
P
os
te
d
on

23
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
16
34
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Seismic source characterization from GNSS data using deep learning

Giuseppe Costantino1, Sophie Giffard-Roisin1, David Marsan2, Lou Marill3, Mathilde
Radiguet3, Mauro Dalla Mura4, Gaël Janex1, and Anne Socquet1
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Abstract

The detection of deformation in GNSS time series associated with (a)seismic events down to a low magnitude is still a challenging

issue. The presence of a considerable amount of noise in the data makes it difficult to reveal patterns of small ground deformation.

Traditional analyses and methodologies are able to effectively retrieve the deformation associated to medium to large magnitude

events. However, the automatic detection and characterization of such events is still a complex task, because traditionally-

employed methods often separate the time series analysis from the source characterization. Here we propose a first end-to-end

framework to characterize seismic sources using geodetic data by means of deep learning, which can be an efficient alternative to

the traditional workflow, possibly overcoming its performance. We exploit three different geodetic data representations in order

to leverage the intrinsic spatio-temporal structure of the GNSS noise and the target signal associated with (slow) earthquake

deformation. We employ time series, images and image time series to account for the temporal, spatial and spatio-temporal

domain, respectively. Thereafter, we design and develop a specific deep learning model for each data set. We analyze the

performance of the tested models both on synthetic and real data from North Japan, showing that image time series of geodetic

deformation can be an effective data representation to embed the spatio-temporal evolution, with the associated deep learning

method outperforming the other two. Therefore, jointly accounting for the spatial and temporal evolution may be the key to

effectively detect and characterize fast or slow earthquakes.
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Abstract16

The detection of deformation in GNSS time series associated with (a)seismic events down17

to a low magnitude is still a challenging issue. The presence of a considerable amount18

of noise in the data makes it difficult to reveal patterns of small ground deformation. Tra-19

ditional analyses and methodologies are able to effectively retrieve the deformation as-20

sociated to medium to large magnitude events. However, the automatic detection and21

characterization of such events is still a complex task, because traditionally–employed22

methods often separate the time series analysis from the source characterization. Here23

we propose a first end–to–end framework to characterize seismic sources using geode-24

tic data by means of deep learning, which can be an efficient alternative to the traditional25

workflow, possibly overcoming its performance. We exploit three different geodetic data26

representations in order to leverage the intrinsic spatio–temporal structure of the GNSS27

noise and the target signal associated with (slow) earthquake deformation. We employ28

time series, images and image time series to account for the temporal, spatial and spatio–29

temporal domain, respectively. Thereafter, we design and develop a specific deep learn-30

ing model for each data set. We analyze the performance of the tested models both on31

synthetic and real data from North Japan, showing that image time series of geodetic32

deformation can be an effective data representation to embed the spatio–temporal evo-33

lution, with the associated deep learning method outperforming the other two. There-34

fore, jointly accounting for the spatial and temporal evolution may be the key to effec-35

tively detect and characterize fast or slow earthquakes.36

Plain Language Summary37

The continuous monitoring of ground displacement with Global Navigation Satel-38

lite System (GNSS) allowed, at the beginning of the 2000’s, the discovery of slow earth-39

quakes – a transient slow slippage of tectonic faults that releases stress without gener-40

ating seismic waves. Nevertheless, the detection of small events is still a challenge, be-41

cause they are hidden in the noise. Most of the methods which are traditionally employed42

are able to extract the deformation down to a certain signal–to–noise level. However, one43

can ask if deep learning can be a more efficient and powerful alternative. To this end,44

we address the problem by using deep learning, as it stands as a powerful way to autom-45

atize and possibly overcome traditional methods. We use and compare three data rep-46

resentations, that is time series, images and image time series of deformation, which ac-47

count for the temporal, spatial and spatio–temporal variability, respectively. We train48

our methods on synthetic data, since real data sets are still not enough to be effectively49

employed with deep learning, and we test on synthetic and real data as well, claiming50

that image time series and its associated deep learning model may be more effective to-51

wards the study of the slow deformation.52

1 Introduction53

Global Navigation Satellite System (GNSS) is one of the reference sources of in-54

formation in geodesy. Geodetic data can help analyze the ground displacement with mil-55

limeter precision as well as monitor its evolution through time (Blewitt et al., 2018). Such56

data is commonly used to monitor the ground displacement as a response to environ-57

mental (e.g., tides, snow pack or hydrology), tectonic or seismic forcing, and to charac-58

terize the mechanical response of the Earth to these forcings. Notably, GNSS data has59

been widely used to study the deformation associated with the different phases of the60

earthquake cycle. This lead to a better understanding of the loading of faults between61

earthquakes, of the seismic ruptures studied with either static or kinematic approaches,62

and of the processes driving the post-seismic relaxation (Bock & Melgar, 2016; Bürgmann,63

2018, and references therein). At the beginning of the 2000’s, the discovery of slow slip64

events (Lowry et al., 2001; Rogers & Dragert, 2003; Dragert et al., 2001; Ozawa et al.,65
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2002) was made possible by the continuous monitoring of ground displacement with GNSS,66

and constituted a paradigm shift in the understanding of fault mechanics and earthquake67

physics. Since then, research on slow slip events has been very active. Several studies68

focus on one particular event or tectonic area, involving visual inspection of the data and69

dedicated modelling method with a fine-tuning of the parameters (Ozawa et al., 2001;70

Hirose & Obara, 2005; Wallace & Beavan, 2010; Radiguet et al., 2011; Ozawa et al., 2013;71

Radiguet et al., 2016; Socquet et al., 2017; Wallace et al., 2016; Wallace, 2020; Itoh et72

al., 2022; ?, ?). Another research direction aims at performing a systematic character-73

ization of slow slip events (Michel et al., 2019; Frank & Brodsky, 2019; Takagi et al., 2019;74

Nishimura, 2014, 2021; Donoso et al., 2021; Okada et al., 2022; Rousset et al., 2017), with75

two underlying objectives: (1) construct catalogues of events allowing for an inter-event76

comparison and extraction of scaling laws (Ide et al., 2007; Gomberg et al., 2016), and77

(2) improve the signal over noise ratio in order to detect and characterize events that78

are at the limit of detection capabilities. The present work is in line with this latter ap-79

proach. Our ultimate goal will be to develop a method able to systematically detect and80

characterize potential Slow Slip Events (SSEs) on active faults, including small ones, by81

taking advantage of the large availability of GNSS data. When looking for slow slip events,82

analyzing their static deformation signature in GNSS time series becomes mandatory83

since they are not associated with wave arrivals, and because longer time spans need to84

be considered, with respect to regular earthquakes. To this end, as the static deforma-85

tion associated with regular or slow earthquakes can be approximated with a similar sim-86

ple dislocation model (Okada, 1985), we use GNSS data to characterize the static de-87

formation signature of earthquakes as a preliminary step towards the SSE analysis. Cat-88

alogues listing the source of all Mw earthquakes are made available by the routine anal-89

ysis of seismic recordings by seismological agencies, allowing for a benchmarking with90

real GNSS data against an independent ground truth.91

In this work we focus on the North Japan subduction, offshore Honshu, which is92

one of the seismic regions that is best instrumented in the world. In this area, slow slip93

phenomena are scarce compared to warmer subduction zones, such as Cascadia or South94

Japan, and its kinematics is essentially associated with regular earthquakes (Fukuda, 2018;95

Hirose et al., 2014). Therefore, new observations, such as seafloor data (Ito et al., 2013;96

Nishikawa et al., 2019), or new methods applied to terrestrial GNSS records (Nishimura,97

2014, 2021; Rousset et al., 2017; Khoshmanesh et al., 2020, e.g.) or to seismic records98

(Marsan et al., 2013; Gardonio et al., 2018, 2019; Uchida et al., 2016, e.g.) are required99

to detect potential bursts of slow slip.100

Machine learning and deep learning methodologies have recently been successfully101

applied to geosciences. In seismology, they have been used to address topics such as earth-102

quake detection and phase selection resulting in seismic catalogues of unprecedented den-103

sity (Zhu & Beroza, 2019; Mousavi et al., 2020; Ross et al., 2019; Kong et al., 2019; Zhu104

et al., 2019; Seydoux et al., 2020), earthquake early warning (X. Zhang et al., 2021; Münchmeyer105

et al., 2021; Saad et al., 2020), prediction of ground deformation (Kong et al., 2019; Mousavi106

et al., 2020), earthquake magnitude estimation (Mousavi & Beroza, 2020; Münchmeyer107

et al., 2020; Saad et al., 2020). However, machine learning techniques applied to the anal-108

ysis of geodetic time series are less numerous. Relevant applications in the frame of the109

analysis of the slow slip events have been presented by Rouet-Leduc et al. (2019, 2020);110

Hulbert et al. (2019, 2020); He et al. (2020), with notable applications to InSAR data111

by Rouet-Leduc et al. (2021); Anantrasirichai et al. (2019). As we can remark from the112

literature, seismic recordings are still the main source of information for the analysis of113

surface ground movements, linked to either slow or regular earthquakes. Thus, this is114

another motivation to explore the potential of machine learning to analyse GNSS times115

series. We want to explore and test recent developments in machine learning applied to116

time series or image analysis, to be able to mine the geodetic data and characterize the117

events with a physics based approach.118

–3–



manuscript submitted to JGR: Solid Earth

In this paper, we address the problem of the fast seismic source characterization,119

i.e., estimating the location and magnitude of a ”regular” seismic event, based on deep120

learning applied to GNSS position time series. To the best of our knowledge, this is the121

first attempt of using machine learning–based techniques in such a direction. Again, this122

is not a goal per se, but must be rather seen as a first step towards the development of123

methods dedicated to the detection of slow slip events. We solve our problem as a re-124

gression in the framework of supervised learning, meaning that the input data used dur-125

ing the training are labelled. The data ground truth comes from seismic catalogs, serv-126

ing as a benchmark for our analyses. We explore three different ways to represent GNSS127

data (time series, images, image time series) taking into account both the spatial coherency128

and the temporal variability of GNSS data. We associate a customized deep learning model129

to each data representation either by re-adapting already existing methods or by design-130

ing it afresh. Training and testing of the different methods is first made on synthetics.131

The performance of our methods is then evaluated against real GNSS data using an in-132

dependent benchmark coming from actual earthquakes catalogs. The strengths and the133

pitfalls of the presented methods are discussed by envisioning some possible strategies134

to improve the results. The same analysis, applied to SSEs, would not be as straight-135

forward, since SSE catalogs are still scarce. However, this methodology can serve as ba-136

sis for further development.137

2 Methods138

2.1 Background work and positioning139

2.1.1 Machine learning and deep learning methods for the seismic source140

characterization141

In the frame of the source characterization, deep learning has proven to be partic-142

ularly effective, as demonstrated by van den Ende and Ampuero (2020) and Münchmeyer143

et al. (2021), among the most recent works. As pointed out, a multi-station approach144

may more effectively locate the seismic source, in spite of other approaches using single-145

station waveforms, as (Mousavi & Beroza, 2020). Yet, combining observations from mul-146

tiple stations is indeed a non-trivial task. It is possible to assign a weight to each (seis-147

mic or GNSS) station which depends on certain metrics, as done by Rousset et al. (2017),148

albeit addressing a different problem. van den Ende and Ampuero (2020) explicitly in-149

ject the location of each seismic stations in form of latitude and longitude coordinates,150

while Münchmeyer et al. (2021) employ a sinusoidal embedding (i.e., the position is en-151

coded through sinusoidal functions (Vaswani et al., 2017)) for the station locations, out-152

performing already existing methods and showing promising results in terms of earth-153

quake early warning and source characterization. Nevertheless, as a general remark, no154

straightforward guideline is available to effectively take both the temporal and the net-155

work geometry into account. Therefore, exploiting the spatial distribution is indeed a156

key problem which we are willing to address in this work.157

2.1.2 Followed approach158

An overview of the proposed methodology is shown in Figure 1. As any standard159

machine learning model, the pipeline consists in a training and an inference phase. Dur-160

ing the training process, a model is provided with data to learn from. In case of super-161

vised learning, a couple 〈 input, desired output 〉 is presented to the model, which learns162

by minimizing a certain error metric between the estimated output and the desired out-163

put, which serves as a reference. We use epicenter position and the magnitude of the event164

as a target output for the characterization, with GNSS data as input. In the inference165

phase, the trained model is used to make predictions on new data. We will test our meth-166

ods both with synthetic and with real data. We provide new input data to the trained167

model and we compare the outcomes with the reference outputs, i.e., the epicenter po-168
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Figure 1. Schema of the workflow, summarizing the training and the inference phases. A

given deep learning model is trained by providing an input and a desired output. Here we use

GNSS data as input and a couple consisting of 〈 epicenter position, magnitude 〉 for each event.

During the training process, the model will learn a nonlinear function to map GNSS inputs to an

approximation of its position and magnitude. Once trained, this model can be used to perform

tests on new, independent data. Here we train on synthetic data and we test both on synthetic

and real data.
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sition and the event magnitude associated to this new input data. Training our mod-169

els with supervised learning applied to earthquakes allows us to benefit from a bench-170

mark coming from real earthquakes catalogs.171

We make use of synthetic data to train and validate our deep learning models and172

we test on synthetic and real data afterwards. Japan is probably one of the best instru-173

mented regions in the world, with GNSS data among the cleanest and the densest ones.174

Yet, we did not train our models with real data for the following two main reasons.175

1. GNSS data suffers from the presence of data gaps and missing stations. They can176

be associated to station inactivity (e.g., electricity blackouts) or to inconsistent177

daily measurements, for example due to large earthquakes. Moreover, the num-178

ber of GNSS stations may evolve over time, due to the installation of new receivers179

or to the temporary unavailability of certain ones. It can moreover make it hard180

to collect regular and well formatted subsets of data to train on. This drastically181

reduces the number of exploitable training samples, which is indeed a key issue182

when training deep learning models (LeCun et al., 2015).183

2. Real data is not uniformly distributed in terms of source parameters, most notably184

position and magnitude. Since we are dealing with subduction events, most of the185

actual epicenters will be located on the subduction interface. This can constitute186

a limitation since a deep learning model trained on such a configuration might not187

generalize well for events which would be located inshore or sufficiently far from188

the training area. In addition, the magnitude distribution follows the Gutenberg–189

Richter scaling law (Gutenberg, 1956). As a consequence, the deep learning meth-190

ods would be biased because of the small magnitude events, which will be more191

numerous, thus possibly resulting in worse performance on the larger ones. To this192

end, we generate synthetic ruptures whose source parameters are assumed to be193

random variables drawn from an uniform distribution.194

By employing synthetic data, it is possible to generate as many samples as needed,195

overcoming the lack of data and exploiting the features of deep models. Nonetheless, the196

resemblance between the synthetic data and the real one plays a critical role, since it will197

have an impact on how well the deep learning model will perform on real data: we need198

to generate ultra realistic time series. To this end, we add realistic noise computed from199

actual GNSS data, as it will be detailed in section 2.2.200

2.2 Generation and representation of synthetic data201

We generate synthetic data samples as the sum of a modeled displacement signal202

and a realistic noise sample. We rely on three data representations both for synthetic203

and for real samples and we associate each of them to a different deep learning model.204

More formally, the synthetic data set is represented as a set of N couples {xn,Θn}Nn=1,205

with Θ a set of source parameters (epicenter position, magnitude, focal mechanism, etc.)206

and x being the data following an additive model:207

x = s + ε (1)

with s the synthetic signal (cf. section 2.2.1) and ε the noise term (cf. section 2.2.2).208

2.2.1 Synthetic displacement209

We obtain the synthetic displacement signals s by relying on Okada’s dislocation210

model (Okada, 1985). The model input parameters are generated as follows. Earthquake211

hypocentral positions (longitude, latitude, depth) are assumed to be uniformly distributed212

random variables, with longitude x ∼ U(139◦, 146◦), latitude y ∼ U(35◦, 41◦) and depth213
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d ∼ U(2 km, 100 km). Event magnitudes are generated as m ∼ U(5.8, 8.5) and static214

moments M0 are computed accordingly, as (Hanks & Kanamori, 1979):215

M0 = 101.5m+9.1 N ·m (2)

Fault azimuth direction φS (strike), dip angle δ and slip angle λ (rake) are constrained216

to a thrust focal mechanism, by allowing for a certain variability of fault slip combina-217

tions: φS ∼ U(160◦, 240◦), δ ∼ U(20◦, 30◦), λ ∼ U(75◦, 100◦). Static stress drop ∆σ218

is assumed to be a lognormal random variable with an average value of 3MPa and a stan-219

dard deviation of ±30 MPa. A circular crack is assumed with radius R computed as (Aki220

& Richards, 2002):221

R =

(
7

16

M0

∆σ

)1/3

(3)

which can be used to approximate a rectangular dislocation, having length L and222

width W , by imposing the equality of the surfaces:223

πR2 = L ·W (4)

The fault aspect ratio is assumed such that the fault length L and width W sat-224

isfy: W = L/2, with L computed as L =
√

2πR. It should be noticed that the dislo-225

cation surface does not change as a function of the aspect ratio between L and W . The226

average slip ū is also derived for a circular crack and it is computed as (Aki & Richards,227

2002):228

ū =
16

7π

∆σ

µ
(5)

with µ the shear modulus, assumed equal to 30 GPa.229

Okada’s dislocation model is applied to each one of this set of earthquake sources230

to compute the predicted synthetic displacement at each GNSS station in Honshu from231

the Earth Observation Network System in Japan (GEONET). Hence, the theoretical de-232

formation field at all station locations in Honshu is obtained for each dislocation setting.233

2.2.2 Realistic noise computation234

Noise in GNSS time series constitutes one of the most critical issues, as it is spa-235

tially and temporally correlated (Ji & Herring, 2013; Dong et al., 2002). Here we define236

noise as everything which is not the signal of interest, being the coseismic signal offsets.237

At first approximation, its spectrum can be represented as a white noise at the lowest238

frequencies, and a colored noise having a 1/fκ decay starting from a certain corner fre-239

quency, with the spectral index κ being usually fitted from the highest frequencies of the240

periodogram (Williams et al., 2004; J. Zhang et al., 1997; Mao et al., 1999). The spa-241

tial distribution of such a noise is not random. On one hand, some common patterns must242

be found among near stations, therefore it can be helpful to discriminate noise from other243

types of signals. On the other hand, making this type of analysis is difficult, because of244

the unpredictability of those spatial patterns as well as the intrinsic difficulty in handling245

such topological consistency in a consistent manner.246

Realistic perturbations, i.e., noise, are needed to mimic real displacement data. Here247

we rely on realistic noise samples computed from real GNSS time series by following an248

existing approach for surrogate data generation (Schreiber & Schmitz, 1996; Prichard249

–7–



manuscript submitted to JGR: Solid Earth

& Theiler, 1994). By removing known signals (e.g. earthquakes, postseismic relaxation,250

SSEs, jumps associated with antenna changes etc) from GNSS time series from a quadratic251

trajectory model (Marill et al., 2021), we obtain GNSS residual time series that contain252

the noise that we want to mitigate. Then, a Principal Component Analysis (PCA) is per-253

formed on 100–days windows, by taking into consideration all the stations at the same254

time. Afterwards, a Fourier Transform (FT) is applied and the phase spectrum is ran-255

domized by picking a new phase ϕ ∼ U(0, 2π). The same shuffling sequence is adopted256

for the whole network in order to preserve the spatial coherency between stations. Af-257

ter this process, an Inverse FT and an Inverse PCA are performed. As a result, the trans-258

formed noise samples ε will have, on average, the same spatial covariance. Moreover, we259

can build new noise samples by randomizing the phase, since the Power Spectral Den-260

sity (PSD) of the transformed samples and the actual ones will be asymptotically equiv-261

alent.262

2.2.3 GNSS data representations263

We build three data types: time series, images and image time series. The raw data264

come in the form of time series. Then, we derive images to take the spatial information265

into account, and image time series to take advantage of both the time and space pat-266

terns. A schematic view is provided in Figure 2. Moreover, here we do not aim at es-267

timating the hypocentral depth, therefore we do not consider the vertical component of268

GNSS data, as it does not provide any additional constraint.269

Time series. We build synthetic position time series by considering a noise win-270

dow of 100 days (cf. section 2.2.2). We add a Heaviside step to simulate the coseismic271

displacement (Bevis & Brown, 2014), with the onset time (cf. tc in Figure 2) being at272

the center of the window. The step amplitude for each station depends on the modeled273

displacement (cf. section 2.2.1). More formally, the time series structure is represented274

by a tensor X ∈ RL×T×2, with L the number of stations and T the number of time steps,275

the location (latitude, longitude) of the station being given by S ∈ RL×2.276

Differential images. Images of interpolated deformation field are computed as277

follows. By assuming the coseismic onset at time tc, we consider the difference between278

the displacement at time tc + 1 day and tc − 1 day, namely the differential coseismic279

displacement field for each station in the GNSS network. We interpolate the deforma-280

tion field in space as follows. We first employ a median anti-aliasing filter with a grid281

spacing of 25 arc minutes (≈ 45 km), then we interpolate the points in space by using282

adjustable tension continuous curvature splines (with tension factor T = 0.25) (Smith283

& Wessel, 1990). The resulting image dimensions are 76 × 36 × 2 pixels. Afterwards,284

we mask the sea by forcing to zero all the offshore pixels, in order not to extrapolate off-285

shore, which may degrade the performance of the deep learning methods. Mathemat-286

ically, the differential images are obtained by rasterizing for a given time step tc an im-287

age as a tensor D ∈ RI×J×2 being I×J the resolution of the image D and D(S(k)) =288

X(k, tc + 1)−X(k, tc− 1) with S(k) the position (latitude, longitude) of the k-th sta-289

tion and tc the time of the coseismic offset. The value of I and J , as well as the content290

of the pixels D(S(k)), for k 6∈ S, have been described before.291

Image time series. Image time series are built from position time series by in-292

terpolating the position information at each frame with the same approach employed for293

the differential images. We consider 15 days of data, with the first 7 frames correspond-294

ing to the week before the coseismic displacement, the central frame corresponding to295

the coseismic offset, and the remaining 7 days corresponding to the week after the co-296

seismic. Each frame of the image time series has dimensions 76 × 36 × 2 pixels. For-297

mally, an image time series is represented by tensor T ∈ RM×I×J×2, with M the length298

of the image time series and T(ti,S(k)) = X(k, tc + i), i ∈ (−bM2 c, ..., 0, ..., b
M
2 c).299

–8–
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Figure 2. Outline of the three designed data representations. Each arrangement is de-

signed for a specific deep learning model (cf. Figure 3 with corresponding colors). The data–

arrangement procedure is shared between synthetic and real data, except for time series, which

are directly available from GNSS recordings. (time series) is associated to the TS model. Syn-

thetic position time series are built by adding a modeled signal (cf. section 2.2.1) to a realistic

noise time series (cf. section 2.2.2) by imposing the time of the coseismic offset to be at the cen-

ter of the window (cf. section 2.2.3). (differential images) is associated to the IMG model.

Differential images of ground deformation are built by differentiating the GNSS displacement at

the day following the coseismic time and the day before. Then, the differential deformation field

is interpolated in space for each direction. (image time series) is associated to the TRA model.

Image time series are the 3D–equivalent of position time series. A total of 15 days of deformation

is collected, by selecting the week before and the week after the coseismic offset (included). For

each day, a spatial interpolation is performed by employing the same method as for differential

images to produce a couple of images representing a frame in the whole time series.
–9–



manuscript submitted to JGR: Solid Earth

In all the three representations, we consider that the coseismic offset time tc is known.300

Indeed, we focus here only on the characterization part, and not the detection.301

2.3 Employed deep learning methods302

We developed a deep learning method specifically designed for the characteristics303

of each chosen data representation. We designed three methods by adapting different state-304

of-the-art methods that were not originally designed for geodetic data, in order to best305

address our specific problem. A graphical outline of the methods is provided in Figure306

3.307

2.3.1 Time–series based CNN (TS)308

Time series can be effectively processed by Convolutional Neural Networks (CNNs),309

extracting succinct information coming from temporal domain, as reviewed by Bergen310

et al. (2019); Kong et al. (2019). Here we rely on the architecture proposed by van den311

Ende and Ampuero (2020), originally proposed for seismic data. Their model has been312

selected as a potential candidate as it presents several interesting features that can be313

leveraged also when dealing with geodetic data. The first portion of their network con-314

sists in three convolutional blocks with an increasing number of feature maps. In each315

block, three convolutional layers are used for the feature extraction, followed by a max–316

pooling layer, employed for subsampling the data. Afterwards, the coordinates of every317

station associated with an input waveform are injected into the model, as taking into ac-318

count the location of seismic stations can improve the performance, which is the key char-319

acteristic of the model. The max–reduce strategy helps in aggregating the features re-320

lated to the stations, in order to select the feature from the station corresponding to the321

most relevant contribution for the prediction. We exploited these features in our re-elaboration.322

Moreover, in order to further mitigate the vanishing gradient problem, the rectified lin-323

ear unit (ReLu) (Agarap, 2018) activation function has been chosen for the hidden lay-324

ers. Since the output variables are uniformly distributed, such an activation function would325

not squash the predictions in the boundaries of the output range, possibly making the326

model more flexible when predicting patterns laying outside of the ranges used in the327

training process, notably when testing for very small or large magnitude earthquakes.328

The injected horizontal coordinates (latitude, longitude) of GNSS stations are previously329

scaled in [0, 1]. The original model is also equipped with weights associated to the wave-330

forms accounting for inactivity or missing data from a station. We set them to 1 as the331

GNSS network in Japan is quite dense and all the stations in synthetic data were assumed332

to be functioning. Yet, it can represent a further useful development, as it will make the333

model more flexible when testing on actual data as well as testing against other regions.334

A visual summary of the model is outlined in the first box of Figure 3.335

2.3.2 Image–based CNN (IMG)336

We use a 2D CNN to analyze and extract features from interpolated deformation337

images. They are an effective solution to leverage the spatial coherency and covariance338

of data structured as images (LeCun et al., 2015) and have become one of the reference339

architectures for image–based tasks (Goodfellow et al., 2016), also with relevant appli-340

cations in the geosciences (Rouet-Leduc et al., 2020; Anantrasirichai et al., 2019).341

Here we rely on the architecture of MobileNetV2 (Sandler et al., 2018) as the fea-342

ture extractor. This particular architecture has been chosen as it is lighter (in terms of343

the number of parameters) with respect to other state–of–art models, such as the VGG344

family (Simonyan & Zisserman, 2014). Yet, it presents some interesting features, such345

as the linear bottleneck layers and the depth–wise convolutions. The architecture presents346

a first convolutional layer followed by seven bottleneck layers. These layers perform an347

efficient convolution by relying on point–wise and depth–wise convolutions, presenting348

–10–
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Figure 3. The three reference deep learning methods designed in this work. Shaded cyan

rectangles represent existing state-of-the-art models. Such models have been slightly modified

or adapted, where specified (cf. section 2.3). Further details, such as dropout layers, stride and

activation functions, have not been depicted to facilitate the reading. Arrows represent the layers

operating between the input (left) and the produced output (right). (TS) The network pro-

gressively computes features from convolutions and downsamplings in the time dimension. The

latitude and longitude information is then injected. The resulting 2D–array is finally expanded

and the contribution coming from the most informative GNSS station is taken (max–reduce oper-

ation in yellow). Model readapted from (van den Ende & Ampuero, 2020). (IMG) was inspired

by the MobileNetV2 architecture (Sandler et al., 2018). The input two–channel image is pro-

cessed with convolutions and downsamplings by employing bottleneck layers (cf. section 2.3.2)

with and without residual connections (orange and yellow arrows, respectively). (TRA)

The first part of the network exploits the feature extractor of IMG to compute spatial
features for each frame, which are packed in a 2D–array. Then, a positional embedding
enforces time sequencing and prepares the intermediate–level data for the sequential anal-
ysis performed by the Transformer (self–attention as in Mousavi et al. (2020)).
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residual connections when there is not any stride in the convolutions. We use a global349

average pooling strategy after the feature extractor. A scheme of the architecture is pro-350

vided in the second box of Figure 3.351

2.3.3 Image time series–based Transformer (TRA)352

Image time series–based approaches are required to account for both the spatial353

and the temporal variability into the input data. Deep sequence models such as LSTM354

(Long-Short Term Memory) or GRU (Gated Recurrent Unit) have been successfully used355

in geosciences to exploit the sequential behaviour of the data (Bergen et al., 2019; Wang356

et al., 2017), as well as Transformers, which have overcome the former becoming the ref-357

erence methods in the state–of–art (Vaswani et al., 2017; Münchmeyer et al., 2021; Mousavi358

et al., 2020). We tested both the LSTM and the Transformer approaches and we chose359

the latter, whose complexity is justified by its better ability to constrain the spatio–temporal360

evolution.361

Here we design a relatively simple model to validate to consider both spatial and362

temporal features jointly, which can serve as a baseline to add more complexity in the363

future. We first use a feature extractor to compress the input data dimensionality to ob-364

tain a reduced representation. We use the same architecture of the IMG feature extrac-365

tor and we distribute it in time, i.e., we use the same feature extractor for each frame366

of the image time series. As a result, we obtain a feature vector for each frame of the367

image time series. Afterwards, we stack all the feature vectors in one matrix to be ex-368

ploited by the Transformer layer, as shown in the third box of fig 3. Since the self–attention369

is, in general, order agnostic, we apply a Positional Embedding layer to ensure that the370

relative position of the frame information is correctly enforced (Chollet, 2021). We chose371

not to have a fixed mapping, therefore the embedding weights are learnt during the train-372

ing phase. After the embedding layer, we use a Transformer equipped with additive self–373

attention, as in (Mousavi et al., 2020). For simplicity, we use only one global self–attention.374

According to our preliminary tests, the performance is not considerably increasing when375

adding a second level of attention, possibly because our model is still too simple to ben-376

efit from a hierarchical attention structure. After the self–attention, we apply another377

dropout (dropout rate 0.5) layer (cf. section 2.3.1) followed by a one dimensional Global378

Max Pooling. As a final remark, we train the model by enforcing the feature extractor379

to evolve from weights already learnt by IMG. Therefore, we apply a sort of fine–tuning380

which may be beneficial for the self–attention to reach some acceptable parameter con-381

figurations in the early stage of the training already. The TRA architecture is presented382

in the third box of Figure 3.383

2.4 Implementation and training details384

We enforced the mean squared error (squared L2 norm) as loss function, i.e., the385

objective function which is minimized during the training, defined as follows:386

L(y, ŷ) =
1

N

1

d

N∑
i=1

d∑
j=1

(yi,j − ŷi,j)2 (6)

where y ∈ RN×d and ŷ ∈ RN×d represent the ground truth and the predicted387

output, respectively, with N being the number of observations and d the number of di-388

mensions. Notably, d = 3, being latitude, longitude and magnitude the output variables.389

Hence, the loss function jointly minimizes the error on both position and magnitude. Since390

the ranges of the output variables are not comparable, they are first scaled in (0, 1). Thanks391

to this transformation, the high–range variables do not prevail on the others, possibly392

masking small variations on low–magnitude variables. As a result, the loss minimization393

turns out to be more regular and effective.394
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Table 1. Quantitative results of the tested methods.

Model Position error (km) Magnitude error (◦)

TS 156.46± 116.94 0.26± 0.20
IMG 133.07± 146.97 0.18± 0.18
TRA 105.44± 128.84 0.13± 0.15

All the three models have been provided with a last fully–connected layer with three395

outputs and a linear activation function (linear combination). Since the output variables396

are uniformly distributed, such an activation function would not squash the predictions397

in the boundaries of the output range, possibly making the model more flexible when398

predicting patterns laying outside of the ranges used in the training process. Thereafter,399

we enforce a dropout regularization (Srivastava et al., 2014) in this final layer (dropout400

rate 0.5) at training time, which helps prevent the models from overfitting the training401

data, in addition to the dropout regularization which may already be enforced through-402

out the previous layers.403

We performed the training of the three models by adopting a mini–batch stochas-404

tic gradient learning (Bottou et al., 2018) with a batch size of 128 samples and the ADAM405

method (Kingma & Ba, 2014) for the optimization. The learning rate was chosen accord-406

ing to a grid–search optimization and the best value was found at 0.001. We initialize407

all the network weights with an orthogonal initializer (Saxe et al., 2013) for TS and with408

a uniform Xavier initializer (Glorot & Bengio, 2010) for IMG and TRA.409

We employ twenty thousand synthetic samples that we divide it into training, val-410

idation and test sets with proportions of 60%, 20% and 20% respectively. We used the411

training and validation sets for the training phase. When the loss on the validation set412

is not decreasing anymore in a certain number of training steps, the training is termi-413

nated and the model’s weights are loaded with the ones associated to the best loss value.414

Moreover, the validation set has been employed to tune the hyper–parameters of the mod-415

els (such as the learning rate, the best architecture, etc.) in order to prevent any over-416

fitting. The test set is used for the final inference and for the performance analysis.417

The code was implemented in Python using the Tensorflow (Abadi et al., 2016) li-418

brary as well as the higher–level package Keras (Chollet et al., 2015). The training was419

run on NVIDIA Tesla V100 Graphics Processing Units (GPUs).420

3 Results on synthetic data and discussion421

We first evaluate the performance of the three models on a synthetic test set, in-422

dependent of the training and validation ones. In order to concretely compare the three423

methods, the synthetic and real data sets under consideration are the same for all the424

models and differ only in their input representation.425

Table 1 shows quantitative results in terms of average error and standard devia-426

tion for the three models with respect to the synthetic test set.427

The position error is assumed as the Euclidean distance and is computed for each428

sample as:429

Eip =

√
(xi − x̂i)2 + (yi − ŷi)2 (7)
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Figure 4. Comparison of the performance of the tested models at inference time. TS, IMG

and TRA models are shown on columns respectively. For each row, latitude, longitude and mag-

nitude predictions are reported, respectively. Each point of the scatter plots represents a test

sample, whose magnitude is indicated by the colorbar, and it is illustrated as a function of both

its actual and predicted value. Black dashed lines represent the ideal prediction, while solid black

lines represent the rolling median.

where xi and yi represent the actual longitude and latitude and x̂i and ŷi the pre-430

dicted longitude and latitude, respectively. We adopt a Mean Absolute Error (MAE) for431

the magnitude, which is computed for each sample as:432

Eim = |mi − m̂i| (8)

where mi and m̂i are the actual and predicted magnitude, respectively. Then, the433

total position and magnitude errors are computed by averaging Eip and Eim.434

The quantitative results evidence that the TRA method outperforms the other two,435

in terms of average error, both in position (105.44) and in magnitude (0.13), with a lower436

standard deviation in position (128.84) with respect to the IMG method (146.97) and437

slightly higher with respect to the TS method (116.94). We may expect TRA to have438

also a lower standard deviation, yet it depends on many factors which can be related to439

the type of data used, as well as randomness in the training.440
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3.1 Analysis of the performance441

Figure 4 shows the prediction of the three models on the synthetic test set color–442

coded by the actual magnitude of the test events. Indeed, the performance of all the mod-443

els depends on the magnitude, which is closely related to the Signal-to-Noise ratio (SNR).444

As we can observe in the third row, low magnitudes tend to be overestimated by all mod-445

els, likely because there is an intrinsic resolution threshold preventing the models from446

achieving good performance when the SNR is not sufficiently high. For the lower mag-447

nitude events (blue points), also the localization ability is poor, as the predictions of the448

three models do not follow, in general, the ideal prediction line. This behaviour may thus449

be linked to an intrinsic limitation of data information.450

The solid black lines in the plots show the rolling median on the scatter plot com-451

puted on 150 samples. They give the general trend of the predictions. At first order, they452

can help in individuating a tentative magnitude threshold value, that is the value un-453

der which the magnitude prediction is significantly degraded. We can derive the follow-454

ing resolution limits: MTS
w = 7, M IMG

w = 6.3, MTRA
w = 6.2. Those quantities have455

to be taken as a general indication.456

The trend of the magnitude prediction for TS deviates from the ideal prediction457

line both for small and for large magnitudes, presenting a median saturation around Mw 6.5458

and Mw 7.8, respectively (cf. black solid lines). The saturation for high magnitudes could459

be due to the employed network architecture as well as to specific features associated to460

the type of data. The magnitude prediction for the image–based methods, i.e., IMG and461

TRA, better adhere to the ideal prediction line, with a progressively smaller error vari-462

ance at larger magnitudes, in line with the SNR improvement. As for the magnitude res-463

olution, TRA is the method associated with smaller error variances and with a better464

median trend.465

From the latitude and longitude prediction, i.e., the localization performance, we466

can observe that the models do not treat similarly the low and high magnitudes. No-467

tably, for magnitudes smaller than the SNR limit, TS assigns them an average position468

(i.e., near 38 for the latitude and 142 for the longitude). This behaviour is clearly in-469

dicated by the horizontally–clustered blue points. This pattern is indeed coherent with470

the choice of the quadratic loss function used to train the model. In fact, at first order,471

the best guess is represented by the mean value of the output range subject to the pos-472

terior distribution (Haykin, 2008; Moon & Stirling, 2000). We can derive that, when the473

SNR is below a certain resolution threshold, the model associates low–magnitude events474

to average coordinates, which likely minimize the average error. For higher magnitudes,475

the TS latitude predictions are more clustered around the ideal prediction line, although476

a tendency towards the mean values is still present, while TS predicts the longitude of477

high–magnitude events either in the proximity of the GNSS network (longitudes less than478

∼ 142) or in far field (longitudes higher than ∼ 144). Conversely, image–based meth-479

ods characterize low–magnitude events as having a random position in the region of in-480

terest (cf. scattered blue points), while being able to precisely constrain higher magni-481

tude events, with predictions tightly clustered around the ideal line. Moreover, the me-482

dian prediction lines for IMG and TRA are more stable and significantly bends only in483

correspondence of far field events (longitudes near 145◦), which is physically consistent.484

3.2 Spatial variability of the location error485

Figure 5 shows the location error as a function of the ground truth spatial coor-486

dinates. The plot has been computed by interpolating the location error for each test487

data sample onto a grid, corresponding to the area of interest. This smoothed heatmap488

indicates the amount and the distribution of location errors all over the tested region,489

for different magnitude ranges. This type of representation can help to assess the phys-490

ical consistency of the tested models, as well as revealing systematic biases in the error491
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Figure 5. Comparison of the location error of the tested models, reported in the columns.

Each subplot shows the location error associated to the test samples, interpolated on a grid

which corresponding spatial coordinates are indicated along the axes. Magenta data points repre-

sent the position of GNSS stations in Japan. The heatmap depicts the distribution of the error in

position committed by the tested models, for different magnitude ranges, in rows. Arrows show

the average direction of position error for patches of 1 × 1 arc degree. The arrows have the same

scale throughout all the subplots, making a comparison be possible among different models.
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pattern, which can be more evident for specific magnitude ranges. Moreover, it is use-492

ful to compare and discuss how the error distribution of certain events can be influenced493

by their relative position with respect to the GNSS network.494

From the heatmaps of the first two lines, corresponding to the magnitude ranges495

(5.8, 6.3) and (6.3, 6.8), we can see how the three methods handle the characterization496

of low–magnitude events (cf. 3). We can remark that TRA is able to better resolve small497

magnitude events in near field (i.e., in proximity of the GNSS network). By increasing498

the magnitude range, the error amplitude of IMG and TRA are decreasing, affecting only499

the points which are far from the network (on the east side). For high magnitudes, TS500

tend to localize most events in far field, seemingly not taking advantage of the strong501

GNSS signal in the near field.502

The error pattern for image–based methods is, therefore, more physically consis-503

tent. The most reasonable explanation is that image–based models can better capture504

the spatial information by extracting spatial features which are essential for the char-505

acterization. As a general comment, we do not see any clear bias and the error patterns506

exhibit a correct behaviour, since, as the magnitude increases, highest errors are pushed507

towards the far field. We notice that, for low magnitudes, the maximum error associated508

to the TS is about 200 km less than the other models, as its bias correctly minimizes the509

average error, yet without providing any discriminant ability to the model. By increas-510

ing the magnitude, errors become smaller and smaller, with the events contributing to511

the largest errors being distributed on the east (offshore) side, in favor of TRA, which512

is associated with the most reasonable error pattern.513

3.3 Influence of the distance from the GNSS network on the predictions514

Figure 6 helps us in analyzing the dependency of errors to the relative position with515

respect to the GNSS network. Each scatter plot represents the error as a function of the516

distance to the nearest GNSS station. Such a distance is computed from the coordinate517

of a hypocenter as the 3D Euclidean norm, in order not to take into account the Earth518

curvature. This kind of representation is effective in revealing patterns of the position519

and magnitude errors as function of both distance, on the x axis, and magnitude, in color520

code.521

In order to better summarize and understand this behaviour, we identified three522

regions, according to the relative distance to the nearest station: being d the distance523

to the nearest station, we will refer to near, intermediate and far field when d ≤ 0.5,524

0.5 ≤ d ≤ 3 and d ≥ 3 arc degrees, respectively (see dashed lines in Figure 6). The525

dashed lines correspond to the median for several magnitude ranges (cf. Figure 5).526

For the TS model, we can see in the first row a non negligible presence of errors527

due to high magnitude events both in near field and intermediate field, while image–based528

methods being able to correctly locate a larger number of high and even low magnitude529

events. Looking at the magnitude estimation (second row), we can observe for TS a clus-530

ter of errors corresponding to very high magnitude events in near field in the upper part531

(average error Mw = 0.8), and a second cluster of errors associated to lower–intermediate532

magnitudes affecting all the region. Conversely, image–based methods are more accu-533

rate in the magnitude estimation, with a less biased error pattern: the median curves534

of errors increase with the distance, both for the magnitude and the position estimation.535

Moreover, since the depth has been taken into account when computing the distance to536

the nearest GNSS station, we also find that the underestimation of large magnitudes com-537

mitted by TS (cf. Figure 4) is affecting very shallow and near events, leading to the con-538

clusion that image–based data representation can bring more exploitable information about539

the deformation field. Therefore, more low–magnitude events are captured.540
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Figure 6. Comparison of errors as a function of the distance to the nearest GNSS station.

The deep learning models are shown in columns, while the rows indicate position and magnitude

errors, respectively. Each scatter plots depicts errors as a function of the Euclidean distance to

the nearest GNSS station, expressed in arc degrees. Each data point, representing the position

error and the absolute magnitude error between the test samples and the model predictions, is

color coded by the actual magnitude of the event. Solid lines represent the median of subsets of

the data points, filtered by magnitude ranges as indicated in the legend in the top right. Vertical

dashed lines discriminate among near, intermediate and far field, respectively.
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Table 2. Magnitude thresholds of TRA estimated against the synthetic test set.

depth ≤ 30 km 30 km < depth ≤ 60 km 60 km <depth ≤ 100 km

near field 6 6.2 6.5
interm. field 6.8 6.8 7

far field 7.5 7.5 7.8

6.0 6.5 7.0 7.5 8.0 8.5
Mw

0

200

400

600

km

depth  30 km

near field

median

6.0 6.5 7.0 7.5 8.0 8.5
Mw

0

200

400

600

km

30 km <  depth  60 km

median

6.0 6.5 7.0 7.5 8.0 8.5
Mw

0

200

400

600

km

60 km <  depth  100 km

median

6.0 6.5 7.0 7.5 8.0 8.5
Mw

0

200

400

600

kminterm. field

median

6.0 6.5 7.0 7.5 8.0 8.5
Mw

0

200

400

600

km

median

6.0 6.5 7.0 7.5 8.0 8.5
Mw

0

200

400

600

km

median

6.0 6.5 7.0 7.5 8.0 8.5
Mw

0

200

400

600

kmfar field

median

6.0 6.5 7.0 7.5 8.0 8.5
Mw

0

200

400

600

km

median

6.0 6.5 7.0 7.5 8.0 8.5
Mw

0

200

400

600

km

median

Figure 7. Position error, computed for each test sample, as a function of the magnitude (x

axis), the depth range (columns) and the distance range (cf. Figure 6) with respect to the GNSS

network (rows) for TRA. The orange solid line represents the result of a median smoothing by

employing a kernel size of 15 points.

3.4 Magnitude threshold estimation from TRA localization error541

By positioning this deep learning pipeline in an operational framework, is it inter-542

esting to ask whether a characterization coming from a learning model is reliable. In-543

deed, we are interested in the confidence of the model subject to the physical constraints544

that come from the tectonic context under consideration, notably the magnitude (SNR),545

the distance and the depth, as seen in the previous sections.546

Figure 7 shows the position error for the TRA method, computed for each test sam-547

ple, as a function of the magnitude, with each subplot corresponding to a different range548

of hypocenter–station distances and hypocentral depths. The general idea is to get an549

estimation of the magnitude threshold for different settings, i.e., for different values of550

depth and distance to the GNSS network. This can serve as a prior probability associ-551

ated to each new event that we are willing to characterize, such that we can assess, a pri-552

ori, if the deep learning model will be able to characterize it with an acceptable preci-553

sion. To keep it simple, in this study we will not estimate any probability but assign a554

hard threshold (characterizable, non–characterizable).555

As discussed in previous sections, as the depth increases, the magnitude detection556

limit also increases. For events having a depth d ≤ 30 km, we can set a magnitude thresh-557
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Figure 8. Histograms of the predicted magnitude (orange bars) and ground truth synthetic

magnitude (blue bars) as a function of the distance range (cf. Figure 6) with respect to the

GNSS network (rows) and for different magnitude ranges (columns), for the TRA model.

old at Mw 6, by selecting a limit where there is an evident discontinuity and where the558

error is reasonably low with respect to the general trend. As for intermediate and far559

field, it is harder to find a clear discontinuity, as the interplay between magnitude, dis-560

tance and depth is generally nonlinear, yet a general tendency can be still observed. The561

estimated thresholds will be Mw 7 for the intermediate and far fields. We should also562

consider that, to parity of depth range, the relative distance between the event and the563

GNSS network strongly affects the probability of correct retrieval, making the magni-564

tude threshold larger and larger. This poses some limitations in the characterization of565

deep and far offshore events, with only large magnitude earthquakes being characteri-566

zable in those conditions. A summary of the chosen magnitude thresholds for TRA can567

be found in table 2.568

3.5 Trade–off between depth and magnitude in the TRA magnitude res-569

olution570

Figure 8 shows the histograms of the estimated (using TRA) and the real magni-571

tude as a function of the distance ranges (same ranges than in Figure 6). This plot helps572

us further understand in which conditions the model predictions are reliable, by study-573

ing their statistics with respect to the magnitude posterior distribution. For sufficiently574

high magnitudes (third and fourth column), the conditional posterior of the predicted575

and the ground truth magnitude are in good accordance. This may be an indication that576

the method has indeed learnt how to correctly characterize the high magnitudes based577

on input image time series (see also Figure S1 in the Supporting Information). However,578

the predicted magnitude distributions for lower magnitudes are far from the ground truth579

values and seem to be drawn from a Gaussian distribution. We performed a statistical580

normality test by following the approach of (R. B. D’Agostino, 1971; R. D’Agostino &581

Pearson, 1973), confirming that the predicted magnitudes for TRA in low–SNR condi-582

tions are following a normal distribution. The same observation is found for IMG, while583

the TS prediction is more difficult to interpret (cf. figures S2 to S7).584
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The deep learning models are not provided with any prior on the depth, therefore585

they cannot resolve the ambiguities coming from the interaction between magnitude, po-586

sition and depth. Hence, by adding a prior knowledge on the depth, it may be possible587

to better resolve the magnitude, improving also the localization performance.588

For the first two magnitude ranges (cf. first and second columns of Figure 8), the589

distributions are centered around Mw = 6.3. Since their standard deviation is σ = 0.2,590

the 99.7% of the realizations will fall within ±3 σ, i.e., in the range (5.8, 7). In fact, Mw =591

7 is seemingly a threshold value beyond which the magnitude resolution ability of TRA592

is exceptionally high (cf. Figure S1). Therefore, the method is resolving intermediate–593

low magnitude by drawing predictions according to a normal probability distribution cen-594

tered in the middle of the uncertainty range. Furthermore, some residuals of the Gaus-595

sian tail are visible in the third column, likely corresponding to deformation fields as-596

sociated to high–depth events, which thus have been wrongly characterized as Mw <597

6.4 events.598

4 Application to real GNSS data599

4.1 Data processing600

The data selection for real events in Japan has been conducted as follows. The F-601

Net catalog from NIED (cf. https://www.fnet.bosai.go.jp) has been exploited and events602

ranging from 1998 to 2021 have been selected according to the studied range of charac-603

teristics (epicentral position, hypocentral depth, magnitude, see section 2.2.1) for a to-604

tal of 85 events. Magnitudes have been allowed to exceed the 8.5 limit in order to fur-605

ther test the models on high-magnitude events, even though it’s out of the training range.606

Since GNSS data is daily sampled, if more than one event is recorded in the same day,607

only the maximum magnitude event is kept. All events in 2011 have been removed ex-608

cept the Tohoku event (11 March 2011). Indeed, the earthquake and subsequent tsunami609

damaged several GPS stations, and the time series of the remaining ones are dominated610

by a strong post-seismic relaxation effect making GNSS time series difficult to interpo-611

late and interpret on an automated manner.612

Two GNSS data sets have been collected: the data processed in double difference613

at ISTerre (Institut des Sciences de la Terre) that range from 1998 to 2019 (Marill et al.,614

2021; gnss products, 2019) and the data processed in PPP at NGL (Nevada Geodetic615

Laboratory) (Blewitt et al., 2018). that range from 2009 to 2021. We performed outlier616

detection and removal by processing the data with the hampel filter (Pearson et al., 2016)617

with a window length n = 3. Thereafter, we extracted, for each date in the seismic cat-618

alog, a window of 100 days, centered onto the coseismic offset (cf. section 2.2). We con-619

sidered a 100–day stack of time series as valid if at least 60% of the stations are present620

(i.e., ∼ 180) and if at least the 70% of the median number of data points in the 100–621

day window (i.e., 70) is not undefined (i.e., less than 30% of data gaps). The remain-622

ing data gaps are filled as follows. After centering the time window on the coseismic off-623

set date, we compute the linear trend in the first and the second half. Thanks to this624

procedure, an approximation is provided for the small data gaps and also a first order625

reconstruction of the coseismic offset when that information may be missing. Finally,626

the data is detrended, i.e., the linear trend is subtracted for every 100–day stack.627

After the previous processing, the ISTerre/DD and the NGL/PPP data sets con-628

tain 70 and 52 labelled time series. We used the magnitude thresholds obtained for TRA629

(cf. table 2) to differentiate the theoretically characterizable events from the rest, as shown630

in Figure 9, that is if magnitude, depth and position of the events are such that they sat-631

isfy those experimentally–derived relationships. We found 8 and 5 characterizable events632

for ISTerre/DD and NGL/PPP data sets, respectively. The data is further rearranged633
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Figure 9. Seismic catalog associated to the ISTerre/DD and NGL/PPP data sets, respec-

tively. ISTerre/DD data set contains 114 events ranging from 1998 to 2019, while NGL/PPP set

contains 94 events ranging from 2009 to 2021. Focal mechanisms are depicted for each event and

their size is proportional to the magnitude, according to the legend at the top left. Blue–colored

focal mechanisms indicate the characterizable events according to table 2.

Table 3. Quantitative results of the tested methods on the characterizable events belonging to

the real data sets.

ISTerre/DD NGL/PPP

Model Position error (km) Magnitude error (◦) Position error (km) Magnitude error (◦)

TS 1422.53± 2634.99 11.57± 24.52 1536.11± 2553.39 12.53± 23.99
IMG 87.98± 78.49 0.26± 0.20 143.52± 79.44 0.48± 0.44
TRA 140.08± 150.79 0.36± 0.31 126.45± 87.61 0.43± 0.21

into differential images and image time series and the performance of the three deep learn-634

ing methods are evaluated.635

4.2 Results and discussion636

The quantitative results are shown in table 3, while Figure 10 shows the perfor-637

mance of the tested methods on the two real data sets. The displacement fields associ-638

ated to all the characterizable events in the ISTerre/DD dataset are represented in Fig-639

ure 11.640

The performance of the image–based models is more accurate than the TS model641

on both data sets, in line with the results obtained on synthetic data (cf. section 3). This642

is probably linked to the presence of a huge amount of data gaps and missing stations,643
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NGL/PPP        

ISTerre/DD        

Thrust focal mechanism

Other configurations

Figure 10. Performance plots on real data from ISTerre/DD and NGL/PPP data sets. Each

subplot shows the real vs predicted comparison for the estimated parameters (Latitude, longitude

and magnitude in each row) for each of the three methods (TS, IMG and TRA in each columns).

For each scatter plot, circles represent mean predictions associated to events having thrust focal

mechanism, with crosses indicating any other focal mechanism. The solid dashed line shows the

line of perfect predictions. The data points are color–coded according to the time of occurrence.

The predictions of the TS model associated to the events that occurred the 13 June 2008 and the

11 March 2011 (Tohoku) are not visible as their predictions are located outside of the plot limits

(i.e., outliers, cf. section 4.2).
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Figure 11. Displacement fields associated to the eight events of the ISTerre/DD data set.

The deformation fields have been computed by subtracting the deformation at day tc + 1 and

tc − 1. In each subplot, the focal mechanism from the NIED catalog is shown as well as the

magnitude and depth (in each title) with the yellow, brown and blue points representing the

predictions for TS, IMG and TRA, respectively. The predictions of the TS model are not visible

in the plot for the events occurred the 13 June 2008, the 19 July 2008 and the 11 March 2011

(Tohoku), as they have been located outside of the figure bounds (cf. section 4.2).
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which worsen the resemblance between synthetic and real data, thus deteriorating the644

performance of TS. As a result, image–based models can better deal with data gaps thanks645

to the spatial interpolation. Hence, the amount and continuity of the data plays an es-646

sential role on the final prediction accuracy, which is indeed mitigated by the image and647

image time series representations. It is also worth to notice that all the models have a648

larger error associated to the NGL/PPP dataset, probably because of the Precise Point649

Positioning solution, which is slightly noisier with respect to the DD approach. Since the650

noise in the training samples is obtained from DD solution time series, it is not surpris-651

ing that the model may have a lower performance better on data obtained from a PPP652

solution. Therefore, this constitutes a possible limitation of the method, which could be653

overcome by applying a fine–tuning to improve the results on the PPP data set. For these654

reasons, we will focus on the ISTerre/DD data set henceforward.655

The events in Figure 10 have been marked with a different symbol if their rupture656

has a thrust focal mechanism (φS = 200±40◦, δ = 25±20◦, λ = 90±45◦). Differenti-657

ating thrust and non–thrust events is interesting to assess if the shape of the associated658

deformation field plays a key role in the characterization performed by image–based mod-659

els, given that the model was trained on thrust events only. Indeed, the results shown660

in Figure 10 seem to suggest that the shape of the deformation field (e.g., cf. outliers661

having strike–slip focal mechanism) is not a relevant feature in the characterization of662

the location and the magnitude, since the predictions of the image–based models do not663

seem to depend on the nature of the focal mechanism, which indeed would be a key in-664

formation when inverting for the focal mechanism itself. Hence, the amplitude of the de-665

formation and the SNR (linked to the intensity of the interpolated image) are likely the666

most informative characteristics to retrieve the epicenter and the magnitude of the earth-667

quake, especially in the coastal stations, which often register the highest displacement668

values.669

Interestingly, IMG and TRA models seem to be complementary on some events,670

as shown in figures 11 (d), (g) and (h). The TRA model is unable to separate the source671

of deformation in the 19 July 2008 event (Figure 11 (d)) because of a persistent outlier672

in the displacement field, whose influence is better mitigated by the differential approach673

used for IMG (cf. Figure S9 – S11). On the contrary, TRA can effectively retrieve the674

21 November 2016 event (11 (g)), likely thanks to the spatio–temporal approach (cf. Fig-675

ure S12 – S17), while IMG is not well performing. This seems to suggest that the two676

different image–based data representations carry some particular characteristics com-677

ing from the network geometry and the spatio–temporal variability of the data.678

As a further comment, we notice that the outlier displacement value north of the679

epicenter of the 19 July 2008 event (cf. Figure 11 (d)) is actually an artifact introduced680

by the linear interpolation performed on the time series in presence of a large data gap681

(cf. Figure S8). Therefore, either a more efficient method should be set up for the miss-682

ing data interpolation, or artifacts should be taken into account in the training data base.683

Accounting for the data gaps is not a trivial task and future developments should focus684

on this aspect, since, as we saw, the larger the data gaps, the harder is the character-685

ization.686

Finally, it is worth to mention the performance of the models on the Tohoku event687

(11 March 2011, Mw = 8.7, according to the NIED solution used in the paper), which688

is estimated as a Mw ∼ 8.6 and Mw ∼ 8.5 event by IMG and TRA, respectively, with689

the IMG model correctly exceeding the training upper bound (Mw 8.5) on a pattern which690

has never been presented to the network during the training phase. Yet, it should be noted691

that this result should be taken carefully as the actual magnitude of the event is 9.1 (Lay,692

2018).693
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5 Conclusions694

We studied and developed an end–to–end framework for the seismic source char-695

acterization with GNSS data. We constructed three deep learning methods associated696

with three data representations: time series, differential images and image time series.697

We train our methods on synthetic data generated to be subduction events compliant698

with actual events occurring in the Japan subduction zone. We tested the methods both699

on synthetic and real GNSS data, and we studied the performance and the sensitivity700

of the three methods, evidencing their strengths and their limits.701

Image–based methods outperform time series–based methods, possibly because their702

associated data representations better exploit the topology of the GNSS network. The703

wavelength of the deformation is seemingly better constrained with images with respect704

to time series, the longitudinal extent of the deformation being more difficult to char-705

acterize by means of the temporal evolution only. Results on synthetic data clearly ev-706

idence a detection threshold associated to GNSS data, which is associated to the SNR,707

and also dependent on the depth and position of events. This allows us to partition the708

output space by identifying regions in which the source characterization can be performed709

with confidence.710

Performance on real data sets is consistent with the results obtained on synthetic711

data and shows accurate and reliable results. Image–based methods outperform the time–712

series based approach in both the real data sets, with image–time series and the TRA713

model showing that the spatio–temporal approach proposed is crucial in resolving the714

location and magnitude of most of the real events. However, the noise characterization715

needs to be improved, in order to better account for outliers in GNSS time series, data716

gaps and, possibly, common modes. By improving the simulation of the realistic noise,717

we can produce more and more real–looking synthetic data, possibly having better re-718

sults on the characterization and a lower SNR threshold. Nonetheless, the results on real719

data are promising and could potentially lead to an effective analysis of the slow defor-720

mation, which would benefit from the present work as well as from the potential refine-721

ments that we have listed before.722
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Figure S1. Magnitude error, computed for each test sample, as a function of the 
magnitude (x axis), the depth range (columns) and the distance range (cf.  fig.  6) with 
respect to the GNSS network (rows) for TRA. The orange solid line represents the result 
of a median smoothing by employing a kernel size of 15 points. 
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Figure S2. Position error, computed for each test sample, as a function of the magnitude 
(x axis), the depth range (columns) and the distance range (cf.  fig.  6) with respect to the 
GNSS network (rows) for TS. The orange solid line represents the result of a median 
smoothing by employing a kernel size of 15 points. The red solid line represents the TRA 
median (cf. fig. 7). 
 
  



 
 

4 
 

 
 
 
 
 
 
 
 
 

 

Figure S3. Magnitude error, computed for each test sample, as a function of the 
magnitude (x axis), the depth range (columns) and the distance range (cf.  fig.  6) with 
respect to the GNSS network (rows) for TS. The orange solid line represents the result of 
a median smoothing by employing a kernel size of 15 points. The red solid line 
represents the TRA median (cf. fig. S1). 
 
  



 
 

5 
 

 
 
 
 
 
 
 
 
 

 

Figure S4. Position error, computed for each test sample, as a function of the magnitude 
(x axis), the depth range (columns) and the distance range (cf.  fig.  6) with respect to the 
GNSS network (rows) for IMG. The orange solid line represents the result of a median 
smoothing by employing a kernel size of 15 points. The red solid line represents the TRA 
median (cf. fig. 7). 
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Figure S5. Magnitude error, computed for each test sample, as a function of the 
magnitude (x axis), the depth range (columns) and the distance range (cf.  fig.  6) with 
respect to the GNSS network (rows) for IMG. The orange solid line represents the result 
of a median smoothing by employing a kernel size of 15 points. The red solid line 
represents the TRA median (cf. fig. S1). 
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Figure S6. Histograms of the predicted magnitude (orange bars) with respect to actual 
(test) magnitude (blue bars) as a function of the distance range (cf.  fig.  6) with respect 
to the GNSS network (rows) and for different magnitude ranges (columns), for TS. 
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Figure S7. Histograms of the predicted magnitude (orange bars) with respect to actual 
(test) magnitude (blue bars) as a function of the distance range (cf.  fig.  6) with respect 
to the GNSS network (rows) and for different magnitude ranges (columns), for IMG. 
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Figure S8. Interpolated time series (N-S component) associated to a 100—day window 
centered onto the 19 July 2008 for the GAMIT data set. Each line represents a different 
GEONET station. The red line is an artifact caused by a large data gap, producing a false 
westwards displacement, which hides the eastwards displacement due to the seismic 
signal. 
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Figure S9. Differential image (N-S component) associated to the 19 July 2008 for the 
GAMIT data set. The deformation value has been saturated over ±3 mm. 
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Figure S10. Image time series (N-S component) associated to the 19 July 2008 for the 
GAMIT data set. The deformation value has been saturated over ±3 mm. Each frame is 
associated to the day written below (e.g., 𝒕𝒄 − 𝟐, where 𝒕𝒄 is the time associated to the 
coseismic offset). 
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Figure S11. Image time series (E-W component) associated to the 19 July 2008 for the 
GAMIT data set. The deformation value has been saturated over ±3 mm. Each frame is 
associated to the day written below (e.g., 𝒕𝒄 − 𝟐, where 𝒕𝒄 is the time associated to the 
coseismic offset). 
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Figure S12. Image time series (N-S component) associated to the 21 November 2016 for 
the GAMIT data set. The deformation value has been saturated over ±3 mm. Each frame 
is associated to the day written below (e.g., 𝒕𝒄 − 𝟐, where 𝒕𝒄 is the time associated to the 
coseismic offset). 
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Figure S13. Image time series (E-W component) associated to the 21 November 2016 
for the GAMIT data set. The deformation value has been saturated over ±3 mm. Each 
frame is associated to the day written below (e.g., 𝒕𝒄 − 𝟐, where 𝒕𝒄 is the time associated 
to the coseismic offset). 
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Figure S14. Image time series (N-S component) associated to the 21 November 2016 for 
the NGL data set. The deformation value has been saturated over ±3 mm. Each frame is 
associated to the day written below (e.g., 𝒕𝒄 − 𝟐, where 𝒕𝒄 is the time associated to the 
coseismic offset). 
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Figure S15. Image time series (E-W component) associated to the 21 November 2016 
for the NGL data set. The deformation value has been saturated over ±3 mm. Each frame 
is associated to the day written below (e.g., 𝒕𝒄 − 𝟐, where 𝒕𝒄 is the time associated to the 
coseismic offset). 
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Figure S16. Differential image associated to the 21 November 2016 for the GAMIT data 
set. The deformation value has been saturated over ±3 mm. 
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Figure S17. Differential image associated to the 21 November 2016 for the NGL data 
set. The deformation value has been saturated over ±3 mm. 
 


