Fostering the Use of Scientific Water Models from Different Stakeholder Perspectives through the Sustainable Water Through Integrated Modeling (SWIM) Platform

Luis A Garnica Chavira¹, Josiah Heyman¹, Natalia Villanueva-Rosales¹, and Deana Pennington¹

¹University of Texas at El Paso

November 23, 2022

Abstract

The interpretation and use of scientific models are relevant to public discourse and decision-making about future water scenarios. Tools to use these scientific models aim to facilitate understanding water systems; however, the information in these tools can be so vast, complex, and prone to uncertainties that users may find using some of these tools a cumbersome task. Users can be presented with numerous outputs, visualizations, and vocabulary that are irrelevant or do not align with their perspective (i.e., user role) in the water system under study. To address these issues, the SWIM platform extends the capabilities of traditional Web-based graphical interfaces to foster the use of scientific models, in particular, water sustainability models. With the integration of a recommender system and a dynamic interface, SWIM provides users with a list of prioritized outputs (i.e., modeling results) based on their perspective, to reduce the overload of data presented to users. Users are also provided with a range of output visualization graphs and narrative elements (i.e., contextual natural language descriptions) to support the interpretation of model results. The SWIM interface design provides a seamless high-level workflow for models developed in different modeling software tools and languages. The SWIM platform is designed to foster interoperability by providing open APIs and knowledge bases to access data, metadata, and models (i.e., Model-As-A-Service). This presentation highlights the key elements of SWIM that enable the interpretation of scientific model outputs from different perspectives and the interoperability features of this platform.

Fostering the Use of Scientific Water Models from Different Stakeholder Perspectives through the Sustainable Water Through Integrated Modeling (SWIM) Platform

Luis A. Garnica Chavira*, Josiah Heyman, Natalia Villanueva-Rosales, Deana D. Pennington

The University of Texas at El Paso

Grant No. 183589

Challenges of using and understanding Water-related scientific models

		Information Overload	Com	nplexity	Jncertainty	Different Perspectives		
SWIM 1.0 (Deprecated): Bucket Model March 26, 2019 SWIM 2.0 now available at http://purl.org/swim								
Step 1 Scenarios Step 2 Customize Step 3 Revie	iew and Run Step 4 Model Outputs	Step S Model Provenance						
« Previous		Summary Urba	Agriculture Store	ige Flows Economics Map JSON		Next *		
Model Outputs / Storage								
Groundwater Aquifer Depth				Evaporation Volume Reservoir surface evaporation in thousands of acre feet			Tabular Data	USDA MIFA
Year	~ Aquifer	✓ Value	~ E	Year	~ Reservoir	~ Value	~ =	
	No. We will be	740.55	^				^	United States Department of Agriculture
1995	Mesilla_aqf_s Mesilla_aqf_s	710.23		1995	Store_res_s	245.92		National Institute of Food and Agriculture
1997	Mesilla_aqf_s	708.48		1997	Store_res_s	59.05		
1998	Mesilla_aqf_s	710.23		1998	Store_res_s	0.11		
· 1999	Mesilla_aqf_s	709.35		· 1999	Store_res_s	0.11		
2000	Mesilla_aqf_s	709.19		2000	Store_res_s	29.18		
č	11	740.53	>	č	· · · · · ·	**	>	
		avg: 406.72128205128206				avg: 33.21948717948719		
Units: ft/yr				Units: KAF/yr				
								Middle Rio Grande Basin Hydro-
								acanomia Madal
🏪 Total Precipitation by Period			● ■ 🗠	🔅 Recreation Benefit			🗩 🔳 🗠	economic woder
Total precipitation by period in thousands of acre feet				Reservoir recreation benefits by year in \$1000s				
V Year	Reservoir	Value	~ =	Year	Reservoir	~ Value	× =	
1995	Store_res_s	12.97	^	· 1995	Store_res_s	\$6,092.53	^	
1996	Store_res_s	0.01		1996	Store_res_s	\$5,022.50		
1997	Store_res_s	5.81		1997	Store_res_s	\$5,562.46		
1998	Store_res_s	0.01		1998	Store_res_s	\$5,022.50		
1999	Store_res_s	0.01		1999	Store_res_s	\$5,022.50		
2000	Store_res_s	3.22	~	2000	Store_res_s	\$5,383.38	~	
<			>	< A			>	
		avg: 2.342051282051281				avg: 5316.792564102563		
Units: KAF/yr				Units: KUSD/yr				

Fig. 1. Screenshot of SWIM 1.0 – Custom Model Scenario Results

https://water.cybershare.utep.edu

Mitigation of Information Overload and Complexity

Natural Language Narrative Generator

The SWIM 2.0 Stack for Modeling as a Service

E0,

Graphical Interfaces

*Third party tools or languages leveraged.

Interoperability

SWIM Broker Service (Modeling)

- Single Model Execution
- Model-to-model Integration
 - Automated workflow composition
 - Data Transformation
 - Workflow Provenance
- OpenAPI Specification 3.0

SWIM Broker Endpoints

SWIM API (Data)

- Models, inputs, outputs, catalogs.
- Scenario results
- Cross-scenario comparison
- **OpenAPI** Specification 3.0

SWIM API Endpoints

HydroShare Bridge (Sharing)

- Integration with third-party CUAHSI HS services.
- Model Instance publication as a HS resource
- Seamless integration from the SWIM Web Interface
- Additional Metadata Capture

Hydroshare. Horsburgh, J. S, et al., (2016). https://hydroshare.org

https://services.cybershare.utep.edu/swim-broker/swagger

https://services.cybershare.utep.edu/swim-api/api-docs/

SWIM - First Splash

http://purl.org/swim/splash

Thoughts about SWIM?

Contact us at swim@utep.edu

Acknowledgements

Thank you to researchers, students and volunteers that have contributed to SWIM, especially Bill Hargrove, Alfredo Granados, Frank Ward, Alex Mayer, David Gutzler and USDA project members.

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. 1835897 (SWIM 2.X).

This work was supported by The Agriculture and Food Research Initiative (AFRI) grant no. 2015-68007-23130 from the USDA National Institute of Food and Agriculture (SWIM 1.0).

This work used resources from the Cyber-ShARE Center of Excellence, which is supported by NSF Grant No. HRD-1242122.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

United States Department of Agriculture National Institute of Food and Agriculture

Kula, M. (2015). Metadata Embeddings for User and Item Cold-start Recommendations. In T. Bogers & M. Koolen (Eds.), *Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender Systems co-located with 9th ACM Conference on Recommender Systems (RecSys 2015), Vienna, Austria, September 16-20, 2015.* (Vol. 1448, pp. 14–21). CEUR-WS.org. <u>http://ceur-ws.org/Vol-1448/paper4.pdf</u>

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework (arXiv:1907.10902). arXiv. <u>https://doi.org/10.48550/arXiv.1907.10902</u>

Horsburgh, J. S., Morsy, M. M., Castronova, A. M., Goodall, J. L., Gan, T., Yi, H., Stealey, M. J., & Tarboton, D. G. (2016). HydroShare: Sharing Diverse Environmental Data Types and Models as Social Objects with Application to the Hydrology Domain. JAWRA Journal of the American Water Resources Association, 52(4), 873–889. <u>https://doi.org/10.1111/1752-1688.12363</u>