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Abstract

Seismic waves can be significantly amplified by soft sediment layers. Large dynamic strains can trigger a nonlinear response of

shallow soils having low strength, which is characterized by a shift of the resonance frequencies, ground motion deamplification,

and in some cases, soil liquefaction. We investigate the response of marine sediments during earthquake ground motions

recorded along a fiber-optic cable offshore the Tohoku region, Japan, with Distributed Acoustic Sensing (DAS). We compute

AutoCorrelation Functions (ACFs) of the ground motions from 103 earthquakes in different frequency bands. We detect time

delays in the ACF waveforms that are converted to relative velocity changes (dv/v). dv/v drops, which are characteristic

of soil nonlinearity, are observed during the strongest ground motions. Moreover, the dv/v values show a strong variability

along the cable. This study demonstrates that DAS can be used to infer the dynamic properties of the shallow Earth with an

unprecedented spatial resolution.
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Abstract16

Seismic waves can be significantly amplified by soft sediment layers. Large dynamic strains17

can trigger a nonlinear response of shallow soils having low strength, which is charac-18

terized by a shift of the resonance frequencies, ground motion deamplification, and in19

some cases, soil liquefaction. We investigate the response of marine sediments during earth-20

quake ground motions recorded along a fiber-optic cable offshore the Tohoku region, Japan,21

with Distributed Acoustic Sensing (DAS). We compute AutoCorrelation Functions (ACFs)22

of the ground motions from 103 earthquakes in different frequency bands. We detect time23

delays in the ACF waveforms that are converted to relative velocity changes (dv/v). dv/v24

drops, which are characteristic of soil nonlinearity, are observed during the strongest ground25

motions. Moreover, the dv/v values show a strong variability along the cable. This study26

demonstrates that DAS can be used to infer the dynamic properties of the shallow Earth27

with an unprecedented spatial resolution.28

Plain Language Summary29

Seismic waves from earthquakes are amplified by shallow and soft sediment layers30

of the Earth. This amplification is linear for weak seismic waves, but can become highly31

nonlinear during strong ground motions. Nonlinear soil response, which can lead to a32

complete failure of the ground through soil liquefaction, threatens the safety of human-33

made constructions and needs to be accurately characterized. We study the response of34

marine sediments offshore the Tohoku region in Japan using earthquake data recorded35

along 43.3 km of a fiber-optic cable with Distributed Acoustic Sensing (DAS). We use36

an autocorrelation approach to analyze the ground motions from 103 earthquakes recorded37

by thousands of DAS channels. We detect a clear nonlinear behavior of shallow sediments38

during the strongest ground motions. Moreover, we show that soil nonlinearity signif-39

icantly varies along the cable. Our methodology could easily be applied to earthquake40

DAS data recorded in populated and seismically active regions to help better understand-41

ing the dynamic behavior of shallow soils.42

1 Introduction43

Local geological conditions can significantly impact the propagation of incoming44

seismic waves from earthquakes. In particular, shallow, soft, and unconsolidated sedi-45

ment layers are well known to amplify earthquake ground motions (Sanchez-Sesma, 1987),46

which can lead to catastrophic events such as during the 1985 moment magnitude (Mw)47

8.0 Michoacán earthquake in Mexico (Anderson et al., 1986; Campillo et al., 1989). When48

subjected to weak dynamic strains (i.e., less than 10−4 and 10−8 for field observations49

and laboratory experiments, respectively; Ishihara, 1996; TenCate et al., 2004), shallow50

soils linearly amplify seismic waves. During large dynamic strains, however, soft sedi-51

ments can behave nonlinearly (e.g., Field et al., 1997; Ostrovsky & Johnson, 2001). Soil52

nonlinearity is generally characterized by a relative reduction of the high-frequency ground-53

motion amplification, which is related to an increase of damping in the medium, and a54

shift of the resonance frequency to lower frequencies due to a reduction of the shear mod-55

ulus (Beresnev & Wen, 1996; Brunet et al., 2008; Bonilla et al., 2011; Lyakhovsky et al.,56

2009; Zaitsev et al., 2005). In some cases, large dynamic strains can trigger a complete57

failure of cohesionless and saturated shallow sediments through soil liquefaction (Kramer,58

1996), which can have disastrous consequences for human infrastructures as observed dur-59

ing the 1964 Niigata (Japan, Ohsaki, 1966) and 2010–2011 Christchurch (New Zealand,60

Quigley et al., 2013) earthquakes. Therefore, characterizing the nonlinear response of61

shallow sediments to earthquake ground motions is critical for better mitigating seismic62

risk.63

Several empirical methods have been developed to assess the response of soils to64

ground motions. A classical approach relies on computing the spectral ratio of earthquakes65
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recorded at a soft-soil site and at a nearby reference rock site (Borcherdt, 1970; Field66

& Jacob, 1995; Bonilla et al., 1997). However, this method suffers from the fact that a67

reference site may not always be available in the vicinity of the site of interest. Another68

approach consists in using pairs of surface-borehole stations to detect potential soil non-69

linear elastic behavior between the two sensors (Bonilla et al., 2011; Minato et al., 2012;70

Nakata & Snieder, 2011; Régnier et al., 2013; Sawazaki et al., 2006; Takagi et al., 2012;71

Wen et al., 1995). While this technique allows us to isolate the shallow subsurface re-72

sponse from the earthquake source and path effects, pairs of surface-borehole instruments73

are expensive to install and their low spatial coverage prevents us from capturing small-74

scale lateral variations.75

AutoCorrelation Functions (ACFs) calculated from data recorded by surface seis-76

mometers yield the reflectivity response of the underlying elastic structure (Claerbout,77

1968; Wapenaar, 2003). This technique has been primarily applied to image interfaces78

with strong seismic impedance contrasts using earthquake (Delph et al., 2019; Pham &79

Tkalčić, 2017; Tork Qashqai et al., 2019; Viens, Jiang, & Denolle, 2022) and ambient seis-80

mic field (ASF; Gorbatov et al., 2013; Ito et al., 2012; Kennett, 2015; Saygin et al., 2017;81

Spica et al., 2020; Viens, Jiang, & Denolle, 2022) datasets. Repeated ACF computations82

through time from continuous ASF time series have also been used to monitor tempo-83

ral seismic velocity changes in the subsurface in different environments, such as volcanic84

(De Plaen et al., 2016; Sens-Schönfelder & Wegler, 2006; Yates et al., 2019) and earth-85

quake source (Hobiger et al., 2014; Ohmi et al., 2008; Wegler et al., 2009) regions. How-86

ever, the partitioning of surface and body waves in ACFs computed from the ASF is gen-87

erally unknown and hinders the interpretation of the measured velocity changes (Nakahara,88

2015). To ease the interpretation, ACFs have also been computed from earthquake P-89

, S-, or coda-wave windows (Bonilla et al., 2019; Bonilla & Ben-Zion, 2020; Nakahara,90

2015; Qin et al., 2020). Bonilla and Ben-Zion (2020) showed that the first negative peak91

of ACFs calculated during earthquake ground motions corresponds to the seismic-wave92

two-way travel time between the sensor and the first major interface below the station,93

and captures the soil non-linear response. Moreover, Bonilla et al. (2019) and Qin et al.94

(2020) showed that the response of the shallow subsurface obtained from ACFs at sur-95

face stations yields a similar estimation of the soil nonlinear behavior as that from a surface-96

borehole station configuration. In other words, ACFs can isolate the site response term97

from the earthquake source and path effects, which makes single-component stations a98

powerful tool to analyze shallow sediment nonlinear behavior.99

Mapping local site effects with data-driven techniques remains challenging due to100

the large density of seismometers needed to capture complex spatial variations of the seis-101

mic wavefield. In some cases, a large station coverage can be nearly impossible to attain102

due to environmental or physical constrains, especially in urban and underwater areas.103

Nevertheless, recent technological advances in Distributed Acoustic Sensing (DAS) of-104

fer an unprecedented opportunity to measure the Earth’s vibrations over tens of kilo-105

meters with a dense spatial resolution (∼1–10 m) by turning ground-coupled fiber-optic106

cables into arrays of sensors (Hartog, 2017). DAS uses an optoelectrical interrogator to107

probe fibers with a laser sending thousands of short pulses of light every second. As each108

pulse of light travels down the fiber, some of the light is reflected back to the interroga-109

tor in a process known as Rayleigh backscatter. External forcing, such as seismic waves,110

generate phase shifts of the back-scattered Rayleigh light, which are measured by the111

interrogator. The measured phase shifts are finally linearly converted to longitudinal strain112

(or strain-rate) along the cable over a sliding spatial distance (i.e., the gauge length). Both113

fit-to-purpose and existing telecommunication fiber-optic cables have been used to record114

high-fidelity earthquake wavefields (Lellouch et al., 2019; Spica et al., 2022; Wang et al.,115

2018; Zeng et al., 2017). One great advantage of telecommunication fibers is that they116

have been widely deployed, from the oceans’ bottom to nearly every street in large de-117

veloped cities, to sustain our modern telecommunication network. Therefore, DAS could118
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complement expensive urban and offshore seismic array deployments by probing exist-119

ing telecommunication cables to capture the full extent of earthquake wavefields.120

In this study, we analyze the response of shallow marine sediments to 103 earth-121

quakes recorded along a telecommunication cable offshore the Sanriku coast in Japan122

by a DAS experiment (Figures 1a–b). We calculate ACFs from the earthquake ground123

motions after filtering the data into different frequency bands to infer the soil response124

at different depths. We detect changes in the ACF time series that are converted to rel-125

ative velocity changes to characterize the soil linear and nonlinear regimes below each126

DAS channel. We show that the relative velocity changes exhibit spatial variations along127

the cable which are strongly influenced by the ACF frequency ranges. We finally discuss128

our results and the potential of DAS for extracting soil parameters with an unprecedented129

spatial resolution.130

2 Data and Methods131

2.1 DAS data132

The Earthquake Research Institute, The University of Tokyo, operates an ocean-133

bottom observatory composed of three 3-component accelerometers and two tsunami me-134

ters offshore the Sanriku Coast (Figure 1b; Kanazawa & Hasegawa, 1997; Shinohara et135

al., 2021, 2022). The data recorded by the instruments are streamed in real-time to the136

landing station located in the city of Kamaishi through a submarine telecommunication137

cable. The cable contains six dark (unused) dispersion-shifted single-mode optical fibers138

with a wavelength of 1,550 nm, which are suitable for DAS measurements. Moreover,139

the first 47.7 km of the cable are relatively straight and are buried under 0.6-0.7 m of140

sediments, which guarantees a good coupling of the fiber.141

An AP Sensing N5200A DAS interrogator unit (Cedilnik et al., 2019) probed one142

of the dark fibers between November 18 and December 2, 2019, and recorded continu-143

ous data over the first 70-km of the cable with a sampling rate of 500 Hz. The gauge length144

and spatial sampling are set to 40 m and 5.1 m, respectively. During the two weeks of145

measurement, hundreds of earthquakes were recorded by the DAS system. We first con-146

vert the raw DAS data to strain (Shinohara et al., 2022) and focus on the ground mo-147

tions from 103 earthquakes that were clearly recorded by all the DAS channels (Figure148

1a-b). The velocity magnitude (MV ) of the earthquakes ranges between 1.0 and 6.3, and149

we show the strain waveforms of a MV 2.5 earthquake in Figure 1c. This event occurred150

on November 28, 2019 at 14:17:32UTC at a depth of 30 km. Clear P- and S-wave arrivals151

can be observed at most channels as well as locally generated surface waves which sig-152

nificantly extend the ground motion duration.153

2.2 Autocorrelation functions and relative velocity changes154

For each earthquake and each DAS channel, we compute the time derivative of the155

strain data to retrieve strain-rate waveforms, which are proportional to acceleration time156

series. We then bandpass filter the strain-rate data between 2 and 30 Hz (all filters are157

two-pass four-pole Butterworth bandpass filters) and select a fixed 15-s window start-158

ing 5 s before the earthquake absolute maximum amplitude. We then further bandpass159

filter the strain-rate waveforms into 19 frequencies bands (e.g., 2-4, 3-6,..., 20-40 Hz) and160

compute ACFs over the fixed 15-s window using the phase correlation method in the fre-161

quency domain (Schimmel & Paulssen, 1997; Ventosa et al., 2019). We show the band-162

pass filtered strain-rate waveforms of the MV 2.5 earthquake together with their corre-163

sponding ACFs at channel 5000 in Figures 1d and 1e, respectively. The ACFs are cal-164

culated around the S-wave direct arrival and we therefore expect their first negative peak165

to capture the S-wave two-way travel time (Bonilla & Ben-Zion, 2020). Moreover, the166

different frequency bands allow us to sample different depth of the media, with low-frequency167
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Figure 1. (a) Topographic map of the Japanese Islands and their surroundings including the

103 earthquakes used in this study. The red rectangle denotes the region near the cable shown in

(b). (b) Bathymetric map offshore the Sanriku coast including the location of the seafloor cable

observation system. The orange line denotes the buried section of the cable used in this study

(i.e., channels 500 to 9000) and the location of channel 5000 is indicated by the red cross. The

white circles and purple inverted triangles show the positions of the accelerometers and tsunami-

meters, respectively. The location of the velocity magnitude (MV ) 2.5 event (red circle) shown

in (c) and that of other nearby earthquakes (gray circles) are highlighted. The magnitude scale

is the same as in (a). (c) Strain waveforms of the MV 2.5 event bandpass filtered between 2 and

30 Hz between channels 500 and 9000. The waveform amplitudes are clipped for visibility. (d)

Strain-rate waveforms of the MV 2.5 earthquake bandpass filtered in different frequency bands

at channel 5000. The gray area denotes the time period over which ACFs are calculated. (e)

Amplitude normalized ACFs computed from the waveforms shown in (d).
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bandpass filtered ACFs displaying later arrivals as they sample deeper media compared168

to high-frequency ACFs.169

The 103 earthquake waveforms analyzed in this study generated various levels of170

dynamic strain along the cable. In Figures 2a-d, we show the ACFs calculated for all the171

earthquakes after bandpass filtering the strain-rate data in the 10–20 Hz and 15–30 Hz172

frequency bands at channels 5000 and 7000. We also show the dynamic peak strains com-173

puted as the maximum absolute amplitude of the bandpass filtered strain data in Fig-174

ures 2e-f. For both frequency bands, the ACF first negative peaks exhibit similar lag-175

times for weak dynamic strains (e.g., less than ∼5×10−10), but clear delays can be ob-176

served for larger dynamic peak strains.177

Soil nonlinear behavior during ground motions delays the ACF first negative peak178

and can therefore be interpreted as a velocity reduction of the medium (Bonilla & Ben-179

Zion, 2020). Under the assumption that the changes in the medium are uniformly dis-180

tributed, we can estimate the relative velocity changes (dv/v) of each ACF with respect181

to a reference ACF with the stretching method (Lobkis & Weaver, 2003; Sens-Schönfelder182

& Wegler, 2006) as183

τ =
dt

t
= −dv

v
, (1)184

where τ , dt/t, and dv/v are the stretching coefficient, the relative time shift, and the rel-185

ative velocity change, respectively. For each channel and each frequency band, we first186

compute a reference ACF by stacking the ACFs from the earthquake waveforms that gen-187

erated the ten weakest dynamic peak strains. For each frequency band, we then select188

a time window that corresponds to 75% of the inverse of the lower cutoff frequency (e.g.,189

the first 0.375 s of the ACF for the 2-4 Hz frequency band) to focus on the first nega-190

tive peak of the ACFs. We then stretch and compress the selected window of the ref-191

erence ACF to find the stretching coefficient that maximizes the fit between the refer-192

ence and each ACF waveform, and therefore infer relative velocity changes. The stretch-193

ing is performed in two steps; we first use ten values uniformly distributed between -50194

and 50% of stretching to find an initial guess of the stretching coefficient, and then re-195

fine the measurement by interpolating the stretched waveforms 500 times between the196

neighboring values (similar to Viens et al., 2018).197

3 Results198

We show the relative velocity changes for all the frequency bands and earthquakes199

for two ranges of channels in Figures 3a-b. While the soil nonlinear response can rapidly200

evolve spatially, we display the combined results at 10 neighboring channels (i.e., over201

51 m) between channels 5000–5010 and 7000–7010 for visibility. For dynamic peak strains202

smaller than ∼5×10−10, dv/v measurements are generally equal to zero for all the fre-203

quency bands at both locations, which indicates that there is no change in the medium.204

However, clear dv/v drops can be observed in different frequency bands at the two lo-205

cations with increasing dynamic peak strains. For example, we primarily observe dv/v206

reductions between central frequencies (i.e., the central frequency of the bandpass filter;207

15 Hz for the 10–20 Hz bandpass filter) of 15–24 Hz for channels 5000–5010 and between208

12–28 Hz for channels 7000–7010. Moreover, we also note that the intensity of the dv/v209

changes varies, with larger changes observed at channels 5000–5010 compared to those210

at channels 7000–7010.211

Spatial variations of the relative velocity changes can also be tracked along the ca-212

ble thanks to the high density of DAS channels. In Figures 3c-d, we show the relative213

velocity changes along the cable in two frequency bands (e.g., 5–10 and 10–20 Hz). Clear214

differences can be observed between the two frequency ranges. In the 5–10 Hz frequency215

band, almost no dv/v changes can be observe between channels 500 and 6900, even dur-216

ing the strongest dynamic peak strains. However, we detect clear dv/v drops for dynamic217
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Figure 2. (a) ACFs computed from the 103 earthquakes bandpass filtered between 10 and

20 Hz at channels (a) 5000 and (b) 7000. The amplitude of the data is clipped for visibility. (c–

d) Same as (a–b) for the data bandpass filtered between 15 and 30 Hz. In (a–d), the ACFs are

sorted by increasing dynamic peak strain values, which are computed after bandpass filtering the

strain waveforms in their respective frequency bands. (e–f) Dynamic peak strains after bandpass

filtering the earthquake waveforms between 10–20 Hz and 15–30 Hz at channels 5000 and 7000,

respectively.
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Figure 3. (a) dv/v measurements at channels 5000–5010 for the 19 frequency bands and

the 103 earthquakes. Dynamic peak strains are computed for each event and each station after

bandpass filtering the strain data. The central frequency corresponds to the central frequency

of the bandpass filter (e.g., 15 Hz for the 10–20 Hz bandpass filter). (b) Same as (a) at channels

7000–7010. (c) dv/v measurements from the ACFs computed from the 103 earthquakes bandpass

filtered between 5 to 10 Hz between channels 500 and 9000 as a function of the dynamic peak

strain. (d) Same as (c) for the 10–20 Hz frequency band. The dv/v color-scale shown in (b) is the

same for all panels.

–8–



manuscript submitted to Geophysical Research Letters

peak strains above 10−9 between channels 6900 and 8200. In the 10–20 Hz frequency band,218

almost no changes are found between channels 500–3500, but large dv/v drops are ob-219

served after channels 3500 for dynamic peak strains larger than ∼ 10−9.220

To isolate and investigate the average sediment response during strong ground mo-221

tions, we also compute dv/v measurements between each reference ACF (i.e., the stack222

of the ACFs computed during the 10 weakest dynamic peak strains) and a stack of the223

ACFs computed during the five largest dynamic peak strains. dv/v changes between weak224

and strong ground motion ACFs exhibit clear spatial and frequency variations (Figure225

4a). Between channels 500 and 2000, we do not observe any large dv/v changes in any226

frequency band. However, we observe spatial variations of the dv/v reductions at cen-227

tral frequencies above 15 Hz between channels 2000 and 9000. We also observe clear dv/v228

changes at frequencies below 15 Hz between channels 6300 and 9000. Such coherent spa-229

tial changes across frequency bands highlight the sensitivity of DAS ACFs to local site230

conditions as well as their depth sensitivities.231

The amplitude of dv/v reductions is expected to increase with increasing dynamic232

peak strains. In Figure 4b-d, we show the dv/v measurements calculated between the233

weak and strong ground motion ACFs as a function of the dynamic peak strains in three234

frequency bands. We only show the results at 650 locations between channels 1700-8200235

as we average the dv/v and dynamic peak strain values over 10 neighboring channels (e.g.,236

channels 1995-2005 for channel 2000). This step is perform to compare our results with237

local site condition data from a velocity model of the region, as discussed below. In the238

2–4 and 20–40 Hz, the largest dv/v drops correlate with the channels where the largest239

dynamic peak strains are recorded, typically near the beginning of the cable. In the 15–240

30 Hz frequency band, however, dv/v changes are almost constant between dynamic peak241

strains of 10−9 and 2×10−8 with an average value of −20%. This suggests that the non-242

linearity threshold in this frequency range is lower than dynamic peak strains of 10−9.243

In Figures 4e–g, we show the dv/v measurements at the same 650 locations along244

the cable as a function of the average S-wave velocity in the first 30 m of the ground (VS30)245

obtained from the velocity model derived by Viens, Perton, et al. (2022). The Viens, Per-246

ton, et al. (2022) model was obtained by inverting Rayleigh-wave phase velocity disper-247

sion curves calculated by seismic interferometry using virtual sources located every 10248

channels (e.g., 51 m). We compute VS30 from the 650 locations of the velocity model and249

apply a smoothing of the VS30 values over 5 locations. We observe a decrease of the dv/v250

values with decreasing VS30 values in the 2-4 Hz and 20-40 Hz frequency band. However,251

we do not observe any correlation between VS30 and the dv/v results in the 10-20 Hz fre-252

quency band. Nevertheless, the correlation between dv/v values and VS30 is relatively253

weak, which suggests that VS30 is not the best parameter to characterize the nature of254

soil nonlinearity as also shown by Bonilla et al. (2021).255

4 Discussion256

While larger dynamic peak strains generally correlate with larger dv/v drops, the257

correlation with VS30 is weaker or even nonexistent. Three hypotheses can explain this258

behavior. First, the velocity model, which was obtained from ASF cross-correlation func-259

tions spanning over 2 km (i.e., 400 channels), only captures a smoothed representation260

of the shallow Earth structure. Therefore, the VS30 parameter extracted from the veloc-261

ity model may not fully capture the structural changes that can rapidly occur at shal-262

low depth. Secondly, we expect the ACFs to have different depth sensitivities based of263

their frequency ranges. Therefore, a single parameter, namely VS30, does not account264

for such depth sensitivity variations. Thirdly, while an accurate value of VS30 can be use-265

ful for some geotechnical engineering purposes, it may not be the best parameter to ex-266

plain the intensity of the dv/v drops. For example, in a 30 m profile composed of a very267

shallow and soft sediment layer overlaying a stiffer material, nonlinearity is expected to268

–9–
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Figure 4. (a) dv/v measurements computed between a reference ACF, which represents the

soil linear response, and average ACF obtained from the earthquakes that generated the five

largest peak strains, which captures the nonlinear behavior of sediments, at each channel and

each frequency band. (b) Relative velocity changes as a functions of the filtered dynamic peak

strain in the 2-4 Hz frequency bands. (c–d) Same as (b) for the 10-20 and 20-40 Hz frequency

bands. (e) Relative velocity changes as a function of the average S-wave velocity within the first

30 m of the ground (VS30) for the 2-4 Hz frequency bands. (f–g) Same as (g) for the 10-20 and

20-40 Hz frequency bands. In (b–g), the color-bar corresponds to the channel number.
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only occur in the first layer. Therefore, a complete velocity profile of each site is likely269

to be more informative than a summarizing parameter such as VS30 (Bonilla et al., 2021),270

and future work should focus on refining the shallow structure of the velocity model.271

While the recorded dynamic strains from the earthquakes considered in this study272

are relatively weak, we observe significant relative velocity changes from the ACFs, which273

indicate a nonlinear response of marine sediments. Due to the weak levels of shaking,274

the soil nonlinear behavior only occurs during the passing of seismic waves, and no long-275

term effects, as those observed at land stations after the 2011 Mw 9.0 Tohoku-Oki earth-276

quake (Bonilla et al., 2021), could be detected. Nevertheless, the nonlinearity thresholds277

of strain levels obtained along the cable are consistent with those from laboratory ex-278

periments (Pasqualini et al., 2007; Remillieux et al., 2017; TenCate et al., 2004) and from279

ACFs computed from a seismic array in California (Bonilla & Ben-Zion, 2020). To fur-280

ther validate our approach, we also compute ACFs from earthquake data recorded by281

the horizontal accelerometer along the axis of the cable from the SOB3 station (Figure282

1b). ACFs are computed for the same earthquakes as for the DAS dataset as well as 138283

nearby Mw 5+ earthquakes which occurred between 2015 and 2021 (Figure S1). The ACFs284

from the SOB3 station exhibit similar features, with a nonlinearity threshold of the same285

order as that obtained with the DAS data, which validates our approach.286

The dynamic peak strain recorded by the DAS channels are in the direction of the287

cable. However, DAS has different theoretical sensitivities depending on the type of seis-288

mic waves and their incidence angles (Martin et al., 2021). For example, DAS records289

from earthquakes occurring at a 90 degree angle from the direction of the cable are ex-290

pected to exhibit less energy than events happening along the axis of the cable. More-291

over, the relatively long gauge length (e.g., 40 m) used to record the DAS data could po-292

tentially create notches in the frequency spectrum between 2 and 40 Hz (Dean et al., 2017).293

Nevertheless, the steep subduction zone in the Tohoku region (Hayes et al., 2018) com-294

bined to shallow and slow sediment layers interfere with the propagation of seismic waves,295

which likely arrive with almost vertical angles to the cable. This translates into high ap-296

parent velocities of all earthquake wavefields recorded by the cable (e.g., Figure 1c), which297

limits both the azimuthal and gauge length effects on the recorded data. We further con-298

firm this point by comparing the maximum amplitudes of DAS and SOB3 data during299

the 103 earthquakes considered in this study in Figure S2. Both datasets exhibit sim-300

ilar maximum amplitudes with respect to azimuth angles to the earthquake epicenters,301

which confirms that there is no noticeable azimuthal effect for the DAS data.302

The largest ground motions during the two week experiment occurred during a MV303

5.6, which occurred 50 km east of the SOB3 station (Figure S3). Unfortunately, the data304

recorded by the DAS system clipped and are therefore not usable in our analysis. The305

clipping of the data is caused by rapid phase changes that occurred during strong ground306

motions, which wraps the signal’s phase. To reduce clipping effects and improve the dy-307

namic range of DAS experiments, one can increase the laser’s pulse rate frequency, which308

would limit the maximum distance that can be sampled by the DAS system, and/or re-309

duce the gauge length, which could result in a decrease of the SNR of the recorded wave-310

field (Mellors et al., 2022). Despite these drawbacks, a better tuning of the DAS param-311

eters could allow us to record strong ground motions that are likely to trigger stronger312

nonlinear soil responses.313

5 Conclusions314

We analyzed the ground motions of 103 earthquakes recorded along a fiber-optic315

cable during a two-week DAS campaign offshore the Tohoku region, Japan. We computed316

ACFs of earthquake ground motions and detected relative velocity changes in the ma-317

rine sediments surrounding the cable from the ACFs. Large drops of dv/v are observed318

along the cable and are typical of a nonlinear behavior of the medium. Moreover, the319

–11–
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dv/v changes are frequency and spatially dependent, which highlights the sensitivity of320

DAS ACFs to the shallow Earth structure.321

This study demonstrates that earthquakes recorded by DAS can be used to char-322

acterize the nonlinear behavior of soils during ground motions. This characterization could323

be of critical importance for fiber-optic cables used for earthquake early warning pur-324

poses as soil nonlinearity impacts the amplitude and frequency content of the recorded325

wavefield, and could bias rapid magnitude estimations. Nevertheless, the ACF approach326

could easily be applied to other DAS datasets recorded in populated regions located on327

top of sedimentary basins, such as Mexico City and Los Angeles, to better characterize328

seismic hazard.329
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Text S1.11

To validate the dv/v measurements obtained from the DAS cable, we also analyze the12

earthquake ground motions recorded by the SOB3 station. We first downloaded the data13

(100 Hz sampling rate) recorded by the horizontal accelerometer sensor in the axis of the14

cable from 159 earthquakes, which occurred within the two week time period of the DAS15

experiment. We are able to add 56 events to the 103 earthquakes analyzed in the main16
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manuscript as the signal-to-noise ratio (SNR) of the accelerometer data is higher than17

that of the DAS data. Moreover, the largest ground motions are recorded during the MV18

5.6 (Mw 5.4) earthquake, which occurred close to the DAS cable, but is not usable in our19

study as the DAS data clipped (see Text and Figure S3). The SOB3 accelerometion data20

are processed similarly to the DAS data and we show the dv/v results for the 159 events21

in Figure S1a. We compute a metric as the peak ground velocity (PGV) of the bandpass22

filtered data divided by an estimate of VS30 (300 m/s) to obtain results with the unit of23

strain that are comparable to the results from the DAS data. We observe that the largest24

dv/v drops occur at frequencies of 14–20 Hz at strain values slightly above 10−9, which is25

similar to the DAS data.26

To confirm that the reliability of the analysis performed with relatively weak ground27

motions, we also investigate the response of the sediments to 138 earthquakes that gen-28

erated stronger ground motions at the SOB3 station. The 138 earthquakes are Mw 5+29

events and occurred within 300 km from the cable between 2015 and May 2021. The30

results are shown in Figure S1b and confirm the dv/v measurements obtained for the 15931

earthquakes of the two-week time period of the DAS experiment. We observe strong dv/v32

drops at most frequencies above 5 Hz during the strongest ground motions and different33

non-linearity thresholds based on the frequency band of the ACFs.34

Text S2.35

The azimuthal and gauge length effects described in the main manuscript are likely36

to be weak for the DAS data offshore the Sanriku Coast. Shinohara, Yamada, Akuhara,37

Mochizuki, and Sakai (2022) converted strain data of a magnitude 3.0 earthquake recorded38
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at channel 10265 to acceleration data and compared the resulting waveforms to the accel-39

eration waveform recorded by the SOB3 station. They found a high similarity between40

the OBS and converted DAS waveforms for this event, which confirms the fidelity of the41

wavefield recorded by DAS.42

To further confirm this, we convert the strain data of the 103 earthquakes of our dataset43

to acceleration by considering a constant apparent phase velocity of 2800 m/s. We then44

select the peak ground acceleration of the converted DAS and OBS data and display45

them as a function of the azimuth angle between each earthquake epicenter and the OBS46

station in Figure S2. First, we observe similar PGAs between the two datasets, which47

confirms that the reliability of the DAS data. Secondly, the azimuthal variations are also48

very similar, which indicates that gauge length and seismic wave azimuth angles do not49

impact our results. Finally, some of the differences between the two datasets are likely50

to be caused by the constant apparent velocity used to convert strain data to velocity.51

Nevertheless, this first order correction allows us to validate our approach.52

Text S3.53

The November 29, 2019 Mw 5.4 earthquake, which occurred in the vicinity of the cable54

(Figure S3a), generated the strongest ground motions during the two-week experiment.55

The raw DAS data are recorded as 2-byte integers. Therefore, the amplitude of the raw56

data varies between -32768 to 32767, which corresponds to −π and π of phase. To retrieve57

strain data, the cumulative sum of the raw data needs to be computed before scaling the58

amplitude with a constant (Equation 1 in Shinohara et al., 2022). Unfortunately, the59

amplitude of the raw DAS data clipped during this event (Figure S3b), which makes60
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impossible the conversion to strain data for this earthquake. The clipping of the data61

only occurs during the strongest part of the ground motion.62
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Figure S1. (a) dv/v measurements computed at the SOB3 station for 159 earthquakes which

occurred during the two-week experiment. The x-axis has the unit of strain as the Peak Ground

Velocity (PGV) is divided by an estimate of VS30 of 300 m/s. (b) dv/v measurements computed

for the 159 earthquakes from November 2019 and 155 Mw 5+ events, which occurred within 300

km from the cable between January 2014 and May 2021.
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Figure S2. Peak Ground Acceleration (PGA) from the 103 earthquakes recorded at the

(orange) SOB3 station and at the (blue) DAS channel 10265 after conversion to acceleration as a

function of the azimuth from the epicenter. The PGAs are obtained after filtering the waveforms

between 1 and 5 Hz. Zero azimuth is north.
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Figure S3. (b) Bathymetric map near the seafloor cable observation system. The orange line

denotes the buried section of the cable used in this study, and the locations of channels 2000,

4000, and 6000 are highlighted by red crosses. The white circles and orange inverted triangles

show the positions of the accelerometers and tsunami-meters, respectively. The location of the

Mw 5.4 event together with its focal mechanism is also shown. (b) Raw DAS data of the Mw 5.4

event recorded at channels 2000, 4000, and 6000.
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