
P
os
te
d
on

23
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
16
39
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

A-CHAIM: Near-Real-Time Data Assimilation of the High Latitude

Ionosphere with a Particle Filter

Benjamin Reid1, David R. Themens2, Anthony Mark McCaffrey1, P. T. Jayachandran1,
Magnar Gullikstad Johnsen3, and Thomas Ulich4

1University of New Brunswick
2University of Birmingham
3UiT the Arctic University of Norway
4University of Oulu

November 23, 2022

Abstract

The Assimilative Canadian High Arctic Ionospheric Model (A-CHAIM) is an operational ionospheric data assimilation model

that provides a 3D representation of the high latitude ionosphere in Near-Real-Time (NRT). A-CHAIM uses low-latency

observations slant Total Electron Content (sTEC) from ground-based Global Navigation Satellite System (GNSS) receivers,

ionosondes, and vertical TEC from the JASON-3 altimeter satellite to produce an updated electron density model above

$45ˆo$ geomagnetic latitude. A-CHAIM is the first operational use of a particle filter data assimilation for space environment

modeling, to account for the nonlinear nature of sTEC observations. The large number (>10ˆ4) of simultaneous observations

creates significant problems with particle weight degeneracy, which is addressed by combining measurements to form new

composite observables. The performance of A-CHAIM is assessed by comparing the model outputs to unassimilated ionosonde

observations, as well as to in-situ electron density observations from the SWARM and DMSP satellites. During moderately

disturbed conditions from September 21st, 2021 through September 29th, 2021, A-CHAIM demonstrates a 40% to 50% reduction

in error relative to the background model in the F2-layer critical frequency (foF2) at midlatitude and auroral reference stations,

and little change at higher latitudes. The height of the F2-layer (hmF2) shows a small 5% to 15% improvement at all latitudes.

In the topside, A-CHAIM demonstrates a 15% to 20% reduction in error for the Swarm satellites, and a 23% to 28% reduction in

error for the DMSP satellites. The reduction in error is distributed evenly over the assimilation region, including in data-sparse

regions.

1



manuscript submitted to Space Weather

A-CHAIM: Near-Real-Time Data Assimilation of the1

High Latitude Ionosphere with a Particle Filter2

Ben Reid1, David R. Themens1,2, Anthony McCaffrey1, P. T. Jayachandran1 ,3

Magnar G. Johnsen3, Thomas Ulich4
4

1University of New Brunswick, Department of Physics, Fredericton, NB, Canada5

2University of Birmingham, School of Engineering, Edgbaston, Birmingham, UK6

3Tromsø Geophysical Observatory, UiT the Arctic University of Norway, Tromsø, Norway7
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Key Points:9

• A-CHAIM is an operational near-real-time data assimilation providing an improved10

ionospheric electron density at high latitudes11

• The model shows improved performance in the topside ionosphere, as well as in12

F2-layer peak parameters (foF2, hmF2)13

• A-CHAIM is the first operational use of a particle filter for space environment spec-14

ification.15
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Abstract16

The Assimilative Canadian High Arctic Ionospheric Model (A-CHAIM) is an operational17

ionospheric data assimilation model that provides a 3D representation of the high lat-18

itude ionosphere in Near-Real-Time (NRT). A-CHAIM uses low-latency observations slant19

Total Electron Content (sTEC) from ground-based Global Navigation Satellite System20

(GNSS) receivers, ionosondes, and vertical TEC from the JASON-3 altimeter satellite21

to produce an updated electron density model above 45o geomagnetic latitude. A-CHAIM22

is the first operational use of a particle filter data assimilation for space environment mod-23

eling, to account for the nonlinear nature of sTEC observations. The large number (>24

104) of simultaneous observations creates significant problems with particle weight de-25

generacy, which is addressed by combining measurements to form new composite observ-26

ables. The performance of A-CHAIM is assessed by comparing the model outputs to unas-27

similated ionosonde observations, as well as to in-situ electron density observations from28

the SWARM and DMSP satellites. During moderately disturbed conditions from Septem-29

ber 21st, 2021 through September 29th, 2021, A-CHAIM demonstrates a 40% to 50%30

reduction in error relative to the background model in the F2-layer critical frequency (foF2)31

at midlatitude and auroral reference stations, and little change at higher latitudes. The32

height of the F2-layer (hmF2) shows a small 5% to 15% improvement at all latitudes.33

In the topside, A-CHAIM demonstrates a 15% to 20% reduction in error for the Swarm34

satellites, and a 23% to 28% reduction in error for the DMSP satellites. The reduction35

in error is distributed evenly over the assimilation region, including in data-sparse re-36

gions.37

Plain Language Summary38

While we often think of space as a perfect vacuum, the region of space near Earth39

is filled with plasma, known as the ionosphere. This plasma can have significant effects40

on satellites and radio communications, and so it is important to be able to detect changes41

in the ionosphere. The Assimilative Canadian High Arctic Ionospheric Model (A-CHAIM)42

is a new system that has been developed to help improve our understanding of space weather43

in the northern hemisphere. It combines data from several different kinds of instrument44

to produce a forecast to predict the local space environment for the next two hours. One45

of the most important data sources used in A-CHAIM are Global Positioning System46

(GPS) stations. Changes to the ionosphere disrupt GPS service, but we can use these47

disruptions to learn how the plasma is moving. These observations require special pro-48

cessing to be useful, and so new techniques had to be developed for A-CHAIM. We com-49

pare the predictions made by A-CHAIM to measurements of the space plasma from satel-50

lites, and specialized instruments that use radio signals to measure the ionosphere from51

the ground. This allows us to show that A-CHAIM is able to produce an improved space52

weather forecast.53

1 Introduction54

The high latitude ionosphere has historically been a challenging system to model55

(Rasmussen et al., 1986; Lockwood et al., 1990; Buchert, 2020). A rich collection of ex-56

ternal drivers and interactions drive ionospheric behaviour, including strong electric fields,57

magnetospheric coupling via particle precipitation and current systems, and rapid changes58

in the thermospheric state. These dynamic conditions, paired with a lack of high lati-59

tude observations when compared to mid and low latitudes, present a substantial prob-60

lem for operational ionospheric modelling. With increased interest in polar ionospheric61

monitoring (Thayaparan et al., 2018) and High Frequency (HF) communications, it is62

now imperative that a near-real-time, operational model of high latitude electron den-63

sity be developed and deployed for use in this region.64
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Conventional physics-based models have generally struggled to perform indepen-65

dently at sufficient accuracies in their specification of electron density for operational ap-66

plications, when compared to empirical models (Shim et al., 2018). This is due in part67

to limited spatial resolution of prescribed electric fields and particle precipitation (Cosgrove68

& Codrescu, 2009) and the general quality of model driver specification (Fernandez-Gomez69

et al., 2019). Even at mid and low latitudes these challenges, and the computational re-70

quirements of physics-based models, have often led to operational users having to rely71

on empirical ionospheric models, such as the International Reference Ionosphere (IRI)72

(Cervera & Harris, 2014; Cervera et al., 2018); and NeQuick (Montenbruck & González Rodŕıguez,73

2019), which have been demonstrated to generally outperform most other available mod-74

els (Shim et al., 2018, 2011). At high latitudes, however, the IRI insufficiently represents75

climatological behaviour and nearly completely lacks specification of ionospheric storm-76

time variability (Bjoland et al., 2016; Themens & Jayachandran, 2016; Themens et al.,77

2014). This was highlighted in Themens et al. (2014) which showed that the IRI can ex-78

hibit errors in peak ionospheric critical frequency (foF2) in excess of 70% at times; fur-79

thermore, in Themens et al. (2020) the IRI was demonstrated to represent less than 5%80

of the amplitude and between 0.5% and 9% of the variance of ionospheric variability on81

intermediate (1-to-30 day) timescales.82

These limitations inspired the development of the Empirical Canadian High Arc-83

tic Ionospheric Model (E-CHAIM), which was designed explicitly to better represent the84

climatological ionosphere at high latitudes (Themens et al., 2017; Themens, Jayachan-85

dran, & Varney, 2018; Themens, Jayachandran, & McCaffrey, 2019) . The model gen-86

erally exhibits strong performance in the polar cap, auroral zone, and Russian sector (Themens,87

Jayachandran, McCaffrey, Reid, & Varney, 2019; Themens et al., 2021; Maltseva & Nikitenko,88

2021); however, it struggles at sub-auroral latitudes in the North American sector (Themens89

et al., 2021) and, despite doing better than the IRI at high latitudes, it is still only ca-90

pable of representing up to 50% of the amplitude and 4% to 25% of the variance of iono-91

spheric variability on intermediate timescales (Themens et al., 2020). This ultimately92

necessitates the use of data assimilation to improve further upon E-CHAIM’s represen-93

tation over North America and to capture smaller spatial and temporal scales. The fo-94

cus of this work is to develop a data assimilation technique that can be used as a near-95

real-time operational system to produce a higher fidelity 4D electron density model of96

the high latitude ionosphere, the Assimilative Canadian High Arctic Ionospheric Model97

(A-CHAIM).98

A-CHAIM uses a particle filter with 1000 particles to assimilate ionospheric ob-99

servations in Near-Real-Time (NRT). NRT operation naturally restricts which data sources100

will be available for the assimilation, as outlined in Section 2. These observations are used101

to produce an updated 3D representation of ionospheric electron density above 45o mag-102

netic latitude. The assimilation runs hourly, producing outputs with a 5-minute time res-103

olution that begin three hours before real time. A-CHAIM also produces a simple persistence-104

based forecast that runs two hours ahead of real time. To meet the computational con-105

straints of NRT operation, and to facilitate distribution of the output files, A-CHAIM106

is constructed as a series of spherical cap harmonic perturbations on E-CHAIM. This107

highly nonlinear state precludes the use of more traditional assimilation techniques, re-108

sulting in this first use of a particle filter for operational ionospheric modelling as described109

in Section 3. To assess the reliability of A-CHAIM, and of this novel application of par-110

ticle filtering, the performance of the assimilation both in near-real-time and as a fore-111

cast is presented in Section 4.112

2 Near-Real-Time Data113

A-CHAIM must be able to take advantage of as many data sources and instrument114

types as possible. Any instruments that make their data available with a delay greater115

than a few hours will not provide much use in this context, as the ionosphere often re-116
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sponds to external drivers on timescales on the order of minutes, with little information117

retained on timescales greater than an hour (Chartier et al., 2016). The limited avail-118

ability of NRT ionospheric observations is the most important consideration in the de-119

sign of A-CHAIM.120

2.1 Ground-based GNSS Data121

Ground-based Global Navigation Satellite System (GNSS) receivers are by far the122

most numerous sources of ionospheric data, with several orders of magnitude more GNSS123

stations providing publicly-available data than any other class of instrument. GNSS re-124

ceivers are able to determine the path integrated electron density of the ionosphere be-125

tween the satellite and receiver (sTEC), usually expressed in TEC Units 1×1016m−3
126

(TECu). Currently, A-CHAIM only uses data from the Global Positioning System (GPS)127

constellation. With each receiver able to observe 6-12 GPS satellites at a given time, a128

single receiver can cover a significant spatial area. With their high availability, low la-129

tency, and wide spatial coverage, GNSS TEC observations are an ideal inclusion in an130

NRT ionospheric data assimilation.131

To extract TEC from GNSS data, one takes advantage of the dispersive propaga-
tion of radio waves in the UHF band used by GNSS, whereby ionospheric group delays
and phase advances are dependent on the signal frequency. Using a geometry-free com-
bination of the phase and code observables recorded on each GNSS carrier frequency,
whereby the observables from each frequency are simply differenced to remove non-dispersive
effects, the TEC can (to a first-order approximation) be related to the observables by

sTEC =
1

A

( f2
1f

2
2

f2
1 − f2

2

)

(∆φ + W + DCBrcv + DCBsat) (1)

where A = 40.3, fm is the mth frequency, ∆φ is the difference in the signal car-132

rier phases, DCBrcv and DCBsat are the receiver and satellite differential code biases133

caused by instrumental delays, and W is a phase-levelling term used to correct an in-134

teger ambiguity in the phase-derived TEC using the code observables (Themens et al.,135

2013). In our use case, W is an average of the difference in the geometry-free code and136

phase observables over each signal lock arc, weighted by the sine of the satellite eleva-137

tion (Carrano & Groves, 2009). To quality control the phase levelling process against138

potentially overlooked cycle slips, multipath, or levelling issues due to insufficient lock139

time, a standard deviation (σ) of the difference in the phase- and code-derived TEC is140

also recorded for each lock arc (Carrano & Groves, 2009). Any arc with σ > 4.5 TECu141

is discarded from the system.142

In A-CHAIM, GNSS data is downloaded in the Receiver Independent Exchange143

Format (RINEX) format from eight different sources, listed in Table 1. The geographic144

distribution of these GNSS receivers is plotted in Figure 1. The downloaded files are then145

passed to a processing routine that converts the GNSS observables to biased TEC. The146

TEC data are then corrected for the satellite differential code bias DCBsat using the val-147

ues provided by the Institute of Geodesy and Geophysics (IGG) of the Chinese Academy148

of Sciences (CAS) (Wang et al., 2016). The data is not corrected for the receiver bias149

DCBrcv in this preprocessing stage, rather the DCBrcv are derived as a part of the as-150

similation. This is necessary in order to be able to use data from GNSS stations which151

do not have known DCBrcv, which is the overwhelming majority of stations. Solving for152

the DCBrcv does require additional complexity, however a full analysis of this compo-153

nent of the assimilation is outside the scope of this work.154

2.2 Ionosondes155

Ionosondes are vertically-sounding HF radars capable of providing the vertical elec-156

tron density profile up to the height (hmF2) of the peak density (NmF2) of the ionosphere.157
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These instruments have been used for ionospheric specification since the discovery of the158

ionosphere and formed an important component of the dataset used to build E-CHAIM159

[Themens et al., 2017, 2018, 2019a].160

First the NOAA National Centers for Environmental Information (NCEI) is polled161

for available data, before the Global Ionospheric Radio Observatory (GIRO) (Reinisch162

& Galkin, 2011) is subsequently polled for any stations that were not available from the163

NOAA repository. The redundancy provided by the NOAA repository is a substantial164

benefit in limiting the effects of service interruptions and reduces the network burden165

placed on any one data source. The locations of the ionosondes are noted in Figure 1.166

Ionograms aggregated by GIRO are processed first at the ionosonde using the local ver-167

sion of the ARTIST automatic ionogram scaling software (Huang & Reinisch, 2001) be-168

fore both the ionogram data and processed profiles are sent to the GIRO repository. A169

minority of stations, such as those operated by Roshydromet, are processed using the170

Autoscala software with only processed profile information being sent to the GIRO database.171

A-CHAIM uses five of the ionosonde-derived characteristics: foF2, hmF2, foF1, B0172

and B1. Each characteristic is treated as being independent, even when they are derived173

from the same ionogram. B0 and B1 are parameters that control the bottomside pro-174

file in the IRI (Altadill et al., 2009), and are converted to the E-CHAIM equivalent HBot175

using a nonlinear fit to the equivalent IRI shape. Autoscaled ionosonde measurements176

do not have gaussian measurement errors, and the true error varies widely with instru-177

ment latitude, geomagnetic and solar activity, interference environment, instrument de-178

sign and configuration, as well as the version and configuration of the autoscaling soft-179

ware. Lacking a universal method to determine the errors, A-CHAIM uses the follow-180

ing simple heuristic to generate gaussian errors. All characteristics except HBot have ob-181

servation errors that increase with magnetic latitude, to reflect both the greater likeli-182

hood of scaling errors, and the variability within the assimilation window. This error R183

is modelled as a minimum error R0 scaled by a simple transition function:184

R = R0(2 + tanh((MLAT − 60o)/5)) (2)

In addition, a filter on hmF2 is applied to the data, where all characteristics from185

a sounding with hmF2 < 175 km or hmF2 > 450 km are rejected. This simple filter186

catches highly biased ionogram scaling errors typically associated with scaler early stop-187

ping; where the scaling routine truncates a trace prematurely, or with the scaler miss-188

ing the F2 trace and misinterpreting the F1 layer as the F2 layer (Themens et al., 2022).189

2.3 Altimeter190

A-CHAIM also makes use of space-borne altimeter data from the JASON-3 satel-
lite mission, provided by the NOAA National Oceanographic Data Center. As a by-product
of the altimeter solution for sea-surface height, vertical ionospheric TEC above the ocean
can be inferred (Li et al., 2018). This is done following the same concept as GNSS TEC
products, where JASON’s Ku band antenna excess phase can be directly related to the
TEC along the ray path as

vTEC =
dRḟ2

40.3
(3)

where dR is the excess ground range and f = 13.575 GHz is the signal frequency. The191

resulting TEC is then filtered to remove outliers and ground/ice scatter using the pro-192

vided quality flags. While the overall precision of the JASON TEC is 4 TECU, it is largely193

unbiased and provides a crucial constraint over the oceans, where no other dataset has194

adequate coverage.195
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2.4 Latency196

The A-CHAIM system has been gathering data and running in real time since 2020.197

During this time it has been updated several times. To assess the performance of the sys-198

tem, we will focus on the period from September 21st through September 29th, 2021.199

This time period includes a moderate Kp 4 event, with a M2.8 solar flare on Septem-200

ber 23rd, providing an opportunity to study how the assimilation behaves during dis-201

turbed conditions. The results in this study were generated with the latest version of A-202

CHAIM in an offline run. To ensure that there were minimal difference between the of-203

fline run and the real-time performance, the results presented here were generated us-204

ing the actual data collected during each hour by the online system, as well as the out-205

puts of the background model E-CHAIM as they were produced in real time.206

E-CHAIM uses several geophysical indices to produce a storm model (Themens et207

al., 2017). However, when operating in near-real-time, or producing a forecast, these in-208

dices may not be available, and therefore the storm model cannot operate as normal. The209

performance of the background model E-CHAIM is therefore dependent on the time when210

the model was run. In general the storm model will turn off at an unpredictable time211

mid-run, which is dependent on the specific timings of the index providers. This race con-212

dition behaviour is hard to model outside of a real-time setting, and is the reason why213

we use the outputs of E-CHAIM that were generated in real time.214

The flow of information through the assimilation is summarized in Figure 2. At each215

hour, A-CHAIM takes the data file produced from the processing pipeline and begins216

a run. This run nominally starts three hours in the past, using the output of the pre-217

vious hour’s run to provide the initial conditions. A-CHAIM proceeds forward through218

the present time, and continues until it reaches 2 hours into the future. This provides219

a low-skill persistence forecast. Figure 2 also shows the number of observations from each220

datatype available during each 5 minute assimilation window. It is clear that the amount221

of available data varies greatly depending on how close the assimilation time is to the222

present time.223

Through successive runs of A-CHAIM, the same assimilation window is traversed224

5 times, twice as a forecast, and thrice with actual data. Each output A-CHAIM gen-225

erates for that assimilation window was produced with very different amounts of data,226

and so it is important to assess the performance of each of these five versions of the same227

time window. We can group these separated by the number of hours latency from the228

time when the data was collated and passed to the assimilation routine. These are la-229

belled t-02h, t-01h, t-00h, t+00h and t+01h, indicating the number of hours from the230

current time, rounding towards zero. Each of these sets of a given latency forms a con-231

tinuous time series of outputs, and each latency contains every assimilation window ex-232

actly once. We can therefore compare the performance of each of these latencies to each233

other.234

Throughout the study period, the number of instruments of each type were recorded235

for each 5-minute assimilation window. The results are summarized in Figure 3 for each236

instrument type, separated by latency. The form of these plots is markedly different for237

each data source. For GNSS receivers, as we pass the threshold of each hour, we lose a238

significant fraction of the number of stations reporting data. At t-02h, we have an av-239

erage of 537 stations reporting, at t-01h this drops to 121, and at t-00h only 15 stations240

are reporting. As most NRT GNSS data is distributed in the form of hourly RINEX files,241

no data is available until the hour has finished. As a result, the number of GNSS obser-242

vations does not change significantly during any given hour. Accordingly, there would243

be little benefit to running A-CHAIM more frequently than hourly. While very low la-244

tency GNSS data is also available using Network Transport of RTCM via Internet Pro-245

tocol (NTRIP), few networks fully implement NTRIP at the present time and partic-246
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ularly few with coverage at remote high latitudes. At the present time NTRIP is not used247

by A-CHAIM, but is planned for future implementation.248

Ionosondes, which are distributed as individual files for each sounding, do not show249

this sharp hourly transition. The number of ionosondes reporting data is nearly iden-250

tical for both t-02h and t-01h. There is less data available at only t-00h, but the aver-251

age number of stations available is still half that at t-02h. After a single hour, nearly all252

ionosonde data that will be available has already been published. There is a distinctive253

double-sinusoidal pattern to the ionosonde latency data, which is an aliasing effect of the254

sounding schedules of the individual ionosondes.255

The intermittent nature of JASON data is clearly visible in Figure 2. JASON data256

is distributed in files that cover discrete lengths of time, and so like GNSS data the data257

from the beginning of a file period is only available once the file has ended. Accordingly,258

JASON data is only usable when the high-latitude measurements happen to fall near the259

end of the observation file. When data is available, JASON provides hundreds of mea-260

surements over a broad area, and so provides a useful NRT data source despite its in-261

termittent nature.262

3 Assimilation Method263

There are many data assimilation techniques used in ionospheric research, and by264

the broader geophysical community, each with their own advantages and disadvantages265

(Prol et al., 2021; Bust & Immel, 2020; Elvidge, Sean & Angling, Matthew J., 2019; Schunk266

et al., 2016; Nickisch et al., 2016; Chartier et al., 2016; Lee et al., 2012; Angling et al.,267

2009; Scherliess et al., 2004; Spencer & Mitchell, 2003). Any choice of assimilation tech-268

nique for A-CHAIM must be able operate in near-real-time on reasonable hardware. This269

requirement to run in near-real-time places sharp constraints on what level of model com-270

plexity we are able to use. Running an ensemble of physics-based models, such as a Gen-271

eral Circulation Model (GCM), would require significant computing resources. Existing272

physics-based assimilations at high latitudes have not shown strong improvements over273

climatology (Shim et al., 2018, 2011), and so it is difficult to justify using such a com-274

putationally expensive model if one is interested purely in electron density. Of course,275

physics-based data assimilation does have its advantages, as it can be used to infer in-276

formation about other elements of the state space, such as thermospheric winds and den-277

sities (Elvidge, Sean & Angling, Matthew J., 2019; Chartier et al., 2016; Lee et al., 2012).278

There exist a dozen or more different data assimilation models of the ionosphere279

that mainly use GNSS slant TEC measurements. Unfortunately, the path-integrated na-280

ture of these measurements heavily restricts the constraint afforded by them, particu-281

larly in the vertical distribution of electron density, and instrumental biases pose a sub-282

stantial challenge, particularly at high latitudes (Prol et al., 2021; Themens et al., 2015;283

Coster et al., 2013; Nesterov & Kunitsyn, 2011).284

The reconstruction of a 2D or 3D density using line integrals (tomography) is a com-285

mon nonlinear inverse problem across many fields in medicine and geophysics. Tomo-286

graphic techniques with radiofrequency beacon satellites for ionospheric studies have been287

practiced for decades (Prol et al., 2021). However, tomography works best when you have288

dense, evenly spaced networks of receivers (Chartier et al., 2014), which are not avail-289

able in the high latitude region. Successful use of tomographic techniques usually requires290

careful conditioning and regularization. or fitting the solution to horizontal and verti-291

cal basis functions to reduce the dimensionality of the problem. (Bust et al., 2004; Spencer292

& Mitchell, 2003).293

There has been considerable success in using GNSS measurements to produce maps294

of vertical TEC (vTEC) as an operational product (Wielgosz et al., 2021; Hernández-295

Pajares et al., 2009). These products convert the fundamentally nonlinear sTEC mea-296
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surements into vTEC through projection functions, to bypass the limitations in the re-297

construction of the vertical structure of electron density from GNSS measurements. While298

these products do have exceptional value for many user segments, they do not produce299

a 3D electron density model and they have limitations in their performance based on the300

projection required in their construction (Smith et al., 2008). Furthermore, these vTEC301

maps only use a single data type (GNSS measurements) in their reconstruction and are302

thereby unable to take advantage of complementary measurements.303

To meet the computational limitations placed on a near-real-time system, we will304

here instead pursue the development of an empirical model-based data assimilation. A-305

CHAIM will be constructed as a series of perturbations on E-CHAIM. This sort of scheme306

has been used in an operational assimilation system before with the IRI Real-Time As-307

similative Mapping (IRTAM), in which the diurnal and spatial profile parameters that308

govern the behaviour of the IRI are adjusted using autoscaled ionosonde data (Galkin309

et al., 2012). IRTAM is unique in its approach of updating the coefficients of the back-310

ground model, rather than using a conventional grid or voxel representation of its state311

space. This approach places some limitations on how the IRTAM can operate. The IRI312

basis set for its ionospheric peak parameters is made up of Fourier components in mod-313

ified dip latitude, local time, and longitude (Jones & Gallet, 1962). Because local time314

is part of the horizontal basis set of the model, IRTAM requires a 24-hour time history315

of geographically-fixed data to be assimilated and cannot mix data types (Galkin et al.,316

2012). This is problematic, as the distribution of ionosondes is severely limited at high317

latitudes, and this approach precludes using more widely distributed GNSS data. Pignalberi318

et al. (2021) show that while IRTAM improves the representation of foF2 in the regions319

covered by data, it degrades performance in regions away from the ionosondes. Its re-320

liance on ionosonde data also results in limited performance in hmF2, not just in regions321

away from data, but also in their vicinity. As such the IRTAM approach, while having322

desirable elements in terms of its computational efficiency and straightforward integra-323

tion into the IRI, is not suitable for our application.324

3.1 Parameterization of the Ionospheric Electron Density325

While the specific implementation of IRTAM is not desirable for our purposes, the
concept of using the background model’s nonlinear basis functions as the state space for
assimilation is an attractive prospect. E-CHAIM is parameterized as a set of ionospheric
profile parameters, expanded horizontally in terms of spherical cap harmonics in Alti-
tude Adjusted Corrected Geogmagnetic Coordinates (AACGM) coordinates (Shepherd,
2014). These parameters are used to reconstruct the vertical electron density profile via
a semi-Epstein layer formulation. A full description of the relevant components of the
E-CHAIM parameterization can also be found in Themens et al. (2017); Themens, Jay-
achandran, and Varney (2018); Themens, Jayachandran, and McCaffrey (2019). In A-
CHAIM we use the same vertical parameterization as the E-CHAIM model. Electron
density for a height h is given by:

Ne(h,xprofile) := NmF2 · sech2
(h− hmF2

H(h)

)

(4)

H(h) :=







2HTop ·
(

1 + rg(h−hmF2)
rHTop+g(h−hmF2)

)

h ≥ hmF2

HB(h) ·
(

1
1+exp(HmE−15−h

2.5
)

)

h < hmF2
(5)

HB = HBot + HF1 · sech
2
( h− hmF1

(hmF2 − hmF1)/2.5

)

+ HE · sech2
(h− hmE

25

)

(6)

g = 0.18 and r = 20 are constants (Themens, Jayachandran, Bilitza, et al., 2018).
Thus, for each point on the Earth’s surface with magnetic latitude > 45o, a set of 8 pa-
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rameters defines the entire electron density profile at all altitudes:

xprofile = (NmF2, hmF2, hmF1, hmE,HBot, HTop, HF1, HE) (7)

In E-CHAIM, auroral electron precipitation is represented by a semi-physical pre-326

cipitation scheme outlined in Watson et al. (2021). While this module performs well, it327

can be computationally intensive to calculate for ensemble assimilation methods; as such,328

in A-CHAIM an additional layer is used to represent the electron density enhancement329

from precipitating electrons. This is modelled as a Chapman function with height-varying330

scale height, given by the following parameters:331

xaurora = (NmP, hmP,H1P,H2P ) (8)

z =
h− hmP

H1P −H2P · exp(−(h−hmP )/15)
1+exp(−(h−hmP )/15)

(9)

Ne(h,xaurora) = NmP · exp(1 − z − exp(−z)) (10)

Ne(h,x) = Ne(h,xprofile) + Ne(h,xaurora) (11)

To describe the geographic variation in these vertical profile parameters, the out-
put of the E-CHAIM model is fitted with a spherical cap harmonic expansion in centred
dipole coordinates:

f(θ, λ) =
∞
∑

l=0

l
∑

m=0

Ylm =
∞
∑

l=0

l
∑

m=0

Plm(cos θ)(Clm cosmλ + Slm sinmλ) (12)

This parameterization has several notable advantages. The shape of the electron332

density profile is constrained to be physically realistic, unlike parameterizations that use333

discrete points at fixed altitudes. The electron density is also guaranteed to smooth and334

differentiable for raytracing applications. It also allows a complete description of the 3D335

electron density with relatively few parameters. Using 12 orders of spherical cap harmon-336

ics for each vertical profile parameter, the entire state can be specified with only 1352337

parameters, with an additional 676 for the auroral precipitation. The size of the state338

can be further reduced by removing certain parameters from the assimilation. The con-339

tributions to electron density from the E and F1 layers outside of the auroral region are340

both relatively well captured by empirical models, being driven primarily by solar ac-341

tivity. Additionally, variations in these layers do not contribute significantly to TEC and342

so most of the available data is not sensitive to these parameters. Rather than updat-343

ing the E and F1 layers in the assimilation, we can keep the corresponding parameters344

fixed to their empirical values. By excluding hmF1, hmE, HF1, HE and preserving NmF2,345

hmF2, HBot, HTop we can further reduce the number of parameters to estimate to only346

676.347

3.2 Particle Filters348

The relatively small state space used in A-CHAIM comes at the cost of unavoid-349

able nonlinearity, which necessitates the use of a particle filtering technique. As parti-350

cle filters are are still relatively unknown in the ionopsheric physics community, it is in-351

structive to outline the fundamental theory here. A more complete treatment of parti-352

cle filters is given in the very accessible Doucet and Johansen (2009). Particle filters are353
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part of a broad class of statistical models known as Hidden State Markov models. This354

class includes many other techniques, like the ubiquitous Kalman filters that are often355

used in data assimilation (Doucet et al., 2000).356

Any given parametrization of our system defines vector space X, the set of all pos-357

sible configurations of the system. A specific configuration of the system is described by358

a state vector x ∈ X. For the purposes of this model we will treat x as describing an359

instantaneous and static configuration of the system. The system is assumed to main-360

tain this fixed state x for a discrete period of time δt at a time t0. The time evolution361

of the system can then be modelled as a succession of states x1:n = {x0,x1, ...,xn−1,xn}362

at discrete times t1:n = {t0, t1, ..., tn−1, tn}. The probability of moving from a state xn−1363

to xn is given by the transition probability, or forecast model, f(xn|xn−1).364

Naturally, the true configuration of a system like the ionosphere is not directly ob-365

servable. The trajectory in state space x1:n is hidden, and only indirectly measured through366

some observations y ∈ Y. During each time interval tn we record some set of observa-367

tions yn. These observations are subject to error and so are themselves a random vari-368

able sampled with a likelihood p(yn|xn). We also define a measurement operator y =369

H(x), which allows us to predict which values y our observables would take given a con-370

figuration x.371

We can restate the definition of data assimilation explicitly. We seek to make some372

inference about the hidden trajectory of our system in state space x1:n given some set373

of imperfect observations y1:n. Using Bayes’ theorem, this requires evaluating the fol-374

lowing expressions.375

p(x1:n|y1:n) =
p(x1:n)p(y1:n|x1:n)

p(y1:n)
(13)

p(y1:n) =

∫

p(x1:n)p(y1:n|x1:n)dx1:n (14)

This expression does not usually permit an analytic solution for complex geophys-376

ical systems. The above setup is generally applicable to most discrete time Hidden Markov377

Models (Doucet & Johansen, 2009). The different filtering techniques that exist are all378

approaches to solving this intractable integral. For example, a basic Kalman filter as-379

sumes both the measurement operator H and forecast f are linear functions, and that380

the errors in the measurements and state are multivariate Gaussian. Attempts to loosen381

these restrictions gives rise to the extensive family of Kalman filters today. Of partic-382

ular importance to the ionospheric community are the Ensemble Kalman Filters (En-383

sKF), which are Monte Carlo techniques that use a random sample of representative states384

to approximate the entire state space. This allows for a greater degree of nonlinearity385

in both measurement and time propagation, although it is still assumed that the par-386

ticles are approximately Gaussian distributed (Houtekamer & Mitchell, 2001). As the387

dimensionality of the system grows far beyond the number of samples, undersampling388

of the state space occurs. In this regime an EnsKF can begin to exhibit unrealistic, non-389

causal behaviour at long ranges due to spurious correlations. This led to the develop-390

ment of localization techniques, like the Local Ensemble Kalman Filter (LETKF) (Ott391

et al., 2004), which helps control this issue by only using nearby observations and state392

elements to update each point. One major drawback of localization for ionospheric stud-393

ies is that the most numerous and widespread source of electron density measurements,394

sTEC from ground-based GNSS receivers, is inherently non-local. As the electron den-395

sity is integrated along line-of-sight, there is no specific point in space where the obser-396

vation took place. Using non-local observations in a LETKF is still an open problem in397

data assimilation (van Leeuwen, 2019), and so a LETKF was not determined to be suit-398

able.399
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Particle filters are attractive among assimilation schemes because they place very
few constraints on the forms of f(xn|xn−1), p(yn|xn) or M(x). Like the EnsKF, par-
ticle filters are a Monte Carlo technique that use an ensemble of samples X1:n ∈ X to
approximate p(x1:n|y1:n):

X1:n ∼ p(x1:n|y1:n) ⇒ p(x1:n|y1:n) ≈ p̂(x1:n|y1:n) =
N
∑

i=1

δXi
1:n

(x1:n) (15)

In an EnsKF, p(x1:n|y1:n) is treated as a multivariate Gaussian, which is a simple dis-400

tribution from which to draw samples. In a particle filter we place no such constraints401

on p(x1:n|y1:n), and we only require that we be able to evaluate p(x1:n|y1:n) in a point-402

wise fashion. This means that producing a valid random sample directly from p(x1:n|y1:n)403

is usually impractical, so we instead sample from a more tractable importance density404

q(x1:n) that has the same support. We are able produce an ensemble X1:n ∼ q(x1:n),405

hereafter called particles, which allow us to reconstruct the original density p(x1:n|y1:n)406

by assigning each particle a weight. Each particle X i
1:n has an unnormalized weight wn(X i

1:n)407

at time tn given by:408

w1(x1) =
p(x1)p(y1|x1)

q(x1)
, wn(x1:n) = w1(x1)

n
∏

k=2

f(xk|xk−1)p(yk|xk)

qk(xk|xk−1)
(16)

When we normalize the weights wn(x1:n) our sum in (15) takes the following form:409

X1:n ∼ q(x1:n|y1:n) ⇒ p(x1:n|y1:n) ≈ p̂(x1:n|y1:n) =

N
∑

i=1

W i
nδXi

1:n
(x1:n) (17)

W i
n =

wn(X i
1:n)

∑N
j=1 wn(Xj

1:n)
(18)

We can also take the expectation value of any function φ(x1:n)

〈φ(x1:n)〉 =

∫

φ(x1:n)p(x1:n|y1:n)dx1:n ≈
1

N

N
∑

i=1

W i
nφ(X i

1:n) (19)

3.3 Particle Degeneracy410

These weights provide a measure of how probable a given trajectory through state411

space X i
1:n is, given the observations y1:n. Higher weight particles are more likely, and412

so contribute more to the weighted sum. Conversely, lower weight particles contribute413

less. As n increases, the variance of the estimates produced by the set of particles X1:n414

tends to increase dramatically. The unnormalized weight of a particle wn(X i
1:n) ∝

∏n
k=1 p(yk|X

i
k),415

so even small differences between particles become magnified over time. The near-inevitable416

result is weight degeneracy, where only a single particle will have a non-zero weight, and417

all other particles having an identical and permanent weight of zero (Bengtsson et al.,418

2008). In order to prevent this issue, sequential sampling schemes need to re-generate419

their particles through a process known as resampling.420

In resampling we use our weighted ensemble of particles X i
1:n ∼ q(x1:n) to pro-

duce an unweighted ensemble of particles X̃ i
1:n ∼ p(x1:n|y1:n). This is simple to accom-

plish by taking a random sample from X i
1:n with probability W i

1:n. There are several un-
biased resampling methods in the particle filter literature, and we have used the simple
and common method known as systematic resampling (Douc et al., 2005). This produces
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another Monte Carlo approximation to p(x1:n|y1:n)

X̃ i
1:n ∼ p(x1:n|y1:n) ⇒ p(x1:n|y1:n) ≈ p̃(x1:n|y1:n) =

N
∑

i=1

1

N
X̃ i

1:n (20)

This is equivalent to a weighted sum where all of the weights are 1
N . By replacing our421

original sample X i
1:n with X̃ i

1:n, and W i
1:n with 1

N we have reset our particle weights and422

prevented weight degeneracy. Resampling will tend to remove low-weight particles from423

X i
1:n and replace them with copies of high-weight particles, at the cost of some loss of424

information. It is therefore optimal to use the weighted particles to calculate statistical425

moments of interest from p̂(x1:n|y1:n) before resampling.426

At a fundamental level, particle degeneracy is a result of the ever-increasing dimen-427

sionality of the particle trajectories through state space. At each time tn, the number428

of dimensions occupied by Xi
1:n increases by the size of X (Doucet & Johansen, 2009),429

while the number of particles remains fixed. While resampling is able to alleviate the is-430

sues created by increasing dimensionality over time, this becomes a more critical prob-431

lem in inherently high-dimensional particle filters. For large scale geophysical systems,432

the size of the state space is great enough that no realistic number of particles can pre-433

vent degeneracy in a basic particle filter (Bengtsson et al., 2008). van Leeuwen et al. (2019)434

provides an in-depth review of more sophisticated particle filtering techniques implemented435

across geophysics to avoid this dimensionality issue. Localization is given particular fo-436

cus, as it allows for the separate treatment of small subsets of the state and data spaces.437

This dramatically reduces the dimensionality of the problem, and would be an attrac-438

tive strategy if our observations were local. GNSS sTEC measurements are non-localizable,439

non-linear, highly correlated, biased, and have very low information content on a per-440

measurement basis. Their utility in assimilation is only due to the very large number of441

observations available. In order to perform adequately given the operational constraints442

of A-CHAIM, a new solution to particle degeneracy had to be developed.443

3.4 Composite Observations444

Without access to localization, some other approach must be taken to reduce the445

dimensionality of the problem. To accomplish this we will combine the real observations446

into a new, composite observable process, which exists in a lower-dimensional observ-447

able space. With a few caveats, this composite observable space preserves all of the de-448

sired properties of the original observations.449

For clarity we will consider only a single time tn. Our measurements yn form a set450

of observables by which we can infer the hidden process xn. With m observations let yιn ⊆451

yn | ι ⊂ {1, 2, . . . ,m} be some nonempty subset of our observables. If the observations452

in yιn are independent of all observations outside of yιn, then it is possible to factor the453

likelihood p(yn|xn) = p(yιn|xn)p(y¬ι
n |xn). It is simple to calculate the log-likelihood of454

this subset lιn = log p(yιn|xn). If we partition yn so that yn =
⋃

τ y
τ
n, choosing each455

component of τ = {τ1, τ2, . . . , τµ | yιn ⊥ yξn ∀ ι 6= ξ,∈ τ} so that each yτn is indepen-456

dent of every other. Any choice of partition τ must have 1 ≤ µ ≤ m elements.457

log p(yn|xn) = log
∏

τ

p(yτn|xn) =
∑

τ

log p(yτn|xn) =
∑

τ

lτn (21)

If we treat lαn as a new observable process, we can re-derive all of the particle fil-458

ter equations in terms of this new observable. Rather than working in the m-dimensional459

space Y, we are in the µ-dimensional space Y. The densities in state space q(x) and f(x)460

are unchanged, and lτn has a well-defined measurement operator L(x|y, τ) = log p(yτn|x ).461
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p(x1:n|l1:n) =
p(x1:n)p(l1:n|x1:n)

p(l1:n)
(22)

p(l1:n) =

∫

p(x1:n)p(l1:n|x1:n)dx1:n (23)

w1(x1) =
p(x1)p(l1|x1)

q(x1)
, wn(x1:n) = w1(x1)

n
∏

k=2

f(xk|xk−1)p(lk|xk)

qk(xk|xk−1)
(24)

The only component without an obvious analogue is the likelihood of this new ob-462

servable p(lk|xk), as it will depend on the form of p(yk|xk). If p(yk|xk) can be modelled463

as a multivariate Gaussian with an observation error covariance Rk, then p(lk|xk) has464

a comparatively simple closed-form solution. As the sum of k squared random variables,465

the likelihood of the combined observations p(lτk |xn) are χ2 distributed (Berliner & Wikle,466

2007), with the closed-form expression:467

p(lτk |xn) =
1

2n(τ)/2Γ(n(τ)/2)
l
n(τ)/2−1
k exp(−lk/2) (25)

The partition of the observation space τ is not prescribed, other than being con-468

strained by the statistical independence of the measurements. This flexibility allows tun-469

ing of the particle filter for any number of experimental objectives. For example, τ could470

be chosen to minimize the variation of the weights wi. In A-CHAIM the observations471

are partitioned such that each instrument type is handled separately. This largely elim-472

inates the problem of particle degeneracy, which was the primary objective. It also solves473

the problem of trying to balance the relative influence of each instrument type on the474

assimilation. The number of GNSS, ionosonde, and altimeter observations during any475

given assimilation step usually fluctuate by orders of magnitude, and so being able to476

assimilate each instrument type independently removes the need for ad-hoc solutions like477

kriging, spoofing or duplicating data. Partitioning and recombining the observations yn478

into composite observables lτn allows us to recover many of the advantages of localiza-479

tion, even in a system that does not easily permit localization.480

3.5 Forecast Optimization481

As we do not have a physics-based model to perform the forecasting step of the as-482

similation, we must use some other method to propagate the state forward in time. If483

we let un ∈ X be the state vector corresponding to the background model at time tn,484

then we can simply propagate the state forward by following the movement in the back-485

ground model. We would also like the state to gradually converge with the background486

model over time, which can be controlled with a parameter λ ∈ [0, 1]. In A-CHAIM λ =487

0.95 is used for all parameters. The resulting expression for the non-stochastic compo-488

nent of the forecast model for a particle is equation (26)489

Xi
n = λ(Xi

n−1 + un − un−1) + (1 − λ)(un) (26)

We must also add the stochastic component of the forecast. At each time we add490

a random displacement δXi
n ∼ N(0,Qn). It was determined though experimentation491

that a minimum stochastic variance at any timestep Qmin
n = diag((un−un−1

2 )2) allowed492

the filter to perform well during calm conditions, but was not able to adapt quickly enough493

during storm periods. Choosing a fixed covariance that was able to capture storm be-494

haviour would degrade the filter performance during quiet periods. It is therefore nec-495

essary to evolve the diagonal variance matrix Qn with the particle filter, to be able to496
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adapt to changing ionospheric variability. A simple way to accomplish this without re-497

liance on external drivers is to monitor the stochastic movements of previous timesteps.498

By examining the step sizes of higher weight particles, we can estimate an improved vari-499

ance Q̃n = diag(E[(δXn)2]. This variance estimate tends to be very noisy, and can tend500

to produce unstable behaviour if not tempered. In A-CHAIM Qn is updated with a sim-501

ple algorithm, but more sophisticated techniques to estimate this variance are certainly502

possible.503

Q0 = Qmin
0 , Qn = λQn−1 + (1 − λ) max(Q̃n−1,Q

min
n ) (27)

Optimizing the stochastic forecast helps the assimilation adjust to changing iono-504

spheric conditions, but it is also possible to improve the forecasting step on shorter timescales505

using optimal sampling. It is computationally trivial to evaluate the measurement op-506

erator for ionosonde characteristics. After the deterministic component of the forecast507

step, A-CHAIM resamples uniformly from X i to produce N̆ copies of each particle X̆ij
n .508

Each of these particles is then given the random displacement δX̆ij
n ∼ N (0,Q). For each509

of these sets of N̆ particles a preliminary weight w̆ij is produced, using only ionosonde510

and altimeter data. For each original particle Xi
n, the highest weight daughter particle511

is kept, and all others discarded. This is equivalent to running many instances of the par-512

ticle filter in parallel, albeit with only a fraction of the data, and using the output of those513

particles filters as the forecast step. The preliminary weights w̆ij are discarded, but the514

densities f(xn|xn−1) and q(xn|xn−1) are preserved for the full particle filter.515

Figure 4 gives a schematic overview of how this process integrates with the rest of516

A-CHAIM. The forecast sampling takes less than a second of computation time per as-517

similation step, but allows the filter to behave as if it had a factor of N̆ more particles.518

Most random displacements result in suboptimal particles that can be easily rejected by519

ionosondes. This ensures that computationally expensive sTEC raytracing is not wasted.520

4 Results521

To evaluate the performance of the assimilation, we will compare the predicted val-522

ues at each latency to data sources which were not included in the assimilation. The as-523

similation should produce an improved representation of ionospheric electron density.524

In particular, this assimilation should address some of the known shortcomings of the525

background model E-CHAIM that were outlined in the introduction, in particular im-526

proving the spatial and temporal resolution.527

4.1 Ionosondes528

Ionosondes which do not provide automatically processed data, and therefore are529

not available for assimilation, provide an ideal reference to examine the performance of530

A-CHAIM. Table 3 summarizes the geographic and magnetic coordinates of the four ref-531

erence stations used in this study, and they are also shown along with the assimilated532

data in Figure 1. The instruments in Pond Inlet and Blissville are Canadian Advanced533

Digital Ionosondes (CADIs) (Jayachandran et al., 2009). The ionosonde on Svalbard, lo-534

cated in Ny-Ålesund, is also a CADI. It is operated by Tromsø Geophysical Observatory.535

Ionograms from these instruments were manually processed at 30-minute time resolu-536

tion and subsequently inverted to extract hmF2 using the POLynomial ANalysis (POLAN)537

software package (Titheridge, 1988). In addition to these three CADI systems, we will538

also use the Alpha-Wolf ionosonde at Sodankylä, operated by the Sodankylä Geophys-539

ical Observatory (SGO). The instrument is well positioned to provide an assessment of540

system performance in the European sector, and manually processed hourly data is pub-541

licly available.542
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The value of foF2 measured at each station though the assimilation period are plot-543

ted in Figure 5. In order to highlight the differences between A-CHAIM and E-CHAIM,544

the right column shows the same data with the value predicted by E-CHAIM subtracted.545

This serves primarily to remove the diurnal variation in foF2, which is well captured by546

E-CHAIM. The stations are ordered by decreasing geomagnetic latitude, with PONC547

and SVAL in the polar cap, SODAN at auroral latitudes, and BLISS in the midlatitudes.548

The variability of the high-latitude ionosphere is immediately apparent at PONC549

and SVAL, with the variation between sequential measurements being much larger than550

the difference between A-CHAIM and E-CHAIM. As this data came from manually scaled551

ionograms, this variation is not an artefact of the autoscaling process, but is a result of552

the dynamic processes of the storm. Each of these stations is also in a relatively data-553

sparse region. The ionosonde THJ76 at Thule is relatively close to PONC, and several554

GNSS receivers are nearby, including a co-located receiver. Only a single GNSS receiver555

on Svalbard provided data near the SVAL ionosonde, which was not enough to provide556

a meaningful improvement. This can be seen in Table 4, where the overall RMSE of each557

latency of A-CHAIM and E-CHAIM are tabulated for each station. PONC shows a marginal558

overall improvement at each latency, with a reduction in error of 0.12 MHz at the t-02h559

latency, with worsening performance as the latency decreases. SVAL shows essentially560

no change in overall performance at any latency. While this does demonstrate a limi-561

tation of the assimilation, this is desirable behaviour. If the assimilation is not able to562

improve upon the background model, either due to a lack of data, or because the state563

space we have chosen is not able to capture the real ionospheric behaviour, then the ideal564

result would be to make no changes to the background.565

The relative performance of A-CHAIM becomes very different once we move to lower566

geomagnetic latitudes. SODAN is situated near several ionosondes which were included567

in the assimilation, as well as the dense GNSS networks in Europe. While the variabil-568

ity in foF2 is lower than at the higher-latitude stations, we can see that E-CHAIM con-569

sistently underestimates foF2 during the day, and overestimates foF2 at night during this570

period. As a result, the overall E-CHAIM RMSE at SODAN is comparable to both PONC571

and SVAL at 0.8 MHz. At SODAN, A-CHAIM shows a strong improvement over E-CHAIM572

at all latencies, with RMSE between 0.39−0.54 MHz. Unexpectedly, the best perfor-573

mance at this location is at one of the forecasted latencies, t+00h. This effect is small574

and unique to this station, which has fewer total observations than the other reference575

stations in this study.576

The improvement in foF2 that A-CHAIM produces is readily apparent at the mid-577

latitude BLISS ionosonde. E-CHAIM consistently overestimates the peak electron den-578

sity, except during the depletion from September 22nd and 23rd, where E-CHAIM over-579

estimates the peak. A-CHAIM is able to correct this diurnal-scale error. Additionally,580

A-CHAIM is able to capture smaller time-scale variations, most notably through Septem-581

ber 24th. Overall A-CHAIM shows a strong improvement at all latencies, reducing the582

error from 0.75 MHz to 0.3 MHz at latencies with available data. The forecasted laten-583

cies show diminishing improvements, with the most advanced forecast showing an error584

of 0.5 MHz.585

We can also examine the ability of A-CHAIM to model the altitude of the peak elec-586

tron density, hmF2. The results of the assimilation at each station are plotted in Fig-587

ure 6. There are no observations of hmF2 at SODAN in this analysis, as the electron den-588

sity profiles are not inverted by the SGO. The overall RMSE for the remaining three sta-589

tions are given in Table 5, for each latency of A-CHAIM and E-CHAIM. Every station590

reporting data shows the same overall trend, namely a small but consistent improvement591

in hmF2 across all latencies, with the performance of each latency directly influenced by592

the amount of available data. While this is the behaviour we would expect from a well-593

condition assimilation, these results are more striking when we compare them to the foF2594

results in Table 4.595
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At SVAL there was no meaningful change in the foF2 RMSE, whereas hmF2 RMSE596

at that location was reduced by 12%− 16%. GNSS sTEC and JASON measurements597

are not sensitive to changes in hmF2, and so most of the improvement in hmF2 must598

be driven by assimilated ionosonde measurements of hmF2. Given that our reference sta-599

tions, and in particular SVAL, are isolated from other ionosondes, these improvements600

must be a result of large spatial scale corrections to hmF2. This is an advantage of fit-601

ting a parameter to a global basis set, improvements can be projected far from where602

the observations were made. A natural corollary to this advantage is that a global ba-603

sis set also allows errors to be projected anywhere in the assimilation region. Investigat-604

ing this possibility thoroughly requires using a reference dataset with more global cov-605

erage than ionosondes can provide.606

4.2 In-Situ Electron Density Measurements607

In order to assess the performance of the assimilation in the entire region, we will608

also make use of a limited dataset of in situ plasma density measurements made onboard609

the Defense Meteorological Satellite Program (DMSP) and European Space Agency’s610

Swarm satellite missions. These instruments have several properties that make them ideal611

as a rigourous test of performance, the foremost being their global coverage. This gives612

an ability to test the assimilation over the regions where no ground-based data is avail-613

able, particularly over the oceans. As well, no measurements of in-situ plasma density,614

nor other direct measurements from the topside ionosphere, are included in the assim-615

ilated data. If the assimilation is altering the ionospheric state in an unphysical or in-616

consistent way, then these in-situ measurements would provide a ideal test.617

4.2.1 Swarm618

The ESA Swarm mission is a constellation of three satellites (Swarm A, B, C). Each619

satellite operates in a polar orbit with slow local time precession of 2.7 hours/month620

(Knudsen et al., 2017). As of 2021, Swarm A and Swarm C orbit at 440 km and Swarm621

B orbits at 505 km. As Swarm does not provide data in near real time, this study will622

make use of Swarm Langmuir Probe in situ measurements for independent validation623

of the assimilation system. To prepare the data, the Lomidze et al. (2018) calibration624

factors have been applied to the dataset prior to comparison and all periods with non-625

nominal quality flags were discarded.626

Figure 7 shows the Root Mean Square Error (RMSE) of all three Swarm satellites627

for all latencies of E-CHAIM and A-CHAIM, binned by geographic latitude and longi-628

tude for the entire study period. The errors in E-CHAIM are concentrated in three re-629

gions, the outer edge of the model where 45o < MLAT < 50o, the polar cap, and over630

central Canada. These patterns are consistent across all latencies, with slightly deteri-631

orating performance at t-00h and later when the storm model was unavailable. By com-632

parison, the errors in A-CHAIM are more spatially uniform at all latencies where data633

is available. The forecasted A-CHAIM (t+00h, t+01h) are still more uniform than the634

background model, but do show a steady decrease in performance relative to the assim-635

ilated latencies (t-02h, t-01h, t-00h).636

The errors in A-CHAIM are significantly reduced compared to E-CHAIM at each637

latency. The greatest change is in the low magnetic latitude region, and over central Canada638

and Eurasia. Of note is the significant improvement at low latitudes over the Atlantic639

and Pacific ocean. There are some regions which show a slight decrease in performance,640

namely over large bodies of water at high latitudes, e.g. the Bering Sea, Hudson Bay,641

and along the northern coast of Greenland. These tend to be areas where there are rel-642

atively few measurements available, where E-CHAIM does relatively well, and nearby643

to regions where E-CHAIM does particularly poorly.644
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Table 6 summarizes the overall RMSE for each Swarm satellite, model, and latency.645

The strict ordering of the model performance is notable. For each satellite, every latency646

of A-CHAIM has a lower overall error than any version of E-CHAIM, with or without647

the storm model. The performance of A-CHAIM is always best at the t-02h latency, with648

decreasing performance as less data is available. The difference in RMSE between E-CHAIM649

with and without the storm model is also evident. The overall error is reduced by 15%−650

20% for all latencies other than the longest forecast t+01h, with a more modest 8%−651

9% reduction.652

4.2.2 DMSP653

The DMSP satellites (F-16, F-17, and F-18) orbit in a Sun-synchronous, circular654

orbit at between 830 km and 880 km, each with an orbital period of 110 min (Garner655

et al., 2010). Similar to Swarm, the DMSP satellites each operate an array of in situ plasma656

density measurement systems and also do not provide data in near real time. Due to their657

higher altitude, these satellites represent a unique validation dataset, and given the strong658

performance of the E-CHAIM background model in comparison to DMSP in the past659

(Themens, Jayachandran, McCaffrey, Reid, & Varney, 2019), this dataset should pose660

a significant challenge to achieving improvement over the background.661

Figure 8 follows the same format as Figure 7, showing the binned RMSE for all la-662

tencies of E-CHAIM and A-CHAIM, binned by geographic latitude and longitude for the663

entire study period. The performance of E-CHAIM varies strongly with latitude, with664

relatively minor variations longitudinally. The greatest errors are concentrated in a ring665

in the polar cap, and to a lesser degree at the outer edge of the assimilation region MLAT <666

50o. A-CHAIM preserves this overall form, with the greatest errors at the extreme high667

and low latitudes. The errors in A-CHAIM are more evenly distributed across the as-668

similation region when compared to E-CHAIM, which is similar to the trend observed669

in the Swarm data.670

The errors in A-CHAIM are significantly reduced at each latency, when compared671

to the corresponding E-CHAIM result. There are strong improvements at virtually all672

auroral and sub-auroral latitudes, including over the Atlantic ocean, the Russian Far East673

and much of the Pacific. The greatest improvements occur in the American and Euro-674

pean sectors. There are several regions that do show a slight decrease in performance,675

namely over the Pacific near North America, over the southern tip of Greenland, and676

in a few places over the Arctic ocean in the European and Russian sectors. As in the Swarm677

data, these are places where there are few measurements, where E-CHAIM performed678

relatively well, and are in close proximity to regions with comparatively large errors.679

Table 7 summarizes the overall RMSE for each DMSP satellite, model, and latency.680

For each satellite, A-CHAIM t-02h has the best performance, and each latency that fol-681

lows shows a decrease in performance as fewer observations are available. Every latency682

of A-CHAIM has smaller overall error than any of the E-CHAIM latencies, as we saw683

in the Swarm data. The overall error is reduced by 24% − 29% for all latencies with684

assimilated data. The t+00h forecast has a reduction in error of 19% and the longest685

forecast t+01h shows a 10% reduction.686

It is clear from examining the in-situ data from both DMSP and Swarm that A-687

CHAIM is able to provide a significant improvement in electron density at all latencies,688

including in regions where no observations are available, and during forecasts. In addi-689

tion to an overall reduction in error, the spatial distribution of errors is more even than690

in E-CHAIM. There were some areas where the performance of A-CHAIM was slightly691

worse than in E-CHAIM in at least one of the datasets. In both DMSP and Swarm, this692

only occurred in areas that had few observations, good E-CHAIM performance, and were693

in close proximity to regions with poor E-CHAIM performance. This is likely inevitable694

due to the limited horizontal resolution of the model. By correcting the region with poor695
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performance, and without sufficient observations to constrain it, the assimilation can dis-696

rupt a nearby region where the background model does unusually well. Equivalently, if697

the assimilation smooths out the spatial variation of the errors in the background model,698

then regions where the background model performs well may end up worse off, even as699

the overall error is significantly reduced.700

5 Conclusion701

This study was performed using both data and outputs from the background model702

E-CHAIM that were produced in real time, in an operational environment. Using these,703

A-CHAIM is able to produce a significant improvement in modelled electron density when704

compared to the background model E-CHAIM. This reduction in error is largely uniform705

across the entire assimilation region, as measured by in-situ satellite-borne electron den-706

sity measurements. The performance of A-CHAIM is best at higher latencies, up to three707

hours before the current time. However, A-CHAIM is able to produce an improved rep-708

resentation of electron density in near-real-time, with a 15%-25% reduction in error. A-709

CHAIM is also able to show improvements up to two hours in the future as a low-skill710

forecast, with a 15%-20% reduction in error in the first hour, and 8%-10% reduction in711

the second hour.712

The ability of A-CHAIM to describe the shape of the ionosphere was also assessed,713

using four manually-processed ionosondes that were not included in the assimilated data.714

The critical frequency of the F2 layer, foF2, shows strong improvement at mid- and au-715

roral latitudes, but does not show a significant improvement in the polar cap. At the lower716

latitude stations, A-CHAIM was able to produce an improvement of 0.3 MHz - 0.46 MHz717

in near-real-time, and a 0.15 MHz - 0.2 MHz improvement in the second hour of the fore-718

cast. A-CHAIM is also able to improve hmF2 at all latitudes, although the scale of the719

improvement is small (< 5 km) when compared to natural ionospheric variability.720

The challenges created by sparse data, limited computing resources, and unknown721

physical drivers are not unique to A-CHAIM, or the high latitude ionosphere. The unique722

flexibility of particle filtering as a data assimilation technique can be used to circumvent723

some of these issues, as the above results demonstrate. While particle filters do have lim-724

itations, in particular weight degeneracy, the techniques developed for A-CHAIM should725

be broadly applicable. Reducing the dimensionality of the measurements by building com-726

posite observables should produce a strong improvement when assimilating large num-727

bers of low-information observations, and can be used in conjunction with localization728

techniques in systems that admit them.729

As A-CHAIM continues to operate, further studies will need to be taken to assess730

the long term trends in performance. A-CHAIM does also produce estimates of the DCBs731

of the GNSS receivers it assimilates, and characterization of the accuracy and stability732

of those biases needs to be evaluated.733

6 Open Research734

The near real time outputs of A-CHAIM, along with software to interpret the out-735

put files, is publicly available at https://www.rspl.ca/index.php/projects/chaim/736

a-chaim. Interpreter software is available in the C and MATLAB languages. E-CHAIM737

is available at https://www.rspl.ca/index.php/projects/chaim/e-chaim, and is avail-738

able in C, MATLAB, and IDL.739

The output files, interpreter, and all reference datasets used in this work are avail-740

able at doi:10.5281/zenodo.6642849741

The GNSS data used in A-CHAIM is provided by: the German Federal Agency for742

Cartography and Geodesy (BKG) for the International GNSS Service (IGS) (2021) https://743
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igs.bkg.bund.de/root ftp/IGS/highrate/, IAG (International Association of Geodesy)744

Regional Reference Frame sub-commission for Europe (EUREF) (2021) https://igs745

.bkg.bund.de/root ftp/EUREF/highrate/, and Integrated Geodetic Reference Network746

of Germany (GREF) (2021) https://igs.bkg.bund.de/root ftp/GREF/nrt/ networks;747

the Canadian High Arctic Ionospheric Network (CHAIN) (2021) http://chain.physics748

.unb.ca/data/gps/data/highrate/; the Crustal Dynamics Data Information System749

(CDDIS) (2021) https://cddis.nasa.gov/archive/gnss/data/highrate/; the NOAA750

National Geodetic Survey (NGS) (2021) http://geodesy.noaa.gov/corsdata/rinex/;751

the California Spatial Reference Center (CSRC) GARNER GPS Archive (2021) ftp://752

garner.ucsd.edu/pub/nrtdata/; Natural Resources Canada (NRCan) (2021) ftp://753

rtopsdata1.geod.nrcan.gc.ca/gps/data/nrtdata/; and the Ministry of Energy and754

Natural Resources (MERN) (2021) ftp://ftp.mrn.gouv.qc.ca/Public/GPS/. Precise755

orbit determination in .SP3 format is provided by International GNSS Service (IGS) (1994)756

https://cddis.nasa.gov/archive/gnss/products. Satellite DCBs are provided by757

the Institute of Geodesy and Geophysics (IGG) of the Chinese Academy of Sciences (CAS),758

International GNSS Service (IGS) (2013) https://cddis.nasa.gov/archive/gnss/products/759

bias/.760

Near-Real-Time Ionosonde data is provided by the National Centers for Environ-761

mental Information (NCEI) (2021b) https://www.ngdc.noaa.gov/ionosonde/data/;762

and by the Global Ionospheric Radio Observatory (GIRO) (2011) http://spase.info/763

SMWG/Observatory/GIRO. Altimeter data from the Jason-3 satellite is provided by the764

NOAA National Oceanographic Data Center https://www.ncei.noaa.gov/archive/765

accession/Jason3-xGDR.766

The CADI ionsonde data used for verification was provided by Vertical Incidence767

Soundings (Ionograms) (2021) http://chain.physics.unb.ca/data/cadi/, and the768

Tromsø Geophysical Observatory (2021) https://www.tgo.uit.no/ionosondeNAL/. Ionosonde769

data from Sodanklya was provided by the Sodankylä Geophysical Observatory (SGO)770

(2021) http://www.sgo.fi/pub ion/dailydata/.771

In-situ electron density measurements from the Swarm mission areprovided by the772

European Space Agency (2021) at https://swarm-diss.eo.esa.int/#swarm%2FLevel1b%773

2FEntire mission data%2FEFIx LP. In-situ measurements from the DMSP missions are774

provided by National Centers for Environmental Information (NCEI) (2021a) at https://775

satdat.ngdc.noaa.gov/dmsp/data/.776
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Table 1. Data sources providing ground-based GNSS measurements in near-real-time used by

A-CHAIM.

Network Source Source Link

IGS, EUREF, GREF German Federal Agency for Cartography and Geodesy (BKG) igs.bkg.bund.de
CHAIN Canadian High Arctic Ionospheric Network (CHAIN) chain.physics.unb.ca
CDDIS Crustal Dynamics Data Information System (CDDIS) cddis.gsfc.nasa.gov
NOAA NOAA National Geodetic Survey (NGS) geodesy.noaa.gov

GARNER California Spatial Reference Center (CSRC) garner.ucsd.edu
CACS Natural Resources Canada (NRCan) rtopsdata1.geod.nrcan.gc.ca

QGN Ministère de l’Énergie et des Ressources naturelles (MERN) ftp.mrn.gouv.qc.ca

Table 2. Dependence of modelled observation error R with magnetic latitude, as used in A-

CHAIM. Errors are smallest at the lower boundary where R = R0, increasing to a maximum of

R = 3R0 above 75o MLAT. HBot measurements derived from B0/B1 do not vary with magnetic

latitude.

Ionosonde Observation Error (R)
Characteristic (R0) MLAT ≤ 45o MLAT 60o MLAT ≥ 75o

foF2 0.15 MHz 0.30 MHz 0.45 MHz
foF1 0.25 MHz 0.50 MHz 0.75 MHz
hmF2 15 km 30 km 45 km

B0/B1 → HBot 0.4 HBot 0.4 HBot 0.4 HBot

Table 3. Locations of ionosondes used to validate A-CHAIM performance.

Station Geographic Coords. AACGM Coords. (300 km) Source Link

Pond Inlet (PONC) 72.69N, 282.04E 80.18N, 1.87E chain.physics.unb.ca
Svalbard (SVAL) 78.93N, 11.85E 77.00N, 106.58E www.tgo.uit.no
Sodankylä (SODAN) 67.4N, 26.6E 65.0N, 105.9E www.sgo.fi
Blissville (BLISS) 45.61N, 293.46E 53.43N, 14.45E chain.physics.unb.ca

Table 4. Summary of A-CHAIM and E-CHAIM performance in foF2 determination at four

reference ionosondes during the September 21st through September 29th 2021 period. The

rows summarize the overall RMSE in MHz at each latency for A-CHAIM and E-CHAIM, those

labelled ∆ show the difference in RMSE both in MHz, and as a percentage of the E-CHAIM

RMSE.

Station RMSE t-02h t-01h t-00h t+00h t+01h

A-CHAIM 0.69 0.71 0.73 0.73 0.76
PONC E-CHAIM 0.80 0.80 0.79 0.79 0.79

∆ (MHz) -0.12 -0.09 -0.06 -0.06 -0.03
∆ (%) -14.4 -11.7 -7.4 -8.1 -3.8

A-CHAIM 0.85 0.83 0.84 0.79 0.79
SVAL E-CHAIM 0.83 0.83 0.80 0.80 0.80

∆ (MHz) 0.02 0.00 0.04 -0.01 -0.01
∆ (%) 2.1 0.6 4.6 -1.1 -1.8

A-CHAIM 0.48 0.42 0.43 0.39 0.54
SODAN E-CHAIM 0.75 0.75 0.76 0.76 0.76

∆ (MHz) -0.27 -0.33 -0.33 -0.36 -0.22
∆ (%) -36.1 -43.7 -43.0 -48.1 -28.7

A-CHAIM 0.34 0.32 0.33 0.47 0.59
BLISS E-CHAIM 0.80 0.78 0.75 0.75 0.76

∆ (MHz) -0.46 -0.46 -0.43 -0.28 -0.16
∆ (%) -57.2 -58.7 -56.6 -37.7 -21.8
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Table 5. Summary of A-CHAIM and E-CHAIM performance in hmF2 determination at three

reference ionosondes during the September 21st through September 29th 2021 period. The rows

summarize the overall RMSE in km at each latency for A-CHAIM and E-CHAIM, those labelled

∆ show the difference in RMSE both in km, and as a percentage of the E-CHAIM RMSE.

Station RMSE t-02h t-01h t-00h t+00h t+01h

A-CHAIM 18.43 18.91 19.47 19.49 19.60
PONC E-CHAIM 20.67 20.68 20.68 20.68 20.68

∆ (km) -2.24 -1.76 -1.21 -1.19 -1.08
∆ (%) -10.8 -8.5 -5.9 -5.8 -5.2

A-CHAIM 21.29 21.41 21.31 21.04 22.12
SVAL E-CHAIM 25.18 25.19 25.19 25.19 25.19

∆ (km) -3.90 -3.77 -3.87 -4.15 -3.07
∆ (%) -15.5 -15.0 -15.4 -16.5 -12.2

A-CHAIM 12.84 13.32 13.49 13.85 14.03
BLISS E-CHAIM 14.67 14.67 14.67 14.68 14.68

∆ (km) -1.83 -1.36 -1.18 -0.83 -0.65
∆ (%) -12.5 -9.2 -8.0 -5.6 -4.4

Table 6. Summary of A-CHAIM and E-CHAIM performance using in-situ electron density

measurements from the Swarm A, Swarm B and Swarm C satellites during the September 21st

through September 29th 2021 period. The rows summarize the overall RMSE in m
−3

x1010 at

each latency for A-CHAIM and E-CHAIM, those labelled ∆ show the difference in RMSE both

in absolute terms, and as a percentage of the E-CHAIM RMSE.

Satellite RMSE t-02h t-01h t-00h t+00h t+01h

A-CHAIM 3.06 3.12 3.24 3.43 3.64
Swarm A E-CHAIM 3.76 3.78 3.99 3.99 4.00

∆ (m−3
x1010) -0.70 -0.66 -0.76 -0.56 -0.36

∆ (%) -18.5 -17.4 -19.0 -14.1 -8.9

A-CHAIM 2.37 2.40 2.61 2.79 3.01
Swarm B E-CHAIM 3.05 3.06 3.29 3.29 3.29

∆ (m−3
x1010) -0.68 -0.66 -0.68 -0.50 -0.28

∆ (%) -22.2 -21.5 -20.8 -15.1 -8.5

A-CHAIM 2.98 3.04 3.10 3.26 3.45
Swarm C E-CHAIM 3.56 3.57 3.78 3.78 3.78

∆ (m−3
x1010) -0.58 -0.54 -0.68 -0.52 -0.33

∆ (%) -16.3 -15.1 -17.9 -13.7 -8.7
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Table 7. Summary of A-CHAIM and E-CHAIM performance using in-situ electron density

measurements from the DMSP F-16, F-17, and F-18 satellites during the September 21st through

September 29th 2021 period. The rows summarize the overall RMSE in m
−3

x109 at each latency

for A-CHAIM and E-CHAIM, those labelled ∆ show the difference in RMSE both in absolute

terms, and as a percentage of the E-CHAIM RMSE.

Satellite RMSE t-02h t-01h t-00h t+00h t+01h

A-CHAIM 5.57 5.75 6.43 7.09 7.83
F-16 E-CHAIM 7.86 7.99 8.74 8.74 8.74

∆ (m−3
x109) -2.29 -2.24 -2.31 -1.65 -0.92

∆ (%) -29.2 -28.0 -26.4 -18.9 -10.5

A-CHAIM 5.79 5.86 6.40 6.87 7.55
F-17 E-CHAIM 7.61 7.71 8.39 8.39 8.39

∆ (m−3
x109) -1.82 -1.86 -1.98 -1.52 -0.84

∆ (%) -23.9 -24.1 -23.7 -18.1 -10.0

A-CHAIM 5.23 5.44 6.05 6.56 7.29
F-18 E-CHAIM 7.33 7.48 8.16 8.16 8.16

∆ (m−3
x109) -2.10 -2.03 -2.11 -1.61 -0.87

∆ (%) -28.7 -27.2 -25.8 -19.7 -10.7
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Figure 1. Geographic distribution of assimilated data sources used in A-CHAIM from

September 21st though September 29th, 2021. Also included are the four unassimilated ionoson-

des indicated in blue. The JASON figure shows all data points that were captured with a low

enough latency to be included through the entire study period. The SO166 ionosonde was ex-

cluded during the test period.
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Figure 2. Flow of information in A-CHAIM for an example assimilation window from 00:15

to 00:20 on September 23rd, 2021. A-CHAIM passes through the example time five times

through successive runs. The relative availability for each instrument type is highlighted, and

each run uses the output of the previous run as initial conditions.
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Figure 3. Number of unique instruments reporting data at each latency during the study

period, September 21st through September 29th, 2021.

–30–



manuscript submitted to Space Weather

Figure 4. Diagram showing a simplified implementation of the particle filtering technique

used in A-CHAIM. The diagram shows the steps taken through a single assimilation step, begin-

ning with step 1, the particles from the previous time, Xi
n−1. Adding the change deterministic

part of the forecast brings the particles to step 2. In step 3 each particle is resampled multiple

times, and the daughter particles X̆ij
n are given preliminary weights w̆

ij
n . The highest weight

offspring of each original particle is selected, and in step 4 the entire set of observations is used

to generate the final weights w
ij
n . A final resampling occurs in step 5, to remove any low weight

particles to pass to the next step.
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Figure 5. A-CHAIM foF2 performance at four reference ionosondes during the September

21st through September 29th 2021 period. The left column shows the predicted values of A-

CHAIM and E-CHAIM plotted against the manually processed observations. The right column

shows the same data with the value of E-CHAIM subtracted, to remove the diurnal variations.

Gray bars mark periods where at least one of the latencies was not available due to missing data.

For clarity, only the values of E-CHAIMt-02h are plotted.
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Figure 6. A-CHAIM hmF2 performance at four reference ionosondes during the September

21st through September 29th 2021 period. The left column shows the predicted values of A-

CHAIM and E-CHAIM plotted against the manually processed observations. The right column

shows the same data with the value of E-CHAIM subtracted, to remove the diurnal variations.

Gray bars mark periods where at least one of the latencies was not available due to missing data.

For clarity, only the values of E-CHAIM t-02h are plotted.
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Figure 7. A-CHAIM performance using in-situ electron density measurements from the

Swarm A, Swarm B and Swarm C satellites during the September 21st through September 29th

2021 period, binned by latitude and longitude. The top row shows the overall E-CHAIM RMSE,

and the middle row shows the overall A-CHAIM RMSE. The bottom row shows E-CHAIM

RMSE subtracted from the A-CHAIM RMSE at each latency, to highlight the differences. Mea-

surements during periods where one or more of the latencies were unavailable were excluded.
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Figure 8. A-CHAIM performance using in-situ electron density measurements from the

DMSP F-16, F-17, and F-18 satellites during the September 21st through September 29th 2021

period, binned by latitude and longitude. The top row shows the overall E-CHAIM RMSE, and

the middle row shows the overall A-CHAIM RMSE. The bottom row shows E-CHAIM RMSE

subtracted from the A-CHAIM RMSE at each latency, to highlight the differences. Measurements

during periods where one or more of the latencies were unavailable were excluded.
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