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Abstract

A three-dimensional physical-biogeochemical ocean numerical model with eddy-permitting horizontal resolution was applied to

simulate upper-ocean carbon cycle variabilities in the Tropical Maritime Continent (TMC) over the last decade (2010–2019).

Forced by atmospheric and oceanic reanalysis products with high temporal resolution, the model showed robust consistency with

the observed seasonality of pCO2 and atmospheric CO2 sink/source characteristics across the modeling domain. Within the

TMC, the model results indicated strong CO2 degassing along the west of Sumatra-south of Java associated with the seasonal

cycle of the upwelling system in the area. While acting as a full-year atmospheric CO2 source, the TMC exhibited pronounced

interannual modulation in both pCO2 and sea-air CO2 flux over the last decade. Large-scale anomalous strong CO2 degassing

from 2015 to 2016 in response to the evolution of the 2015/2016 El Niño was observed from the simulation results. Modulations

related to the Indian Ocean Dipole (IOD), on the other hand, were confined along the west of Sumatra-south of Java with

a higher magnitude compared with anomalies related to El Niño/La Niña. Simulation results also captured the asymmetric

response of the upper-ocean carbon cycle to the IOD over the last decade, where anomalies during negative IOD (nIOD) were

notably strong despite being indicated as weak nIOD events by the Dipole Mode Index.
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Abstract 19 

A three-dimensional physical-biogeochemical ocean numerical model with eddy-permitting 20 

horizontal resolution was applied to simulate upper-ocean carbon cycle variabilities in the Tropical 21 

Maritime Continent (TMC) over the last decade (2010–2019). Forced by atmospheric and oceanic 22 

reanalysis products with high temporal resolution, the model showed robust consistency with the 23 

observed seasonality of pCO2 and atmospheric CO2 sink/source characteristics across the modeling 24 

domain. Within the TMC, the model results indicated strong CO2 degassing along the west of 25 

Sumatra-south of Java associated with the seasonal cycle of the upwelling system in the area. 26 

While acting as a full-year atmospheric CO2 source, the TMC exhibited pronounced interannual 27 

modulation in both pCO2 and sea-air CO2 flux over the last decade. Large-scale anomalous strong 28 

CO2 degassing from 2015 to 2016 in response to the evolution of the 2015/2016 El Niño was 29 

observed from the simulation results. Modulations related to the Indian Ocean Dipole (IOD), on 30 

the other hand, were confined along the west of Sumatra-south of Java with a higher magnitude 31 

compared with anomalies related to El Niño/La Niña. Simulation results also captured the 32 

asymmetric response of the upper-ocean carbon cycle to the IOD over the last decade, where 33 

anomalies during negative IOD (nIOD) were notably strong despite being indicated as weak nIOD 34 

events by the Dipole Mode Index. 35 

Plain Language Summary 36 

The lack of long-term observational data has limited research on sea-air CO2 exchange variabilities 37 

in the Tropical Maritime Continent (TMC). In this study, we provide results of the initial effort in 38 

modeling sea-air CO2 exchange across the region over the last decade (2010-2019). The simulation 39 

results suggest that while the sea surface across the area acts as a CO2 source to the atmosphere, 40 
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some periods like 2015-2016 were associated with stronger-than-usual degassing. Such anomalies 41 

are related to large-scale changes in the Pacific and Indian oceans.  42 

1 Introduction 43 

The Tropical Maritime Continent (TMC) region acts as a water passage that allows Pacific Ocean 44 

water to be transported to the Indian Ocean as part of thermohaline circulation, which modulates 45 

the global climate system (Gordon, 1986; Wyrtki, 1961). Located between the Indian and Pacific 46 

Ocean, the TMC area is subject to modulation caused by variabilities occurring in these two ocean 47 

basins, including the El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean, and 48 

Indian Ocean Dipole (IOD) in the Indian Ocean (Ashok et al., 2003; Saji and Yamagata, 2003; 49 

Sprintall et al., 2014). Recent studies have confirmed that these climate modes influence the TMC 50 

area through sea-air interaction perturbation, which affects the rainfall rate and oceanic properties 51 

such as sea surface temperature, sea surface height, and circulation pattern (Delman et al., 2016; 52 

Pujiana et al., 2019, 2020; Saji and Yamagata, 2003; Siswanto et al., 2020; Sprintall et al., 2014; 53 

Susanto et al., 2001; Syamsudin et al., 2004).  54 

Despite the progress, studies on oceanic carbon cycle dynamics in the area remain very limited 55 

compared to the number of oceanic carbon-related studies that are growing globally (Bakker et al., 56 

2016; Key et al., 2004; Takahashi et al., 2002, 2009). Although one of the latest observation-based 57 

studies by Kartadikaria et al. (2015) on the compilation of sea surface CO2 partial pressure (pCO2) 58 

across the Indonesian seas could provide a general view of the atmospheric CO2 sink/source 59 

characteristics, it still could not represent the actual seasonal cycle and response of the seawater 60 

CO2 system to large-scale climate variabilities. Typical pCO2 underway measurements conducted 61 

in a short period are not reliable in capturing the low-frequency variabilities that usually develop 62 

within an interannual time scale or longer (Sutton et al., 2017b). A study by Hamzah et al. (2020) 63 
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in western Indonesian seas later confirmed this issue by highlighting the possible variation in the 64 

carbonate system over seasonal and interannual timescales in the undersampled area. The recent 65 

development of the pCO2 empirical model (Iida et al., 2015) or machine learning in estimating 66 

pCO2 is unfortunately still inadequate and produces a relatively coarse resolution for resolving the 67 

complex island configuration within the TMC. These constraints make it challenging to apprehend 68 

TMC oceanic carbon cycle variabilities at various time scales.  69 

Several modeling studies have indicated that the pCO2 and sea-air CO2 flux exhibit apparent 70 

modulation related to climate variability. A modeling study by Chai et al. (2009) in the South 71 

China Sea showed that pCO2 followed the seasonal variations of net primary productivity, which 72 

was inversely correlated with the sea surface temperature (SST) anomaly in the Eastern Tropical 73 

Pacific region (NINO 3). Global scale modeling by Obata and Kitamura (2003) emphasized the 74 

Tropical Pacific Ocean region's sea-air CO2 flux, where the variability in the region related to 75 

ENSO contributed approximately 70% to the global variability. Similar global-scale modeling was 76 

conducted by Valsala et al. (2014); despite indicating differences in the contribution of Tropical 77 

Pacific CO2 flux variabilities to global variabilities, the study still agrees to the extent that Tropical 78 

Pacific Ocean variability has a significant influence on global carbon cycle modulation. They 79 

further suggested a stronger influence of El Niño-Modoki (Ashok et al., 2007) on carbon cycle 80 

variability in the western part of the Tropical Pacific, adjacent to the TMC. In their modeling study, 81 

Xiu and Chai (2014) also addressed the significance of the Pacific Decadal Oscillation and North 82 

Pacific Gyre Oscillation in modulating the sea-air CO2 flux across the North Pacific region, 83 

highlighting the variabilities in much lower frequency domains. These studies partly confirm the 84 

hypothesis about the possible low-frequency modulation of the oceanic carbon cycle, considering 85 

the proximity of the TMC to the area studied previously. One of the remaining questions concerns 86 
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the modulation pattern related to the Indo-Pacific climate variability in the area, which this study 87 

attempts to address.  88 

A newly developed low-trophic ecosystem model was employed to further resolve the issue of 89 

elucidating the upper-ocean carbon cycle variability across the TMC. The model was forced by 90 

realistic high-temporal resolution atmospheric forcings to approach the actual ocean-atmosphere 91 

dynamics that occurred during the simulation period that took place from December 2007 to 92 

January 2020. We further focused the analysis between 2010 and 2019 to examine the interannual 93 

changes in pCO2 and sea-air CO2 flux in the region. The analysis period included extreme events, 94 

such as the 2015/2016 El Niño and the 2019 positive IOD (pIOD). Previous studies have indicated 95 

that unprecedented anomalies occur around the TMC associated with these extreme climate events 96 

(e.g., Lu and Ren, 2020; Pujiana et al., 2019) and thus, have become an interesting period to 97 

examine the sensitivity of the upper-ocean carbon cycle in the area to such anomalous climate 98 

events.  99 

2 Model and datasets 100 

2.1. Model description and configuration 101 

The newly developed ecosystem model employed here was carbon (C) and nutrient (phosphate, 102 

nitrate, ammonium) tracing, low-trophic ecosystem model developed by Nakamura et al. (2018). 103 

The model was embedded in the Coupled Ocean-Atmosphere-Wave and Sediment Transport 104 

(COAWST) modeling environment (Warner et al., 2010) with the Regional Ocean Modeling 105 

System (ROMS; Shchepetkin and McWilliams, 2005) as the ocean general circulation model 106 

(OGCM). The ecosystem model developed here includes three phytoplankton functional types 107 

(PFT) in terms of carbon biomass, comprising diatoms, dinoflagellates, and coccolithophores. 108 
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These PFTs utilize nutrients and dissolved inorganic carbon (DIC) for photosynthesis and 109 

assimilation. Additionally, coccolithophores further use total alkalinity (TA) for the calcification 110 

process to produce CaCO3 shells.  111 

The material excreted by PFTs following the assimilation process immediately enters the labile 112 

dissolved organic matter (labile-DOM) pool. All dead phytoplankton biomass enters the 113 

particulate organic matter pool as detritus (detritus-POM) and sinks into a deeper layer in the water 114 

column. As for the dead coccolithophore biomass, the previously produced CaCO3 from the 115 

calcification process enters the particulate inorganic matter (CaCO3-PIM) pool and sinks into a 116 

deeper layer, like the detritus-POM. Estimated produced CaCO3-PIM from coccolithophore dead 117 

biomass was adapted from Krumhardt et al. (2017, 2019). In this modified version, we have added 118 

an inorganic nitrogen compound (nitrate and ammonium) compartment to calculate the effect of 119 

nutrient limitation on calcification. Additional sinking velocities for all PFTs in this modified 120 

version were applied, following Gregg et al. (2007). One type of zooplankton in terms of carbon 121 

biomass was assigned in this model which grazed on phytoplankton, labile-DOM, and detritus-122 

POM. As in the phytoplankton, the dead bodies of zooplankton also entered the detritus-POM 123 

pool, with a small part entering the CaCO3-PIM pool. The CaCO3-PIM from zooplankton dead 124 

biomass was based on Ishizu et al. (2019, 2020).  125 

The decomposition process takes place in the labile-DOM pool to resupply the inorganic carbon, 126 

nitrogen (as ammonium), and phosphorus (as phosphate) needed by phytoplankton. The 127 

decomposition of detritus-POM transforms POM into DOM and dissolved inorganic compounds 128 

(carbon, nitrogen, and phosphorus) simultaneously. Nitrate in this model was recovered through 129 

the nitrification of ammonium. We applied the first order dissolution reaction equation for the 130 

dissolution process of CaCO3-PIM with a seawater CaCO3 saturation state that varied within the 131 
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water column (Jansen et al., 2002; Sarmiento and Gruber, 2006). Here, the CaCO3-PIM saturation 132 

state was approximated as the calcite saturation state, given that the main CaCO3 produced in this 133 

model came from coccolithophores. 134 

The pCO2 was calculated in multiple steps, starting from the estimation of sea surface pH and the 135 

concentration of CO2(aq) in the same surface layer. Both pH and CO2(aq) are functions of DIC, TA, 136 

water temperature, and salinity, and DIC and TA are generated in the ecosystem module. The sea-137 

air CO2 flux was calculated based on Wanninkhof (1992), with the CO2 solubility parameterization 138 

adapted from Weiss (1974).  139 

We set the model domain to span from the Southeast Tropical Indian Ocean (SETIO) to the 140 

Northwest Pacific Ocean (90o E-164o E; 18o S-29o N). The domain was gridded uniformly with a 141 

horizontal resolution of 1/6° × 1/6° while the water column was transformed into 30-layers of non-142 

uniform, terrain-following s-coordinates. Generic length scale (GLS) mixing parameterizations of 143 

the k–ε configuration were utilized in this model for vertical mixing combined with the Kantha-144 

Clayson stability function (CPP options KANTHA_CLAYSON) and horizontal smoothing of 145 

buoyancy/shear (CPP options N2S2_HORAVG). Smagorinsky-like diffusion (CPP option 146 

UV_SMAGORINSKY and TS_SMAGORINSKY) was activated in this simulation for the 147 

horizontal diffusion and viscosity for both momentum and tracer variables. 148 

Lateral boundary condition was set to be mixed radiation-nudging for the 3D momentum and tracer 149 

variables. The inflow nudging timescale for the temperature/salinity and biogeochemical tracers 150 

were set to 100 days and 180 days respectively. In this simulation, some types of material 151 

compounds, such as coarse particulate organic matter and refractory dissolved organic matter, 152 

were deactivated by setting the value to zero for both the initial and boundary conditions. River 153 
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discharge across the model domain was also not implemented; thus, the indicated results of pCO2 154 

and sea-air CO2 flux were caused solely by the ocean-atmosphere interaction dynamics.  155 

2.2. Datasets 156 

The Global Ocean Forecasting system (GOFS) analysis/reanalysis product from the hybrid 157 

coordinate ocean model (HYCOM; Chassignet et al., 2006) were used as the ocean circulation 158 

model initial and boundary conditions in this simulation. Both versions 3.0 and 3.1 of the GOFS 159 

output were utilized owing to the difference in the coverage period. We used a three-hourly 55-160 

year Japan reanalysis (JRA-55) product (Kobayashi et al., 2015) as atmospheric forcings in the 161 

simulation, which included the atmospheric pressure, air temperature, humidity, wind speed, and 162 

cloud fraction. The bulk fluxes (shortwave radiation and longwave radiation) were calculated 163 

internally in the model as a function of the sea surface temperature, air temperature, humidity, and 164 

cloud fraction. For tidal forcing, Oregon State University Tidal Prediction Software (OTPS) 165 

product consisting of 12 tidal components was used. 166 

The initial and boundary conditions for the ecosystem model were generated analytically because 167 

of the limitation of seawater carbonate chemistry-related data across the study area. The Global 168 

Data Analysis Project (GLODAP) product (Key et al., 2004) which stores scientific cruise data of 169 

necessary inorganic carbon parameters such as TA, DIC, and dissolved oxygen (DO), was used 170 

and paired with the water temperature data record to create a polynomial equation. This approach 171 

allowed us to create a vertically stratified profile for both TA and DIC parameters, which play a 172 

crucial role in near-boundary areas. We also estimated the nutrient concentrations for the initial 173 

and boundary conditions of the ecosystem model by utilizing the calculated TA, DIC, and salinity 174 

data from the GOFS. The equation established here was based on the gradient between the salinity-175 
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normalized DIC (nDIC) and the corresponding nutrient (N, P) from the GLODAP datasets. We 176 

found nDIC:P and nDIC:N ratios of 141.23 and 9.76, respectively; hence, this ratio was used for 177 

the simulation. The observed nDIC:P and nDIC:N ratios were within the results of previous studies 178 

(Martiny et al., 2014; Redfield, 1934; Sarmiento and Gruber, 2006). More details of the analytical 179 

equations used to create the initial and boundary conditions of the ecosystem model are provided 180 

in Table 1. 181 

Table 1. Analytical equations used to estimate necessary parameters for the ecosystem model 182 

simulation in initial and boundary conditions. The equations stated here are functions of water 183 

temperature (T), salinity (S), depth (z), and dissolved inorganic carbon (DIC) 184 

Parameter (unit) Equation 

Dissolved inorganic carbon (µmol. kg-1) 

2312.12 + (10.68 ∙ T) – (3.50 ∙ T2) + 

(0.16 ∙ T3) – (2.42 x 10-3 ∙ T4) 

Total alkalinity (µmol. kg-1) 

2444.73 – (22.29 ∙ T) + (0.09 ∙ T2) + 

(1.28 x 10-3 ∙ T3) + (4.60 x 10-4 ∙ T4) 

Dissolved oxygen (µmol. L-1) 

245.85 – (52.01 ∙ T) + (6.46 ∙ T2) – 

(0.28 ∙ T3) + (3.84 x 10-3 ∙ T4) 

Phytoplankton (µmolC. L-1) 

For z < 155 m 

10.5 − 0.00095 ∙ (z + 50)2

6
 

Zooplankton (µmolC. L-1) 0.1 ∙ Phytoplankton 

Nitrate (µmolN. L-1) 
0.98 ∙

(
(DIC ∙  35)

S − 1977.4)

9.765
 

Ammonium (µmolN. L-1) 
0.02 ∙

(
(DIC ∙  35)

S − 1977.4)

9.765
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Phosphate (µmolP. L-1) 
(

(DIC ∙  35)
S

− 1961.3)

141.23
 

 185 

Annual global-averaged atmospheric CO2 concentration data from 2007 to 2019 recorded by the 186 

Earth System Research Laboratory of the National Oceanic and Atmospheric Administration 187 

(ESRL NOAA) was used to generate the carbon exchange between the sea surface and atmosphere 188 

in the model (https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html). Underway measurement 189 

records of seawater CO2 fugacity (fCO2) archived in the Surface Ocean CO2 Atlas (SOCAT) 190 

version 2020 (Bakker et al., 2016) were employed for comparison with modeled pCO2, especially 191 

around the Western Pacific Region given its frequent observation. For further simplicity, we 192 

regarded both the global-averaged CO2 concentration and the measured fCO2 in SOCATv2020 as 193 

atmospheric pCO2 (pCO2atm) and pCO2 respectively, because of the generally negligible difference 194 

between these two parameters and the actual pCO2 value.  195 

Considering the lack of continuous observation data inside the TMC, we only utilized the 196 

underway pCO2 measurements and pCO2 flux estimation results from several expeditions that 197 

were also used by Kartadikaria et al. (2015). The pCO2 and CO2 flux data from these expeditions 198 

were processed further to remove possible outliers. Outliers were defined as any data below 199 

(exceed) the 10th (90th) percentile. Lastly, we calculated both NINO3.4 SSTA and DMI (See Saji 200 

et al. 1999 for DMI calculation details ) using HadI SST1.1 (Rayner et al. 2003) and the 1961–201 

1990 mean seasonal cycle as the baseline. ENSO events (El Niño/La Niña) were defined whenever 202 

the five-month moving average of the NINO3.4 SSTA exceeded the assigned threshold of ± 0.5 203 

oC for at least three consecutive months within the November-March period. A summary of the 204 

datasets utilized for this simulation is presented in Table 2. 205 

https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
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Table 2. Summary of datasets utilized for simulation and necessary data analysis 206 

Data Specifications Sources 

Water temperature, salinity, elevation, and 

velocity (initial and boundary condition of 

hydrodynamic model) 

Global Ocean Forecasting System (GOFS) 

Carbonate chemistry and nutrients data  

(initial and boundary condition of ecosystem 

model) 

Global Data Analysis Project (GLODAP) 

Atmospheric forcing Japanese 55-year reanalysis (JRA-55) product 

Tides forcing 

Oregon State University Tidal Prediction 

Software (OTPS) 

Annual global-averaged atmosphere’s CO2 

concentration 

Earth System Research Laboratory of 

National Oceanic and Atmospheric 

Administration (ESRL NOAA) 

Underway pCO2 measurements around Western 

Pacific Ocean 

Surface Ocean CO2 Atlas (SOCAT) version 

2020 

Underway pCO2 measurements and sea-air CO2 

flux in Indonesian seas between 2011 and 2013 

(used in Kartadikaria et al., 2015) 

- Ekspedisi Widya Nusantara (EWIN)  

      - 23 April 2010-5 May 2010 (EWIN 2010) 

      - 13 April 2011-22 April 2011 (EWIN 2011) 

      - 5 June 2013-20 June 2013 (EWIN 2013) 

- Banggai Expedition  

     - 23 June 2011-7 July 2011 

- The South China Sea – Indonesian seas 

Transport/Exchange (SITE)  
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     - 22 November 2012-30 November 2012 

Climate variability index 

NINO3.4 Sea Surface Temperature Anomaly 

Dipole Mode Index (DMI) 

 207 

3 Results and discussion 208 

3.1 Comparison with available observations 209 

We separated the SOCAT v2020 data around the Western Pacific Ocean into six longitudinal 210 

transect lines from 135o E to 160o E in the following latitudes 0o N, 5o N, 10o N, 15o N, 20o N, 25o 211 

N (Figure 1). The monthly value of pCO2 in each transect line was calculated by averaging all 212 

measurement records across the line in the corresponding month. Using this method, we obtained 213 

line-averaged monthly pCO2 data from 2010 to September 2019. For further analysis, we treated 214 

the missing value of the area-averaged monthly pCO2 that did not exceed two consecutive months 215 

by using piecewise cubic spline interpolation. 216 

A strong seasonal pattern was exhibited by the Northwestern Pacific Ocean (15o N-25o N) where 217 

both model results and observations indicated that high and low pCO2 occurred in the summer 218 

(June-August) and winter (December-February), respectively, which closely follows the seasonal 219 

cycle of SST. This implies strong water temperature modulation on pCO2 in the subtropical Pacific 220 

region. However, the seasonal magnitude of pCO2 weakened around the tropical area from 10o N 221 

to 0o N (Figure 1b, lower panel), as the temperature remained relatively stable throughout the year. 222 

Long-term linear trend analysis of modeled and observed pCO2 from 2010 to 2019 showed that 223 

the annual increase in pCO2 also varied with latitude, where the subtropical region experienced 224 

faster pCO2 growth compared with the equatorial area (Table 3). Varying long-term trends across 225 
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latitudes were related to atmospheric CO2 uptake capability, which tends to be stronger in high-226 

latitude areas (Xiu and Chai, 2014). 227 

To examine atmospheric CO2 sink/source characteristics from observed pCO2 in the Western 228 

Pacific Ocean, we utilized atmospheric pCO2 (pCO2atm) data from Chuuk Lagoon maintained by 229 

the Pacific Marine Environmental Laboratory (PMEL) NOAA Carbon Program (Sutton et al., 230 

2017). The three-hourly recorded pCO2atm from November 2011 to October 2018 was averaged to 231 

obtain the monthly average value of pCO2atm. The obtained monthly pCO2atm was then used to 232 

calculate the pCO2 difference between the sea surface and atmosphere (dpCO2), which further 233 

dictated the direction of the CO2 flux at each latitude. A similar procedure was performed for the 234 

modeled pCO2 but using the employed annual global-averaged atmospheric pCO2 instead. The 235 

modeled dpCO2 was in general consistent with the observed dpCO2 with robust correlation (r = 236 

0.72; p < 0.01) and a bias of 8.70 µatm. 237 
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 238 

Figure 1. (a) The whole model domain and longitudinal transect lines in the Western Pacific Ocean 239 

where SOCATv2020 data was processed and compared with simulation results. (b) Time series of 240 

monthly pCO2 from simulation (blue solid line) and observed (red scatter dots) pCO2 in the 241 

Western Pacific Ocean from equator (0o N) to 25o N latitude. (c) Scatter plot between modeled 242 

dpCO2 and observed dpCO2. Dashed black line in (c) indicates the 1:1 line where perfect agreement 243 

lies. 244 

 245 

Table 3. Linear trend analysis results from both observed and modeled pCO2 across the Western 246 

Pacific. Showed trend values were significant at p < 0.01. 247 
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Annual pCO2 

trend 

(μatm/year) 

25° N 20° N 15° N 10° N 5° N 0° N 

SOCAT 3.35 3.51 2.96 2.83 2.69 1.49 

Model 2.74 2.47 1.25 1.71 1.26 n/a 

 248 

The comparison between model results and underway measurements in Indonesian seas also 249 

agreed to the extent that the area generally acted as an atmospheric CO2 source (Table 4). 250 

Compared with model results, measured pCO2 and CO2 flux by Kartadikaria et al. (2015) showed 251 

a higher standard deviation. This emphasizes the urgency of a reliable long-term upper-ocean 252 

carbonate chemistry observation system in the area to reduce uncertainty regarding the atmosphere 253 

CO2 sink/source characteristic. 254 

The differences in the modeled pCO2 with the measured value could be attributed to the spatial 255 

variations in biogeochemical dynamics that were not fully resolved by the single-value 256 

parameterization approach in the current model configuration. The selection of atmospheric pCO2 257 

used for the simulation also possibly contributed to this difference. This is based on a comparison 258 

between the global-averaged pCO2atm, Chuuk Lagoon monitoring site pCO2atm record (Sutton et 259 

al., 2017a), and observed pCO2atm in the study by Kartadikaria et al. (2015), where the global-260 

average pCO2atm was higher than the other measurements. 261 

 262 

Table 4. Comparison between observed and modeled pCO2/CO2 flux inside the Indonesia Sea 263 

between 2010 and 2013 acquired by Kartadikaria et al. (2015). Uncertainty was calculated as one-264 

standard deviation. 265 
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Expedition Name 

pCO2 (µatm) CO2 flux (gC. m-2. year-1) 

Measured Modeled Estimated Modeled 

EWIN 2010 399.43 ± 18.29 436.88 ± 10.19 7.70 ± 5.09 4.23 ± 1.48 

EWIN 2011 409.62 ± 10.40 423.79 ± 4.46 6.24 ± 4.82 3.40 ± 0.89 

Banggai Expedition 

2011 

390.21 ± 16.50 415.12 ± 5.82 n/a 8.50 ± 2.94 

SITE 2012 416.65 ± 14.20 421.20 ± 7.17 5.77 ± 5.00 1.71 ± 0.66 

EWIN 2013 397.46 ± 19.52 439.32 ± 4.00 2.60 ± 5.51 2.70 ± 0.90 

 266 

3.2. Simulated mean seasonal cycle of the upper-ocean carbon cycle in the Tropical 267 

Maritime Continent 268 

Figure 2a shows the simulated pCO2 with contrasting seasonal cycles between the western and 269 

eastern parts of the TMC, consistent with the segregation suggested by Kartadikaria et al. (2015). 270 

The western part of the TMC showed a higher pCO2 than the eastern part during the summer. 271 

Conversely, the pattern was reversed during winter, with higher pCO2 in the eastern part. Large-272 

scale high pCO2 was observed during spring (March-May), as most of the area across the TMC 273 

showed its annual warmest SST, which is a two–three months lag from the peak of winter (Figure 274 

2b). In the succeeding season of the summer-autumn (September-November), an apparent 275 

upwelling signature of low SST from along west of Sumatra-south of Java was observed but was 276 

associated with high pCO2 in the area. This further suggests that the effect of SST drop on pCO2 277 

due to upwelling could be suppressed by the increase in inorganic carbon content, resulting in a 278 

net increase in pCO2.  279 
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 280 

Figure 2. Mean seasonal cycle of modeled (a) sea surface pCO2 partial pressure (in µatm) and (b) 281 

sea surface temperature (in °C) over the 2010-2019 period.  282 

 283 

The sea-air CO2 flux seasonal cycle showed that the TMC acted as a full-year atmospheric CO2 284 

source from sea surface water (Figure 3). Despite the relatively high pCO2 in spring, the model 285 

results suggested weak CO2 degassing related to the wind speed around the TMC, which was in its 286 
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weakest state. Strong CO2 degassing occurred during the summer, where many areas, such as the 287 

southern South China Sea, south of Java, and Southern Makassar Strait, indicate their annual 288 

maximum CO2 flux. In contrast to the other areas, strong CO2 degassing along the south of Java 289 

was further maintained up to the autumn, while in the west of Sumatra, CO2 degassing peaked at 290 

the same time. This made the area the strongest CO2 source within the TMC according to the 291 

simulation results.  292 

 293 

Figure 3. Simulated mean seasonal cycle of sea-air CO2 flux (shaded color; in gC. m-2. year-1) 294 

across the Tropical Maritime Continent and the corresponding wind speed pattern (vector arrows; 295 

in m. s-1) according to the JRA-55 product over the 2010-2019 period. Positive and negative values 296 

in the sea-air CO2 flux indicates atmospheric CO2 source and sink signatures, respectively. 297 

 298 

Persisting CO2 degassing in the south of Java during the summer-autumn could be attributed to 299 

the combination of atmospheric forcing and the biogeochemical response of the area to the forcing. 300 

Strong wind speeds in the summer created favorable conditions for strong CO2 degassing in the 301 

area through accelerated gas exchange (Figure 4a) and, at the same time, increased the inorganic 302 
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carbon content in the sea surface during upwelling onset. However, the upwelling itself reached 303 

its peak in early autumn, a month after the annual wind stress maxima. This left the area with high 304 

inorganic carbon surface water, which further maintained the strong CO2 degassing condition due 305 

to high pCO2 in the succeeding season.  306 

Persisting CO2 degassing was not apparent through model simulation in the west of Sumatra, 307 

despite the similar upwelling seasonality with south of Java (Figure 4b). Instead, our simulation 308 

suggested that the peak of CO2 degassing occurred only in the early autumn, which coincided with 309 

peak upwelling. The relatively weaker wind speed compared to south of Java was presumed to be 310 

one of the contributing factors to weaker upwelling, both during the onset and peak. The angle of 311 

the coast on Sumatra Island and the Coriolis parameter gradient toward latitude, as pointed out by 312 

Susanto et al. (2001), further provided additional constraints for the wind to generate coastal 313 

upwelling as strong as in the south of Java. We used chlorophyll-a concentration observed by the 314 

Moderate Resolution Imaging Spectrometer (MODIS Aqua; Hu et al., 2012) as a proxy for 315 

upwelling processes in both west of Sumatra and south of Java. We also calculated the annual 316 

average value of Chl:C ratio in the two upwelling areas and found a ratio of 0.02, which was still 317 

within the range suggested by Arteaga et al. (2016). 318 
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 319 

Figure 4. Two full repeated annual cycles of the upwelling system in (a) south of Java and (b) 320 

west of Sumatra. Figures include the Chlorophyll-a concentration and simulated phytoplankton 321 

carbon biomass (left figures), simulated pCO2 / sea-air CO2 flux (middle figures), and wind speed 322 

from JRA-55 product (right figures). 323 

3.3 Upper-ocean carbon cycle interannual variability in the Tropical Maritime Continent 324 

The interannual variability was examined by removing the mean seasonal cycle of simulated pCO2, 325 

CO2 flux, and wind speed from JRA-55 over the 2010–2019 period. As a typical ENSO mature 326 

phase occurs within the November-March period, while the IOD occurs in July-November, we 327 
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focused on the analysis of both pCO2 and CO2 flux anomalies in those two periods. Aside from 328 

the 2015/2016 El Niño and the 2019 pIOD, there were other ENSO and IOD events reported over 329 

the last decade, which can be seen in Table 5.  330 

 331 

Table 5. List of Indo-Pacific climatic forcings (ENSO and IOD) over the last decade (2010-2019) 332 

according to the NINO3.4 and DMI time series employed in this study 333 

ENSO IOD 

El Niño: 2014/2015, 2015/2016, 2018/2019 

La Niña: 2010/2011, 2011/2012, 2017/2018 

pIOD: 2011, 2012, 2015, 2017, 2018, 2019 

nIOD: 2010, 2013, 2016 

  334 

Composited pCO2 and CO2 flux anomalies during ENSO years (Figure 5) showed that El Niño 335 

was associated with anomalously higher pCO2 around the TMC. In contrast, La Niña was 336 

associated with lower pCO2. In agreement with the suggestion by Kartadikaria et al. (2015), the 337 

anomalous lower pCO2 during La Niña here corresponded to weaker CO2 degassing. Our model 338 

results further indicated a strong large-scale pCO2 enhancement during the extreme 2015/2016 El 339 

Niño, which corresponded to increased CO2 degassing within the TMC. The composite analysis 340 

provided in Figure 5 also suggested an out-of-phase modulation pattern between the Western 341 

Pacific Ocean and TMC during ENSO events over the last decade. This further implied that 342 

examination of ENSO influence on the TMC upper-ocean carbon cycle based on the Western 343 

Pacific condition should be considered with more caution.  344 
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 345 

Figure 5. November-March composite average of (a) modeled pCO2 anomalies (in µatm); (b) 346 

modeled sea-air CO2 flux anomalies (in gC. m-2. year-1) with corresponding surface wind 347 

anomalies (vector arrows, in m/s) according to the JRA-55 product; and (c) five months moving 348 
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average of NINO3.4 sea surface temperature anomalies (SSTA). Shaded red and blue color in (c) 349 

indicates the period when the SSTA value exceeded/below the +0.5 oC/-0.5 oC threshold. 350 

Composite average during periods with strong El Niño (2015/2016) and La Niña (2010/2011) were 351 

also presented for comparison. 352 

 353 

Apparent anomalous pCO2 and CO2 fluxes were observed during IOD event periods, particularly 354 

around the west of Sumatra-south of Java (Figure 6). The pIOD was associated with strong pCO2 355 

enhancement and increased CO2 degassing, whereas under negative IOD (nIOD) conditions, the 356 

upper-ocean carbon cycle along the upwelling region showed the opposite modulation pattern. 357 

Compared to the composite figures associated with ENSO events, the pCO2 and CO2 flux 358 

anomalies around West Sumatra-South of Java during IOD events showed more pronounced 359 

linearity, where strong anomalies in pCO2 translated into strong anomalies in CO2 flux. This could 360 

be related to the different pattern of oceanic and atmospheric conditions perturbation caused by 361 

these two large-scale climate variabilities, which in IOD cases, are more favorable for stronger 362 

CO2 flux modulation. 363 

In addition, to modulation along the west of Sumatra-south of Java, the IOD was also associated 364 

with upper-ocean carbon cycle variabilities in the inner part of the TMC, as shown by the 365 

composite figure (Figure 6). The model results suggested an anomalous pCO2 decrease (increase) 366 

in the Indonesian seas and northwestern Australia during the pIOD (nIOD). However, a notable 367 

decrease (increase) in CO2 degassing was observed only around northwestern Australia. 368 

Contrasting anomaly patterns between the west of Sumatra-south of Java and other areas during 369 

IOD events implied different mechanisms controlling the upper-ocean carbon cycle variabilities. 370 

Considering the composite analysis provided here, it could be inferred that the 2015-2016 Indo-371 
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Pacific climatic forcings (2015 pIOD, 2015/2016 El Niño, and 2016 nIOD) resulted in 372 

unprecedented pCO2 modulation across the TMC over the last decade. 373 

 374 
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Figure 6. July-November composite average of IOD events. (a) Modeled pCO2 anomalies (in 375 

µatm); (b) modeled sea-air CO2 flux anomalies (in gC. m-2. year-1) with corresponding surface 376 

wind anomalies (vector arrows, in m/s) according to the JRA-55 product; and (c) five months 377 

moving average of NINO3.4 sea surface temperature anomalies (SSTA). Shaded red and blue color 378 

in (c) indicates the period when the DMI value exceed/below the one-standard deviation (+1σ/-379 

1σ) threshold. Composite average during the period with strong positive IOD (2019) and negative 380 

IOD (2016) were also presented for comparison. 381 

 382 

Weaker (stronger) northwest monsoon circulation within the TMC during El Niño (La Niña) due 383 

to anomalous divergence (convergence) could weaken (strengthen) the gas exchange between the 384 

sea surface and the atmosphere. However, shifts in the Walker circulation caused by the same 385 

anomalous divergence (convergence) also altered the cloud distribution across the tropics, 386 

including the TMC itself, and affected SST. Decreased (increased) cloud cover around the TMC 387 

during El Niño (La Niña) can increase (decrease) SST through an increase (decrease) in incoming 388 

solar radiation. This mechanism could increase (decrease) pCO2 and ultimately strengthen 389 

(weaken) CO2 degassing. The opposite modulation tendencies between atmospheric and oceanic 390 

conditions in response to ENSO forcing made the CO2 flux anomalies magnitude associated with 391 

ENSO less pronounced, despite the strong pCO2 anomalies during the 2015/2016 El Niño or 392 

2010/2011 La Niña. 393 

Conversely, the IOD did not exhibit such opposite tendencies, which resulted in the strong linearity 394 

between the pCO2 anomalies and the CO2 flux anomalies. Typical IOD events occur between late 395 

summer-autumn, where seasonal upwelling occurs (Delman et al., 2016; 2018; Susanto et al., 396 

2001). Anomalous southeasterly (northwesterly) winds during the pIOD (nIOD) around SETIO 397 
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can directly modulate upwelling around the west of Sumatra-south of Java. Enhanced (suppressed) 398 

upwelling in response to stronger (weaker) wind forcing during pIOD (nIOD) then result in higher 399 

(lower)-than-usual pCO2 from the ocean side and accelerated (decelerated) gas exchange on the 400 

atmospheric side. 401 

Furthermore, our model results suggested an asymmetric response of the upper-ocean carbon cycle 402 

to IOD over the last decade. The 2016 nIOD, which was not as intense as the preceding 2015 pIOD 403 

and far weaker than the 2019 pIOD from the DMI magnitude perspective, showed a comparable 404 

modulation in pCO2 and CO2 degassing. Scatter plots of pCO2 anomalies, CO2 flux anomalies, and 405 

phytoplankton carbon biomass concentration anomalies against the DMI showed y-intercept 406 

values that fell within the y < 0 territory (Figure 7) which depict the asymmetry. Asymmetry 407 

response to the IOD was also observed from MODIS observations, implying the robustness of our 408 

model in capturing the TMC physical-biogeochemical variabilities associated with the Indo-409 

Pacific climate variabilities.  410 

 411 

Figure 7. Scatter plot of Chl-a anomaly (in mg. m-3), phytoplankton biomass anomaly (in mgC. 412 

m-3), pCO2 anomaly (in µatm), and CO2 flux anomaly (in gC. m-2. year-1) against DMI around west 413 

of Sumatra (blue) and south of Java (red) in July-November over the 2010-2019 period. The red 414 

solid line and blue solid line in each scatter graph show the regression model line for south of Java 415 

and west of Sumatra, respectively. 416 



manuscript submitted to Journal of Geophysical Research: Oceans 

 

 417 

The strong asymmetry response to the IOD around the west of Sumatra-south of Java, which was 418 

apparent in both simulation results and observations (Chl-a from MODIS Aqua), emphasized the 419 

peculiarity of nIOD events over the last decade. Zhang et al. (2018) suggested the contribution of 420 

low-frequency thermocline dynamics around the equatorial Indian Ocean to this unusualness, 421 

which was most likely captured by the ocean reanalysis product used in this experiment. 422 

Anomalous pCO2 enhancement during nIOD events, especially the 2010 and 2016 nIOD, which 423 

extended up to the interior of the Indonesian seas, implied the possibility of another ocean-424 

atmosphere interaction that took place around the TMC. Strong sea surface warming anomalies 425 

around the SETIO in the 2010 and 2016 summer, which were also captured by the simulation (not 426 

shown), coincided with the demise years of the 2009/2010 and 2015/2016 El Niño. The seasonal 427 

timescale difference between the El Niño demise and the appearance of SETIO warming here was 428 

in line with Alexander et al. (2002) on the ENSO SST teleconnection pattern, with the Indian 429 

Ocean lagging the central Pacific by 3–6 months. A recent review by Cai et al. (2019) further 430 

emphasized that such summer warming following El Niño events became prevalent after the 431 

1970s. We presume that while the low-frequency thermocline variabilities may affect upwelling 432 

modulation along the west of Sumatra-south of Java during the IOD, the pCO2 modulation beyond 433 

the region during the nIOD was still closely related to the preceding El Niño events. 434 

 435 
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3.4 Separating the ENSO and IOD influence on the upper-ocean carbon cycle variabilities 436 

around the TMC 437 

Since ENSO and IOD showed a statistically significant correlation over 2010-2019 (Pujiana et al., 438 

2019), we further separated the effect of ENSO on IOD and vice versa by performing partial 439 

correlation analysis for pCO2 anomalies, CO2 flux anomalies, and wind anomalies against DMI 440 

and NINO3.4 following the methods of Saji and Yamagata (2003). Regression analysis was 441 

conducted to evaluate the extent of each Indo-Pacific climatic forcing in modulating the upper 442 

carbon cycle across the TMC over the study period. For uniformity reasoning, we regressed the 443 

pCO2 anomalies, CO2 flux anomalies, and wind anomalies against the one-standard deviation (± 444 

1σ) of the NINO3.4 (σNINO3.4 = 0.80 oC) and DMI (σDMI = 0.26 oC) over the 2010-2019 period.  445 

Regressed pCO2 anomalies and CO2 flux anomalies against one-standard deviation (± 1σ) of 446 

NINO3.4 and DMI revealed distinguishable spatial extents of modulation (Figures 8 and 9). 447 

Anomalies associated with ENSO during the November-March period tended to have a larger 448 

spatial extent, which could reach the SETIO region, compared with IOD during July-November, 449 

which was confined along west of Sumatra-south of Java. Results from the regression analysis also 450 

showed an extended minor influence of IOD on the carbon cycle variabilities up to the lesser Sunda 451 

Island water area and inside the Indonesian seas. Regressed pCO2 anomalies and CO2 flux 452 

anomalies against the DMI bolster our presumption that IOD alone could not explain notable 453 

anomalous pCO2 enhancement beyond the west of Sumatra-south of Java during recent nIOD 454 

events. 455 

Despite regressed pCO2 anomalies against DMI, which showed a magnitude comparable to the 456 

NINO3.4-regressed value, the regressed CO2 flux anomalies against DMI showed a much higher 457 



manuscript submitted to Journal of Geophysical Research: Oceans 

 

value. Removing the 2019 pIOD events from the regression analysis (Figure 9, second column) 458 

resulted in only slight changes in both pCO2 anomalies and CO2 flux anomalies. This implied that 459 

even a typical IOD event (after the ENSO influence has been removed) could trigger strong 460 

anomalies in the CO2 flux, especially along the west of Sumatra-south of Java.  461 

Regressed pCO2 anomalies against NINO3.4 further suggested a stronger sensitivity of the TMC 462 

to ENSO forcing compared with the adjacent Western Pacific Ocean. The smaller extent of 463 

regressed CO2 flux anomalies against NINO3.4 supported our hypothesis about the apparent 464 

nonlinearity between pCO2 anomalies and CO2 flux anomalies under the same ENSO events. The 465 

exclusion of the 2015/2016 El Niño event in the regression analysis (Figure 8, second column) 466 

decreased the magnitude of the pCO2 anomalies and significantly reduced the spatial extent of the 467 

CO2 flux anomalies. This further suggests that the double-dip La Niña in 2010/2011 and 2011/2012 468 

induced less-pronounced CO2 flux modulation within the TMC. To put into perspective, the 2010–469 

2012 La Niña event occurred for a maximum of 22 months while the 2015–2016 El Niño occurred 470 

for 13 months. Both events also showed comparable magnitudes according to the Multivariate 471 

ENSO Index v2 (MEIv2; Zhang et al., 2019) in addition to the NINO3.4 SSTA used in this study. 472 

It is possible that the Pacific decadal climatic shift in the 2010s modified the ENSO flavor, as 473 

pointed out by Newman et al. (2016), including its influence on the TMC, so that CO2 flux 474 

modulation related to the 2015/2016 El Niño showed substantially different characteristics. Further 475 

modeling studies across the TMC over a longer time scale will be needed to confirm this possible 476 

upper-ocean carbon cycle decadal variation. Note that although removing the extreme events 477 

conducted here obviously reduced the standard deviation of NINO3.4 and DMI, the regressed 478 

modulation pattern and magnitude against reduced standard deviation did not show significant 479 

changes (not shown).  480 
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 481 

Figure 8. November-March (a) regressed pCO2 anomalies (in µatm) and (b) regressed CO2 flux 482 

anomalies (in gC. m-2. year-1) along with wind anomalies (in m/s) against one-standard deviation 483 

of NINO3.4 at zero-lag. Regression was calculated after partialling IOD effect on ENSO. Shaded 484 

colors and vector arrows are significant at p < 0.01. 485 

 486 
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Figure 9. July-November (a) regressed pCO2 anomalies (in µatm) and (b) regressed CO2 flux 487 

anomalies (in gC. m-2. year-1) along with wind anomalies (in m/s) against one-standard deviation 488 

of DMI at zero-lag. Regression was calculated after partialling ENSO effect on IOD. Shaded colors 489 

and vector arrows are significant at p < 0.01. 490 

4 Summary and conclusions 491 

Using a newly developed low-trophic ocean ecosystem model coupled with an OGCM, we 492 

examined the upper-ocean carbon cycle variabilities over the last decade in the TMC, where long-493 

term observations in the area remained limited. By utilizing a suite of realistic atmospheric and 494 

oceanic analysis/reanalysis products, we aimed to generate ocean dynamics under a series of 495 

climate variabilities between 2010 and 2019 as realistic as possible to reduce the uncertainty 496 

caused by overlooked ocean-atmosphere interactions. We also proposed a treatment for the initial 497 

and boundary conditions in the ecosystem model that allowed us to approximate the vertical 498 

structure of the important ecosystem parameters in the model.  499 

In general, the model could capture the basic seasonality of the carbon cycle exhibited by available 500 

observations along with its spatial variations, albeit some differences, especially in pCO2, which 501 

might be related to the selection of atmospheric CO2 forcing used in this simulation and some not-502 

yet-involved biogeochemical processes (e.g., silicate dynamics and iron dynamics). Nevertheless, 503 

produced atmospheric CO2 sink/source characteristic from this modeling study were in agreement 504 

with previous studies (Bakker et al., 2016; Chai et al., 2009; Hamzah et al., 2020; Kartadikaria et 505 

al., 2015; Sutton et al., 2017; Xiu and Chai, 2014). This enabled us to further analyze the produced 506 

upper-ocean carbon cycle variabilities in response to the forcing used in the simulation experiment. 507 
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While acted as full-year atmospheric CO2 source with area-averaged flux equivalent to 0.08 PgC 508 

per year, our simulation results indicated pronounced seasonality along the west of Sumatra-south 509 

of Java. Strong seasonal winds that triggered upwelling around the area (Horii et al., 2018; Ningsih 510 

et al., 2013: Siswanto et al., 2020; Susanto et al., 2001) created favorable conditions for strong 511 

CO2 degassing through a combination of accelerated gas exchange and an abundant supply of 512 

subsurface inorganic carbon. This mechanism was not apparent in other areas across the TMC, 513 

making it an unique feature of the upper-ocean carbon cycle perspective. Note that the aggregate 514 

results of upwelling to carbon cycling might vary across regions (Chakraborty et al., 2018; Valsala 515 

et al., 2014) and thus, the results presented by this model for the west of Sumatra-south of Java 516 

should not be taken as a generalization for all upwelling-active regions. 517 

Composite analysis of both pCO2 anomalies and CO2 flux anomalies clearly showed pronounced 518 

features that could be related to Indo-Pacific climate variability (ENSO and IOD) over the last 519 

decade. Strong anomalous pCO2 enhancement along with stronger-than-usual CO2 degassing 520 

occurred from 2015 and lasted until (at least) the 2016 summer, making it the largest and longest 521 

upper ocean carbon cycle modulation in the TMC according to the simulation results. The 522 

sequence of IOD and ENSO events between 2015-2016 (2015 pIOD and 2015/2016 El Niño) was 523 

strongly related to this unprecedented modulation over the last decade. The modulations were then 524 

swung toward the negative territory (i.e., decreased pCO2 and reduced CO2 degassing) as the 2016 525 

nIOD gained momentum. We further suggested the distinctive modulation characteristic 526 

associated with ENSO and IOD, which caused the magnitude of the CO2 flux variability during 527 

ENSO to be lower than that during IOD.  528 

An attempt to elucidate the extent of extreme climate events (2015/2016 El Niño and 2019 pIOD) 529 

influence on the upper-ocean carbon cycle across the TMC through regression analysis yielded 530 
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notable results. It can be inferred that recent extreme climate events were likely responsible for a 531 

larger extent of upper-ocean carbon modulation around the TMC over the last decade. Considering 532 

the simulation results and analysis conducted here, further pronounced modulation of the upper-533 

ocean carbon cycle across the TMC can be expected, as recent studies have indicated an 534 

intensification of extreme climate anomalies under the effect of greenhouse gas forcing (Cai et al., 535 

2018; Grothe et al., 2019; Zhang et al., 2018). 536 

Finally, one of the biggest challenges hindering this study was that we could not incorporate river 537 

discharge in the simulation experiment. The lack of reliable datasets, especially for carbonate 538 

chemistry-related parameters, such as DIC, TA, and nutrients, as highlighted by Valsala et al. 539 

(2014), was the main reason for this limitation. Such data are critical for evaluating the robustness 540 

of any regional-scale watershed modeling effort before further use in coupled OGCM-ecosystem 541 

models. Incorporating river discharge inappropriately for studying upper-ocean carbon cycle 542 

variability will only produce questionable results. DIC from river discharge, for example, varies 543 

widely between river mouths, with values ranging from 284 µmol. kg-1 (Rosentreter and Eyre, 544 

2019) to as high as 3,500 µmol. kg-1 (Kawahata et al., 2000). This highly variable value did not 545 

include the possible strong seasonal and interannual variability of the river-discharged material, as 546 

presumed by Xiu and Chai (2014). Regardless of the limitations of this study, the results presented 547 

here could invite interdisciplinary research collaborations to establish a continuous oceanic carbon 548 

cycle monitoring system across the TMC and enrich our understanding of its dynamics under 549 

changing environments.  550 

 551 

 552 
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