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Abstract

Tropical cyclones (TCs) are one of the greatest threats to coastal communities along the US Atlantic and Gulf coasts due to

their extreme winds, rainfall and storm surge. Analyzing historical TC climatology and modeling TC hazards can provide

valuable insight to planners and decision makers. However, detailed TC size information is typically only available from 1988

onward, preventing accurate wind, rainfall, and storm surge modeling for TCs occurring earlier in the historical record. To

overcome temporally limited TC size data, we develop a database of size estimates that are based on reanalysis data and a

physics-based model. Specifically, we utilize ERA5 reanalysis data to estimate the TC outer size, and a physics-based TC wind

model to estimate the radius of maximum wind. We evaluate our TC size estimates using two high-resolution wind datasets as

well as Best Track information for a wide variety of TCs. Using the estimated size information plus the TC track and intensity,

we reconstruct historical storm tides from 1950-2020 using a basin-scale hydrodynamic model and show that our reconstructions

agree well with observed peak water levels. Finally, we demonstrate that incorporating an expanded set of historical modeled

storm tides beginning in 1950 can enhance our understanding of US coastal hazard. Our newly developed database of TC sizes

and associated storm tides can aid in understanding North Atlantic TC climatology and modeling TC wind, storm surge, and

rainfall hazard along the US Atlantic and Gulf coasts.
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Abstract 21	

Tropical cyclones (TCs) are one of the greatest threats to coastal communities 22	

along the US Atlantic and Gulf coasts due to their extreme winds, rainfall and storm 23	

surge. Analyzing historical TC climatology and modeling TC hazards can provide 24	

valuable insight to planners and decision makers. However, detailed TC size information 25	

is typically only available from 1988 onward, preventing accurate wind, rainfall, and 26	

storm surge modeling for TCs occurring earlier in the historical record. To overcome 27	

temporally limited TC size data, we develop a database of size estimates that are based on 28	

reanalysis data and a physics-based model. Specifically, we utilize ERA5 reanalysis data 29	

to estimate the TC outer size, and a physics-based TC wind model to estimate the radius 30	

of maximum wind. We evaluate our TC size estimates using two high-resolution wind 31	

datasets as well as Best Track information for a wide variety of TCs. Using the estimated 32	

size information plus the TC track and intensity, we reconstruct historical storm tides 33	

from 1950-2020 using a basin-scale hydrodynamic model and show that our 34	

reconstructions agree well with observed peak water levels. Finally, we demonstrate that 35	

incorporating an expanded set of historical modeled storm tides beginning in 1950 can 36	

enhance our understanding of US coastal hazard. Our newly developed database of TC 37	

sizes and associated storm tides can aid in understanding North Atlantic TC climatology 38	

and modeling TC wind, storm surge, and rainfall hazard along the US Atlantic and Gulf 39	

coasts.   40	

 41	

1. Introduction  42	

Tropical cyclones (TCs) are one of the largest threats to coastal communities 43	

worldwide (Dullaart	et	al.,	2021), and are the costliest natural hazard impacting the 44	

United States (Smith	and	Katz,	2013). Landfalling TCs can bring extreme winds, storm 45	

surges, and rainfall to coastal regions, resulting in widespread damages and loss of life. 46	

For example, the Galveston hurricane of 1900 caused at least 6,000 fatalities, and remains 47	

the deadliest US hurricane to date (Cline,	1900). More recently, Hurricanes Katrina 48	

(2005), Sandy (2012), and Harvey (2017) caused extreme flooding due to their rainfall 49	

and storm surges with total damages ranging from $80-$150 billion (2022 USD) for each 50	

of the storms (Blake et al., 2013; Blake and Zelinsky, 2017; Knabb et al., 2005). Given 51	
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the magnitude and frequency of TC-induced catastrophes, it is vital to understand and 52	

characterize the wind, rain and surge hazards from historical hurricanes. Developing 53	

spatially and temporally continuous records of TC storm characteristics and associated 54	

hazards can aid in risk assessment, emergency planning, and mitigation efforts.   55	

 TC wind, rainfall and surge severity in coastal regions depends on storm 56	

characteristics including intensity (maximum sustained wind speed – Vmax and minimum 57	

central pressure – Pmin), inner size (i.e. radius to maximum wind – Rmax), translation 58	

speed, and approach angle to the coast (Irish	et	al.,	2008;	Ramos-Valle	et	al.,	2020;	59	

Thomas	et	al.,	2019). Peak storm surges also vary based on geographic characteristics, 60	

such as coastline shape and near-shore bathymetry (Woodruff	et	al.,	2013), while 61	

rainfall rates are sensitive to land topography and land cover characteristics (Zhang	et	al.,	62	

2018). Aside from features of the synoptic-scale environment (such as vertical wind 63	

shear), Vmax and Rmax are often the two most important storm characteristics controlling 64	

the TC wind field (Chavas et al., 2015), peak rainfall rate (Liu	et	al.,	2019), and peak 65	

storm surge (Bass	et	al.,	2017).  66	

 Databases of North Atlantic TC tracks and intensities, such as the International 67	

Best Track Archive for Climate Stewardship (IBTrACS; Knapp	et	al.,	2010), date back 68	

to the 1800’s. However, detailed TC size estimates are typically only available from 1988 69	

onward (Demuth	et	al.,	2006). There are also numerous databases containing 70	

information about observed TC storm surges and rainfall. For example, several databases 71	

of observed storm tides from tidal gauges (https://tidesandcurrents.noaa.gov) and high-72	

water marks (https://stn.wim.usgs.gov/FEV) are available, and these observations can 73	

provide valuable hazard information. However, their spatial coverage is limited based on 74	

the locations of tidal gauges and collected high water marks. For example, along the US 75	

coastline there are only 100 tidal gauges with more than 30 years of data. The relatively 76	

sparse distribution of tidal gauges may not capture peak water levels induced by TCs 77	

(Haigh	et	al.,	2014;	Pugh,	1987), and these gauges may fail during high intensity events 78	

(Beven	et	al.,	2008;	Fritz	et	al.,	2007). Other storm surge databases drawing from 79	

observations, technical reports, journal articles, and newspapers (Needham	et	al.,	2015;	80	

Needham	and	Keim,	2012) have estimated the location and magnitude of peak storm 81	

surges for many historical TCs, although they do not provide spatially continuous storm 82	
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surge estimates for each event. As with storm surge observations, peak wind speed and 83	

rainfall observations are available at gauge locations (Menne	et	al.,	2012) dating back to 84	

the late 1800’s. However, spatially continuous, sub-daily wind field or rainfall 85	

observations, such as data derived from satellite and radar, is only available starting in the 86	

late 1990’s (Chavas	and	Vigh,	2014;	Huffman	et	al.,	2021;	Lin	and	Mitchell,	2005;	87	

Powell	et	al.,	1998). Moreover, since satellite data is often only available at irregular 88	

sampling intervals, snapshots of wind and rainfall estimates from satellite products may 89	

not be temporally continuous. Given the dearth of observations, we can instead use 90	

physics-based wind models, rainfall models, and high-resolution hydrodynamic models 91	

to reconstruct spatially and temporally continuous estimates of historical TC hazards and 92	

structure. Currently, model-based datasets of historical TC storm tides and winds only 93	

date back to 1988 (Done	et	al.,	2020;	Marsooli	and	Lin,	2018;	Muis	et	al.,	2019) due to 94	

temporally limited TC size data. Expanding these datasets to incorporate hazard estimates 95	

from earlier TCs would greatly enhance our understanding of historical TC risk.  96	

 To overcome temporally limited TC size data, reanalysis datasets, which are 97	

based on operational numerical weather prediction models and data assimilation, and 98	

physics-based TC models may be used together to estimate wind field structure. Typical 99	

global reanalysis products, with horizontal grid resolution ranging from 0.25°-0.7°, are 100	

often unable to resolve the TC inner core (Hodges	et	al.,	2017;	Schenkel	and	Hart,	101	

2012).  However, these datasets may be able to accurately represent features of the outer 102	

TC wind field (Schenkel et al., 2017), where there is minimal convection and the lower 103	

troposphere is approximately in radiative-subsidence balance (Chavas	et	al.,	2015). The 104	

size of the outer TC wind field is often defined as the radius of the outermost closed 105	

isobar (Merrill,	1984), or radius of a specified mean azimuthal weak wind speed (e.g., 106	

radius of 2 – 12 m/s azimuthal winds; Chavas	et	al.,	2016;	Chavas	and	Vigh,	2014;	107	

Schenkel	et	al.,	2018,	2017). Previous studies have found that reanalysis datasets can 108	

reasonably represent TC outer size metrics, such as radii of azimuthal-mean 6-8 m/s 109	

azimuthal winds (Bian	et	al.,	2021;	Schenkel	et	al.,	2017). Using reanalysis-based 110	

estimates of TC outer size and Vmax based on Best Track data, parametric TC wind 111	

models may be used to characterize the full TC wind field. Specifically, the physics-112	

based complete TC wind model of Chavas et al. (2015; hereafter CLE15) can realistically 113	
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reproduce the entire TC wind field structure including hard to measure quantities like 114	

Rmax based on outer size and Vmax (Chavas	et	al.,	2015;	Lin	and	Chavas,	2012). 115	

Recently, Chavas	and	Knaff	(2022) demonstrated how the CLE15 theory is quite similar 116	

to observations in their effort to create a simple physics-based empirical model to 117	

estimate Rmax from the radius of 17.5 m/s wind that compares well against Rmax 118	

observations from historical North Atlantic TCs.    119	

In this study, we leverage reanalysis-based estimates of TC outer size and the 120	

physics-based CLE15 wind model to reconstruct North Atlantic historical TC wind fields 121	

from 1950-2020 and model their associated storm tides using a high-resolution 122	

hydrodynamic model. We develop the first spatiotemporally continuous databases of 123	

Rmax estimates for North Atlantic TCs from 1950-2020 and associated peak storm tides 124	

for the US Atlantic and Gulf coastline. Our database can supplement size estimates from 125	

IBTrACS or the Extended Best Track Database (EBTRK; Demuth et al. 2006) for storms 126	

occurring earlier than 1988 and can supplement previous storm tide databases (Marsooli	127	

and	Lin,	2018;	Muis	et	al.,	2019) by similarly providing storm tide reconstructions for 128	

TCs occurring from 1950 onward. To evaluate our outer size and Rmax estimates, we 129	

compare against two high-resolution TC wind field databases (QSCAT-R and HWIND) 130	

as well as against IBTrACS data. We evaluate the accuracy of our size estimates for the 131	

full TC life cycle of storms in both the low (equatorward of 30N) and middle (poleward 132	

of 30N) latitudes, and we investigate the uncertainty in the size estimates for storms 133	

undergoing extratropical transition (ET). Storm tide reconstructions are compared against 134	

observed peak water levels from tidal gauges along the US coastline. Finally, we 135	

demonstrate how our storm tide reconstructions impact storm surge hazard assessment at 136	

various US cities.  137	

 138	

2. Methods 139	

2.1. TC Datasets 140	

North Atlantic TC track, intensity, and pressure information from 1950 onward 141	

are obtained from the IBTrACS Version 4 database (Knapp et al., 2010).  To focus on 142	

TCs that can cause non-negligible storm surges, we select storms with maximum wind 143	
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speed greater than 17 m/s that approach within 200 km of the US coastline, resulting in 144	

467 storms.   145	

To estimate the outer TC wind field, we utilize the 0.25° latitude x 0.25° 146	

longitude 3-h European Centre for Medium-range Weather Forecasts (ECMWF) ERA5 147	

reanalysis dataset and back-extension (Hersbach	et	al.,	2020). We choose the ERA5 148	

reanalysis due to its relatively fine horizontal grid spacing compared to other reanalysis 149	

datasets, its long temporal coverage (1950-2020), and because previous work (Bian et al., 150	

2020) demonstrated improved outer size representation of ERA5 compared to previous 151	

reanalyses. We determine the position of each TC within the reanalysis grid by using the 152	

IBTrACS position as a first guess. Then, using the sea-level pressure reanalysis fields we 153	

calculate the centroid of pressure deficit and iteratively adjust the estimated TC center 154	

position based on the method of Nguyen	et	al.	(2014). Once given a center, we calculate 155	

the azimuthal-mean wind field and calculate the radius of a given weak wind speed to 156	

define storm size (details below). 157	

Due to the lack of satellite data pre-1980 and data assimilation challenges in the 158	

ERA5 back-extension (ECMWF, 2021), size and storm tide estimates from 1950-1979 159	

have higher uncertainty compared to storms occurring from 1980 onward. Due to the 160	

ERA5 back-extension data assimilation approach, some tropical cyclones from 1950-161	

1978 are represented with unrealistically intense Pmin values in the reanalysis data. We 162	

do not utilize reanalysis-based Pmin estimates in our study, but the unphysical Pmin 163	

values could impact the reanalysis representation of the outer TC wind field. Despite 164	

larger uncertainties associated with size estimates for 1950-1979 TCs, a comparison of 165	

the ERA5 size distributions pre- and post-1980 demonstrates that both groups of storms 166	

have similar outer size climatologies (Figure S1) and similar Rmax climatology (Figure 167	

S2), suggesting that limitations within the 1950-1979 ERA5 data do not cause large 168	

changes in the estimated TC sizes. As subsequent ERA5 1950-1978 versions are released, 169	

our estimated size and storm surge estimates will be updated. 170	

To validate reanalysis TC size estimates, we compare against IBTrACS and two 171	

detailed TC wind field databases: the QuikSCAT Tropical Cyclone Radial Structure 172	

database (QSCAT-R; Chavas	and	Vigh,	2014) and the HWind database (Powell	et	al.,	173	

1998). Both QSCAT-R and HWind have been widely used to investigate features of the 174	
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inner (Chavas and Lin, 2016) and outer (Bian et al., 2021; Chavas et al., 2016; Schenkel 175	

et al., 2017) wind fields of historical TCs. QSCAT-R contains snapshots of azimuthal-176	

mean 10-m azimuthal winds from 167 North Atlantic TCs between 2000-2009, and has a 177	

horizontal grid spacing of approximately 12.5 km. The HWind data used here comes 178	

from 120 North Atlantic TCs spanning 2004-2013 with approximate horizontal grid 179	

spacing of 6 km. QSCAT-R wind fields, which are based on NASA’s QuikSCAT satellite 180	

(Chavas and Vigh, 2014), are available at irregular time points during each TC, while the 181	

HWind data is provided at 6-h intervals. QuikSCAT tends to underestimate wind speeds 182	

in high wind regimes (Stiles et al., 2014) and is therefore more suitable for investigating 183	

features of the outer TC wind field. We utilize the QSCAT-R dataset to validate the outer 184	

TC size estimates and use the higher resolution HWind dataset and IBTrACS data from 185	

2004-2020 to validate the Rmax estimates. Importantly, Rmax estimates from IBTrACS are 186	

not reanalyzed post-storm and are based on near real-time information from aircraft 187	

reconnaissance or remotely-sensed data. Therefore, the IBTrACS Rmax values may have 188	

significant uncertainty or errors. We utilize estimates of the IBTrACS Rmax uncertainty 189	

that were developed by the National Hurricane Center (NHC) based on the 2021 North 190	

Atlantic and Northeast Pacific TC season (C. Landsea, personal communication, March 191	

2022). The uncertainty estimates are based on mean absolute errors (MAEs) for the Best 192	

Track Rmax values and are binned according to TC intensity (Table S1). The MAEs used 193	

here assume each storm is observed by both satellite and aircraft reconnaissance. 194	

Therefore, they represent conservative estimates of uncertainty as points far from land or 195	

without aircraft/satellite observations likely have much higher uncertainty. Moreover, as 196	

these estimates are derived from 2021 data, older storms in the IBTrACS dataset likely 197	

also have higher uncertainty. Nevertheless, the Best Track Rmax errors described here 198	

provide a benchmark we can use to evaluate our model based Rmax estimates.   199	

 200	

2.2. TC Outer Size Estimation  201	

Following Schenkel et al. (2017), we incorporate six outer size metrics defined as 202	

the radii at which the 10-m azimuthal-mean azimuthal wind speed equals 2, 4, 6, 8, 10, 203	

and 12 m/s (denoted r2 – r12). We consider a range of size metrics since not all wind radii 204	

may be defined at every point in time in the reanalysis data. To estimate each size metric 205	
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at each point in time, we follow Chavas and Vigh (2014). A TC-relative polar coordinate 206	

is constructed and the reanalysis zonal and meridional winds are interpolated into the 207	

polar grid, excluding all grid points over land. A uniform environmental wind is then 208	

removed from the TC-relative zonal and meridional winds, which is estimated as 55% of 209	

the translation speed and rotated 20 degrees counterclockwise according to Lin and 210	

Chavas (2012). An asymmetry parameter (c) is also calculated at each radius according 211	

to Chavas and Vigh (2014). The c parameter varies from 0 (perfect data symmetry about 212	

the TC center) to 1 (complete asymmetry about the TC center) and quantifies the degree 213	

of data coverage asymmetry at each radial distance. Radial bins with c>0.5 are excluded 214	

from the outer size estimation (Chavas and Vigh, 2014). The azimuthal-mean azimuthal 215	

wind is then calculated, and followed by the extraction of outer size metrics (i.e. r2, r4, r6, 216	

r8, r10, r12).  217	

 The reanalysis outer size estimates may be biased compared to the observations, 218	

especially for the r10 and r12 metrics (Schenkel	et	al.,	2017). Therefore, we bias correct 219	

each outer size metric based on the comparison with the QSCAT-R outer sizes for the 220	

period between 2000-2009. We find that the average outer size bias is generally constant 221	

across the range of outer sizes for most size metrics (Figure S2), implying that the outer 222	

size estimates can be corrected by simply adding a single correction value to each 223	

estimate for a given metric. For each size metric (i.e. r2 –r12), the median difference 224	

between the QSCAT-R values and the ERA5 estimates (shown as the horizontal red lines 225	

in Figure 2a) are calculated and added to each ERA5 size estimate, similar to Bian et al. 226	

(2021). Bias correction is applied to outer size estimates for all TCs from 1950 onward.  227	

 228	

2.3. Physics-based TC wind model and Rmax estimation  229	

Several parametric TC wind models have been developed to represent the radial 230	

profile of wind speed, and most models require free-fitting parameters as well as 231	

estimates of Vmax and Rmax (Emanuel	and	Rotunno,	2011;	Holland,	1980;	Willoughby	232	

et	al.,	2006). In contrast, the more recently developed CLE15 complete wind profile is a 233	

fully physics-based model that describes the full TC wind field by merging solutions for 234	

the inner convective region and the outer descending region. Wang et al. (2022) found 235	

that the CLE15 model better reproduces observed TC wind fields compared to the 236	
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popularly used Holland model (Holland, 1980). As explained in Chavas and Lin (2016), 237	

the CLE15 wind profile can be constructed using Vmax and a single additional outer wind 238	

radius. Chavas and Lin (2016) also demonstrated that CLE15 profiles based on Vmax and 239	

outer size were able to reproduce the observed wind field variability of historical North 240	

Atlantic TCs. Therefore, we use the CLE15 model to construct the full wind profile and 241	

extract an estimate for Rmax using the reanalysis-based outer size estimates and Vmax from 242	

IBTrACS. More details about the CLE15 model formulation are documented in Chavas	243	

et	al.	(2015). 244	

 245	

2.4 Time series of TC size estimates  246	

A time series of Rmax estimates are developed for each TC from 1950-2020 to 247	

match the IBTrACS time steps. For each 3-h increment, the TC outer size metrics (r2-r12) 248	

are estimated from the ERA5 reanalysis data, and bias corrected as explained above. 249	

Next, the maximum azimuthal-mean azimuthal wind (𝑉!"#∗ )	is calculated based on the 250	

IBTrACS Vmax (Vmax,BT) as follows:  251	

  𝑉!"#∗ = 0.75(𝑉!"#,&' − 0.55𝑉()"*+) (1) 252	

where Vtrans is the TC translation speed. We remove the background wind, estimated as 253	

55% of the storm translation speed (Lin	and	Chavas,	2012), from Vmax,BT and then apply 254	

an additional 0.75 reduction factor similar to the reduction factor of 0.8 used in Chavas et 255	

al. (2016). This additional reduction factor takes into account that Vmax,BT represents the 256	

maximum wind speed occurring at any point in the TC, while we are interested in the 257	

maximum azimuthal-mean wind speed. The 0.75 reduction factor was developed by 258	

comparing the IBTrACS Vmax estimates for all TCs from 2004-2013 with at least tropical 259	

storm intensity (>17 m/s) against the HWind maximum azimuthal-mean wind speeds 260	

(Figure S3).  261	

 Using each outer size estimate and 𝑉!"#∗ , we construct a radial profile of 262	

azimuthal-mean 10-m TC azimuthal winds using the CLE15 wind model and estimate 263	

Rmax. If more than three outer size metrics are undefined for a particular time step, Rmax is 264	

set as undefined. Since the CLE15 model may produce different Rmax estimates using 265	

different outer size metrics, we create a weighted average Rmax based on all defined outer 266	

size metrics with weights equal to the inverse of the root mean square error between the 267	
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reanalysis outer size estimates and the QSCAT-R outer size estimates (Table S2). Once 268	

the TC makes landfall, we do not utilize the reanalysis data to estimate outer size since 269	

our methodology sets reanalysis 10-m wind speeds over land are as undefined. Instead, 270	

we assume constant outer size after landfall equal to the last outer size estimate before 271	

landfall. Although TC size can change significantly after landfall (Chen and Chavas, 272	

2020; Hlywiak and Nolan, 2021), our primary goal is to reconstruct TC storm surges, 273	

which would be minimally impacted by size changes occurring after landfall. The Rmax at 274	

each point after landfall is estimated using 𝑉!"#∗  and constant outer size. Finally, we 275	

apply linear interpolation to fill in time steps where Rmax is undefined due to insufficient 276	

outer size data, leading to a continuous time history of Rmax values for each TC.  277	

 278	

2.5 Defining Extratropical Transition (ET) Storms 279	

Our study objectively defines extratropical transition (ET) using the cyclone 280	

phase space (Hart 2003; Evans and Hart 2003). ET start is defined when the TC 281	

transitions from a warm-core, nonfrontal cyclone to a warm-core, frontal cyclone. This 282	

occurs in the cyclone phase space when the storm-motion-relative 900–600-hPa layer 283	

thickness asymmetry across the TC exceeds an empirical value of 10 m. Positive 284	

thickness asymmetry parameter values correspond to cold and/or dry air to the left of 285	

motion and warm and/or moist air to the right of motion (Hart 2003; Evans and Hart 286	

2003). ET end occurs when the TC transitions from a warm-core, frontal cyclone to a 287	

cold-core, frontal cyclone. This is defined as when the 900–600-hPa thermal wind 288	

changes from positive to negative. Negative values are associated with increases in the 289	

strength of the cyclone wind field with height (Hart 2003). Both cyclone phase space 290	

parameters are calculated over a 500-km radius from the TC center, which is the 291	

approximate length scale of North Atlantic TC outer size (Chavas et al. 2016; Schenkel et 292	

al 2018). We use ERA5 data available at intervals between 25-50 hPa to compute these 293	

parameters. 294	

 295	

2.6 Estimating missing Pmin data  296	

For TCs occurring before 1975, Pmin data is missing for some IBTrACS time 297	

steps. Although Pmin is not a required input when estimating the storm Rmax, Pmin does 298	
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impact the modeled storm surge since the low-pressure TC center causes a small rise in 299	

ocean water level. The missing Pmin data can be estimated using a simplification of the 300	

cyclostrophic balance equation (Knaff	and	Zehr,	2007):  301	

 𝑃!,* = 𝑃)-. − ,
/!"#
0
-
1/*

  (2) 302	

where C and n are empirically-derived coefficients that vary with latitude and were 303	

computed in Landsea	et	al.	(2004),	Table	7.5. Alternately, gradient wind balance can be 304	

used to relate the radial profiles of pressure and azimuthal wind speed, with the wind 305	

speed profile specified by the CLE15 model. Previous work by Chavas	et	al.	(2017) 306	

showed that the application of the gradient wind balance theory can accurately predict the 307	

storm pressure deficit. A comparison of Pmin estimated using the empirical cyclostrophic 308	

balance equation (2) and the gradient wind balance with CLE15 wind profile yielded 309	

similar results (Figure S4). Since calculating Pmin using the gradient wind balance is more 310	

computationally expensive, we opt to use the simplified cyclostrophic balance equation in 311	

place of missing data.  312	

 313	

2.7 Hydrodynamic modeling of TCs 314	

To reconstruct storm tides from historical TCs, we couple the CLE15 wind model 315	

with the 2D, depth-integrated version of the advanced circulation (ADCIRC) 316	

hydrodynamic model (Luettich	et	al.,	1992;	Westerink	et	al.,	1992). We utilize an 317	

unstructured computational mesh that spans the entire North Atlantic basin and has 318	

relatively high coastal resolution (~1 km). The mesh was developed and validated in 319	

Marsooli	and	Lin	(2018). We also incorporate forcing from eight tidal constituents, 320	

which are estimated from the global model of ocean tides TPXO8-ATLAS (Egbert	and	321	

Erofeeva,	2002).	Recently, Wang et al. (2022) showed more accurate estimates of peak 322	

storm tides in ADCIRC when it was coupled to the CLE15 model compared to the 323	

Holland wind model.  Based on the track, intensity and size time histories of each TC, 324	

ADCIRC simulates peak storm tides along the US Atlantic and Gulf coasts.  325	

We compare our storm tide reconstructions to observed peak water levels from 74 326	

NOAA tidal gauges (https://tidesandcurrents.noaa.gov) located along the US Atlantic and 327	

Gulf coasts. Observed water levels from all active tidal gauges within 200 km of each TC 328	
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track are compared against simulated storm tides. Gauges that were malfunctioning, 329	

located within river or estuaries, or where water levels were clearly impacted by 330	

freshwater discharges are excluded from the comparison. We divide the coastline into 331	

five regions: western Gulf of Mexico (extending until New Orleans, LA), eastern Gulf of 332	

Mexico, southeast Atlantic (until Chesapeake Bay), mid-Atlantic (until Connecticut), and 333	

New England. Tidal gauges are grouped within each region to evaluate how well the 334	

storm surge reconstructions match observations for different portions of the coast.  335	

 336	

3. Results  337	

3.1 Representation of TC wind field within ERA5 reanalysis  338	

We first compare the radial structure of TC mean azimuthal wind from the ERA5 339	

reanalysis and the QSCAT-R data. Figure 1 shows the median azimuthal-mean azimuthal 340	

wind profile across all 6-h TC time steps between 2000-2009 with at least tropical storm 341	

intensity from ERA5 and QSCAT-R. Although previous work found that ERA5 better 342	

resolves TCs compared to the earlier ERA-Interim (Bian	et	al.,	2021;	Dullaart	et	al.,	343	

2020), Fig. 1 shows that the reanalysis data still largely under resolves inner TC wind 344	

speeds as expected from prior work (Schenkel et al. 2012; Schenkel et al. 2017). The 345	

ERA5 data also overestimates Rmax (Fig. 1) likely in part because of its coarse horizontal 346	

resolution and conservative physics parameterizations (Schenkel et al. 2017; Bian et al. 347	

2021). However, Fig. 1 also shows that ERA5 represents the outer TC wind field 348	

accurately compared to QSCAT-R (Bian et al. 2021). For r>440 km, the median wind 349	

profiles from the two datasets converge, and a Kolmogorov-Smirnov test at the 5% level 350	

suggests that wind speeds from both datasets at each subsequent radii come from the 351	

same distribution. The comparison of the wind profiles illustrates that ERA5 is a 352	

reasonable source for estimating features of the outer wind field.  353	
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 354	
Figure 1:	Median	azimuthal	wind	profile	(solid)	with	boot-strapped	95%	confidence	bounds	355	

(shaded)	and	inter-quartile	range	(IQR	-	dashed)	for	all	QSCAT	TC	snapshots	with	Vmax	356	
greater	than	17	m/s.		357	

 358	

3.2 Accuracy of reanalysis-derived outer size metrics 359	

After establishing that the TC outer wind profile from the ERA5 compares well to 360	

QSCAT-R, we next evaluate the accuracy of ERA5 outer size estimates. For each 361	

QSCAT-R data point and outer size metric (i.e. r2, r4, r6, r8, r10, and r12), we compare 362	

against the corresponding ERA5 sizes. The outer size analysis includes 381 QSCAT-R 363	

snapshots, although the size metrics are not all defined for each snapshot. Figure 2a 364	

shows boxplots of the difference between ERA5 and QSCAT-R for each size metric. 365	

Except for r2, ERA5 slightly underestimates the outer size compared to QSCAT-R, with a 366	

larger negative bias for r10 and r12. In contrast, the variability of the size estimates 367	

decreases for radii of higher wind speeds, demonstrated by the narrower interquartile 368	

ranges for r10 and r12. The larger negative bias for r10 and r12 is due to ERA5 consistently 369	

under-predicting wind speeds for radial distances closer than 440 km (Fig. 1a) as found in 370	

previous studies (Bian	et	al.,	2021;	Schenkel	et	al.,	2017).  371	

 Figure 2b shows a Taylor diagram (Taylor,	2001) comparing outer size in the 372	

ERA5 versus QSCAT-R.  There is high correlation between ERA5 and QSCAT-R for all 373	
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size metrics, ranging from 0.8-0.93, with the highest correlations for r12 and r8. The ratio 374	

of the standard deviations ranges from 0.8-1, indicating that there is less variability in the 375	

ERA5 sizes compared to QSCAT-R. The r12 and r8 metrics have the lowest root-mean-376	

square-error (RMSE), followed by r6, r10, r4, and lastly r2. As found in Schenkel et al. 377	

(2017), the lower correlation coefficient, higher RMSE, and higher normalized standard 378	

deviation for the r2 metric suggests that the reanalysis data struggles to resolve weak 379	

azimuthal-mean TC wind speeds from the environmental background wind. Nevertheless, 380	

based on the relatively high correlation coefficients, low RMSE, and good match to 381	

QSCAT-R based outer sizes (Figure S3) for most other size metrics, the ERA5 reanalysis 382	

outer size estimates can be used (after bias correction) to realistically represent the outer 383	

TC wind field.  384	

 385	
Figure 2: (a)	Boxplots	of	outer	size	error	of	ERA5	reanalysis	data	compared	to	QSCAT-R	for	381	386	

TC	snapshots	at	radii	at	which	the	azimuthal-mean	10-m	azimuthal	wind	equals	12	m/s	387	
(r12),	10	m/s	(r10),	8	m/s	(r8),	6	m/s	(r6),	4	m/s	(r4)	and	2	m/s	(r2).	Median	of	each	388	
metric	shown	as	horizontal	red	line,	and	width	of	notch	on	each	box	denotes	95%	389	
uncertainty	bounds	of	the	median,	calculated	through	bootstrapping.		Red	plus	signs	390	
denote	outliers	using	1.5*IQR	formula.	(b)	Pearson	correlation	(radial	axis),	ratio	of	391	
standard	deviations	(y	axis),	and	root	mean	square	error	(RMSE)	between	ERA5	and	392	
QSCAT	(blue	contours)	for	each	outer	size	metric.		393	

 394	

 3.3 Accuracy of Rmax estimates  395	

The ERA5 outer size estimates at each TC time step are bias corrected by adding 396	

the median difference between ERA5 and QSCAT-R outer size (red lines in Figure 2a) 397	
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calculated for each size metric (see Section 2.2). Then, using the bias corrected outer size 398	

estimates and Vmax* defined in equation 1, we compute the azimuthal-mean 10-m wind 399	

field for each TC time step based on the CLE15 model and extract Rmax. We compare the 400	

ERA5+CLE15 Rmax values against Rmax values from IBTrACS (Figure 3) and the high-401	

resolution HWind dataset (Figure S5). Figure 3a shows a comparison of storm-averaged 402	

Rmax for each TC between 2004-2020 for the duration of time when the TC is at least 100 403	

km away from land and has intensity > 17.5 m/s. Figures 3b-e show a comparison of all 404	

6-h time steps between 2004-2020 with intensity > 17.5 m/s and a distance to land of at 405	

least 100 km. Similarly, Figure S5 shows the same comparison for TC snapshots taken 406	

from HWind. The HWind Rmax comparison illustrates that the model performs well 407	

overall: the RMSE is 31 km and the mean bias is only 0.3 km. Apart from a couple 408	

tropical storm intensity outliers, the vast majority of TC snapshots in Fig. S5 are clustered 409	

around the 1:1 line.  410	

 411	
Figure 3: (a) Comparison between storm-averaged Rmax using ERA5 outer size and CLE15 wind 412	

profile (ERA5+CLE15) and IBTrACS Rmax for TCs where Vmax is greater than 17 m/s. Points 413	
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are colored by their Saffir-Simpson category. (b) Same as in (a) except using each 6-hour TC 414	
time step for TCs below 30 degrees latitude, (c) same as in b but for TC time steps above 30 415	
degrees latitude, (d) same as in b but for extra-tropical transitioning (ET) time steps, where ET is 416	
defined according to the cyclone phase space (Hart, 2003). 417	

 418	
3.3.1 Storm-Averaged Performance 419	

Figure 3a shows a comparison between storm averaged Rmax using ERA5+CLE15 420	

and IBTrACS. Rmax performance is quantified using three metrics: the RMSE, mean bias, 421	

and Willmott skill (Willmott,	1981), which quantifies the degree of agreement between 422	

modeled and observed data and ranges from 0 (complete disagreement) to 1 (complete 423	

agreement). The overall storm-averaged performance is relatively good, with a Willmott 424	

skill of 0.85 and average bias of -2.2 km. The variability in the difference between 425	

ERA5+CLE15 and IBTrACS increases with increasing Rmax, suggesting that there is 426	

higher uncertainty for large Rmax values. Additionally, the ERA5+CLE15 approach 427	

performs better in terms of storm averaged Rmax for hurricane strength (>33 m/s) storms 428	

(red and magenta points) compared to tropical storm intensity (<33 m/s) events (green 429	

points), which tend to have larger Rmax values. The lower ERA5+CLE15 performance for 430	

tropical storm intensity TCs could also be due to challenges extracting reanalysis outer 431	

size estimates from weak, less organized storms.  432	

 To measure the uncertainty associated with the ERA5+CLE15 Rmax estimates, we 433	

develop a low and high estimate in addition to the modeled Rmax. We first calculate the 434	

percent difference between the IBTrACS and ERA5+CLE15 storm averaged Rmax values, 435	

which has a mean of approximately 0%. Then we scale all the Rmax values up (down) by 436	

one standard deviation of the percent difference to get the high (low) estimate. Using this 437	

procedure, the low-high estimates overlap with the IBTrACS values for 68% of storms 438	

(close to +/- one standard deviation range of a normal distribution) shown in Fig. 3a.  439	

 440	

3.3.2 Performance for Low-Latitude TCs 441	

Fig. 3b shows the comparison between ERA5+CLE15 and IBTrACS Rmax at each 442	

time step where a TC is below 30° N latitude. The ERA5+CLE15 approach performs 443	

well for low latitude TCs, with a mean bias of only 0.5 km and RMSE of 29.1 km. There 444	

are a few very large, weak TCs occurring below 30° N that are underestimated by 445	

ERA5+CLE15, and a few category 1-2 TC time steps that are also underestimated. 446	
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However, most TC time steps occurring below 30° N correlate well with the IBTrACS 447	

Rmax and fall within the IBTrACS uncertainty bounds.  448	

 To further illustrate the performance of the modeled Rmax values at low latitudes, 449	

Figure 4 shows the temporal evolution of Rmax until landfall (where the plots terminate) 450	

based on ERA5+CLE15 (green) and IBTrACS Rmax (blue) for three hurricanes that 451	

encompass a wide range of Rmax evolution: (a) Katrina (2005), (b) Isaac (2012), and (c) 452	

Florence (2018). The model-based (+/- standard deviation) and IBTrACS (+/- MAE) Rmax 453	

uncertainty ranges are also shown on each plot as shaded regions. For Isaac and Florence, 454	

the temporal evolution of modeled Rmax tracks well with IBTrACS, as the ERA5+CLE15 455	

approach is able to capture the shrinking/expanding TC size evolution. For Katrina’s 456	

case, there is an increase in Rmax occurring around hour 90 that is underestimated by 457	

ERA5+CLE15. Across all three storms the ERA5+CLE15 Rmax values fall within the 458	

IBTrACS uncertainty bounds for the vast majority of time steps. Additionally, in most 459	

cases the IBTrACS values also fall within the ERA5+CLE15 uncertainty range. In the 460	

case of Isaac, the model initially overestimates Rmax, but the ERA5+CLE15 and 461	

IBTrACS values converge as the storm intensifies. The examples shown in Figure 4 462	

demonstrate that the ERA5+CLE15 Rmax values can realistically reproduce TC size 463	

evolution for landfalling storms.  464	

 465	
Figure 4: Evolution	of	IBTrACS	Rmax	(blue)	and	ERA5+CLE15	Rmax	(green)	with	uncertainty	466	

bounds	(shaded	area),	and	Vmax	(orange)	for	several	major	historical	TCs	occurring	below	467	
30N:	(a)	Katrina	2005,	(b)	Isaac	2012,	(c)	Florence	2018.	ERA5+CLE15	uncertainty	bounds	468	
are	based	on	+/-	one	standard	deviation	(section	3c.1)	and	IBTrACS	uncertainty	bounds	469	
are	based	on	+/-	mean	absolute	error	(MAE)	as	estimated	by	NHC.		470	

 471	

3.3.3 Performance at Mid-Latitudes and for ET Storms 472	
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In contrast to the good performance at low latitudes, the performance of 473	

ERA5+CLE15 is not as good for mid-high latitude storms (Fig. 3c) where the model 474	

tends to underestimate Rmax for large storms, resulting in a mean bias of -15.6 km. The 475	

performance of ERA5 + CLE15 is also not as good for extratropical transitioning (ET) 476	

time steps (Fig. 3d), where ET time points are selected based on the cyclone phase space 477	

discussed in section 2.5. As shown in Figs. 3c and 3d, the majority of mid-latitude 478	

hurricane time steps (red points) whose sizes are underestimated by ERA5+CLE15 were 479	

also undergoing ET. Storm ET often results in an expansion and asymmetric evolution of 480	

the wind field (Evans	and	Hart,	2008;	Hart	and	Evans,	2001;	Jones	et	al.,	2003), 481	

causing an increase in Rmax (Evans	et	al.,	2017;	Evans	and	Hart,	2008;	Halverson	and	482	

Rabenhorst,	2013) that is demonstrated by the large Rmax for category 1-2 storms shown 483	

in Fig. 3e. ET dynamics are not explicitly captured by the ERA5+CLE15 approach since 484	

the CLE15 wind profile is based on the angular momentum distribution of a mature TC. 485	

Still, ET wind field expansion could be partially accounted for in the ERA5+CLE15 Rmax 486	

estimates: the ERA5-based outer size estimates may capture the expansion in the outer 487	

wind field during ET, and a larger outer size would yield a larger Rmax using the CLE15 488	

profile (for fixed intensity and latitude). Similarly, decreasing storm intensity and 489	

increasing latitude (both of which are also associated with ET) would yield increased 490	

Rmax estimates from the CLE15 model.  491	

 Figure 5 shows the ERA5+CLE15 Rmax (green) and IBTrACS Rmax (blue) 492	

evolution for three TCs reaching the mid latitudes where ERA5+CLE15 does not perform 493	

as well: (a) Sandy (2012), (b) Jose (2017) and (c) Dorian (2019), where the vertical red 494	

line on each plot indicates ET start and the plot terminates either when the TC makes 495	

landfall or completes ET. In Sandy’s case, the Rmax had already begun expanding rapidly 496	

before ET started (according to the phase space criteria) as it transitioned from a TC into 497	

a warm-seclusion extratropical cyclone that had both tropical (warm core) and extra-498	

tropical (frontal structure) features (Halverson	and	Rabenhorst,	2013). ERA5+CLE15 499	

generally captures Sandy’s Rmax evolution until ET begins, at which point the IBTrACS 500	

Rmax increases at a much faster rate than the model predicts, demonstrating that 501	

ERA5+CLE15 can capture some size expansion during ET but not completely. Similarly, 502	

during Dorian the modeled Rmax expands once ET begins (Fig. 5c). However, the 503	
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IBTrACS Rmax expanded at a faster rate during ET than was predicted by the model. 504	

Hurricane Jose (Fig. 5b) did not undergo ET according to the phase space criteria, but as 505	

the storm moved north it acquired some extra-tropical characteristics, which caused an 506	

increase in the storm’s Rmax (Berg,	2018).   507	

 508	
Figure 5: Evolution	of	IBTrACS	Rmax	(blue)	and	ERA5+CLE15	Rmax	(green)	with	uncertainty	509	

bounds	(shaded	area),	and	Vmax	(orange)	for	several	major	historical	TCs	reaching	above	510	
30	N:	(a)	Sandy	(2012),	(b)	Jose	(2017),	and	(c)	Dorian	(2019).	ERA5+CLE15	uncertainty	511	
bounds	are	based	on	+/-	one	standard	deviation	(section	3c.1)	and	IBTrACS	uncertainty	512	
bounds	are	based	on	+/-	mean	absolute	error	(MAE)	as	estimated	by	NHC.	Vertical	red	line	513	
indicates	time	when	extra-tropical	transition	(ET)	begins	according	to	the	cyclone	phase	514	
space	and	plots	terminate	when	TC	makes	landfall	or	completes	ET.	515	

 516	

 The ERA5+CLE15 Rmax estimates for mid-latitude and ET storms cannot be 517	

corrected using a simple linear fit against the IBTrACS data. Figs 3c and 3e show that 518	

ERA5+CLE15 performs well for TC time steps where Rmax is less than roughly 120 km 519	

(see small storms clustered around the 1:1 line) but tends to largely underestimate Rmax 520	

for larger storms (see divergence from 1:1 line for large storms). For example, the mean 521	

bias for mid-latitude (ET) storms with Rmax smaller than 120 km is only -2 km (-2.6 km), 522	

but is -60 km (-60 km) for mid-latitude (ET) storms larger than 120 km. However, the 523	

uncertainty associated with the IBTrACS Rmax values may be larger for ET storms since 524	

the Rmax is generally calculated as the location of highest wind speed occurring anywhere 525	

in the storm (compared to location of highest azimuthal-mean wind speed) and ET storms 526	

may have non-negligible asymmetry. Despite the larger negative bias and higher 527	

uncertainty for large ET storms, the ERA5+CLE15 approach produces reasonable TC 528	

size estimates that can be utilized for hazard analysis. Storm tides along the Mid-Atlantic 529	

and New England coastlines are less sensitive to Rmax compared to other coastal regions 530	

(see section 3.4) and errors in Rmax during ET do not result in large errors in peak storm 531	
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tide as shown in the next section (see Figure 6) Therefore, we use un-adjusted 532	

ERA5+CLE15 Rmax estimates in conjunction with the low-high ranges developed in 533	

section 3.3.1.  534	

 535	

3.4 Modeled and observed storm tides  536	

In addition to developing a record of historical TC sizes, the second goal of our 537	

study is to develop a spatiotemporally continuous database of peak TC storm tides. We 538	

simulate peak storm tides using the ERA5+CLE15 size estimates and the ADCIRC 539	

hydrodynamic model (forced with the CLE15 wind model) and compare our modeled 540	

peak storm tides against peak water levels from 74 tidal gauges along the US coastline. 541	

Figure 6 shows scatterplots of observed and modeled peak storm tides, associated 542	

performance metrics, and error bars representing the low/high peak storm tides obtained 543	

from using the low/high Rmax estimates at each active tidal gauge within each coastline 544	

region, where the regions are defined in Figure 8. Each point is colored based on the 545	

decade in which the storm occurred. Across all regions of the coastline, the reconstructed 546	

storm tides match well against observed peak water levels, with skill scores ranging from 547	

0.89-0.97 and mean bias ranging from -0.12 – 0.03 m (where negative bias indicates 548	

model under prediction). Both the western and eastern Gulf of Mexico (GoM) have larger 549	

RMSE for peak storm tide estimates compared to locations along the Atlantic coast. The 550	

lower storm tide accuracy in the GoM is due to the coastline configuration and wide 551	

continental shelf, which causes storm tides to be highly sensitive to TC size in addition to 552	

TC intensity (Irish	et	al.,	2008). Moreover, tidal amplitudes within the GoM are 553	

relatively small, so the wind-induced storm surge makes up a large component of the 554	

total water levels, while larger tidal ranges more strongly modulate total water levels 555	

along the Atlantic coast. Modeled storm tides along the GoM also tend to have larger 556	

uncertainty bars associated with a one standard deviation increase/decrease in Rmax, 557	

which also demonstrates that storm tides here are sensitive to TC size. Along the 558	

southeast and middle Atlantic, there is smaller error in the peak storm tide estimates, as 559	

demonstrated by the smaller RMSE values. The modeled and simulated storm tides 560	

match very closely in the New England region because the tidal amplitudes are large in 561	

this region and consequently the wind-induced surge makes up a smaller component of 562	
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the total water levels. Despite these differences in performance across different coastal 563	

regions, the comparisons shown in Figure 6 demonstrate that the models perform well for 564	

both early storms (1950-1979; see performance in Figure S7) and more recent storms 565	

(1980-2020).  566	

 567	
Figure 6: Comparison of modeled peak storm tides and observed peak storm tides for all historical 568	

TCs between 1950-2020 grouped into 5 regions: (a) Western Gulf of Mexico, (b) Eastern Gulf 569	
of Mexico, (c) Southeast Atlantic, (d) Mid-Atlantic, and (e) New England. Points are colored by 570	
decade and depict associated error bars (+/- one standard deviation of Rmax). 571	

 572	

 The errors between the observed and modeled storm tides could stem from 573	

multiple sources including uncertainty in Rmax, TC position, or intensity from IBTrACS 574	

(Landsea and Franklin, 2013). Wave impacts, or errors stemming from the hydrodynamic 575	

mesh and/or physics of the ADCIRC model may also contribute to storm tide errors. 576	

Additionally, the parametric wind and pressure models used to represent the TC within 577	

ADCIRC may not match perfectly against the true TC wind/pressure fields. Therefore, to 578	

isolate the impact of the ERA5+CLE15 Rmax estimate procedure, Figure 7 shows similar 579	
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comparisons of modeled and observed peak storm tides from 2004-2020, where red dots 580	

are modeled using ERA5+CLE15 estimated sizes and blue dots are based on the 581	

IBTrACS size. The difference in performance between ERA5+CLE15 storm tides and 582	

IBTrACS storm tides is small across all regions of the coastline, and the Willmott skill is 583	

slightly higher when using the ERA5+CLE15 Rmax values in the eastern GoM and 584	

southeast Atlantic. For all regions the ERA5+CLE15 storm tides have a larger negative 585	

bias compared to the IBTrACS storm tides, but the high storm tide events are equally 586	

well captured by ERA5+CLE15. The mean bias for the mid-Atlantic is -0.16 m when 587	

using ERA5+CLE15 to estimate Rmax, compared to -0.06 m when using the IBTrACS 588	

Rmax. The slight underestimation of storm tides caused by using ERA5+CLE15 storm size 589	

estimates could be due to the CLE15 model’s underestimation of Rmax at mid-high 590	

latitudes and for ET storms (discussed in Section 3.3). Nevertheless, Fig. 7 shows that 591	

using ERA5+CLE15 to estimate the storm size does not result in significantly worse 592	

storm tide predictions compared to using the IBTrACS data. The storm tide performance 593	

metrics obtained by using the ERA5+CLE15 Rmax estimates are also similar to the 594	

performance metrics reported in Marsooli et al. (2018), which utilized the same basin-595	

scale mesh as this study and modeled storm tides for TCs from 1988-2015 using 596	

Extended Best Track (Demuth et al., 2006) Rmax. Modeled peak storm tides from 597	

Marsooli et al. (2018) had an average RMSE, bias, and Willmott skill of 0.31, -0.04, and 598	

0.90, respectively. In comparison, we report an average RMSE, bias, and Willmott skill 599	

of 0.29, -0.07, and 0.92 for all TCs from 2004-2020. 600	
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 601	
Figure 7: Comparison of modeled peak storm tides and observed peak storm tides for all historical 602	

TCs between 2004-2020 grouped into 5 regions: (a) Western Gulf of Mexico, (b) Eastern Gulf 603	
of Mexico, (c) Southeast Atlantic, (d) Mid-Atlantic, and (e) New England. Red points were 604	
modeled using ERA5+CLE15 TC size and blue points were modeled used IBTrACS size data.	605	

 606	

3.5 Impact of TCs from 1950-1988 on storm surge hazard  607	

To demonstrate the potential value of our reconstructions, we investigate how 608	

storm tides from TCs occurring between 1950-1987 can provide additional insight about 609	

coastal storm surge hazard. We model storm tides from 467 landfalling TCs, 227 of 610	

which occurred before 1988. Figure 8 shows which TCs caused the largest peak storm 611	

tides along different regions of the coastline. Along the mid-Atlantic and New England, 612	

Hurricane Sandy (2012) caused the highest storm tides for a large portion of the 613	

coastline. However, Hurricanes Hazel (1954) and Carol (1954) caused the most extreme 614	

storm surges in the Chesapeake Bay and Rhode Island, respectively. Hazel made landfall 615	

near the South/North Carolina boarder as a category 4 storm, and caused the highest 616	

storm tide levels along northern South Carolina and southern North Carolina, and in the 617	
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Chesapeake Bay. Hazel’s intense winds prior to landfall funneled large amounts of water 618	

into the Chesapeake Bay and the resulting storm surge coincided with high tide, driving 619	

water levels even higher.  620	

 621	
Figure 8: Storms that produced maximum modeled storm tides for different regions of the coastline 622	

(a): (b) Mid-Atlantic and New England, (c) Southeast Atlantic, (d) Western Gulf of Mexico, (e) 623	
Eastern Gulf of Mexico 624	

 625	

In the southeast Atlantic (Fig. 8c) there are many storms before 1988 that caused 626	

the highest storm tides along different portions of the coast, including Hazel (1954), 627	

Gracie (1959), Dora (1964), and David (1979). Gracie made landfall nearly perpendicular 628	

to the coast as a category 4 storm along the southern South Carolina coast, causing 629	

widespread storm surge flooding despite arriving at low tide. In contrast, David moved 630	

parallel to the east coast of Florida as a weak hurricane, but still induced large storm tides 631	

in the Cape Canaveral region.  632	

Similarly, along the eastern GoM (Fig. 8e) Camille (1969), Easy (1950) and 633	

Donna (1960) caused extreme storm surges. Camille, which made landfall near the border 634	

(b) Mid-Atlantic & New England (c) Southeast Atlantic

-78 -77 -76 -75 -74 -73 -72 -71 -70 -69 -68 -67

37

38

39

40

41

42

43

44

45

Hazel 
1954

Irene 2011

Gloria 1985

Sandy 2012

Carol 
1954

Chris 1988

Teddy 
2020

-82 -80 -78 -76

26

28

30

32

34

36

Betsy 1965
Andrew 1992

Jeanne 2004

David 1979

Matthew 2016

Dora 1964

Gracie 1959

Hazel 1954

Donna 1960

Isabel 2003
Emily 1993

Dennis 1999

-90 -89 -88 -87 -86 -85 -84 -83 -82 -81

25

26

27

28

29

30

31

Camille 1969

Donna 1960

Wilma 2005

Keith 1988

Easy 1950

Josephine 
1996

Alma 1966
Agnes 1972

Michael 
2018

Eloise 
1975

Ivan 
2004

Katrina 2005

-98 -97 -96 -95 -94 -93 -92 -91 -90 -89

26

27

28

29

30

31

Beulah 1967

Allen 1980

Hanna 2020

Harvey 2017

Carla 1961

Alicia 1983

Ike 2008
Audrey 
1957 Laura 

2020
Andrew 
1992

Betsy 
1965

Katrina 
2005

Camille 
1969

-95 -90 -85 -80 -75 -70
24

26

28

30

32

34

36

38

40

42

44 (b)

(c)

(d)
(e)

(a) 

(d) Western GoM (e) Eastern GoM



	 25	

of Louisiana and Mississippi, was the second most intense storm to strike the US, and 635	

caused devastating storm tides that reached up to 6-9 m along the coastline of Mississippi 636	

(ESSA,	1969;	NBS,	1971). Along the western GoM, Beulah (1967) and Carla (1961) 637	

were the most devastating pre-1988 TCs. Beulah was one of the most powerful 638	

hurricanes to hit the lower Texas coast, causing widespread storm surges and coastal 639	

erosion.  640	

While Figure 8 illustrates which TCs caused the largest storm surge impacts, it 641	

does not tell us how the incorporation of TCs from 1950-1987 impacts our estimates of 642	

storm surge hazard. Incorporating a larger sample size of historical TCs occurring from 643	

1950 to present can enable better estimation of storm surge return periods at different 644	

coastal locations, especially at locations with a limited number of recent (post 1987) TC 645	

occurrences. Figure 9 compares storm tide return period curves at several coastal 646	

locations derived from modeled storm tides occurring from 1950-2020 (red) and similar 647	

curves derived from only 1988-2020 TCs (blue). The curves in Fig. 9 were calculated by 648	

fitting modeled storm tides with a generalized pareto distribution for the tail and 649	

assuming TC arrivals occur as a Poisson process (Lin	et	al.,	2012;	Lin	et	al.,	2010;	650	

Marsooli	et	al.,	2019). The shaded regions around each return period curve represent the 651	

95% confidence intervals calculated according to the Delta method (Coles,	2001). The 652	

locations in Figure 9 were chosen because there are significant differences between the 653	

return period curves derived from the entire dataset compared to the more recent subset 654	

of storms. At Port Isabel on the lower Texas coast, the extreme storm surges from Beulah 655	

(1967) as well as Allen (1980) cause the 100-year storm tide estimate to increase from 656	

0.97 m to 1.28 m above mean sea level. At Biloxi, MS, the extreme winds from Camille 657	

(1969) caused 8 m of storm tide, which is over 3 m higher than the second highest storm 658	

tide event (4.6 m caused by Katrina in 2005). The 100-year storm tide at Biloxi, MS 659	

based on all storms from 1950-2020 is 4.6 m, while the 100-year estimate for 1988-2020 660	

storms is only 3.7 m. Hurricane Camille is the primary data point causing an increase in 661	

100-year storm tide: the incorporation of Camille’s storm tide alone increases the 100-662	

year storm tide to 4.4 m.  663	
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 664	
Figure 9: Storm tide return levels at select coastal locations using TCs from 1950-2020 (red) and 665	

using TCs from 1988-2020 (blue). Shading represents 95% confidence intervals and points 666	
represent individual storms.  667	

 668	

Incorporating a larger sample size of events can also impact the estimated shape 669	

of the storm tide distribution at some locations. For example, at Cape Coral and 670	

Charleston incorporating storm tides from 1950-1987 changes the estimated tail behavior 671	

of the distribution from a bounded tail to an unbounded tail. Unbounded tail behavior 672	

causes the storm tide return level to increase exponentially with increasing log return 673	

period, albeit with higher uncertainty bounds as calculated through the Delta method. The 674	

return period estimates for a bounded versus unbounded distribution diverge increasingly 675	

for high storm tide values. For example, at Charleston the peak storm tide from Gracie 676	

(1959) was around 3.3 m, which is estimated as a 600-year event using the 1950-2020 677	

return level curve. However, if we use the 1988-2020 curve, Gracie’s return period would 678	

be undefined since the bounded tail distribution predicts zero probability for such a large 679	

event to occur. At Newport, RI the top three storm tide events all occurred before 1987 680	
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with the largest storm tide caused by hurricane Carol (1954). Because TC occurrences 681	

from 1988-2020 at Newport are so limited, it is not possible to fit a GP distribution to the 682	

1988-2020 data. However, by incorporating the earlier TCs, it is possible to fit the GP 683	

distribution and obtain an estimate of the 100-year storm tide, which is 3.3 m.  684	

The analysis presented here illustrates how the newly reconstructed storm tides 685	

from TCs occurring in 1950-1987 can provide valuable information about storm surge 686	

hazard across the US coastline. By developing continuous maps of peak storm tides, 687	

these reconstructions can supplement sparse gauge observations and provide a more 688	

complete understanding of historical TC storm surge hazard. Similarly, the reconstructed 689	

TC size data together with track and intensity data can be used to enhance estimates of 690	

historical TC wind (Wang et al., 2022) and rainfall, based on physical rainfall models 691	

(Feldmann	et	al.,	2019;	Xi	et	al.,	2020;	Zhu	et	al.,	2013).    692	

 693	

4 Discussion and Conclusions 694	

In this study we develop a database of reconstructed historical TC sizes and storm 695	

tides based on a combination of reanalysis data and physics-based modeling. Specifically, 696	

we demonstrate that the ERA5 reanalysis data can represent TC outer size with good 697	

accuracy compared to observations. We then show that the physics-based CLE15 model 698	

can reasonably reproduce the TC Rmax using Best Track intensity information and 699	

reanalysis-based outer size. Finally, we utilize the size reconstructions to develop a 700	

dataset of modeled coastal storm tides for TCs making landfall between 1950-2020 and 701	

demonstrate that the modeled storm tides compare well against tidal gauge observations.  702	

The TC reconstruction methodology demonstrated here can be used in a variety of 703	

future applications, including quantification of wind, surge, and rainfall hazard, as well 704	

multi-hazard assessment (Gori	et	al.,	2022;	Moftakhari	et	al.,	2017;	Nasr	et	al.,	2021;	705	

Song	et	al.,	2020;	Wahl	et	al.,	2015). The TC size data generated here for the North 706	

Atlantic can also be combined with track and intensity data, and high-resolution ocean 707	

and atmosphere models to conduct detailed hindcast analysis of extreme winds, rainfall 708	

and storm surges (Lin	et	al.,	2010) for pre-1988 TCs impacting the US coastline. The 709	

reconstructed size and storm tide data could also be used as input data for TC impact 710	

models (Hatzikyriakou	et	al.,	2016;	Nofal	et	al.,	2021;	Pilkington	and	Mahmoud,	711	
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2016) to reconstruct economic losses from historical TCs and conduct TC risk analysis. 712	

The ERA5+CLE15 approach could also be applied to reconstruct sizes in other ocean 713	

basins where TC data may be more limited or discontinuous (Knaff et al., 2018; Kossin et 714	

al., 2013). The CLE15 model can be combined with climatological mean values of outer 715	

size (Chavas et al., 2016; Chavas and Emanuel, 2010) to reconstruct TC wind fields and 716	

storm surges for storms occurring before 1950, similar to the approach implemented in 717	

Lin et al. (2014). Finally, the approach described here could be utilized with output from 718	

general circulation models (GCMs) to evaluate changes in TC climatology and hazards 719	

resulting from different climate warming scenarios. 720	

The TC size and storm tide reconstructions developed here may be impacted by 721	

limitations and uncertainties stemming from the ERA5 reanalysis data (discussed in 722	

sections 2.2 and 3.2), CLE15 wind model (section 3.3), and hydrodynamic model and 723	

mesh (section 3.4). Although there is higher uncertainty associated with the use of ERA5 724	

to represent 1950-1979 TCs, storm tide modeling results suggest that our approach can 725	

well-capture peak water levels induced by early TCs (Fig. S7). Similarly, despite some 726	

underestimation of Rmax for ET time steps (Fig. 3d), our modeling framework still 727	

accurately simulates peak storm tides along the Mid-Atlantic and New England coastlines 728	

(Fig 6d-e). Moreover, the ERA5+CLE15 approach performs with high skill and near-zero 729	

bias for TC time steps below 30N (Fig 3b) and on a storm-averaged basis (Fig. 3a), 730	

suggesting that our size reconstructions can reasonably represent pre-1988 TCs. 731	
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