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Abstract

The drag coefficient (CDN), Stanton number (CHN) and Dalton number (CEN) are of particular importance for the bulk
estimation of the surface turbulent fluxes of momentum, heat and water vapor at water surfaces. Although these bulk transfer
coefficients have been extensively studied over the past several decades mainly in marine and large-lake environments, there are
no studies focusing on their synthesis for many lakes. Here, we evaluated these coefficients through directly measured surface
fluxes using the eddy-covariance technique over more than 30 lakes and reservoirs of different sizes and depths. Our analysis
showed that generally CDN, CHN, CEN (adjusted to neutral atmospheric stability) were within the range reported in previous
studies for large lakes and oceans. CHN was found to be on average a factor of 1.4 higher than CEN for all wind speeds,
therefore, likely affecting the Bowen ratio method used for lake evaporation measurements. All bulk transfer coefficients exhibit
substantial increase at low wind speeds (< 3 m s-1), which could not be explained by any of the existing physical approaches.
However, the wind gustiness could partially explain this increase. At high wind speeds CDN, CHN, CEN remained relatively
constant at values of 2 10-3, 1.5 10-3, 1.1 10 -3, respectively. We found that the variability of the transfer coefficients among
the lakes could be associated with lake surface area or wind fetch. The empirical formula C=b1[1+b2exp(b3 U10)] described
the dependence of CDN, CHN, CEN on wind speed well and it could be beneficial for modeling when coupling atmosphere and
lakes.
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Key Points:

• The bulk transfer coefficients exhibit a substantial increase at low wind
speeds in lakes which could partially be associated with gusts

• Average drag coefficients significantly correlated with lake surface area at
winds exceeding 3 m s-1

• An empirical function describing the dependence of the transfer coeffi-
cients on wind speed could be beneficial when modeling lakes

Abstract

The drag coefficient (𝐶DN), Stanton number (𝐶HN) and Dalton number (𝐶EN)
are of particular importance for the bulk estimation of the surface turbulent
fluxes of momentum, heat and water vapor at water surfaces. Although these
bulk transfer coefficients have been extensively studied over the past several
decades mainly in marine and large-lake environments, there are no studies fo-
cusing on their synthesis for many lakes. Here, we evaluated these coefficients
through directly measured surface fluxes using the eddy-covariance technique
over more than 30 lakes and reservoirs of different sizes and depths. Our analysis
showed that generally 𝐶DN, 𝐶HN, 𝐶EN (adjusted to neutral atmospheric stabil-
ity) were within the range reported in previous studies for large lakes and oceans.
𝐶HN was found to be on average a factor of 1.4 higher than 𝐶EN for all wind
speeds, therefore, likely affecting the Bowen ratio method used for lake evapora-
tion measurements. All bulk transfer coefficients exhibit substantial increase at
low wind speeds (< 3 m s-1), which could not be explained by any of the existing
physical approaches. However, the wind gustiness could partially explain this
increase. At high wind speeds, 𝐶DN, 𝐶HN, 𝐶EN remained relatively constant at
values of 2·10-3, 1.5·10-3, 1.1·10-3, respectively. We found that the variability
of the transfer coefficients among the lakes could be associated with lake surface
area or wind fetch. The empirical formula 𝐶 = 𝑏1 [1 + 𝑏2 exp(𝑏3𝑈10)] described
the dependence of 𝐶DN, 𝐶HN, 𝐶EN on wind speed well and it could be beneficial
for modeling when coupling atmosphere and lakes.

1 Introduction

The major process that governs the interaction between the atmosphere and
surface waters is the turbulent exchange of momentum, heat and gases at the air-
water interface. Although lakes and reservoirs occupy only about 3% of the land
surface area (Downing et al., 2006), they are known to have an impact on local
weather and climate. For example, lakes affect the stability of the atmosphere
above (Sun et al., 1997), leading to the formation of clouds and precipitation
on the shores (Changnon & Jones, 1972; Kato & Takahashi, 1981; Eerola et
al., 2014; Thiery et al., 2016). Furthermore, lakes and reservoirs are recognized
as significant contributors to the global carbon cycle by emitting significant
amounts of carbon dioxide and methane (DelSontro et al., 2018; Rosentreter et
al., 2021).
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The past three decades have seen a rapid development of lake models (Stepa-
nenko et al., 2014) and their incorporation into numerical weather and climate
prediction models (Ljungemyr et al., 1996; Salgado & Le Mogne, 2010; Mironov
et al., 2010). Experiments on the coupling of lakes and the atmospheric model
revealed their beneficial impact on the weather prediction quality (Balsamo et
al., 2012). A number of case studies have demonstrated the importance of lakes
for extreme local weather phenomena, such as lake-effect snow over Great Amer-
ican lakes (Fujisaki-Manome et al., 2020), deep hazardous convection over Great
African lakes (Thiery et al., 2016), wind speeds over Lake Superior (Desai et al.,
2009), or stratiform cloudiness in winter over Lake Ladoga (Eerola et al., 2014).
Thus, an accurate representation of the exchange of momentum, heat and water
vapor at the air-water interface in water bodies is essential.

In state-of-the-art, momentum, sensible and latent heat fluxes are usually deter-
mined based on gradient approaches utilizing transfer coefficients (bulk transfer
coefficients) and easy to measure meteorological and limnological variables, i.e.,
wind speed, air temperature, air humidity and water surface temperature (Stull,
1988). The exchange at the air-water interface and therewith the bulk coef-
ficients are controlled by the boundary-layer turbulence. The bulk exchange
coefficient of momentum, known as the drag coefficient (𝐶𝐷, 𝐶DN) (Garratt,
1977), is of particular importance for all air-water fluxes. The coefficients of
heat (𝐶𝐻 , 𝐶HN) and water vapor exchange (𝐶𝐸, 𝐶EN) are also known as Stan-
ton and Dalton numbers, respectively. Here, “N” stands for “neutral” transfer
coefficients, corresponding to the neutral thermal stability of the atmosphere.
The transfer coefficients depend on the measurement height of the mean wind
speed, air temperature and humidity, respectively, and for this reason, they are
usually reported for the reference meteorological height of 10 m.

A considerable amount of studies has been published on the momentum flux and
the drag coefficient starting from the early 1950s when the fundamental work,
presenting the theory later on named as Monin-Obukhov similarity theory, was
published (Monin & Obukhov, 1954; Obukhov, 1971). The theory aims at
describing the structure of turbulence in the atmospheric surface layer about
several tens of meters thick with the assumption of the fluxes being constant
and independent of height. Similarity laws introduce functional relations to
derive the universal shapes for the vertical profiles of different quantities for
atmospheric thermal stability other than neutral. During the past decades,
considerable effort has been devoted to define the exact form of these similarity
functions (Paulson, 1970; Businger et al., 1971; Högström, 1988; Zilitinkevich
& Calanca, 2010).

As the drag coefficient is one of the key parameters in atmospheric and lake
models, the errors in its parameterization lead to errors in the bulk flux esti-
mates. Therefore, numerous early studies focused on exploring different param-
eterizations of the drag coefficient over the land and oceans in terms of wind
speed, atmospheric stability, and surface roughness, which could be a function
of the surface wave field (for oceans) (Garratt, 1977; Kantha & Clayson, 2000).
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Most of the extensive field measurement campaigns over the oceans have been
conducted during the last 30 years of the 20th century (Large & Pond, 1981;
Godfrey & Beljaars, 1991; Smith et al., 1996; Fairall et al., 1996). Several of
these studies agreed that the drag coefficient linearly increases with increasing
wind speed ignoring the state of the wave field. More recent parameterizations
of the drag coefficient (e.g., the COARE algorithm, (Edson et al., 2013)), how-
ever, include a wave dependence. There is still an ongoing scientific discussion
concerning the importance of waves and how their impact could be included in
the models (Wu et al., 2019).

Along with the studies in the marine environment, the research started to focus
on the drag coefficient estimated from measurements over large and medium-
sized lakes (e.g., Hicks, 1972; Donelan, 1982; Graf et al., 1984; Simon, 1997).
To date, in total, about two dozen studies focusing on lakes have been pub-
lished since the beginning of the 1970s. In reviewing these studies below, we
separated them by the wind speed regime they were interested in. It is usually
assumed that surface wave development starts when the wind speed exceeds
3-4 m s-1 (Ataktürk & Katsaros, 1999; Kantha & Clayson, 2000). This is also
supported by wave measurements in several lakes (Simon, 1997; Guseva et al.,
2021). Therefore, we intend to separate the two wind speed regimes using this
threshold.

At the “high” wind speed regime (wind speed exceeds 3 m s-1), in the most sim-
plified way, the surface waves are assumed to be fully developed, and the surface
roughness length is described as a function of wind stress, which is commonly
known as Charnock relationship (Charnock, 1955). However, this assumption
might not hold for lakes with limited wind fetch (Donelan, 1990; Geernaert,
1990). Thus, some research has been made to study the drag coefficient as a
function of the surface wave state, for example, taking into account wave char-
acteristics such as the wave age (Donelan, 1982; Ataktürk & Katsaros, 1999).
Vickers & Mahrt (1997) reported that for a given wind speed the drag coefficient
tends to be larger for younger steeper waves representative of short wind fetches
than for longer fetches. Ataktürk & Katsaros (1999) could significantly reduce
the scatter in the estimated drag coefficients by considering waves in the pa-
rameterization of the surface roughness length. However, these studies mainly
examined large lakes and only a few were performed in lakes with short fetch
and young wave states (Babanin & Makin, 2008; Lükő et al., 2020). Given the
fact that the surface wave measurements in lakes are not often available, their
effect still could be investigated via analyzing the relationship between the drag
coefficient and fetch length.

At the “low” wind speed regime, several studies found that the neutral drag
coefficient in lakes and oceans tended to increase by an approximate factor of
two up to ten compared to the value of 1.3·10-3 (corresponding to a typical
value of open water surface roughness (Foken, 2008)) (Wüest & Lorke, 2003;
Woolway et al., 2017). Although the wind speed dependence is obvious, many
numerical and empirical studies employ a constant value for the drag coefficient,
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which is often considered as a model tuning parameter (Stepanenko et al., 2014).
Despite the fact that there have been many attempts to address the reasons
of such increase, there is still no consensus in the scientific community. The
low wind speed regime was first described as the aerodynamically smooth flow,
when the surface waves are buried within the viscous sublayer and the surface
roughness is described as a function of the thickness of this layer (Schlichting,
1968). On the contrary, Wu (1988) proposed that the flow is aerodynamically
rough and that capillary gravity waves play a key role at low wind speeds.
Surface roughness length was described as a function of the water surface tension.
As an additional reason for the increase of the drag coefficient at low wind speed,
Godfrey & Beljaars (1991) and Grachev et al. (1998) considered the concept
of gustiness, which assumes that at “zero” wind speeds there are dry random
convective motions – gusts – in the convective boundary layer (CBL). Thus,
the “traditional” formulation of the drag coefficient has been modified using the
scalar-averaged wind speed (not the vector-averaged wind speed) to account
for gusts. All the possible mechanisms mentioned above were addressed in the
recent work by Wei et al. (2016). They concluded that none of them explained
the increase of the drag coefficient at low wind speeds. However, they found it
can be explained by the increase in the turbulent kinetic energy and enhanced
buoyant energy. Similar to (Grachev et al., 1998), Sahlée et al. (2014) and Liu
et al. (2020) related the increase of the drag coefficient with nonlocal effects,
such as the penetration of large convective eddies into the surface layer from the
atmosphere above. Liu et al. (2020) introduced the factor describing this effect
and estimated it from two-level measurements of wind speed (however, over the
land surface and only for neutral conditions). Another formulation of the drag
coefficient at low wind speeds was done by Zhu & Furst (2013) relating the
drag coefficient to the turbulent kinetic energy budget. However, their fitting
coefficients for the drag coefficient formula were found to be site-specific (Liu et
al., 2020).

Other studies on the bulk transfer coefficients in lakes branched off from the
main direction – potential physical mechanisms – with a focus on the possible
correlation between the bulk transfer coefficients and some lake characteristics.
Among them are lake depth at the measurement location (Panin et al., 2006),
lake surface area (Read et al., 2012; Woolway et al., 2017), wind fetch at the
measurement location (Lükő et al., 2020) and lake biota, e.g, submerged macro-
phytes (Xiao et al., 2013). All studies showed a strong dependence of the transfer
coefficients on these lake characteristics. The drag coefficient tends to decrease
with increasing water depth, lake area, fetch and in the presence of water plants
at the water surface. It is important to note that although Panin et al. (2006)
and Woolway et al. (2017) revealed the correlation between the transfer coef-
ficients and the lake parameters, the estimation of the transfer coefficients was
based either on bulk parameterization (Woolway et al., 2017), or was compared
to other studies where there were no direct flux measurements (Panin et al.,
2006).

Fewer studies have been published on the Stanton and Dalton numbers. Al-
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though the measurements in the oceans showed their obvious increase at low
wind speeds, both transfer coefficients were considered as fairly constant with a
value of 1.1·10-3 (review of these measurements in (Kantha & Clayson, 2000)).
First measurements conducted in lakes revealed this value being higher and
equal to ~1.5·10-3 (Harbeck, 1962; Hicks, 1972) or 1.9·10-3 (Strub & Powell,
1987). Harbeck (1962) and Brutsaert & Yeh (1970) reported a dependence of the
Dalton number on the lake surface area. Heikinheimo et al. (1999) summarized
that the Dalton number is generally known to be less dependent on the wind
speed. From the most recent studies (Xiao et al., 2013; Li et al., 2016; Wei et al.,
2016; Dias & Vissotto, 2017), there is evidence that both coefficients depend on
the wind speed and that the Stanton number is higher than the Dalton number
by approximately a factor of 1.3. This indicates that the earlier assumption of
the equality of both coefficients may not be valid for lakes.

The eddy-covariance (EC) technique is a micrometeorological method to di-
rectly measure momentum, heat, water vapor and greenhouse gas fluxes (Foken,
2008). It is based on the correlation between turbulent fluctuations of vertical
wind speed and scalar air properties. Using this technique, one can obtain the
spatial and temporal average of turbulent fluxes originating from an area called
footprint and a period of meteorological stationarity (Lenschow et al., 1994;
Sun et al., 2006; Burba & Anderson, 2010; Foken et al., 2012). Nowadays, the
EC technique is commonly used over lakes (Blanken et al., 2000; Vesala et al.,
2006; Nordbo et al., 2011; Lee et al., 2014; Mammarella et al., 2015; Spank
et al., 2020; Golub et al., 2021). However, several studies reported difficulties
in measuring the wind stress at weak winds, which resulted in large uncertain-
ties (Kantha & Clayson, 2000). Low wind speed conditions are more relevant
for lakes and specifically small lakes that are the most abundant inland water
bodies (Downing et al., 2006).

In this study, we evaluate the first multiple water body estimates of bulk transfer
coefficients and their dependencies on wind speed and water body characteris-
tics using EC data measured above lakes. The analysis aimed at answering
the following research questions: 1) what are the typical values for the bulk
transfer coefficients and their variability among lakes and reservoirs? 2) how do
the values compare with the reported transfer coefficients for oceans and other
lakes? 3) can the mechanistic approaches mentioned above describe the transfer
coefficients at low wind speed regime? 4) is there a consistent dependence of
the transfer coefficients on lake characteristics, such as water depth, lake area
and wind fetch? In the sections below, we examine possible answers.

2 Materials and Methods

2.1. Eddy-covariance dataset

For this analysis, most of the existing EC data measured by various researchers
over lakes and reservoirs were extracted from open access databases and repos-
itories of published papers. The fluxes that are reported in the datasets were
calculated using different software (e.g., EddyPro (LI‑COR, Inc, 2021), TK3
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(Mauder & Foken, 2015), EddyUH (Mammarella et al., 2016)). In total, we
obtained data for 23 lakes and 8 reservoirs located in the arctic, subarctic, tem-
perate and subtropical zones (Figure 1, Table S1). The water bodies are located
in different landscapes, including mountains (e.g., Lake Lunz, Austria or Lake
Klöntal, Switzerland), forests (e.g., Lake Vanajavesi, Finland), and arctic land-
scapes. The EC mast at each lake or reservoir was installed either on a floating
or bottom-fixed platform, on shore, or on small islands. The measurement
height ranged between 1.3 m and 16.1 m with 2 m being the most frequent
height among all datasets. Elongated shapes of the lakes or shore/island loca-
tions were the subject of wind direction filtering to ensure that the measured
surface fluxes were originating from water. Approximately half of the water
bodies in this study had a surface area (As [km2]) smaller than 10 km2 with an
average wind fetch (Fave [m]) ranging from 168 m to 1553 m. The fetch grid
was estimated from the map as the distance from the measurement location to
the shore with the corresponding wind direction. Then, the time series of the
fetch was interpolated from this grid using the measured wind directions. The
average fetch was calculated as the mean distance for the filtered wind direc-
tions. The rest of the lakes and reservoirs were larger: the maximum surface
area of 2.6·104 km2 and the maximum mean fetch of 2.6·104 m refer to one
of the Great Lakes – Lake Erie in the USA. The maximum depth (Dmax [m])
varied between 1.3 m (Lake Villasjön, Sweden) and 89 m (Rappbode Reservoir,
Germany). Each EC dataset contained the estimated variables averaged over
30 min intervals.

The variables included wind speed (Uz [m s-1]), wind direction (WD [o]), friction
velocity (𝑢∗ [m s-1]) as a quantity characterizing the momentum flux (𝜏 = 𝜌𝑎𝑢2

∗
[kg m-1 s-2], 𝜌𝑎 – air density [kg m-3]), air temperature (Ta [oC]), turbulent
fluxes of sensible heat (H [W m-2]), and latent heat (LvE [W m-2]), the latter
referred to in this paper as water vapor flux as well. Water temperature was
provided either as skin surface temperature (Ts [oC]) or bulk water temperature,
measured at 0-0.5 m water depth (Tw [oC]). The skin temperature was observed
with an infrared thermometer or calculated from outgoing longwave radiation,
both corrected for the reflectance of incoming longwave radiation. Some lakes or
reservoirs had only momentum flux data, resulting in fewer estimates of heat and
water vapor transfer coefficients. Parameters such as precipitation considered
as a factor for filtering the data was not available for all datasets. The duration
of the EC measurements ranged from 11 days (Lake Wohlen, Switzerland) to
2243 days (or ~ 6.1 years, Lake Dagow, Germany) with a median duration of
155 days.
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Figure 1. (a) Geographical distribution of the eddy-covariance measurements over the lakes and reservoirs used in this study (red circles). Map was created using the software by Pawlowicz (2020). (b) The maximum depth versus surface area for each lake or reservoir. The circles in blue and red color show lakes with average wind fetch less than or more than 1000 m, respectively, with the lake name next to it. The diameter of the circle represents the relative average fetch: the larger diameter, the larger the average fetch is.

2.2. Data filtering and averaging

The individual datasets used in the analysis were subject to filtering with the
following different criteria:

1. filtering based on stationarity and integral turbulence test quality flags;

2. restriction of the wind directions to ensure >90% of footprint was origi-
nated from water;

3. removing periods with ice cover;

4. removing periods with precipitation (if data on precipitation was avail-
able);

5. removing periods with low fluxes 𝑢∗ < 0.05 m s-1, |𝐻|, |𝐸| < 10 W m-2

following, e.g., Li et al. (2016) and Wei et al. (2016);

6. removing periods with floating vegetation on the water surface (only for
Lake Suwa, Japan).

Quality screening of EC data is known to be site- and instrument- specific
(Burba & Anderson, 2010). The data were either available in filtered form, or
they contained the quality flags provided by the software. Non-filtered datasets
included quality flags for each flux value (momentum, sensible and latent heat
fluxes) to ensure the stationarity of the time series (homogeneity of the flow) and
developed turbulent conditions (Foken et al., 2004; Foken & Wichura, 1996).

Removing wind directions was site-specific and we carefully studied each individ-
ual site. We only accepted the data from periods when wind was blowing from

8



the lake with sufficient fetch. We specified the accepted wind directions for each
site in Table S1. We focused on open-water conditions and discarded ice-covered
periods either using the water temperature time series or interval camera data.
For Lake Suwa we removed the approximate periods when floating vegetation
appeared on the water surface using interval camera data, however, for other
sites this kind of data was not available. For some sites, all erroneous data
due to rain interference and site maintenance were filtered by data providers,
or we removed periods with precipitation (if data were available). There is no
common convention for selecting the thresholds of flux values for filtering the
fluxes and they were taken from the literature (Wei et al., 2016). We describe
the effect of these filters on the data as well as we compare different types of
averaging applied to data in Text S1. This pre-analysis revealed that the loga-
rithmic bin averaging for the derived quantities is an adequate measure to use
in the following sections.

2.3. Transfer coefficients

Turbulent fluxes of momentum (�), sensible heat (H) and latent heat (E) at the
water surface are expressed as:

𝜏 = −𝑢′𝑤′𝜌𝑎 = 𝜌𝑎𝑢2
∗ = 𝜌𝑎𝐶𝐷𝑈2

10, (1a)

𝐻 = 𝜌𝑎𝑐𝑝𝑤′𝑇 ′ = −𝜌𝑎𝑐𝑝𝑇∗𝑢∗ = 𝜌𝑎𝑐𝑝𝐶𝐻𝑈10 (𝑇𝑠 − 𝑇10) , (1b)
𝐿𝑣𝐸 = 𝜌𝑎𝐿𝑣𝑤′𝑞′ = −𝜌𝑎𝐿𝑣𝑞∗𝑢∗ = 𝜌𝑎𝐿𝑣𝐶𝐸𝑈10 (𝑞𝑠 − 𝑞10) , (1c)

where 𝑢′𝑤′ is the covariance of horizontal (𝑢′) and vertical (𝑤′) wind velocity
fluctuations; 𝑤′𝑇 ′ [m s-1 K], 𝑤′𝑞′ [m s-1 kg kg-1] are the covariances of vertical
wind velocity and air temperature (𝑇 ′) and specific humidity (𝑞′) fluctuations.
𝑈10 is wind speed at 10 m height, 𝑇𝑠 and 𝑇10 [K] are the surface water tem-
perature and the air temperature at 10 m height, respectively, 𝑞𝑠 and 𝑞10 [kg
kg-1] are the specific humidity at the air-water interface (estimated from surface
temperature) and at 10 m height, respectively. 𝑐𝑝 [J kg-1 K-1] is the specific heat
of air at constant pressure, and 𝐿𝑣 [J kg-1] is the latent heat of vaporization.
𝑇∗ = −𝑤′𝑇 ′

𝑢∗
and 𝑞∗ = −𝑤′𝑞′

𝑢∗
are temperature and specific humidity scales, re-

spectively. The standard sign convention is that the momentum flux is defined
as positive downward, while sensible and latent heat fluxes as positive upward
(Kaimal & Finnigan, 1994). Using measured flux data from the obtained EC
datasets, the transfer coefficients can be derived from Eq. (1a-c) as follows:

𝐶𝐷 = 𝑢2
∗

𝑈2
10

, (2a)

𝐶𝐻 = 𝑤′𝑇 ′
𝑈10(𝑇𝑠−𝑇10) , (2b)

𝐶𝐸 = 𝑤′𝑞′
𝑈10(𝑞𝑠−𝑞10) . (2c)
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Wind speed, air temperature (𝑇𝑧) and specific humidity (𝑞𝑧) measured at a
certain height 𝑧 were converted to a standard height of 10 m considering stability
of the atmosphere following the equations:

𝑈10 = 𝑈𝑧 − 𝑢∗
𝜅 [ln ( 𝑧

10 ) − 𝜓𝑢 ( 𝑧
𝐿 ) + 𝜓𝑢 ( 10

𝐿 )] , (3a)

𝑇10 = 𝑇𝑧 − 𝑇∗
𝜅 [ln ( 𝑧

10 ) − 𝜓𝑇 ( 𝑧
𝐿 ) + 𝜓𝑇 ( 10

𝐿 )] , (3b)
𝑞10 = 𝑞𝑧 − 𝑞∗

𝜅 [ln ( 𝑧
10 ) − 𝜓𝑇 ( 𝑧

𝐿 ) + 𝜓𝑇 ( 10
𝐿 )] , (3c)

where 𝜅 is the von Kármán constant, 𝐿 [m] is the Obukhov length, 𝜓𝑢 ( 𝑧
𝐿 ) is

the stability function which is the integral of the empirical universal function
for the momentum flux and 𝜓𝑇 ( 𝑧

𝐿 ) – the same for sensible and latent heat
(Businger et al., 1971). In the literature, 𝑧/𝐿 is usually denoted as the non-
dimensional stability parameter 𝜁. To remove the effect of atmospheric stability
on the magnitude of the transfer coefficients, 𝐶𝐷, 𝐶𝐻 , 𝐶𝐸 are converted to their
neutral counterparts 𝐶DN, 𝐶HN, 𝐶EN (i.e. for neutrally-stratified atmospheric
conditions) (Large & Pond, 1981):

𝐶DN = 𝜅2 [ln ( 10
𝑧0

)]−2 = 𝐶𝐷 [1 + 𝜅−1 𝐶
1
2
𝐷𝜓𝑢 ( 10

𝐿 )]
−2

, (4a)

𝐶HN = 𝐶𝐷 [1 + 𝜅−1 𝐶
1
2
𝐷𝜓𝑢 ( 10

𝐿 )]
−1

[ 𝐶𝐷
𝐶𝐻

+ 𝜅−1 𝐶
1
2
𝐷𝜓𝑇 ( 10

𝐿 )]
−1

, (4b)

𝐶EN = 𝐶𝐷 [1 + 𝜅−1 𝐶
1
2
𝐷𝜓𝑢 ( 10

𝐿 )]
−1

[ 𝐶𝐷
𝐶𝐸

+ 𝜅−1 𝐶
1
2
𝐷𝜓𝑇 ( 10

𝐿 )]
−1

, (4c)

where 𝑧0is the surface roughness length. For our calculations, we used the
Kansas-type stability functions (Businger et al., 1971) in the form of Högström
(1988), which is the most frequently applied form (Foken, 2008). 𝐶DN, 𝐶HN, 𝐶EN
were estimated for 31, 24, 23 water bodies under study, respectively, depending
on the flux data availability (see details about each lake or reservoir in Table S1
and in data repository 10.5281/zenodo.6597829). After calculation of 𝐶𝐻 , 𝐶𝐸
(Eq. 2b-2c), we removed negative values that were a result of the inconsistency
between sign of the measured flux and the temperature difference (probably
related to the measurements random uncertainty).

In the scientific community, there has been an ongoing discussion on the form of
the transfer coefficients to be presented. For example, some studies focused only
on neutral values of the drag coefficient (Li et al., 2016) or some considered the
drag coefficient non-adjusted to their neutral counterpart (𝐶𝐷). Other studies
addressed the so-called “effective” drag coefficient, which was derived as the
slope coefficient for the linear relationship between 𝑢2

∗ and 𝑈2
10 (Xiao et al.,

2013). We examine the difference between 𝐶𝐷, 𝐶𝐻 , 𝐶𝐸 and 𝐶DN, 𝐶HN, 𝐶EN in
Section 3.1.

2.4. Parametrizations of the drag coefficient at low and high wind speeds
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2.4.1. Smooth flow

Previous studies focused on the parameterizations of surface roughness length
𝑧0 (see Eq. 4a) to assess wind speed dependence of the drag coefficient (e.g.,
Ataktürk & Katsaros (1999). In our study, we compared 𝐶DN estimated from
measured momentum fluxes with the existing approaches. One of the approaches
is based on the smooth flow regime at low wind speed (< 3 m s-1), where the
thickness of the viscous sublayer (𝛿𝜈) determines the aerodynamic roughness of
the interface (Schlichting, 1968), and not the physical roughness of the water
surface:

𝛿𝜈 = 𝑧0 = 𝛼 𝜈
𝑢∗

, (5)

where 𝛼 = 0.11 and 𝜈 = 1.6 × 10−5 [m2 s-1] is kinematic viscosity of air. 𝑧0 can
be derived from Eq. 4a as:

𝑧0 = 𝑧 exp(− 𝜅
√𝐶DN

) . (6)

Substituting Eq. 6 into Eq. 5, replacing 𝑢∗ = √𝐶DN𝑈10 and taking the stan-
dard height as z = 10 m, we obtain the following expression for smooth flow
approach:

1
√𝐶𝐷𝑁_𝑆𝐹

= 1
𝜅 ln( 𝑧√𝐶𝐷𝑁_𝑆𝐹 𝑈10

𝜈 ) − 1
𝜅 ln(𝛼), (7)

We used measured values of 𝑈10 as input and solved Eq. 7 iteratively for
𝐶𝐷𝑁_𝑆𝐹 .

2.4.2. Capillary waves

As an alternative method to estimate 𝐶DN at low wind speeds, we considered
the approach proposed by Wu (1994). He suggested that the wind shear stress
in the absence of large gravity waves is related to the ripples (capillary waves).
For the capillary waves, the roughness length is related to surface tension (�) as:

𝑧0 = 𝛼Wu
𝜎

𝜌𝑤𝑢2∗
, (8)

where �Wu = 0.18 is an empirical constant and 𝜌𝑤 is water density. Surface
tension at a temperature of 20°C is � = 7.28⋅10-2 N m-1. In analogy to the
smooth flow approach, substitution of Eq. 6 to Eq. 8 and replacement of 𝑢∗
leads to the expression:
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1
√𝐶𝐷𝑁_𝐶𝑊

= 1
𝜅 ln( 𝑧𝜌𝑤𝐶𝐷𝑁_𝐶𝑊 𝑈2

10
w� ) , (9)

Eq. 9 was solved iteratively for 𝐶𝐷𝑁_𝐶𝑊 using wind speeds U10 from the data
sets and z = 10 m.

2.4.3. Charnock relationship

With increasing wind speed, the thickness of the viscous sublayer becomes
smaller, and the aerodynamic roughness of the water surface (𝑧0) becomes
minimal, before surface gravity waves evolve. At wind speeds exceeding 3 m
s-1, waves protrude from the viscous sublayer and surface roughness length in-
creases with increasing wind speed, indicating the transition from a smooth
to a rough flow regime. Charnock, (1955) proposed the following equation for
surface roughness length over fully developed surface waves, which account for
typical oceanic conditions:

𝑧0 = 𝛽 𝑢2
∗

𝑔 , (10)

where � ranges from 0.011 to 0.0185 (Garratt, 1994), 𝑔 is the gravitational ac-
celeration. Substitution of Eq. 6 into Eq. 10 leads to the following implicit
equations that was iteratively solved for 𝐶𝐷𝑁_𝐶𝐻 .

1
√𝐶𝐷𝑁_𝐶𝐻

= 1
𝜅 ln( gz

𝐶𝐷𝑁_𝐶𝐻𝑈2
10

) − 1
𝜅 ln(𝛽). (11)

2.4.4. The concept of gustiness

Grachev et al., (1998) suggested that under strong convective conditions, the
wind stress at the water surface is predominantly governed by random convective
motions - gusts - in the convective boundary layer (CBL), whereas the mean
wind speed vector can even become zero (Godfrey & Beljaars, 1991). These large
convective eddies embrace the entire CBL and affect the turbulence regime in
the atmospheric surface layer. Grachev et al. (1998) formulated a new approach
to estimate the drag coefficient using this concept. According to their study, the
gustiness could explain the apparent increase of the drag coefficient estimated
using the traditional equation (Eq. 2a, 4a) at low wind speeds. The estimated
drag coefficient accounting for gusts was a factor of 1.5 to 6 smaller at wind
speeds below 2 m s-1 in comparison with the drag coefficient calculated from
Eq. 2a, 4a. The gustiness concept is widely accepted and used in the COARE
algorithm to estimate air-sea fluxes (Fairall et al., 2003).

The effect of gustiness on the drag coefficient can be accounted for by the so-
called gustiness factor 𝐺, which corresponds to the ratio of the scalar-averaged
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(𝑈10) to vector-averaged wind speed. Following (Grachev et al., 1998), 𝐺 can
be parameterization in terms of the convective velocity scale 𝑤∗:

𝐺2 = 𝑈2
10

𝑈2
10

= 1 + ( 𝛾𝑤∗
𝑈10

)2 , (12)

where 𝛾 = 1.2 is an empirical constant (Beljaars, 1995) and 𝑤∗ is expressed as:

𝑤∗ = (𝑔𝑧𝑖
𝑤′𝑇 ′

𝑣
𝑇𝑣

)
1/3

, (13)

where, 𝑇𝑣 [K] is the virtual temperature, 𝑧𝑖 is the CBL height, defined as the
height of the lowest inversion. Previous studies used the fixed height of the
CBL equal to 1000 m (Beljaars, 1995). We denote two corresponding types
of gustiness factor as 𝐺wind and 𝐺conv.The new relationship between neutral
gustiness drag coefficient 𝐶DNG and its gustiness counterpart 𝐶DG is:

𝐶−1/2
DNG = 𝐶−1/2

DG + 𝜓𝑢( 𝑧
𝐿 )

𝜅 , (14)

where 𝐶DG = 𝐶DG/𝐺2 and 𝐶DG = ( �̃�∗
𝑈10

)
2
, where �̃�∗ is the scalar-averaged fric-

tion velocity. Akylas et al. (2003) investigated the combinations with different
averaging procedures and suggested that vector-averaged friction velocity 𝑢∗ is
more appropriate to use with scalar-averaged wind speed for all wind speed
classes. We applied this approach for cases with unstable atmosphere (𝜁 < 0)
using the stability functions described in Grachev et al. (1998).

3 Results

3.1. Transfer coefficients over lakes

Bulk transfer coefficients for neutral atmospheric stability 𝐶DN, 𝐶HN and 𝐶EN
(Eq. 4a-4c) were estimated using data from 23 lakes and 8 reservoirs (see data
availability details in Table in the data repository 10.5281/zenodo.6597829).
The transfer coefficients varied between the water bodies and differed on average
by a factor of 2-3 for wind speeds exceeding 3 m s-1. However, we identified three
water bodies for which the estimated drag coefficients (𝐶DN) were exceptionally
large at all wind speeds (up to a factor of five, Lake Quinghai, China, Nam
Theun 2 Reservoir, Laos), or exceptionally low (factor of four, Bol’shoi Vilyui
Lake, Russia), when compared to other water bodies with similar surface area.
These three water bodies contributed largely to the variability among systems
(Figure S4a shows the result without these three sites, Figure S5a shows the esti-
mates for individual water bodies). Similarly, Dalton numbers (𝐶EN) estimated
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from data measured at Lake Lunz (Austria) were a factor of three higher than
for other water bodies (Figure S5c). Stanton numbers (𝐶HN) calculated from
the dataset collected at Itaipu Reservoir (Brazil) were a factor of four lower than
other estimates. Most (90%) of the 𝐶HN estimates were removed by filtering
for low flux values at this reservoir. With only one of the peculiar data sets for
each of the two transfer coefficients, they did not affect the overall statistics for
𝐶HN and 𝐶EN. We did not find possible sources of errors and considered these
data as outliers. In the overall estimates and in the range of variability shown
in Figure 2a, we included the complete dataset.

All transfer coefficients showed a similar wind speed dependence (Figure 2a,b,c).
At high wind speeds (> 3 m s-1), 𝐶DN, 𝐶HN, 𝐶EN had relatively constant values
of 2·10-3, 1.5·10-3, 1.1·10-3, respectively. All transfer coefficients increased
towards the lowest wind speeds. The strongest increase was found for 𝐶DN,
which was one order of magnitude higher (2.3·10-2) at the lowest wind speed
(0.5 m s-1, the first bin) compared to values at higher wind speeds. A similar,
but less pronounced increase was observed for 𝐶HN and 𝐶EN: their values at the
lowest wind speed were 6.5·10-3 and 3.2·10-3, respectively. The mean ratio
of 𝐶HN to 𝐶EN is 1.4 and has its maximum value at low wind speeds and a
minimum of 1.2 at wind speeds of 3.5-6.5 m s-1 (Figure 3).

Unstable atmospheric conditions (𝜁 < 0) prevailed over all water bodies, partic-
ular during the evening and at night time, when > 80% of all data were obtained
under unstable conditions (Figure 2d). Stable atmospheric conditions occurred
most frequent during the day (12-19 hours). In addition, we estimated the per-
centage of time when the wind speed was less than 3 m s-1 (Figure 2e). Low
wind speed conditions prevailed slightly during the evening and at night, when
the atmosphere was mostly unstable. This means that the significant increase
of the transfer coefficients at low wind speeds frequently coincides with unstable
atmospheric conditions, when the water is still warm and the atmosphere starts
cooling at the end of the day.

To analyze the effect of atmospheric stability on the transfer coefficients, we
compared the transfer coefficients (𝐶𝐷, 𝐶𝐻 , 𝐶𝐸, Eq. 2a-2c) with their neutral
counterparts (𝐶DN, 𝐶HN, 𝐶EN, Eq. 4a-4c, Figure S6). We found that atmo-
spheric stability did not significantly affect the values of 𝐶𝐷, 𝐶𝐻 and 𝐶𝐸 at
wind speeds exceeding 3 m s-1: their values were in close agreement with 𝐶DN,
𝐶HN and 𝐶EN. However, it is evident that at low wind speeds (0-2 m s-1) these
transfer coefficients under in-situ conditions were systematically higher (up to
a factor of 2-3) than their neutral counterparts 𝐶DN, 𝐶HN and 𝐶EN.

Estimation of 𝐶𝐻 and 𝐶𝐸 (Eq. 2b, 2c and Eq. 4b,4c) involves water surface
temperature, for which the skin temperature is the most appropriate measure.
However, these measurements were not available for some sites. Instead, we used
water temperature measured at some depth (often varying between 0 and 0.5
m between datasets). We compared three types of calculations of 𝐶𝐻 using two
subsets which use: (a) only skin temperature (b) only water temperature and
(c) the total dataset which includes both types of temperature measurements
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(Figure S4b). 𝐶HN estimated with water temperature tends to be slightly lower
than the estimates using skin temperature (the percentage difference is approx-
imately 10%). As a result, we presented 𝐶𝐻 and 𝐶𝐸 (Figure 2b,c) calculated
using all available data, independent of how water surface temperature was mea-
sured. When both the skin and water temperatures were available for one site,
the skin temperature was used.

Figure 2. Neutral (a) drag coefficient (𝐶DN), (b) Stanton number (heat transfer coefficient, 𝐶HN), (c) Dalton number (water vapor transfer coefficient, 𝐶EN) versus wind speed at 10 m height. The estimated transfer coefficients (black line with circles) were logarithmically bin-averaged (0.5 m s-1) for each individual lake/reservoir and then averaged over the data of all sites. The shaded grey area indicates the variability among water bodies by marking the range from the 5th to the 95th percentiles. The small inset in (a) shows the data beyond the scale. Vertical and horizontal black dashed lines mark a constant wind speed of 3 m s-1 and typical values of 𝐶DN 𝐶HN = 𝐶EN 1.3·10-3, 1.1·10-3, respectively. Colored lines show the results from previous studies: LK, brown line – Lake Kasumigaura, Japan (eddy covariance, (Wei et al., 2016)); LN, red line – Lake Neuchâtel, Switzerland (dissipation method, (Simon, 1997)); LG, pink line – nearshore site at Lake Geneva, Switzerland (wind profile method, (Graf et al., 1984)); RG, light orange color – Reservoir Gorkiy, Russia (wind profile method, (Kuznetsova et al., 2016)); OO, dark green color – open ocean (eddy covariance, (Large & Pond, 1981)); OO, light green color – open ocean (eddy covariance, (Fairall et al., 2003)); CO, dark yellow color – coastal ocean at limited fetch conditions (eddy covariance, (Lin et al., 2002)). (d) Mean diel pattern of the percentage of time periods with unstable atmospheric conditions (stability parameter 𝜁 < 0). (e) Mean diel pattern of the percentage of time with low wind speed (< 3 m s-1). The red and black lines in (d) and (e) show the mean value and the shaded area shows ± standard deviation of all data.

15



Figure 3. Ratio of bin-averaged 𝐶HN to 𝐶EN estimated for each individual dataset (21 water bodies, shown by grey lines). Black line with circles shows the bin average between all datasets. Horizontal dashed black line shows ratio of 1:1.

3.2. Parametrizations of the drag coefficient

We examined the possible mechanisms (Eq. 7, 9, Section 2.4) that could ex-
plain the increase of the drag coefficient at low wind speeds and we tested the
Charnock relationship (Eq. 11), which describes its wind speed dependence
at high wind speeds (Figure 4a). It is evident that our estimates of 𝐶DN at
wind speeds exceeding 3 m s-1 were higher (around factor of two) than the that
predicted by the model proposed by Charnock, (1955).

The discrepancy between the EC-derived 𝐶DN and theoretical models from the
literature showed that neither the concept of smooth flow, nor the consideration
of capillary wave roughness could explain the sharp increase of 𝐶DN at low
wind speeds (Figure 4a). We found that the function describing the wind speed
dependence of the drag coefficient proposed by Liu et al. (2020) based on
EC measurements over terrestrial surfaces (𝐶DN = 𝑏1 [1 + 𝑏2 exp(𝑏3𝑈10)]) could
successfully describe the relationship over all lakes (Figure 3a). In a similar way,
we applied this empirically derived function to 𝐶HN and 𝐶EN estimates (Figure
S7). The fitted coefficients for our data are provided in Table 1.

The concept of gustiness was proven to be relevant for the drag coefficient at
low wind speeds at least in the marine environment (Section 2.4.4). We consid-
ered this alternative approach to estimate the drag coefficient using one dataset
collected in Lake Suwa, Japan, for which scalar averaged wind speeds could be
calculated in addition to the commonly provided vector averaged wind speeds
(Figure 4b). We calculated the drag coefficient considering gustiness (𝐶DNG , Eq.
14) using the gustiness factor derived from both types of wind speeds (𝐺wind),
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and from the parametrization using the convective velocity scale (𝐺conv) for
unstable atmospheric conditions and used 𝐶DN (Eq. 3a) for stable conditions.
At wind speeds less than 3 m s-1 𝐶DN was on average a factor of 1.3 higher
than 𝐶DNG (when using 𝐺wind). The ratio reached its maximum of 1.9 at the
lowest wind speed (0-0.5 m s-1). The ratio of 𝐶DN to 𝐶DNG estimated using
𝐺conv was approximately a factor of 1.2 higher than the one that was estimated
using 𝐺wind.

Table 1. Coefficients for the empirical function 𝐶 = 𝑏1 [1 + 𝑏2 exp(𝑏3𝑈10)] (Liu et al., 2020)), describing the wind speed dependence of the bulk transfer coefficients of momentum (𝐶DN), heat (𝐶HN), and water vapor (𝐶EN). The coefficients were obtained from least-square fits of the function to the bin-averaged data shown in Fig. 3a to c.
b1 b2 b3

𝐶DN 2·10-3 22.6 -1.6
𝐶HN 1.5·10-3 8.8 -2
𝐶EN 1.1·10-3 5.5 -2.1

Figure 4. (a) Bin-averaged 𝐶DN versus 𝑈10. Black line with symbols (L&R): 𝐶DN obtained from EC measurements over lakes and reservoirs. Red, blue and green lines correspond to three parametrizations of 𝐶DN: smooth flow approach (Eq. 7), approach considering capillary waves (Eq. 9), and Charnock relationship (Eq. 11). The dark yellow line shows the function 𝐶DN = 𝑏1 [1 + 𝑏2 exp(𝑏3𝑈10)] proposed by Liu et al., (2020) with the fitted coefficients b1 = 2·10-3; b2 = 22.6; b3 = -1.6. The grey shaded area marks the range between the 5th and 95th percentiles. Vertical (also in (b)) and horizontal black dashed lines show constant wind speed of 3 m s-1 and typical value of 𝐶DN of 1.3·10-3, respectively. (b) Ratio of 𝐶DN to 𝐶DNG versus 𝑈10 for Lake Suwa (Japan): black solid line - reported in (Grachev et al., 1998), blue and red lines with circles correspond to 𝐶DNG estimated using the concept of gustiness with different gustiness factors 𝐺: 𝐺wind and 𝐺conv (see definition in Section 2.4.4). Horizontal dashed black line shows ratio of 1:1.

3.3. Dependence of the bulk transfer coefficients on the lake characteristics

We examined the dependencies of the bulk transfer coefficients on lake charac-
teristics, including the maximum and average water depth, water depth at the
measurement site, maximum and average wind fetch, and water surface area.
As the transfer coefficients at high wind speeds were relatively constant, we first
analyzed effects of lake characteristics on the mean values of the transfer coef-
ficients for wind speeds exceeding 3 m s-1 estimated for each individual water
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body.

We found that the mean 𝐶DN decreased significantly (Pearson correlation co-
efficient r = -0.5, p-value < 0.05) with increasing lake surface area and with
increasing mean and maximum fetch (Figure 5a, 5b and Figure S8a). These rela-
tionships could be expressed as power law dependencies (𝑦 = 𝑥𝐴 exp (B ln 10),
where 𝐴 and B are the slope and intercept of the linear regression log10 𝑦 =
𝐴 log10 𝑥 + 𝐵) with exponents of -0.07 and -0.16, -0.12, respectively. Most
variability in 𝐶DN was found to be explained by the lake surface area (for log-
transformed data the coefficient of determination was R2 = 0.3). The correlation
between 𝐶DN and mean fetch was slightly higher than for maximum fetch (-0.5
versus -0.4). A principal component analysis revealed that lake surface area has
a largest predictive power (Figure S9). We did not find a significant correlation
(r ~ -0.2, p-value > 0.05) between the mean 𝐶HN, 𝐶EN and surface area, mean,
and maximum fetch, the stronger correlation could be found when considering
data at fixed wind speeds. Significant correlation was found between 𝐶EN and
the surface area at fixed wind speed of 6 m s-1 (Figure 5g). In addition, there
was weak negative correlation with mean and maximum fetch (r ~ -0.4, Figure
5h and Figure S8g).

Using the principal component analysis, we identified that there was no signif-
icant correlation of the averaged transfer coefficients at high wind speeds with
maximum, average or local water depth (Figure 5c,f,i, Figure S8, S9). We used
the exponential dependence from Panin et al. (2006) to compare with our re-
sults. However, we did not have sufficient sites with larger depth to confirm any
dependence.

At low wind speeds (< 3 m s-1), the transfer coefficients were strongly wind speed
dependent (Figure 2a,b,c) and their relationships with lake characteristics are
examined separately for each different wind speed interval. Here we found that
𝐶DN and 𝐶HN significantly increased with increasing water surface area for wind
speeds between 0.5 m s-1 and 2 m s-1. At higher wind speeds these correlations
become negative, as in the analysis for wind speed > 3 m s-1 presented above.
As an example, we show the transfer coefficients for a wind speed of 1 m s-1 in
Figure S10. Significant correlation (r ~ 0.5) (and its decreasing towards high
wind speeds) could also be observed between 𝐶DN, 𝐶DN and mean and maximum
fetch (data not shown). At the same time, we found significant correlations of all
three transfer coefficients with measurement height at low wind speeds, which
was not present at high wind speeds (Figure S10d-f).

As a final step, we looked at the possible relationship between the averaged
wind speed (estimated over entire time series for each individual water body)
and surface area. We found a significant correlation between them in a double-
logarithmic domain (r = 0.5, p-value < 0.05, Figure S11), resulting in a power-
law dependence 𝑈10 = 𝐴0.05

𝑠 exp (0.5 ln 10).
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Figure 5. Neutral transfer coefficients (a, b, c) 𝐶DN; (d, e, f) 𝐶HN; (g, h, i) 𝐶EN versus surface area of the water body, mean fetch length, and water depth at the measurement site. Panels (a), (c), (f), (i) show the mean transfer coefficients for wind speeds exceeding 3 m s-1 for each individual water body. Panels (d), (e), (g), (h) show the mean transfer coefficients at a fixed wind speed of 6 m s-1 (shown as text “WS = 6 m s-1”). The red lines show the linear regressions of log-transformed transfer coefficients (log10 𝑦 = 𝐴 log10 𝑥 + 𝐵). The corresponding slope and intercept as well as the Pearson correlation coefficient (r) and p-value are provided in the upper left corner of each panel. The three red symbols in (a), (b) mark the data from Lake Quinghai, Nam Theun 2 Reservoir and Bol’shoi Vilyui Lake, which were not considered for linear regression analysis and the Pearson correlation for the drag coefficient. Blue, green and dark yellow lines show results from previous studies by (Woolway et al., 2017; Panin et al., 2006; Harbeck, 1962), respectively.

4 Discussion

4.1. Bulk transfer coefficients estimated for lakes and reservoirs

We examined the bulk transfer coefficients describing the transport of momen-
tum, heat and water vapor at the water surface estimated based on EC data
collected at 23 lakes and 8 reservoirs of different size, depth, and location. All
transfer coefficients tended to increase towards low wind speeds and remained
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relatively constant at wind speeds exceeding 3 m s-1. This increase was reported
in previous studies for lakes (see, e.g., Wei et al., 2016; Xiao et al., 2013) and
has been extensively investigated but has remained unexplained up to now. The
lower bound for 𝐶DN, 𝐶HN, 𝐶EN among the water bodies at high wind speeds
were within the range reported by previous studies – either for large lakes (>
200 km2, (Kuznetsova et al., 2016; Wei et al., 2016)) or for the marine environ-
ment: classical open ocean measurements (Fairall et al., 2003; Large & Pond,
1981) and coastal ocean sites under fetch-limited conditions (Lin et al., 2002).
Indeed, we also considered large lakes (Figure 1b) that were expected to have
the smallest drag coefficient as they had the largest fetch (e.g., Lake Erie, Lake
Taihu, Lake Balaton). The mean 𝐶DN for winds exceeding 3 m s-1 was equal
to 2·10-3 and this value corresponded to an upper bound for the water surface
roughness (0.001 m) reported by Foken (2008), but was a factor of two higher
than the values reported for oceans and large lakes or reservoirs (Large & Pond,
1981; Fairall et al., 2003). While 𝐶HN and 𝐶EN are commonly assumed to be
equal, we found that 𝐶HN was on average by a factor of 1.4 higher than 𝐶EN
(averaged over all wind speeds and all water bodies under study). The finding
of 𝐶HN being higher than 𝐶EN confirmed the results reported by, e.g., (Wei
et al., 2016; Dias & Vissotto, 2017). The mean value of 𝐶EN for high wind
speeds (1.1·10-3) was found to be the same as in (Kantha & Clayson, 2000),
but 𝐶HN was larger (1.5·10-3) as in (Harbeck, 1962; Hicks, 1972). The fact
that 𝐶HN > 𝐶EN may have significant implications, because it results in biased
estimates of lake evaporation based on the energy-budget Bowen ratio method.

Values of 𝐶DN varied considerably depending on the type of measurements used
for its estimation. For example, in (Simon, 1997) 𝐶DN was calculated from the
dissipation rate measured at the water side for relatively large Lake Neuchâ-
tel (218 km2, Switzerland). 𝐶DN was significantly lower than our estimates
(factor of ten) and the estimates from lakes or marine measurements (factor of
five). However, these estimates also confirmed the increase of 𝐶DN at low wind
speeds. 𝐶DN at high wind speeds calculated from the wind profile method at
the nearshore site in Lake Geneva (Graf et al., 1984) was in close agreement
with our estimates. The strong increase of 𝐶DN, 𝐶HN, 𝐶EN at low wind speeds
was similar to the one observed for a large lake with the same EC method of
estimation the surface fluxes (Wei et al., 2016), but it was not supported by
measurements in the marine environment.

4.2. Bulk transfer coefficients at high winds

The estimated 𝐶DN at high wind speeds was higher than predicted by Charnock
relationship. This result was expected as Charnock relationship is based on the
assumption that the water surface roughness is controlled by fully developed
surface gravity waves. This may not be the case for many lakes, where wave
generation is fetch-limited (e.g., overview in (Ataktürk & Katsaros, 1999)). We
could attribute this difference to the lake surface area and the average and max-
imum wind fetch at the measurement location. To support this, we found that
the 𝐶DN, 𝐶HN and 𝐶EN were highest in small water bodies and decreased with
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increasing surface area and fetch lengths for wind speeds exceeding 3 m s-1. As
approximately half of the water bodies under study are relatively small (surface
area < 10 km2), our data indicated that they contributed disproportional to
the higher transfer coefficients. For large lakes, the transfer coefficients at high
wind speed tended to be lower and closer to the values reported in previous stud-
ies and predicted by Charnock relationship. At these higher wind speed, the
surface gravity waves could potentially reach the fully developed state in large
water bodies. We found a significant correlation between 𝐶DN, 𝐶EN and the lake
surface area. The resulting 𝐶EN dependence on surface area with the power of
-0.05 confirmed the findings of previous studies (Harbeck, 1962; Brutsaert &
Yeh, 1970). However, the values of 𝐶EN in our analysis were approximately a
factor of two lower. Our results could not confirm a bilinear decrease of 𝐶DN
with increasing lake size with a weaker dependence for large lakes, as estimated
by Woolway et al. (2017) (Figure 6a). The difference between the relationship
of 𝐶DN with lake surface area reported in Woolway et al. (2017) could be at-
tributed to fact, that they estimated the transfer coefficients from measurements
of mean wind speed by applying the parameterizations of surface roughness for
smooth flow (Eq. 5) and Charnock relationship (Eq. 10). Nevertheless, the
power dependence for lakes with surface area < 1 km2 (Woolway et al., 2017)
looked similar to the one we observed (power of -0.07) for all lakes and reser-
voirs, suggesting that it could be generalized to many water bodies. In contrast
to the results reported in (Panin et al., 2006), we did not find evidence for the
existence of an influence of water depth on the bulk transfer coefficients.

4.3. Bulk transfer coefficients at low winds

Low wind speeds are typical conditions for lakes (Woolway et al., 2018), es-
pecially for smaller ones (Figure S10), which are most abundant by number
(Downing et al., 2006). The most pronounced increase in bulk transfer coeffi-
cients at low wind speed was observed for 𝐶DN, which was up to one order of
magnitude higher at low wind speeds compared to its value at high wind speeds.
We found less pronounced increases of 𝐶EN and 𝐶EN but their values at low
wind speed can be larger up to factor of six and three, respectively, in compari-
son to their constant values at high winds. Periods with low wind speeds mostly
corresponded to periods with unstable atmospheric conditions or enhanced con-
vective transport, which is the most prevailing condition for all studied lakes
during the ice-free period (Read et al., 2012; Woolway et al., 2017).

None of the tested approaches, including smooth flow and capillary wave
parametrizations, could explain the strong increase for 𝐶DN at low wind
speeds. While Wei et al., (2016) suggested that the contribution of gusts
(different formulation of the 𝐶DN) was not significant in their dataset, we
found that the increase is partially attributed to the way of the calculation
of 𝐶DN. Different formulation involving the gustiness factor (𝐺wind) could
reduce the values of 𝐶DN up to a factor of two at wind speeds of 0.5 m s-1.
The two different estimates of the gustiness factor (𝐺wind and 𝐺conv) should
have given similar results, if the correct height of the convective boundary
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layer was used. However, our estimates of 𝐶DNG using 𝐺conv were higher than
𝐶DNG using 𝐺wind, which we consider as a reference. This may indicate that
a fixed CBL height of 1000 m was incorrect and should have smaller values.
According to Oke (1987) and Stull (1988) the CBL starts to grow during the
daytime, when the ground warms the atmosphere. The observed increase of
𝐶DN corresponded to the data during evening and night hours, when unstable
atmospheric conditions in the surface layer above water were dominant (Figure
3d, e). While the land starts cooling and the atmosphere becomes stable in
regular daily cycle, the thermal internal boundary layer (TIBL), several tens
of meters thick (Glazunov & Stepanenko, 2015), may grow above the lakes
at this time. The TIBL develops due to the temperature difference between
land and water. Above this layer (as well as stable layer above the land),
there still could be the residual layer which is left from the CBL during the
day. Thus, large convective eddies may entrain this air from the residual layer.
Tests with the CBL height of 10 m (not shown) led to much lower values of
𝐶DNG (approximately a factor of two) compared to the reference. It remains
unclear which CBL height should be used for a correct parameterization of
𝐶DNG, if the scalar-averaged wind speed is not available.

The wind speed dependence of the bulk transfer coefficients (especially at low
winds), could be well described by an empirical function that was originally
proposed for the land surface (Liu et al., 2020). This suggests that similar
physical processes control the increase in transfer coefficients at low winds, which
are independent of the specific roughness conditions of water surfaces. We
suggest that the reason for this increase to some extent was a contribution of
large convective eddies or non-local effects as described in Liu et al. (2020) and
other closely related studies (Read et al., 2012; Sahlée et al., 2014; Ala-Könni
et al., 2021).

Unexpectedly, we found that the transfer coefficients (𝐶DN and 𝐶HN) signif-
icantly increase with increasing lake surface area, mean and maximum wind
fetch for wind speeds less than 2 m s-1. This result is counterintuitive, because
at low winds we did not expect a dependence on lake surface area or fetch, as it
should only be important for the development of surface waves, which appears
to be only around the wind speed of 3 m s-1 (Simon, 1997; Guseva et al., 2021).
It may be related to the development of the TIBL above lakes but the potential
mechanism remains unknown. At the same time, we found the significant pos-
itive correlation between the transfer coefficients and the measurement height,
which was also unexpected. This finding could be a result of the measurement
limitations and it could potentially attribute to the increase of the bulk trans-
fer coefficients at low wind speeds. These issues require a separate detailed
investigation.

4.4. Study limitations

The estimated bulk transfer coefficients show large scatter, even after filtering
the data. The scatter is particularly high at light winds, i.e., in the first three
to four wind speed intervals used for bin-averaging (0.5 – 2 m s-1). It could
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be associated with limitations of the EC measurements, namely, the validity
of the underlying assumptions, including the homogeneity and stationarity of
the flow, as well as by increasing random errors. As there are no common
thresholds, for example, for the removal of low flux values, and the quality
check of the EC results is very specific to each site, these effects may not have
been removed completely by data filtering. In our case, applying the filter with
low fluxes led to increase in transfer coefficients at low wind speeds (0-0.5 m
s−1) up to a factor of 1.6 which was a largest impact on the data among other
filters (Text S1). However, the most recent study (Ala-Könni et al., 2021) argue
that these thresholds for fluxes are not very important for the data quality
filtering. Moreover, our estimates of 𝐶DN differ from former results obtained
using different types of measurements, such as water-side energy dissipation
rates (Figure 3a, e.g., (Simon, 1997)). Thus, the combination of water- and
air side measurements could be beneficial for further investigation of the bulk
transfer coefficients.

Hwang (2004) suggested that the standard height of 10 m at which the transfer
coefficients are reported is inappropriate for analyzing 𝐶DN and its dependence
on surface roughness under wave conditions. They argue that the only relevant
parameter that could serve as a reference height is the wavelength that describes
the decay rate of the waves with the distance from the water surface. The
adjustment of the transfer coefficients to 10 m height may not be very relevant
for lakes and reservoirs and the flux measurements at two different heights should
be considered in future measurements. These measurements would additionally
provide confirmation for the existence of a constant flux layer, which is another
important assumption underlying EC measurements.

4.5. Broader implications

Bulk transfer coefficients are usually applied in numerical models for the atmo-
spheric boundary layer, as well as in hydrodynamic models of lakes and reser-
voirs. Currently, the global modeling studies focusing on the lake mixing and
phytoplankton blooms for climate change predictions use constant coefficients,
including 𝐶DN (Jöhnk et al., 2008; Read et al., 2014; Woolway & Merchant,
2019; Grant et al., 2021), or consider 𝐶DN as a tuning parameter of the models
(Stepanenko et al., 2014). Inadequate values of 𝐶DN result in biased estimates
of the current velocities in lake models (Chen et al., 2020). The increase of the
transfer coefficients at low wind speeds observed in our analysis can therefore
lead to significant errors, as these conditions are the most prevailing condi-
tions for lakes. The empirical parameterizations of the wind-speed dependence
of bulk transfer coefficients provided in Table 1 can potentially be applied in
modeling lake-atmosphere interactions and for more accurate estimation of the
surface fluxes. The dependence on the lake surface area is more complicated to
implement, as we observed contrary dependencies for low and high wind speeds.

We emphasize that the Bowen-ratio method, which is frequently used to estimate
evaporation may be biased given our finding that 𝐶HN > 𝐶EN. This finding
violates the assumption of their equality in the Bowen ratio energy budget and
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related methods, and implies larger (smaller) sensible heat (latent heat) fluxes
than those predicted under that assumption. Both the physical mechanisms
underlying their difference and the extent of the differences in the predicted
sensible and latent heat fluxes require further investigation.

In state-of-the-art weather and earth system models, lakes are included as sepa-
rate tiles in the model cells, where the surface fluxes over the tiles are computed
via Monin-Obukhov similarity scaling. The models provide constant meteorolog-
ical variables for each grid cell, which is a so-called blending height concept (von
Salzen et al., 1996). To use the bulk transfer coefficients derived in this study
to compute fluxes, specific values of wind, temperature and humidity over lakes
should be used, which can be obtained in generalization of the tile approach,
involving the parameterization of internal boundary layers over contrasting sur-
faces (Arola, 1999; Molod et al., 2003; de Vrese et al., 2016). MacKay (2019)
presents a specific example of such an approach developed for lakes and wind
speed only. Our results demonstrate a good potential of wind-gust concept
to explain the observed increase of bulk exchange coefficients under low winds.
However, direct incorporation of this concept in current weather models is not
feasible, as these models normally do not predict scalar-averaged wind speed.
A possibility to alleviate this obstacle is to replace the scalar-averaged wind
speed by another measure of wind speed variability, e.g., the square root of the
horizontal turbulent kinetic energy component (Castelli et al., 2005; Esau et al.,
2018), or to use a parameterization of the convective velocity scale. However,
the latter requires knowledge of the convective boundary layer height above the
lake, which is not well understood.

5 Conclusions

We were the first to analyze the bulk transfer coefficients of momentum, sensible
and latent heat from the directly measured surface fluxes above various lakes and
reservoirs. We observed a pronounced increase of the transfer coefficients at low
wind speeds (< 3 m s-1) and relatively constant values at high wind speeds (> 3
m s-1). At high wind speed, the estimated transfer coefficients generally agreed
with the results provided by previous studies for large lakes and oceans, yet the
Stanton number was systematically higher than the Dalton number by a factor
of 1.4, which has implications for the Bowen ratio method. At high wind speed,
the drag coefficient and the Dalton number decreased with increasing surface
area of the water body and with increasing fetch length, whereas the opposite
was found at low wind speed. The strong increase in the transfer coefficient at
low wind speed could not be explained by known mechanisms, including smooth
flow and capillary waves. However, it can be partly explained by the existence of
gusts under unstable atmospheric conditions, and potentially by additional non-
local effects. The bulk transfer coefficients at all wind speeds were well described
by an empirical function that has been proposed for the land surface. Using this
function could potentially improve the accuracy of the bulk parametrization of
surface fluxes in numerical models for lake hydrodynamics and atmospheric
dynamics. We underline the need for simultaneous measurements of waterside
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and airside turbulent fluxes in future investigations, as well as experimental
confirmation of the validity of the assumptions underlying eddy-covariance flux
measurements at low wind speed.
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Introduction  

In the supporting information, we include text S1, table S1 and figures S1-S11 which are 
referred to Section 2.1 “Eddy-covariance measurements”, Section 2.2 “Data filtering” and Section 
3 “Results”, respectively. Text S1 describes the effect of application different filters (Section 2.2) 
on the data. In particular, we selected two datasets from Lake Dagow and Lake Suwa which we 
consider representative for all other datasets. Moreover, in this text we explore different types 
of averaging over all datasets. Table S1 represents a short overview of the water bodies selected 
for the analysis and the data sources. Figures S1-S11 provide additional results related to the bulk 

transfer coefficients over lakes and reservoirs, known as drag coefficient (𝐶𝐷𝑁), Stanton number 

(𝐶𝐻𝑁) and Dalton number (𝐶𝐸𝑁). Figure S1 is a support for the fact that the drag coefficient at 
one individual bin (wind speed of 0.5 m s-1) has a log-normal distribution. In addition, it shows 
that different kinds of averaging of the drag coefficient do not significantly affect the results. 

Figure S2 demonstrates the effect of the data filtering on the values of 𝐶𝐷𝑁 for one particular 
dataset (as an example, Lake Dagow, Germany). Figure S3 explores the effect of removing 
measurements that were potentially affected by floating vegetation in Lake Suwa (Japan). Figure 

S4a shows 𝐶𝐷𝑁 versus wind speed at 10 m height for all lakes and reservoirs. Lake Quinghai 
(China), Nam Theun 2 Reservoir (Laos) and Bol’shoi Vilyui Lake (Russia) were removed as they 
showed much larger or lower values in comparison to other water bodies of similar size. We did 
not find a reasonable explanation for that. In comparison with Figure 2a, Figure S4a shows less 
variability between the lakes. Figure S4b explores the difference between the Stanton numbers 
considering various types of water surface temperature: the skin temperature, the water 
temperature at some arbitrary depth or the mixture of both. Figure S5 provides all estimates of 
the transfer coefficients for the water bodies where obvious outliers are included. Figure S6 helps 
to understand the effect of the atmospheric stability on the transfer coefficients at wind speeds 
below 3 m s-1. Figure S7 shows the fitting of the empirical function proposed for the 
measurements above the land for the Stanton and Dalton numbers. Figures S8, S10 demonstrate 
the relationship between the transfer coefficients and lake characteristics, including maximum 
fetch, maximum and mean water depth, and lake surface area. Figure S10 shows the dependence 
of the transfer coefficients on the measurement height. Figure S9 shows the results of a principal 

component analysis that was used to identify the possible relationship between 𝐶𝐷𝑁 and all 
predictors. Figure S11 provides evidence for the increase of the averaged wind speed with the 
increase of the lake surface area. 
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Text S1. Effect of data filtering and data averaging 
Before analyzing the transfer coefficients for the combined datasets, we looked at data 

for each individual lake or reservoir. As a first step, we analyzed the dependence of the drag 
coefficient on 𝑈10. It was apparent that the drag coefficients 𝐶𝐷 (Eq. 2a) within individual wind 
speed intervals (0.5 m s-1 bin size) were nearly log-normally distributed. The Shapiro-Wilk test for 
logarithmically transformed data confirmed a normal distribution at a standard significance level 
of 0.05 for most of the bins (the example for one individual bin is shown for Lake Balaton, Hungary 
Figure S1a). The normalization of the drag coefficient to neutral atmospheric stability (𝐶𝐷𝑁) 
produced outliers (mainly for stable conditions), which affected the test results, but the 
distribution was still near log-normal. For our analysis, we consider bin-averaging of log-
transformed data as an adequate measure to quantify the relation between the drag coefficient 
and wind speed. Some previous studies reported the median values of the drag coefficient 
(DeCosmo et al., 1996; Fairall et al., 2003), which are almost identical to the log-averaged values.  

As there was no widely accepted way of presenting the transfer coefficients and their 
dependence on wind speed, we tested several statistical metrics. At first, we considered two types 
of representation of the transfer coefficients: the first way was to combine the data from all water 
bodies in each bin to estimate the mean value, logarithmic mean and median values. In the second 
approach, we calculated the same metrics but for already logarithmically bin averaged 𝐶𝐷𝑁 for 
each lake or reservoir. We did not consider arithmetic mean for the first method as the outliers 
strongly affected it. We found that the choice of other statistical metrics was not important due 
to the fact that, for example, the average percentage difference between the median of the first 
method (resulted in the lowest values of 𝐶𝐷𝑁) and the standard mean of the second method 
(resulted in the highest values of 𝐶𝐷𝑁) was around 20% (Figure S1b). We consider the second 
method and the logarithmic mean for further analysis as we observed near logarithmic 
distribution of the data in each bin.  

To demonstrate the effect of data filtering (Section 2.2), we examined the longest dataset 
available to us, collected at the Lake Dagow site (Figure S2). The effects of applying the filters 
described below were nearly identical for any other dataset. Without any filtering, 𝐶𝐷𝑁 is 
characterized by large scatter, particularly, at low wind speeds (< 4 m s-1) (Figure S2a). 3% of these 
data has been discarded after applying the quality check flags for unacceptable data. Removing 
wind directions (< 60o; > 90o and < 210; > 270o, see Table S1), considering the elongated shape of 
the lake, resulted in a slight decrease of the bin-averaged 𝐶𝐷𝑁, except for the highest wind speed 
of 10 m s-1 (however, less data in bins were available there). A similar effect could be observed 
when the periods with ice cover were removed (Figure S2d). The bin-averaged 𝐶𝐷𝑁 appeared to 
be unaffected by removal of events with precipitation (Figure S2e). Removing data with  𝑢∗ <
0.05 m s-1 resulted in increase of the bin-averaged 𝐶𝐷𝑁 at low wind speeds. In the case of Lake 
Dagow, 𝐶𝐷𝑁 for the first bin (𝑈10 = 0-0.5 m s−1) was a factor of 1.6 higher in comparison to 𝐶𝐷𝑁 
without the 𝑢∗ filter (Figure S2f). This selected threshold for the 𝑢∗ filter is reported in literature, 
but is considered as arbitrary. Higher and lower values of this threshold result in higher and lower 
𝐶𝐷𝑁 at low wind speeds. Following common practice, we applied the threshold of 0.05 m s-1 in the 
following analysis for all datasets. In general, the resulting filtered bin-averaged 𝐶𝐷𝑁 increased 
with decreasing wind speed at low wind speeds and remained at a relatively constant value of 
3·10-3 at wind speeds exceeding 3 m s-1 with a very slight increase at 9-10 m s-1.  

For their analysis, Andreas et al. (2005) and Li et al. (2016) removed the data with 
“unreasonable” values of the surface roughness length (e.g., 𝑧0 > 0.3 m). We tested this criterion 
using our data (Figure S2g). While at high wind speeds (> 3 m s-1) an increased surface roughness 
length could be attributed to the increasing height of the surface gravity waves, potential 
mechanism causing large roughness at low wind speed (e.g., 𝑧0>1 m for Lake Dagow), remains 



 

 

4 

 

unknown. Large values of 𝑧0 has also been reported in Liu et al. (2020) for the measurements 
above land. Using this criterion to filter the data seemed to be inappropriate, as it mainly affected 
the drag coefficient at low wind speeds and simply cuts large values of 𝐶𝐷𝑁. This filtering resulted 
in smaller bin-averaged 𝐶𝐷𝑁 at low wind speeds. 

Filtering of the dataset from Lake Dagow resulted in a data reduction of approximately 
73% (see details in the Table in the data repository 10.5281/zenodo.6597829 for other lakes or 
reservoirs). Lake Dagow is a relatively small lake (0.3 km2) shielded with forest and may have larger 
scatter in the dependence of the drag coefficient on wind speed. However, we consider this 
example of filtering the data as representative for all other lakes and reservoirs under study as it 
contains most of applied filters and similar effects of filtering has been observed for other sites, 
as well as for 𝐶𝐻𝑁 and 𝐶𝐸𝑁. 

Removing the periods with floating vegetation on the water surface using the data from 
Lake Suwa did not significantly affect  𝐶𝐷𝑁 except at low wind speeds (< 2 m s-1, Figure S3). Bin-
averaged 𝐶𝐷𝑁 was slightly higher when applying this filter (the mean percentage difference was 
16% for winds 0-2 m s-1, Figure S3c). 

Filtering of the datasets resulted in the total amount of filtered data ranging between 6.5 
days (Lake Wohlen) and 5.3 years (Lake Taihu) with median value of 110 days for all datasets. 

 
 

  
 

 
 
Figure S1. Histogram of log-transformed drag coefficients 𝐶𝐷 (not accounting for atmospheric 
stability) for 5th bin corresponding to wind speed of 2.5 m s-1. Data was collected at Lake Balaton 
site (Hungary, number of data points N = 694). A Shapiro-Wilk test of the log-transformed data 
confirmed a normal distribution at a standard significance level of 0.05. (b) Bin-averaged drag 
coefficients at neutral atmospheric stability (𝐶𝐷𝑁) estimated using the combined dataset as a 
function of 𝑈10. Different colors refer to different averaging procedures: the first method (I) 
was to combine data from all water bodies in each bin of wind speeds and then estimate the 
logarithmic mean (black line with circles) and median (dark yellow line with circles) values (the 
arithmetic mean values without log-transformation are not shown because of their large 
scatter). For the second method (II), 𝐶𝐷𝑁 were logarithmically averaged for each lake before 
calculation of mean (red line and symbols), logarithmic mean (black), and median (blue) values. 

10.5281/zenodo.6597829
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The second method with logarithmic averaging was considered for further analysis. Small panel 
in (b) shows 𝐶𝐷𝑁 beyond the scale at low wind speeds. 

 

 

 

 
Figure S2. Effects of different steps of data filtering on estimated drag coefficients exemplified for 
the dataset from Lake Dagow (Germany). Neutral drag coefficients (𝐶𝐷𝑁) as a function of wind 
speed at 10 m height (𝑈10) are shown by grey dots that represent the estimates from individual 
30 min flux measurements. The solid black line with circles shows logarithmic bin-averaged data 
in 0.5 m s-1 wind speed intervals. The number of data points (N) is indicated in the legend and a 
minimum of 10 data points was considered for bin-averaging. (a) No filtering was applied; (b) the 
data with quality flag equal to 2 indicating bad quality data (provided by EddyPro software, see 
details in Text S1) were removed; (c) wind directions (WD) were removed (60o < WD < 90o, 210o < 
WD < 270o), as the lake has an elongated shape, we considered the wind directions with the 
largest fetch; (d) the periods with ice cover were removed; (e) the periods with precipitation were 
removed; (f) low fluxes were removed (𝑢∗ < 0.05 m s-1, |𝐻|, |𝐸| < 10 W m-2); (g) removing the 
periods with surface roughness length 𝒛𝟎 > 𝟎. 𝟑 m. 
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Figure S3. The effect of data filtering (similar to Figure S1): 𝑪𝑫𝑵 versus 𝑼𝟏𝟎 for the dataset from 
Lake Suwa. (a) No filtering was applied; (b) all filters from Section 2.2 (except the periods with 
floating vegetation) were applied; (c) the periods with floating vegetation were removed 
(18.08.18-07.10.18; 15.05.19-09.09.19; 10.07.20-05.10.20). 

 

 
Figure S4. (a) 𝑪𝑫𝑵 versus 𝑼𝟏𝟎. This panel is similar to Figure 2a except the fact that three 
additional lakes were excluded – Lake Quinghai (China), Nam Theun 2 Reservoir (Laos) and 
Bol’shoi Vilyui Lake (Russia). (b) Neutral Stanton number (𝑪𝑯𝑵) versus 𝑼𝟏𝟎. Three lines show bin 
averages of 𝑪𝑯𝑵 obtained using data with different measures of water temperature: skin 



 

 

7 

 

temperature 𝑻𝒔 (red line), bulk water temperature 𝑻𝒘 (blue line) or both (black line with circles). 
Shaded grey area in both panels indicates data between the 5th and 95th percentiles. 

 

 
Figure S5. Neutral bin-averaged transfer coefficients (a) 𝐶𝐷𝑁, (b) 𝐶𝐻𝑁, (c) 𝐶𝐸𝑁 versus 𝑈10 are 
shown for all water bodies (grey lines). Thick colored lines (red, blue and green in (a) and red in 
(b) and (c)) show the water bodies which we marked as outliers, as their values were significantly 
larger or lower in comparison to other water bodies of similar size. Vertical and horizontal black 

dashed lines show a constant wind speed of 3 m s-1 and typical values of 𝐶𝐷𝑁, 𝐶𝐻𝑁 = 𝐶𝐸𝑁 1.3·10-

3, 1.1·10-3, respectively. Note, the scale of Y-axis in (a) is different from (b) and (c) for better 
visibility. 

 

 
 
 

 
Figure S6. Comparison of the transfer coefficients (a) 𝐶𝐷, (b) 𝐶𝐻, (c) 𝐶𝐸  (blue, red and green lines, 

respectively) with their counterparts adjusted for neutral atmospheric conditions 𝐶𝐷𝑁, 𝐶𝐻𝑁 , 𝐶𝐸𝑁 
(black line with circles) for bin-averaged values over all water bodies under study. Vertical and 

horizontal black dashed lines show a constant wind speed of 3 m s-1 and typical values of 𝐶𝐷𝑁, 

𝐶𝐻𝑁= 𝐶𝐸𝑁 1.3·10-3, 1.1·10-3, respectively. The smaller panel in (a) shows the drag coefficient for 
wind speeds less than 3 m s-1 at enlarged scale. It is apparent that atmospheric stability affected 
the transfer coefficients at low wind speeds only. 
 
 



 

 

8 

 

 
Figure S7. Neutral (a) Stanton number, (b) Dalton number marked by black line with symbols 
(similar to Figure 4a in the manuscript). The dark yellow line shows the function 𝐶 =
𝑏1[1 + 𝑏2exp(𝑏3𝑈10)] proposed by Liu et al., (2020) with the fitted coefficients b1 = 1.5·10-3; b2 = 
8.8; b3 = -2 for Stanton number and b1 = 1.1·10-3; b2 = 5.5; b3 = -2.1 for Dalton number (see details 
in Section 3.2). Vertical and horizontal black dashed lines show a constant wind speed of 3 m s-1 
and typical value of 𝐶𝐻𝑁 = 𝐶𝐸𝑁 being equal to 1.1·10-3. 
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Figure S8. Mean neutral transfer coefficients (a, b, c) 𝐶𝐷𝑁; (d, e, f) 𝐶𝐻𝑁; (g, h, i) 𝐶𝐸𝑁 versus 
maximum fetch, maximum and average water depth of the water body. All plots show the 
exchange coefficients averaged for wind speeds exceeding 3 m s-1. Each black square on the panels 
is the value of the transfer coefficient for one lake or reservoir. Red line in all plots shows linear 
regression in logarithmic domain (log10𝑦 = 𝐴 log10𝑥 + 𝐵). The relationship between the transfer 
coefficients and selected lake characteristics is expressed as a power dependence 𝑦 =
𝑥𝐴exp(𝐵 ln10), where A and B are the slope and intercept of the linear regression. Corresponding 
slope and intercept as well as the Pearson correlation coefficient and p-value are written at left 
upper corner of the plot. Three red squares in (a), (b) correspond to Lake Quinghai, Nam Theun 2 
Reservoir and and Bol’shoi Vilyui Lake were not considered for linear regression analysis of the 
drag coefficient and the Pearson correlation for the drag coefficient. Green line illustrates the 
result from (Panin et al., 2006). There is a weak negative correlation between the Stanton and 
Dalton numbers and maximum fetch as well as a significant negative correlation between the drag 
coefficient and maximum fetch. No evidence for any kind of relationship between all transfer 
coefficients and maximum or average water depth was found. 
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Figure S9. Principal component analysis for the data shown by black and red dots corresponding 
to the lakes and reservoirs, respectively. Representations of the original predictors in the first two 
principal component basis are presented with blue lines with dots. The fact that the drag 
coefficient and different types of the depths are nearly orthogonal to each other indicates that 
there is no correlation between them. 
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Figure S10. Mean neutral drag coefficient as a function of (a), (b), (c) lake surface area; (d), (e), (f) 
measurement height (if it changed – the average height for the measurement period was taken) 
at a fixed wind speed of 1 m s-1 (shown as “WS = 1 m s-1”). Each black square on the panels 
represents the mean value of the drag coefficient for one lake or reservoir. Red line in all plots 

shows linear regression in logarithmic domain log10𝑦 = 𝐴 log10𝑥 + 𝐵. The relationship 
between the transfer coefficients and selected lake characteristics is expressed as a power 

dependence 𝑦 = 𝑥𝐴exp(𝐵 ln10), where A and B are the slope and intercept of the linear 
regression (shown in the upper left corner). Corresponding Pearson correlation coefficient and p-
value are written at left upper corner of the plot. A significant positive correlation (marked by 

bold font) was found between 𝐶𝐷𝑁 , 𝐶𝐻𝑁 and surface area as well as measurement height (also 

𝐶𝐸𝑁). 
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Figure S11. Relationship between the averaged wind speed estimated for all water bodies and the 
surface area. Red line in all plots shows linear regression in logarithmic domain. The blue line 
represents the results reported in (Woolway et al., 2018). The relationship between the wind 
speed and lake surface area is expressed as a power dependence written at left upper corner of 
the panel. The Pearson correlation coefficient and p-value are written at left upper corner of the 
panel. Three red squares correspond to Lake Quinghai, Nam Theun 2 Reservoir and and Bol’shoi 
Vilyui Lake but they were not excluded for this regression analysis. 
 
 
 



 

 

13 

 

Table S1. Lake and reservoirs under study and their characteristics. Corresponding datasets and 
information about their processing.  
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 Lake/Reservoir Area As 
[km2] 

Mean/Max 
depth 

Country Filters Accepted wind 
directions [o]  

Publication Data repository 

1 Acton Lake 
(Reservoir) 

0.12 - / 9.3 USA QCF(2)
; WD; 
IC; LF 

until 04.05.18: < 
170; after: < 15 
and > 300; > 130 
and < 205 

 

(Waldo et al., 
2021) 

(Waldo et al., 
2021) 

2 Lake Balaton 596 3.3 / 12.2 Hungary QCF(≥ 
6); LF 

All (Lükő et al., 2020, 
2022) 

https://zenodo.
org/record/5597
141#.YbIcK71_p

PY 

3 Bautzen 
Reservoir 

5.3 7.4 / 13.5 Germany WD; LF > 195 and < 355 (Guseva et al., 
2021) 

***Data 
available from 

Uwe Spank 

4 Bol’shoi Vilyui 
Lake 

4.3 3 / 7 Russia LF All (Stepanenko et 
al., 2018) 

***Data 
available from 

Irina Repina 

5 Lake Dagow 0.3 5 / 9.5 Germany QCF(2)
; WD; 
IC; P; 

LF 

> 60 and < 90; < 
270 and > 210 

(Guseva et al., 
2021)  

https://doi.org/
10.18140/FLX/1
669633  

6 Daring Lake 14.8 - / 27 Canada P; LF * < 10 and > 270 (Golub et al., 
2021) 

(Golub et al., 
2022) 

7 Douglas Lake 13.7 9 / 24 USA LF * < 180 and > 270 (Morin et al., 
2018; Golub et 

al., 2021) 

8 Eastmain 
Reservoir 

602 11 / 63 Canada WD; 
IC; P; 

LF 

> 180 and < 330 (Demarty et al., 
2011; Golub et 

al., 2021) 

9 Lake Erie 2.6·104 19 / 64 USA IC; P; 
LF 

All (Shao et al., 
2015; Golub et 

al., 2021b) 

10 Itaipu 
Reservoir 

1.4·103 21.5 / 170 Brazil WD; LF < 30 and > 140 (Armani et al., 
2020) 

***Data 
available from 

Fernando 
Armani 

11 Lake Klöntal 3.3 29 / 45 Switzerland WD; LF > 75 and < 243 (Sollberger et al., 
2017) 

***Data 
available from 

Werner Eugster 

12 Lake Kuivajärvi 0.63 6.4 / 13.2 Finland WD; P; 
LF 

> 135 and < 185; 
> 315 

(Heiskanen et al., 
2015; 

Mammarella et 
al., 2015; Golub 

et al., 2021) 

(Golub et al., 
2022) 

13 Lake Lunz 0.68 20 / 34 Austria QCF(2)
; WD; 
IC; P; 

LF 

> 195 and < 355 (Scholz et al., 
2021) 

https://doi.org/
10.5281/zenodo

.4519167 

14 Lake Mendota 39.4 12.8/25.3 USA WD; 
IC; P; 

LF 

< 30; > 285  (Desai, 2018) 

15 Nam Theun 2 
Reservoir 

450 7.8/39 Laos P; LF; T All (Deshmukh et al., 
2014) 

(Golub et al., 
2022) 

https://zenodo.org/record/5597141#.YbIcK71_pPY
https://zenodo.org/record/5597141#.YbIcK71_pPY
https://zenodo.org/record/5597141#.YbIcK71_pPY
https://zenodo.org/record/5597141#.YbIcK71_pPY
https://doi.org/10.18140/FLX/1669633
https://doi.org/10.18140/FLX/1669633
https://doi.org/10.18140/FLX/1669633
https://doi.org/10.5281/zenodo.4519167
https://doi.org/10.5281/zenodo.4519167
https://doi.org/10.5281/zenodo.4519167
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16 Lake Ngoring 610.7 17.6/30.7 China WD; LF > 53 and < 175 (Han, 2020; Han 
et al., 2020) 

https://datavers
e.harvard.edu/d
ataset.xhtml?pe
rsistentId=doi:1
0.7910/DVN/SRI

AYJ; 

17 Lake Pallasjärvi 17.2 9/36 Finland P; LF * < 60 and > 180 (Lohila et al., 
2015; Golub et 

al., 2021) 

(Golub et al., 
2022) 

18 Lake Qinghai  4.4·103 21/26 China WD; LF < 110 and > 325 (Li et al., 2016; Li 
et al., 2018) 

https://data.tpd
c.ac.cn/en/data/
1df8f705-8a98-

4ede-8de7-
d065f7f674bd/ 

19 Rappbode 
Reservoir 

4 28.6/89 Germany WD; LF > 180 and < 240 (Spank et al., 
2020) 

***Data 
available from 

Uwe Spank 

20 Ross Barnett 
Reservoir 

134 4/8 USA P; LF All (Liu et al., 2009) (Golub et al., 
2022) 

21 Lake Rotsee 0.48 9/16 Switzerland WD; LF > 7 and < 65; > 
235 and < 262 

(Schubert et al., 
2012) 

***Data 
available from 

Werner Eugster 

22 Siberian Lake 1.21 3.1/6.5 Russia QCF(2)
; IC; LF; 

T 

All (Franz et al., 
2018) 

***Data 
available from 
Torsten Sachs 

23 Lake 
Soppensee 

0.25 12/27 Switzerland LF All (Eugster, 2003) ***Data 
available from 

Werner Eugster 

24 Lake Suwa 13.3 4/6.9 Japan QCF(≥ 
6); 

WD; 
IC; LC; 
P; LF 

< 5 and > 240 (Iwata et al., 
2018, 2020) 

http://asiaflux.n
et/index.php?pa

ge_id=1355 

25 Lake Taihu 2.4 ·103 1.9/3 China QCF(2)
; LF 

All *Data from 
PTS point only 

(Zhang et al., 
2020) 

https://datavers
e.harvard.edu/d
ataset.xhtml?pe
rsistentId=doi:1
0.7910/DVN/HE

WCWM 

26 Lake Tämnaren 38 1.3/2 Sweden WD; 
IC; LF 

> 120 and < 333 (Podgrajsek et al., 
2014; Sahlée et 

al., 2014) 

(Golub et al., 
2022) 

27 Lake Toolik 1.5 7/25 USA P; LF All (Eugster et al., 
2020; Golub et 

al., 2021) 

28 Lake Valkea 
Kotinen 

4.1·10-2 2.5/- Finland WD; P; 
LF 

> 134 and < 180; 
> 300 and < 350 

(Nordbo et al., 
2011; Golub et 

al., 2021) 

29 Lake 
Vanajavesi 

103 7/24 Finland IC; LF All (Salgado et al., 
2016; Golub et 

al., 2021)  

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SRIAYJ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SRIAYJ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SRIAYJ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SRIAYJ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SRIAYJ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SRIAYJ
https://data.tpdc.ac.cn/en/data/1df8f705-8a98-4ede-8de7-d065f7f674bd/
https://data.tpdc.ac.cn/en/data/1df8f705-8a98-4ede-8de7-d065f7f674bd/
https://data.tpdc.ac.cn/en/data/1df8f705-8a98-4ede-8de7-d065f7f674bd/
https://data.tpdc.ac.cn/en/data/1df8f705-8a98-4ede-8de7-d065f7f674bd/
https://data.tpdc.ac.cn/en/data/1df8f705-8a98-4ede-8de7-d065f7f674bd/
http://asiaflux.net/index.php?page_id=1355
http://asiaflux.net/index.php?page_id=1355
http://asiaflux.net/index.php?page_id=1355
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HEWCWM
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HEWCWM
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HEWCWM
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HEWCWM
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HEWCWM
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HEWCWM
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30 Lake Villasjön 0.17 0.7/1.3 Sweden WD; 
IC; LF 

> 10 and < 75; > 
114 and < 140 

(Jammet et al., 
2017; Jansen et 

al., 2019) 

http://www.eur
ope-
fluxdata.eu/pag
e21/site-
details?id=SE-
St1 

31 Lake Wohlen 
(Reservoir) 

2.5 9/18 Switzerland WD;LF > 245 (Eugster et al., 
2011) 

***Data 
available from 

Werner Eugster 

*QCF(2 or ≥ 6): removing unacceptable data with quality check flags equal to 2 (EddyPro software,(LI‑COR, Inc, 
2021)) and ≥ 6 (Eddy-covariance software TK3,(Mauder & Foken, 2015)) (Foken et al., 2012); WD: limitation of 
the wind directions (site-specific); IC: removing periods with ice cover; P: removing periods with precipitation; 

LF: removing low fluxes (𝒖∗<0.05 m s-1, |𝑯|, |𝑬|<10 W m-2); L: removing periods with floating vegetation on the 
water surface (18.08.18-07.10.18; 15.05. 2019-09.09.2019; 10.07.20-05.10.20, Lake Suwa, Japan); T: removing 
periods with low water level (appearance of many small islands around the measurement location in Nam 
Theun 2 Reservoir) or removing periods when footprint was on the shore (Siberian Lake) 

* Wind directions were removed by the owners of the dataset. 
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