet the MNRS. At each depth, sensors can be identified that are close to the average276

for the entire site, and likewise, some locations are much wetter or drier than average.277

Deviations from the mean value can range from −51% to 41%, in relative terms. The278

comparison of 10 cm and 50 cm shows that the soil acts like a natural low-pass filter, caus-279

ing the margins of the MRD to decrease with increasing depth. SDRD is also higher on280

average in the upper layer and sites with MRD close to zero can occur for both, smaller281

and larger SDRD, respectively.282

3.2 Predicting the field average from in situ measurements283

By mapping the distribution of each sensor to the distribution of the spatial ref-284

erence mean, the measurements of each sensor are essentially transformed into a predic-285

tor of the field mean. In other words, they are rescaled (i.e., upscaled) from the lower286

hierarchical level, the point scale, to the field scale. Fig. 3 presents the results of this trans-287

–7–
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Figure 2. Quantitative information about the data used in this study. Panel A shows time

series of data availability for two layers. Panel B shows the coefficient of variation (CV) of the

bootstrapped mean soil moisture for various sample sizes at days with maximum data availabil-

ity. The black line gives the average of all 20 days, and the gray area illustrates the range of CV

over those days. Vertical dashed lines represent the threshold where the ratio between the change

of CV and sample size becomes larger than unity, and which was taken to identify dates with

sufficient data availability for a reliable estimate of the spatial average. Panel C shows the rank-

ordered mean relative difference (MRD). Vertical bars are the standard deviation of the relative

difference (SDRD) and the dashed line is the index of time stability (ITS). The colors refer to the

number of days each sensor provided data.
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formation. The sensors’ point measurements are shown in gray and their transformed288

estimates in blue colour. Panel A of Fig. 3 shows the time series of all available measure-289

ments, both before and after transformation. The reference line is the arithmetic mean290

of the original sensor measurements in times with sufficient data (cf. Fig. 2).291

Figure 3. Information on the measurements in 10 cm and 50 cm before (gray) and after trans-

formation (blue). Panel A shows the time series of all sensors, solid line is the arithmetic mean

during the reference period. Panel B shows exemplary the empirical probability density function

of three sensors with most available data before (left side) and after transformation (right side).

Panel C shows the scatter plot of original and transformed sensor data versus the spatial average

during the reference period.

Panel B of Fig. 3 shows the effect of the transformation on the probability density292

function (PDF) using the example of three sensors that provided most data at their re-293

spective depths. Overall, the PDFs of the original sensor measurements have quite dif-294

ferent shapes, with those of the sensors at 10 cm depth being much more similar than295

those of the sensors at 50 cm depth. The PDFs of the sensors can be roughly summa-296

rized by a bimodal shape with a peak in the wet region and a peak in the dry region,297

with the exception of sensor id 13, which corresponds more to a unimodal distribution.298

After transformation, the PDF of the sensors at 10 cm are very similar and follow a tri-299

modal distribution with a peak in the wet region, a second peak in the intermediate re-300

gion and a less pronounced third peak in the dry region. The sensors in 50 cm roughly301

follow the same shape, but on a smaller range and with more variety.302

Panel C of Fig. 3 complements the description of the transformed data with a scat-303

ter plot of reference versus sensor data, both for the original measurements and the trans-304

formed values. The rescaled values are much closer to the 1:1 line and less scattered than305

the original measurements. In comparison of 10 cm to 50 cm, in the lower layer both the306

variability and the range of the measurements is much smaller than in 10 cm. Note that307

here we present the reference to the transformation based on the same reference data.308

For a more detailed performance analysis with a test and training setup, the reader is309

referred to Appendix C.310

–9–



manuscript submitted to Water Resources Research

Figure 4. Scatter plot of R2 and RMSE of rescaled measurements versus different indicators

of temporal stability. Colours refer to the amount of data of each sensor.

Fig. 4 shows the relationship between various methods to characterize temporal311

stability (cf. Panel C, Fig. 2) and goodness of fit (gof, i.e., R2 and RMSE) of the trans-312

formed measurements during the reference period, where an estimate of the real spatial313

average is available. Overall, a lower index of time stability (ITS) indicates a lower RMSE314

value after transformation, while R2 remains largely unaffected. Splitting ITS into its315

two components, MRD and SDRD, shows that the clear relationship between ITS and316

RMSE is more dominated by MRD than SDRD. R2 appears to be largely independent317

of the TS characteristics. However, it should be noted that R2 is generally high regard-318

less of TS, and the only sensors with an R2 below 0.5 are those with low data availabil-319

ity. In these cases, the lower goodness of fit could simply be an artifact of the short mea-320

surement period.321

3.3 Field average prediction with small sample sizes322

We evaluated the effectiveness of upscaling sensors (Eq. 7) for field-scale soil wa-323

ter content estimation at small sample sizes during the reference period. For this, we cal-324

culated the arithmetic mean from combinations of one to six sensors (1000 repetitions)325

and plot the empirical CDF of RMSE and R2 in Fig. 5. It is clear that the transforma-326

tion drastically reduces the RMSE in both depth, while R2 obtained from the means of327

the original measurements overall is larger than that of the transformed ones. At 10 cm,328

using more than two sensors does not appreciably improve the R2 and RMSE when us-329

ing the transformed data. Instead, for the original measurements, the RMSE improves330

significantly with each additional sensor. The same is true for 50 cm, where the RMSE331

is also overall smaller. With at least three sensors, an R2 of more than 0.8 can be ex-332

pected in most cases.333

Three sensors remained active in the 50 cm layer, and therefore the three sensors334

with the highest data availability were also selected for 10 cm as a comparison. We bench-335

marked the performance of the three rescaled sensors in each layer as predictors of soil336

water content (Eq. 7) at the field scale against the estimate from the reference period,337

and present the goodness-of-fit (gof) in Tab. 1. In addition, we also considered the use338

of all three sensors and combined their estimates using the median as a robust metric339

of the center of the distribution. In both depths, the R2 is higher and the RMSE lower340

for the median of all compared to the individual sensors. Information on the character-341

istics of TS of the sensors can also be found in Tab. 1.342

–10–



manuscript submitted to Water Resources Research

Figure 5. Empirical cumulative distribution function of R2 and RMSE of the relation be-

tween the reference average and the average of transformed (blue) and measured (gray) SWC for

random combinations of 1–6 sensors.

Table 1. Example of R2 and RMSE for three sensors with most available data in both lay-

ers, and characteristics of TS for each sensor. In addition, R2 and RMSE are presented for the

median of the three sensors as a robust alternative to the individual predictions of the three

sensors

Depth Predictor R2 RMSE |MRD| SDRD ITS

10 cm Sensor 23 0.84 2.85 0.25 0.17 0.30
Sensor 29 0.95 1.63 0.19 0.11 0.22
Sensor 30 0.85 2.75 0.00 0.17 0.17
Median 0.96 1.45

50m Sensor 13 0.87 1.35 0.11 0.09 0.14
Sensor 15 0.95 0.85 0.06 0.13 0.14
Sensor 16 0.76 1.84 0.29 0.12 0.32
Median 0.95 0.78
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The estimates for the field-scale soil water content for our research site using the343

transformed data is shown in Fig. 6. The difference between the simple mean of the orig-344

inal data (gray line) and the median of the transformed data (orange line) illustrates the345

effect of rescaling on field-scale soil water content. In winter and summer, the median346

of the transformed data are about 3–4 vol.% lower than the original data. The time se-347

ries shifts towards an apparently wetter regime after the reference period, likely caused348

due to the sensor error than a change of the climate or soil characteristics.349

Figure 6. Estimated field scale soil water content in 10 cm and 50 cm. Three sensors remained

working in 50 cm (cf. Panel A in Fig. 2), therefore three sensors were also selected in 10 cm (cf.

Panel B in Fig. 3) based on highest data availability. Panel A shows the time series of the spatial

average point estimates of the three sensors (Eq. 7, θx,sp) and their median θ̄x,sp, respectively,

the reference spatial average (θ̄ref) and the arithmetic mean of the full uncorrected dataset (θ̄x)

outside of the reference period. Panel B shows the scatter plot of the point estimates of the three

selected sensors (blue) and their median (orange), respectively, against the reference period true

spatial average per layer.

4 Discussion350

4.1 Challenges and limitations of working with gaps in soil moisture mea-351

surements352

The spatial soil moisture characteristics of the research site exhibit strong hetero-353

geneity, with differences of up to 20 vol.% between sensors at the same measurement time.354

The range of the mean relative difference (Panel C, Fig. 2) is comparable to results in355

other studies with similar forest and climate types (L. Lv et al., 2016; Wei et al., 2017;356

Zhu et al., 2021), indicating that the high degree of scatter is typically expected at such357

sites. The uneven data contribution of sensors along the dry-humid gradient within the358

data set creates a systematic problem when the remaining measurements of incomplete359

measurements are averaged: Due to the ordered structure of the data, a changing num-360

ber of active sensors can lead to a systematic bias of the time series at the field scale (Y. A. Pachep-361

sky et al., 2005; Guber et al., 2008). For example, if more sensors fail in drier locations,362

a time series of calculated spatial average using Eq. 1 would gradually shift more toward363
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the wetter environment and thus does not reflect the entire study site anymore. This be-364

havior was observed in the 50 cm layer (see Fig. 6). After the failure of most sensors in365

2017, an artificial shift towards a wetter regime was observed.366

In principle, it is always desirable to have complete measurement series, but data367

failure is not uncommon in field studies. However, the bootstrapping simulation shows368

that as long as a minimum number of sensors is active, the estimation uncertainty of the369

spatial mean is negligible. Bootstrapping is a robust method to estimate the sampling370

distribution if the true distribution is unknown, and therefore also commonly used to as-371

sess the statistical distribution of soil moisture measurements (Rowlandson et al., 2015;372

Singh et al., 2019; Fathololoumi et al., 2021). C. Wang et al. (2008) compared bootstrap-373

based estimation of required sample size with other geo-statistical and stratified sam-374

pling strategies and found similar results among the methods. Due to limited data avail-375

ability, we only examined exemplary days with the greatest possible completeness. It is376

known that the spatial variability of soil water content changes with different phases (wet-377

ting, drying) (Illston et al., 2004; Vereecken et al., 2014), absolute water content (Brocca378

et al., 2010; Peng et al., 2016) and phenological state of the ecosystem (T. Wang et al.,379

2015). Therefore, in future studies, it might be advisable with better data availability380

to investigate MNRS separately for different phases. Because there may be seasonal con-381

trols and seasonal variation of the spatial dispersion (Hupet & Vanclooster, 2002; Illston382

et al., 2004; Biswas, 2014; Hu et al., 2017), predictions could be improved by estimat-383

ing seasonal correction functions. However, this procedure might lead to jumps in the384

time series when moving from one season to the next, and was therefore not considered385

in this study.386

The estimated threshold value of the MNRS for a reliable averaging of the mea-387

sured values showed that only in the 10 cm layer sufficient sensors were consistently ac-388

tive (with the exception of a few days). In the other depths the threshold value was un-389

dercut, so that the derivation of an average without correction would lead to a biased390

time series. Especially obvious in 50 cm depth, a clear difference between measured and391

transformed data can be seen outside the reference period. Although a definitive assess-392

ment of goodness-of-fit in later years is not possible for our remaining measurements due393

to the lack of reference values, it shows how increasing bias threatens to manifest itself394

as a temporal trend. Furthermore, the proposed corrected time series is clearly a bet-395

ter estimate of the true spatial average for the following two reasons: First, the sudden396

increase in soil moisture in winter should be explainable by physical reasons by major397

changes in climatic conditions, since soil moisture was at a similar level in all previous398

winters. In fact, however, an extreme drought began in Central Europe in the summer399

of 2018, which also affected the study region. A daily time series of the Standardized Pre-400

cipitation Evapotranspiration Index for a nearby research site can be found in Hermanns401

et al. (2021). Thus, an apparent shift toward a wetter regime is implausible.402

Second, the measurements of the 10 cm layer can be used as a surrogate for a ref-403

erence, since enough sensors were active during the entire study period. Although the404

soil acts as a low-pass filter, resulting in much less diurnal variability in the deeper soil405

layer than in the higher layers, there should still be a clear statistical relationship be-406

tween the spatial averages between the corresponding depths. Correlating the time se-407

ries of the spatial mean during the reference period (e.g. the best estimate of the true408

spatial mean) in 10 cm (cf. Fig. 5) with the field scale average time series in 50 cm yields409

an R2 of 0.74 for the original measurements and 0.89 for the transformed measurements410

(not shown). Likewise, the RMSE decreases from 5.77% for the original measurements411

to 4.06% for the transformed measurements (not shown). Both statistics indicate a stronger412

relationship between layers when the transformed average is used in 50 cm.413
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4.2 Robust estimates of spatial soil moisture averages414

The proposed statistical transformation is technically equivalent to other upscal-415

ing studies and several transformation approaches have been discussed in the literature,416

ranging from simple linear scaling (De Lannoy et al., 2007; Crow et al., 2012) to more417

advanced approaches such as Bayesian regression (Qin et al., 2013), block kriging (J. Wang418

et al., 2015), random forest (Clewley et al., 2017; Zappa et al., 2019) or deep learning419

methods (Zhang et al., 2017). For an extensive comparison of nonlinear rescaling func-420

tions see Afshar and Yilmaz (2017). Since many of these techniques involve rescaling of421

remote sensing products, the applicability of their results to upscaling of in situ mea-422

surements of individual sites needs to be examined.423

To save cost and effort, it is generally desirable to measure at single points rather424

than with multiple, randomly distributed measurements. Many studies have investigated425

the feasibility to utilize TS of spatial patterns to use representative measurement loca-426

tions (RML) for the spatial average (e.g., Rivera et al., 2014; Molero et al., 2018; Singh427

et al., 2019; Fry & Guber, 2020). On the other hand, there are studies that report that428

TS can change inter-seasonally (Zhao et al., 2010; Biswas, 2014; Dari et al., 2019) or that429

TS could not be confirmed depending on the type of measurement (Kirda & Reichardt,430

2000; Heathman et al., 2012; Vanderlinden et al., 2012). Likewise, we found that with431

our data no single sensor could perfectly replace the reference measurements and that432

characteristics of temporal stability were only partly related to the accuracy of the rescaled433

measurements. We therefore deduce that, for deriving spatial averages from small sam-434

ples, it is more reliable to use all available measurements and combine them by using ro-435

bust estimates for the statistical location (Rousseeuw & Verboven, 2002) instead of work-436

ing with single representative, potentially upscaled sensors.437

5 Conclusions438

In this study, we used a data set of continuous soil moisture measurements over seven439

years at a deciduous forest site with a large number of consecutive sensor failures to il-440

lustrate the problem of averaging incomplete observations. The characteristics of the tem-441

poral stability are comparable to other studies with similar forest and climate types. We442

found that as the number of sensor failures increases, the risk and magnitude of artifi-443

cial shifts in the time series of the field mean increase due to the large spatial hetero-444

geneity of soil moisture. Therefore, we adopted a strategy to cope with the spatial data445

gaps and temporally inconsistent sensor failures. First, we estimated the number of min-446

imum required spatial sensor coverage to determine reference values for the spatial mean.447

In the second step, we corrected the point-to-field scale bias of the remaining sensor mea-448

surements outside the reference period. The corrected measurements could then be used449

to reliably determine the spatial mean despite extensive spatial data gaps. To estimate450

the spatial average from the upscaled data, we found that the median of the remaining451

measurements yields a higher accuracy rather than using single locations as represen-452

tatives.453

Overall, we emphasize the importance of making adequate adjustments for failed454

sensors when averaging spatial in situ measurements. Systematic spatial bias can intro-455

duce artificial trends in the spatial average time series that would affect interpretations456

regarding extreme events or regime shifts due to anthropogenic change. The results of457

this study can also be applied to other research areas where a temporally stable bias be-458

tween point and spatial estimates can be expected. Furthermore, the results may be use-459

ful not only in the context of sensor failures, but also in reducing measurement effort.460

Once the spatial mean can be reliably estimated from a small number of sensors, it is461

possible to operate the network with a reduced setup. At the same time, the transfor-462

mation of the measurements requires reference estimates, and so far too little is known463

about how long and to what extent these reference measurements have to be operated.464
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Future research should focus on sensitivity to the length and spatial scale of those ref-465

erence estimates. At the same time, indirect measurements from remote sensing prod-466

ucts as well as cosmic-ray neutron sensing measurements could be useful sources of in-467

formation to further reduce the in situ effort required for reference determinations of soil468

water content.469
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Appendix A Research site description470

The ’Hohes Holz’ is a deciduous forest covering an area of around 15 km2, domi-471

nated by sessile oak (Quercus petraea (Matt.) Liebl.), common beech (Fagus sylvatica472

L.), and hornbeam (Carpinus betulus L.). The climate is a temperate climate with a mean473

annual temperature of 9.1 ◦C and a mean annual precipitation of 563mm (climate pe-474

riod 1981–2010, station Ummendorf of the German Weather Service). During the inves-475

tigated period from 2014 until 2020 yearly precipitation sums ranged from 301mm (2018)476

to 610mm (2017). The bedrock is Pleistocene sandy loess above till and Mesozoic muschel-477

kalk, with Haplic Cambisol as predominant soil type. Soil texture at 0–20 cm depth was478

3.0% (±1.8%) sand, 87.1% (±2.1%) silt, and 10.0% (±2.2%) clay.479

Figure A1. Sensor distribution in the study area ’Hohes Holz’ (DE-HoH) with additional

information on tree density and the location of the study area in Germany. Note that at each

marker sensors are distributed over the depths from 10 cm to 60 cm in 10 cm intervals, but not all

depths are covered at each marker.
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Appendix B CDF matching with dynamic piecewise linear regression480

We compare polynomial fits, which are traditionally used for cumulative distribu-481

tion function (CDF) matching, against the piecewise linear regression (PLR) approach482

with flexible segments, proposed in this study. Fig. B1 shows exemplary the difference483

between the spatial reference mean and sensors with most available data. Sensor 16 in484

50 cm and sensor 23 in 10 cm are good examples of how the polynomial fit can lead to485

large over- or underestimates, especially in the context of extrapolation. The PLR ap-486

proach can theoretically be fit to any functional form and extrapolation can be realized487

by adopting the last known linear function at the minimum and maximum spatial ref-488

erence.489

Figure B1. Transformation functions for exemplary sensors with the most available data (see

Fig. 2). The dots are the observed difference between the CDFs and the lines are the derived

functions for fitting the CDF of the sensors to the CDF of the spatial reference mean. CDFs

before and after transformation are shown in Fig. 3. In this study, dynamic piecewise linear re-

gression was used (PLR); for comparison, the traditionally used fits with polynomial regression

(third and fifth order, respectively) are also shown. Vertical lines are the breaks of the PLR.
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Appendix C Performance of statistical transformation490

Similar to De Lannoy et al. (2007) and Gudmundsson et al. (2012), we benchmarked491

the proposed transformation of section 2.4 against the following parametric transforma-492

tions:493

θsp,x = a+ θx (C1)

θsp,x = b · θx (C2)

θsp,x = a+ b · θx (C3)

where θ is the soil moisture on the point and field scale, respectively, and a, b are param-494

eters to be estimated. We split the data of the reference period into two equally sized495

groups to test the performance of the transformations. The parameters of the scaling496

methods were estimated using the training data and then applied to the test data. The497

accuracy of the fit between the observed and estimated field average soil moisture was498

assessed with the following goodness-of-fit parameters: Mean absolute error (MAE), Root499

Mean Square Error (RMSE), Pearson correlation coefficient (R) and Nash-Suttcliffe ef-500

ficiency (NS):501

MAE = |ȳ − ¯̂y| (C4)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (C5)

R =
Cov(y, ŷ)

sysŷ
(C6)

NS = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳi)2
. (C7)

Tab. C1 summarizes the results for each method as the mean of the gof of all sen-502

sors per layer. In every layer and with every gof, the non-linear CDF matching achieved503

best results. Among the linear methods, the linear regression usually performed best.504

Both, the MAE and RMSE decrease with depth, with a maximum MAE of 2.76% for505

θC2 in 30 cm and a minimum of 1.02% for θCDF in 50 cm. The correlation coefficient shows506

narrow ranges per layer, with very strong correlations for all mθCDF in 40 cm (0.94) and507

lowest correlation for θC1 in 50 cm (0.85). The Nash–Sutcliffe model efficiency coefficient508

(NS) shows lowest performance in 50 cm (0.712 for θC1) and highest performance in 10 cm509

(0.87 for θCDF). RMSE is lowest for θC3 (1.50% in 50 cm) and highest for θC2 (3.66%510

in 30 cm).511

Table C1. Mean average error (MAE, [vol. %]), Nash–Suttcliffe criterium (NS, [–]), correla-

tion coefficient (R, [–]) and root mean square error (RMSE, [vol. %]) between the spatial average

soil moisture and transformed point measurements during the reference period. Scores are the

average over all sensors per layer.

MAE NS R RMSE

Layer θC1 θC2 θC3 θCDF θC1 θC2 θC3 θCDF θC1 θC2 θC3 θCDF θC1 θC2 θC3 θCDF

10 cm 2.03 2.15 1.88 1.75 0.84 0.84 0.84 0.87 0.92 0.91 0.93 0.93 2.69 2.87 2.43 2.41

20 cm 1.89 2.22 1.58 1.32 0.80 0.77 0.80 0.85 0.89 0.88 0.91 0.93 2.45 2.82 2.01 1.89

30 cm 2.02 2.76 1.70 1.51 0.80 0.74 0.80 0.84 0.90 0.87 0.91 0.92 2.79 3.66 2.26 2.22

40 cm 1.77 1.92 1.48 1.24 0.84 0.83 0.86 0.88 0.92 0.91 0.93 0.94 2.34 2.45 1.91 1.85

50 cm 1.56 1.54 1.11 1.02 0.72 0.74 0.75 0.80 0.85 0.86 0.90 0.90 2.07 2.00 1.50 1.51
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Appendix D Open Research512

The daily averaged soil moisture measurements used in the study are available at513

the Helmholtz-Centre for Environmental Research data archive via doi.org/10.48758/ufz.12770514

under CC BY-NC-SA 4.0 (Rebmann et al., 2018). The code to reproduce all results and515

figures (except for Fig. 1 and Fig. A1) is preserved at doi.org/10.5281/zenodo.6653168516

and available under CC BY-NC-SA 4.0 (Pohl et al., 2022).517
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Wollschläger, U., Attinger, S., Borchardt, D., Brauns, M., Cuntz, M., Dietrich, P.,844

. . . Zacharias, S. (2017). The Bode hydrological observatory: A platform for845

integrated, interdisciplinary hydro-ecological research within the TERENO846

Harz/Central German Lowland Observatory. Environmental Earth Sciences,847

76 (1), 29. doi: 10.1007/s12665-016-6327-5848

Xu, S., & Cheng, J. (2021). A new land surface temperature fusion strategy849

based on cumulative distribution function matching and multiresolution850

Kalman filtering. Remote Sensing of Environment , 254 , 112256. doi:851

10.1016/j.rse.2020.112256852

Yao, P., Lu, H., Shi, J., Zhao, T., Yang, K., Cosh, M. H., . . . Entekhabi, D.853

(2021). A long term global daily soil moisture dataset derived from854

AMSR-E and AMSR2 (2002–2019). Scientific Data, 8 (1), 143. doi:855

10.1038/s41597-021-00925-8856

Zanella, P. G., de Carvalho, C. A. B., Ribeiro, E. T., Madeiro, A. S., & Gomes,857

R. D. S. (2017). Optimal quadrat area and sample size to estimate the858

forage mass of stargrass. Semina: Ciências Agrárias, 38 (5), 3165. doi:859
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