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Abstract

Atmospheric methane mixing ratio rose by 15 ppbv between 2019 and 2020, the fastest growth rate on record. We conduct a

global inverse analysis of 2019-2020 GOSAT satellite observations of atmospheric methane to analyze the combination of sources

and sinks driving this surge. The atmospheric methane growth rate increased by 31 Tg a-1 from 2019 to 2020, representing a

36 Tg a-1 forcing on the methane budget away from steady state. 86% of the forcing in the base inversion is from increasing

emissions (82 ± 18% in the 9-member inversion ensemble), and 14% is from decrease in tropospheric OH. Half of the increase

in emissions is from Africa (15 Tg a-1) and appears to be driven by wetland inundation. There is also a large relative increase

in emissions from Canada and Alaska (4.8 Tg a-1 , 24%) that could be driven by temperature sensitivity of boreal wetland

emissions.
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Abstract  
 
Atmospheric methane mixing ratio rose by 15 ppbv between 2019 and 2020, the fastest growth 
rate on record. We conduct a global inverse analysis of 2019-2020 GOSAT satellite observations 
of atmospheric methane to analyze the combination of sources and sinks driving this surge. The 
atmospheric methane growth rate increased by 31 Tg a-1 from 2019 to 2020, representing a 36 Tg 
a-1 forcing on the methane budget away from steady state. 86% of the forcing in the base inversion 
is from increasing emissions (82 ± 18% in the 9-member inversion ensemble), and 14% is from 
decrease in tropospheric OH. Half of the increase in emissions is from Africa (15 Tg a-1) and 
appears to be driven by wetland inundation. There is also a large relative increase in emissions 
from Canada and Alaska (4.8 Tg a-1, 24%) that could be driven by temperature sensitivity of boreal 
wetland emissions. 
 
 

1. Introduction 
 
Methane (CH4) is a potent greenhouse gas. Its atmospheric concentration has almost tripled since 
preindustrial time, resulting in a 1.2W m-2 radiative forcing and a 0.6°C increase in global mean 
surface air temperature [Szopa et al., 2021]. The concentration plateaued in 2000-2007 but has 
since resumed its increase with acceleration in recent years [Nisbet et al., 2019]. The annual rise 
in methane in 2020 was a record high of 15 ppbv, 50% larger than the 10 ppbv a-1 growth rate 
between 2015 and 2019 [Blunden and Boyer, 2021; NOAA, 2021a, b]. Here we use an inversion 
of GOSAT satellite observations of atmospheric methane to analyze the factors driving the 2020 
surge.  
 
Major anthropogenic sources of atmospheric methane include fossil fuels (oil, gas, and coal), 
livestock farming, rice cultivation, and waste management [Saunois et al., 2020]. Other sources 
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include wetlands, wildfires, and termites. Both wetlands and open fires have large interannual 
variability and may respond strongly to climate change [Ciais et al., 2013; Saunois et al., 2020]. 
Loss of methane is mainly by atmospheric oxidation by the hydroxyl radical (OH) in the 
troposphere, which is determined by complex chemistry and is also subject to interannual 
variability [Holmes et al., 2018]. COVID-19 shutdowns in 2020 were a major perturbation to 
economic activity but the effect on methane is unclear. Oil/gas production declined which would 
be expected to decrease methane emission in some regions [Lyon et al., 2021], but reduced 
maintenance of infrastructure could have caused increases [Laughner et al., 2021]. Decreases in 
emissions of nitrogen oxides (NOx ≡ NO + NO2) from fuel combustion led to decreases in free 
tropospheric ozone [Bouarar et al., 2021; Steinbrecht et al., 2021], which would decrease OH 
concentrations [Miyazaki et al., 2021] and hence the methane sink [Laughner et al., 2021].  
 
Satellite observations of column-averaged dry methane mixing ratios (XCH4) by solar backscatter 
in the shortwave infrared offer a unique resource to investigate the global changes in methane 
sources and sinks through inverse analysis [Jacob et al., 2016]. The Greenhouse Gases Observing 
Satellite (GOSAT) has been providing stable high-quality data since 2009 [Buchwitz et al., 2015; 
Kuze et al., 2009, 2016; Parker et al., 2020] and has been used extensively in inversions [Monteil 
et al., 2013; Cressot et al., 2014; Alexe et al., 2015; Pandey et al., 2016; Janardanan et al., 2020; 
Stanevich et al., 2021]. The recently launched TROPOspheric Monitoring Instrument (TROPOMI) 
provides a much higher data density of atmospheric methane [Hu et al., 2018; Lorente et al., 2021] 
but regional biases in the retrieval still limit its capability for global inversions [Qu et al., 2021]. 
In this work, we use the GOSAT XCH4 retrieval in a Bayesian analytical inversion to quantify the 
methane emissions and OH concentrations in 2019 and 2020, and their differences, in order to 
explain the 2020 surge.  
 

2. Methods 
 

2.1 Observations and model 
 
We use the University of Leicester version 9.0 GOSAT methane retrieval [Parker and Boesch, 
2020]. This product has a good consistency (3.9 ppbv regional bias) with ground-based methane 
column measurements from TCCON [Parker et al., 2020] and good consistency with surface data 
in estimating global methane sources through inversions [Lu et al., 2021, 2022]. We use 
observations over both land and ocean, the latter in glint mode [Parker et al., 2020]. We only 
include high-quality retrievals with “xch4_quality_flag” = 0.  
 
We use the GEOS-Chem chemical transport model version 12.5.0 (10.5281/zenodo.3403111) at 
2°´2.5° grid resolution to relate methane emissions to XCH4 as retrieved by GOSAT. Model 
transport is driven by NASA MERRA-2 archived meteorological fields. The model is essentially 
linear except for a small nonlinearity from the optimization of OH concentrations [Maasakkers et 
al., 2019]. We use the same prior emission estimates for 2019 and 2020 in the simulations, 
including the Global Fuel Exploitation Inventory (GFEI) version 2.0 [Scarpelli et al., 2022] for oil, 
gas, and coal exploitation; the EDGAR v4.3.2 inventory [Janssens-Maenhout et al., 2019] for other 
anthropogenic sources; and monthly mean 2019 wetland emissions from the nine highest-
performance members of the WetCHARTs v1.3.2 inventory ensemble [Ma et al., 2021]. Loss of 
methane from oxidation by tropospheric OH is calculated with archived 3-D climatological 
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monthly fields of OH concentrations from a GEOS-Chem full-chemistry simulation [Wecht et al., 
2014], with a corresponding methane lifetime of 10.5 years. Other minor sinks from oxidation by 
tropospheric Cl and in the stratosphere, and from uptake by soils, are the same as in Qu et al. 
[2021]. Initial model concentrations of methane on January 1, 2019 and January 1, 2020 are 
adjusted by a global scaling factor of 0.97 and 1.01 to match GOSAT XCH4.  
 

2.2 Inverse analysis 
 
We perform two independent Bayesian analytical inversions to estimate the sources and sinks of 
methane for 2019 and 2020. The inversion draws on GOSAT observations y together with the 
above prior estimates for emissions and OH concentrations. The differences in 2019 and 2020 
inversion results are solely driven by observations. For each year, the inversion optimizes a state 
vector x consisting of (1) annual mean non-wetland methane emissions for land-containing 2°´2.5° 
grid cells (4020 elements), (2) monthly wetland methane emissions for 14 subcontinental regions 
(168 elements), and (3) annual hemispheric methane loss frequency against oxidation by 
tropospheric OH (2 elements for the Northern and Southern hemisphere). Previous work has 
shown that inversion of GOSAT observations can provide independent information on global 
emissions and OH concentrations as indicated by inspection of the posterior error correlation 
matrix [Maasakkers et al., 2019; Y. Zhang et al., 2021].  
 
For each year, we perturb each of the state vector elements in 4190 GEOS-Chem simulations to 
construct the full Jacobian matrix K. Since the relationship between x and y is approximately linear, 
K describes the sensitivity of the methane observations to the state vector as simulated by GEOS-
Chem. The posterior estimate with Gaussian error statistics is obtained by minimizing the scalar 
cost function J(x): 
 

𝐽(𝒙) = (𝒙 − 𝒙𝒂)"𝐒𝐚$%(𝒙 − 𝒙𝒂) + 𝛾(𝒚 − 𝐊𝒙)"𝐒𝐨$%(𝒚 − 𝐊𝒙),   (1) 
 
where 𝒙' is the prior estimate of the state vector,	𝐒𝐚 is the prior error covariance matrix, 𝐒𝐨 is the 
observational error covariance matrix assumed to be diagonal, and 𝛾 is a regularization parameter 
that accounts for the effect of unresolved correlation in the observational error. 𝐒𝐚 is constructed 
with a 10% error for annual mean OH concentrations and a 50% error for all emissions. Prior error 
correlations for monthly wetland emissions in the 14 subcontinental regions are calculated using 
the WetCHARTs model ensemble [Bloom et al., 2017; Y. Zhang et al., 2021]. Diagonal elements 
of 𝐒𝐨  are calculated using the residual error method [Heald et al., 2004], resulting in a mean 
observational error standard deviation of 14 ppb. 𝛾 is chosen to be 0.5 based on the L-curve test 
(Figure S1).  
 
The best posterior estimate of x is given by [Rodgers, 2000]: 
 

𝒙- = 𝒙𝒂 + .𝛾𝐊"𝐒𝐨$%𝐊 + 𝐒𝐚$%/
$%
𝛾𝐊"𝐒𝐎$%(𝒚 − 𝐊𝒙𝒂).    (2) 

 
with posterior error covariance matrix 𝐒0: 
 

𝐒0 = (𝛾𝐊"𝐒𝐨$%𝐊 + 𝐒𝐚$%)$%.        (3) 
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The posterior solution can also be presented in reduced aggregated form for emission sectors and 
regions with a matrix W to represent the linear transformation from the full state vector to the 
reduced state vector. We do this in particular to estimate errors and error correlations in inversion 
results for the global and continental differences in the methane budget between 2019 and 2020. 
The posterior estimate of the reduced state vector (𝒙-𝒓𝒆𝒅) is computed as 
 

𝒙-𝒓𝒆𝒅 = 𝐖𝒙-.           (4) 
 
and its posterior error covariance is given by 

𝐒0𝒓𝒆𝒅 = 𝐖𝐒0𝐖𝐓.         (5) 
 

The posterior error covariance matrix estimates error statistics under the assumption that the prior 
error covariance assumptions are correct, but there is uncertainty in these parameters. The 
assumption that prior errors on anthropogenic emissions are spatially uncorrelated can lead to an 
underestimate of posterior errors when aggregating emissions. As a complementary approach to 
estimate errors, we conducted an inversion ensemble with varying parameters from our base 
inversion one at a time, including prior error standard deviations for anthropogenic emissions (30% 
and 60%), wetland emissions (20% and 60%),	 and OH concentrations (5% and 20%), and different 
regularization parameters ( g = 0.1  and 1). This results in a 9-member inversion ensemble 
including the base inversion. This ensemble provides insight on the role of uncertainty assumptions 
on the attribution of 2019-2020 methane changes, and we take the mean and standard deviation of 
the optimized results for that ensemble as a better estimate of the error on our posterior estimates. 
 

3. Results 
 
Figure 1 shows the global distribution of GOSAT annual mean XCH4 differences between 2019 and 
2020. The global averaged GOSAT methane increased by 13.4 ppbv from 2019 to 2020. 
Continental regions increased more than the oceans, arguing against a dominant role of the 
methane sink in driving the 2020 surge (methane sources are continental, while the sink from 
oxidation is distributed across ocean and land). Some continental regions show particularly large 
increases including Central Africa, Europe, northern Brazil, and North America.  China, the largest 
anthropogenic methane source [Janssens-Maenhout et al., 2019], shows weaker increases. 
However, such year-to-year comparisons in methane concentrations may have sampling bias and 
not necessarily relate to changes in emissions because atmospheric transport also drives 
interannual variability [Bruhwiler et al., 2017; Feng et al., 2021]. The inversion allows us to correct 
for the effect of transport and isolate the contributions from changes in sources and sinks. 
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Figure 1.  Methane changes from 2019 to 2020 measured by the GOSAT satellite instrument as 
the difference in annual mean dry column mixing ratio (XCH4) mapped on a 4°´5° grid. The global 
mean increase is 13.4 ppb. 5% of the 4°´5° grid cells show decreases from 2019 to 2020. Areas in 
grey do not have observations in either 2019 or 2020.   
 
 
Table 1 summarizes our inversion results. GEOS-Chem simulations using posterior emission and 
OH estimates show a 42 Tg increase (0.8%) in the atmospheric mass of methane from 2019 to 
2020, corresponding to a 13.7 ppbv increase in XCH4 as would be sampled by GOSAT. Methane 
emissions increase by 31 Tg a-1 from 2019 to 2020 in the base inversion while the sink from 
oxidation by tropospheric OH decreases by 1.0 Tg a-1. 𝐒0𝒓𝒆𝒅 (Equation 5) shows that 2019-2020 
changes in methane sources and sinks have a strong error correlation (r=0.97) but that the posterior 
errors are small, with 90% confidence that the increase of methane emission is in the range of 25 
– 37 Tg a-1 and that the change in the methane sink due to changes in OH is in the range of -6 – 4 
Tg a-1. As pointed out above, this could underestimate the actual uncertainty in the solution. 
Analysis of the inversion ensemble as individual realizations of the solution, shown in Table 1 and 
Table S1, confirms the dominance of increase in methane emissions (mean ± standard deviation: 
30 ± 5.5 Tg a-1) as a principal driver for the 2019-2020 rise in methane concentrations, while 
finding that the change in the methane sink is a minor contributor (- 2.6 ± 6.7 Tg a-1).  
 
The results from the inversion can be interpreted with a simple mass balance analysis. The global 
growth rate of tropospheric methane mass 𝑑𝑚/𝑑𝑡 is determined by a balance between methane 
emission 𝐸 , oxidation by tropospheric OH (loss frequency k), and other minor losses L not 
optimized in the inversion: 
 

-.
-/
= 𝐸 − 𝑘𝑚 − 𝐿,        (6) 
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The change in imbalance or acceleration of methane growth (𝑑0𝑚/𝑑𝑡0) between 2019 and 2020 
can be expressed as: 
 

-!.
-/!

= -1
-/
− 𝑘 -.

-/
−𝑚 -2

-/
− -3

-/
,       (7) 

 
where 𝑑𝐸/𝑑𝑡 = 𝐸0404 − 𝐸04%5 is the change in methane emissions, 𝑑𝑚/𝑑𝑡 = 𝑚0404 −𝑚04%5 is 
the change in methane mass, 𝑑𝑘/𝑑𝑡 = 𝑘0404 − 𝑘04%5 is the change driven by OH, and 𝑑𝐿/𝑑𝑡 =
𝐿0404 − 𝐿04%5 is the change due to other minor sinks. We define the forcing F on the methane 
budget as: 
  

𝐹 = -1
-/
−𝑚 -2

-/
,         (8) 

 
which describes the total changes in methane emissions and OH concentrations that force the 
methane concentration away from first-order relaxation to steady state. F can be largely derived 
from observations since it is given equivalently by 𝐹 = 𝑑0𝑚/𝑑𝑡0 + 𝑘𝑑𝑚/𝑑𝑡 + 𝑑𝐿/𝑑𝑡. 
 
 
The base inversion results as given in Table 1 show a 5.4% increase in global methane emissions 
(𝑑𝐸/𝑑𝑡) from 2019 to 2020, a 1.2% decrease in area-weighted global mean tropospheric OH 
concentrations. The decrease in OH drives a 5 Tg a-1 (𝑚𝑑𝑘/𝑑𝑡) forcing of the methane budget to 
offset the increase in methane mass, which for constant OH causes an increase in the sink of 4 Tg 
a-1 (𝑘𝑑𝑚/𝑑𝑡). The 𝑑𝐿/𝑑𝑡 term for other methane losses is small (1 Tg a-1) and is in the model 
solely determined by increase in methane mass (no forcing). The forcing on the methane budget 
from 2019 to 2020 is thus 36 Tg a-1, of which 31 Tg a-1 (86%) is from emissions and 5 Tg a-1 (14%) 
is from the decrease in tropospheric OH in our base inversion.  For our 9-member inversion 
ensemble, the contribution to the 36 Tg a-1 forcing from emissions is 30 ± 5.5 Tg a-1 (82 ± 18%), 
with OH contributing the remainder. 
 
The 1.2% OH decrease from 2019 to 2020 in our base inversion (1.6 ± 1.5% in the 9-member 
inversion ensemble) is lower than the 2-4% decrease inferred by Miyazaki et al. [2021] for the first 
half of 2020 based on chemical data assimilation of satellite observations and attributed to NOx 
emission decreases from COVID-19 lockdowns. These lockdowns relaxed in the second half of 
2020 and OH could have recovered. Laughner et al. [2021] found in a box model analysis that a 
3% reduction in global mean OH concentration in 2020 could account for only half of the observed 
methane increase, which is consistent with our results that OH changes cannot explain most of the 
2020 methane surge.  
 
 
Table 1. Global 2019-2020 methane budget from inverse analysis of GOSAT data. 
 2019  2020  2020-2019a  
Atmospheric mass [Tg] 
Total Sources [Tg a-1] 

5197 
572 

5238 
603 

41 (42 ± 0.67) 
31 (30 ± 5.5)  

Total Sinks [Tg a-1] 544 544 -0.2 (-1.8 ± 6.7) 
    Tropospheric OH 469 468 -1.0 (-2.6 ± 6.7) 
    Others b 75 76 0.8 



 7 

Growth rate [Tg a-1]c 28 59 31 (31 ± 1.2) 
Lifetime (OH) [a] d 11.06 11.21 0.15 (0.20 ± 0.17) 

a Values from the base inversion, with means and standard deviations from the 9-member inversion 
ensemble in parentheses. 
b Including oxidation in the stratosphere and by tropospheric Cl, and uptake by soils. These minor 
sinks are not optimized in the inversion and their small increase from 2019 to 2020 (same for all 
inversion ensemble members) is due solely to the increase in methane mass driving an increase in 
the oxidation loss rate. 
c Growth rate in atmospheric methane as determined by the imbalance between sources and sinks. 
d Lifetime of total atmospheric methane against oxidation by tropospheric OH. 
 
We went on to further analyze the GOSAT inversion results in terms of the sources contributing 
to the global 2019-2020 change in methane emissions. We find that we cannot robustly separate 
the contributions from anthropogenic and wetland emissions, or from different anthropogenic 
sectors, as indicated by error correlations and the spread of results in the inversion ensemble. 
However, we can separate the contributions from individual continental regions. Figure 2 and 
Table 2 show those results. 𝐒0𝒓𝒆𝒅  for the base inversion finds only moderate error correlation 
between different regions (Figure 2a) and the inversion ensemble also indicates consistent results 
for the major regions driving the change (Table 2).  
 

 
Figure 2. Change in methane emissions from 2019 to 2020 for large continental regions as given 
by the base inversion of GOSAT observations. The left panel shows the posterior error correlations 
for the emission changes between regions. Ranges from the inversion ensemble are given in Table 
2.  
 
Figure 2 (b) shows that Africa accounts for 48% of the global increase in methane emissions from 
2019 to 2020 with the rest spread across other continental regions and some regions (China, 
CONUS, South America, Russia) showing a decrease. These results are consistent across the 
inversion ensemble (Table 2). Africa shows an increase of 15 Tg a-1 in methane emissions from 
2019 to 2020. We attribute most of the increase to wetland emissions in East Africa (30°E-50°E, 
15°S-10°N) due to the increases in rainfall by 20% (46 mm) in the first three seasons from 2019 
to 2020 according to TAMSAT (http://www.tamsat.org.uk/index.php/data). Consistent with the 
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increase in rainfall, the water flows of the Congo-Oubangui River, which goes through wetlands 
in the Congo Basin, were much higher in 2020 than in previous years [World Meteorological 
Organization, 2022]. Flooding in 2020 was widespread, affecting 50% more East Africans than in 
2019 [BBC, 2020]. Wetland methane emission in the tropics is dominantly controlled by water 
table depth, and interannual variability is primarily driven by precipitation and inundation [Bloom 
et al., 2010; Lunt et al., 2019]. The rapid increase in livestock emissions in East Africa [Y. Zhang 
et al., 2021] could also contribute to the surge. The large relative increase of methane emissions in 
Canada and Alaska (4.8 Tg a-1 or 24%) can be attributed to a temperature-driven increase in 
wetland emissions as shown by WetCHARTs (Figure S2). The decrease in China could reflect the 
continued decline of emissions from coal mines [Y. Zhang et al., 2021] and rice [G. Zhang et al., 
2020]. The decrease in CONUS could reflect the continued decline of emissions from the oil/gas 
sector [Lu et al., 2022]. 
 
 
 
Table 2. Regional methane emissions and 2020-2019 differencesa  
 Prior   

[Tg a-1] 
2019 

[Tg a-1] 
2020 

[Tg a-1]  
2020 – 2019  

[Tg a-1] [%] 
South America  92 120 117 -2.7 (-2.8 ± 0.98) -2.3 (-2.4 ± 0.87) 
Africa  81 80 95 15 (14 ± 1.6) 18 (18 ± 1.9) 
Oceania  26 32 35 3.2 (2.7 ± 1.7) 10 (8.6 ± 5.4) 
Europe  34 32 37 4.6 (4.4 ± 0.68) 14 (14 ± 2.1) 
Russia 32 39 38 -1.1 (-1.1 ± 0.39) -2.9 (-2.7 ± 1.0) 
China 64 51 47 -3.9 (-3.7 ± 0.47) -7.8 (-7.3 ± 1.0) 
India + Pakistan 38 47 50 3.5 (3.5 ± 0.53) 7.4 (7.4 ± 1.1) 
CONUS 34 44 42 -2.0 (-1.8 ± 0.29) -4.6 (-4.2 ± 0.57) 
S + SE Asia  22 29 31 2.0 (1.9 ± 0.40) 6.7 (6.5 ± 1.3) 
Canada + Alaska 19 20 25 4.8 (4.9 ± 0.16) 24 (24 ± 0.81) 
Middle East 17 21 24 2.5 (2.5 ± 0.13) 12 (12 ± 0.64) 
Mexico + Central 
America 

14 19 19 -0.49 (-0.54 ± 0.34) -2.6 (-2.8 ± 1.8) 

Central Asia 11 16 18 2.5 (2.3 ± 0.35) 16 (15 ± 1.9) 
Rest of the world 23 24 25 1.7 (1.4 ± 1.1) 7.3 (6.0 ± 4.5) 

a Values from the base inversion, with means and standard deviations from the 9-member inversion 
ensemble in parentheses. Prior and posterior emissions include both anthropogenic and natural 
sources. 
 

4. Conclusions 
 
We conducted a global inverse analysis of 2019-2020 GOSAT observations to analyze the factors 
driving the 2020 surge in atmospheric methane concentrations. The inversion shows an increase 
in the methane growth rate from 28 Tg a-1 in 2019 to 59 Tg a-1 in 2020, consistent with observations. 
This implies a forcing on the methane budget away from a steady state by 36 Tg a-1 from 2019 to 
2020, 86% (82 ± 18% in the 9-member inversion ensemble) of which is from the increase in 
emissions between the two years and the rest is from the decrease in tropospheric OH. The global 
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mean OH concentration decreases by 1.2% (1.6 ± 1.5%) from 2019 to 2020, which could be due 
to reduced NOx emissions from COVID-19 decreases in economic activity but accounts for only 
a small fraction of the methane surge. We find that half of the increase in methane emissions from 
2019 to 2020 is due to Africa. High precipitation and flooding in East Africa leading to increased 
wetland methane emissions could explain the increase. We also find a large relative increase in 
Canadian emissions, also apparently driven by wetlands. Our finding of wetlands as the principal 
driver for the 2020 surge could be a harbinger for the response of atmospheric methane to climate 
change.  
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