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Abstract

Long-term spatially explicit information on crop yield is essential for understanding food security in a changing climate. Here we

present a study that combines twenty-years of Landsat and MODIS data, climate and weather records, municipality-level crop

yield statistics, random forests and linear regression models for mapping crop yield in a multi-temporal, multi-scale modeling

framework. The study was conducted for soybean in Brazil, the world’s largest producer and exporter of this commodity

crop. Using a recently developed 30 m resolution, annual (2001-2019) soybean classification map product, we aggregated

multi-temporal phenological metrics derived from Landsat and MODIS data over soybean pixels to the municipality scale. We

combined phenological metrics with topographic features, long-term climate data, in-season weather data and soil variables

as inputs to machine learning models. We trained a multi-year random forests model using yield statistics as reference and

subsequently applied linear regression to adjust the biases in the direct output of the random forests model. This model

combination achieved the best performance with a root-mean-square-error (RMSE) of 344 kg/ha (12% relative to long-term

mean yield) and an r2 of 0.69, on the basis of 20% withheld test data. The RMSE of the leave-one-year-out assessment

ranged from 259 kg/ha to 816 kg/ha. To eliminate the artifacts caused by the coarse-resolution climate and weather data, we

developed multiple models with different categories of input variables. Employing the per-pixel uncertainty estimates of different

models, the final soybean yield maps were produced through per-pixel model composition. We applied the models trained on

2001-2019 data to 2020 data and produced a soybean yield map for 2020, demonstrating the predictive capability of trained

machine learning models for operational yield mapping in future years. Our research showed that combining satellite, climate

and weather data and machine learning could effectively map crop yield at high resolution, providing critical information to

understand yield growth, anomaly and food security.
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Abstract 9 

Long-term spatially explicit information on crop yield is essential for understanding food security in a 10 

changing climate. Here we present a study that combines twenty-years of Landsat and MODIS data, 11 

climate and weather records, municipality-level crop yield statistics, random forests and linear regression 12 

models for mapping crop yield in a multi-temporal, multi-scale modeling framework. The study was 13 

conducted for soybean in Brazil, the world’s largest producer and exporter of this commodity crop. Using 14 

a recently developed 30 m resolution, annual (2001-2019) soybean classification map product, we 15 

aggregated multi-temporal phenological metrics derived from Landsat and MODIS data over soybean 16 

pixels to the municipality scale. We combined phenological metrics with topographic features, long-term 17 

climate data, in-season weather data and soil variables as inputs to machine learning models. We trained a 18 

multi-year random forests model using yield statistics as reference and subsequently applied linear 19 

regression to adjust the biases in the direct output of the random forests model. This model combination 20 

achieved the best performance with a root-mean-square-error (RMSE) of 344 kg/ha (12% relative to long-21 

term mean yield) and an r2 of 0.69, on the basis of 20% withheld test data. The RMSE of the leave-one-22 

mailto:xiaopeng.song@ttu.edu


Manuscript under review in Agricultural and Forest Meteorology 

2 
 

year-out assessment ranged from 259 kg/ha to 816 kg/ha. To eliminate the artifacts caused by the coarse-23 

resolution climate and weather data, we developed multiple models with different categories of input 24 

variables. Employing the per-pixel uncertainty estimates of different models, the final soybean yield maps 25 

were produced through per-pixel model composition. We applied the models trained on 2001-2019 data 26 

to 2020 data and produced a soybean yield map for 2020, demonstrating the predictive capability of 27 

trained machine learning models for operational yield mapping in future years. Our research showed that 28 

combining satellite, climate and weather data and machine learning could effectively map crop yield at 29 

high resolution, providing critical information to understand yield growth, anomaly and food security.  30 

Keywords 31 

Crop yield map; Random forests; Landsat; MODIS; Climate; Weather 32 
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1. Introduction  34 

Reliable and timely information on crop production can inform commodity markets, insurance 35 

companies, and policy interventions in response to natural disasters and human conflict (Benami et al. 36 

2021; Li et al. 2022; Vroege et al. 2021).  Estimating crop production over a spatial unit requires 37 

information on crop harvested area and crop yield (i.e. production per unit area). Both harvested area and 38 

yield can be derived from statistical field surveys or from satellite observations (Mulla 2013; Weiss et al. 39 

2020) . While many methods exist in mapping crop type and estimating crop area using remote sensing 40 

(e.g. Defourny et al. 2019; Gallego 2004; Gonzáles-Alonso and Cuevas 1993; Hu et al. 2021; King et al. 41 

2017; Massey et al. 2017; Skakun et al. 2017; Song et al. 2017; Wardlow and Egbert 2008), studies are 42 

increasingly investigating direct mapping of crop yield using remote sensing data. Crop yield maps can 43 

facilitate a number of research or practical applications, such as climate impact evaluation and yield gap 44 

analysis (Lobell 2013). 45 

Mapping crop yield requires crop type masks as a prerequisite. When crop type masks are available, two 46 

different strategies are commonly used to produce spatially explicit information on yield: the model-data 47 

integration approach and the remote sensing-based empirical approach. The model-data integration 48 

approach seeks to integrate crop simulation models with remote-sensing-derived biophysical variables for 49 

yield forecasting (Delécolle et al. 1992; Moulin et al. 1998). Crop simulation models are developed using 50 

comprehensive measurements recorded at the plot or field level, such as crop cultivar, sowing date, soil 51 

property, water and nutrient inputs, weather, and plant physiological and morphological features (e.g. leaf 52 

area index or LAI) (de Wit et al. 2019; Holzworth et al. 2014; Jones et al. 2003; Williams et al. 1989; 53 

Yang et al. 2004). The modeled processes of crop growth can be used to predict crop productivity and to 54 

evaluate the impacts of agricultural management and environmental stressors. Various techniques have 55 

been proposed to “spatialize” crop process models using time-series of satellite-based soil, plant and 56 

environmental variables, such as soil moisture, normalized difference vegetation index (NDVI), LAI, 57 

green area index (GAI), and fraction of photosynthetically active radiation (fPAR) (Battude et al. 2016; 58 
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Claverie et al. 2012; de Wit et al. 2012; Doraiswamy et al. 2004; Duchemin et al. 2008; Huang et al. 59 

2015; Ines et al. 2013; Kang and Özdoğan 2019; Nearing et al. 2012). Yet, a general limitation of 60 

applying crop process models over large areas is the lack of sufficient and accurate information about 61 

model inputs (Duchemin et al. 2008; Jin et al. 2018). Moreover, the model-data integration approach 62 

usually does not serve the purpose of high-resolution yield mapping. The computational cost of per-pixel 63 

crop simulation is high, but such barriers are being lifted by the recent development of cloud-computing 64 

platforms such as Google Earth Engine (Gorelick et al. 2017).  65 

The remote sensing-based empirical approach for crop yield mapping employs regression or machine 66 

learning techniques to relate vegetation variables at key crop growth stages directly to yield. An early 67 

work by Tucker et al. (1980) showed that time-integrated NDVI had significant correlation with grain 68 

yield in a winter wheat field in Beltsville, Maryland. Becker-Reshef et al. (2010) demonstrated that 69 

seasonal peak NDVI from the Moderate Resolution Imaging Spectroradiometer (MODIS) strongly 70 

correlated with winter wheat yield in Kansas and Ukraine. Franch et al. (2015) extended the Becker-71 

Reshef et al. (2010) approach by including Growing Degree Day (GDD) information, which enabled yield 72 

forecasting at about one month prior to peak NDVI. Funk and Budde (2009) found that time-integrated 73 

MODIS NDVI adjusted to the onset of the rainy season correlated well with maize production in 74 

Zimbabwe. Yield estimation may be improved by incorporating explicit phenology information using 75 

other vegetation indices beyond NDVI. Building on the work of Funk and Budde (2009), Bolton and 76 

Friedl (2013) suggested that MODIS-based two-band Enhanced Vegetation Index (EVI2) standardized by 77 

the greenup date correlated better than NDVI with county-level yield for maize, but indifferent for 78 

soybean, over central US. Similarly, Sakamoto et al. (2013) applied a phenology detection method to 79 

identify corn silking stage and demonstrated that MODIS-derived Wide Dynamic Range Vegetation 80 

Index (WDRVI) (Gitelson 2004) at that stage had high correlations with yield over major corn producing 81 

states of the US. Johnson (2014) proved that daytime land surface temperature (LST) negatively 82 

correlated with maize and soybean yield in the US while MODIS peak NDVI positively correlated with 83 
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yield. Recently, Skakun et al. (2021) investigated the utility of Landsat-8, Sentinel-2, WorldView-3 and 84 

Planet data for corn and soybean yield mapping over a number of sample sites in Iowa, and found that 85 

surface reflectance from red-edge bands performed better than vegetation indices to reveal field-level 86 

yield variability. Lobell et al. (2015) developed an approach that used simulations from a crop model to 87 

train a regression to predict yields from satellite observations, and the approach was tested in industrial as 88 

well as smallholder systems (Jin et al. 2019). 89 

While regression-based methods are straightforward to implement, more complex algorithms and data 90 

analytic techniques such as machine learning algorithms are being increasingly investigated. Using NDVI 91 

from the Advanced Very High Resolution Radiometer (AVHRR) and MODIS, Li et al. (2007) compared 92 

multivariate linear regression and artificial neural networks for modeling corn and soy yield over a 93 

number of sample counties in the US corn belt. Likewise, Johnson et al. (2016) compared the 94 

performance of multiple linear regression and nonlinear Bayesian neural networks and model-based 95 

recursive partitioning for forecasting barley, canola and spring wheat yields on the Canadian Prairies. 96 

Based on the finding that NDVI and LST highly correlated with crop yield, Johnson (2014) built a 97 

regression tree model using multiple years of county-level yield statistics as reference and applied the 98 

model to MODIS data to forecast corn and soybean yield at 250 m resolution in the US. Cai et al. (2019) 99 

tested the utility of the enhanced vegetation index (EVI) from MODIS and solar-induced chlorophyll 100 

fluorescence from GOME-2 and SCIAMACHY, and regression and machine learning algorithms for 101 

wheat yield prediction in Australia, and found that the combination of MODIS EVI, climate data and 102 

support vector machines (SVM) could achieve high performance in yield prediction. Mateo-Sanchis et al. 103 

(2019) proposed a multi-sensor metric, namely the time lag between MODIS EVI and vegetation optical 104 

depth (VOD) from the Soil Moisture Active Passive (SMAP) satellite, as input to nonlinear kernel ridge 105 

regression for modeling county-scale crop yield in the US corn belt. Deep learning algorithms are also 106 

being explored in yield estimation. Schwalbert et al. (2020) developed a method for in-season soybean 107 

yield forecasting using the Long-Short Term Memory (LSTM) algorithm, MODIS-based NDVI, EVI and 108 



Manuscript under review in Agricultural and Forest Meteorology 

6 
 

LST data, and precipitation data at the municipality scale in the Brazilian state of Rio Grande do Sul. 109 

Recent research has also started to combine machine learning and crop models by incorporating output 110 

variables from crop models as input features to machine learning algorithms for yield estimation (Paudel 111 

et al. 2021; Shahhosseini et al. 2021).  112 

These previous studies clearly show that crop yield estimation represents a continually active line of 113 

research in remote sensing. The primary goal is to improve the accuracy of yield estimation using new 114 

data and techniques, and/or to advance the date of in-season forecasting. However, most previous studies 115 

are demonstrative research with limited spatial extents and/or temporal span in their study areas. Studies 116 

exploring the long-term satellite data archives to evaluate the variability of crop yields also exist albeit 117 

over small study areas (e.g. Gao et al. 2018; Liu et al. 2020). More importantly, common to most yield 118 

mapping studies, crops in the temperate climate zone are often the target crops and target regions. Long-119 

term, large-area crop yield mapping in the tropics does not exist. Unlike the temperate region where 120 

climate conditions are relatively homogenous and crop phenologies are largely synchronous, cropping 121 

systems in the tropics are more complex in the sense that planting and harvesting schedules could be 122 

substantially different for the same crop (e.g. soybean in Brazil) (Song et al. 2021). Statistics-based 123 

phenological metrics derived from time-series of satellite data can capture the salient features of 124 

vegetation phenology while maintaining high spatial and temporal data consistency, and thus, provide a 125 

unique advantage to large-area vegetation type mapping (DeFries et al. 1995; Hansen et al. 2013; Song et 126 

al. 2018). The main objective of this study is to explore the utility of statistical metrics derived from 127 

Landsat and MODIS data as well as machine learning algorithms for high-resolution, long-term crop 128 

yield mapping in the tropics. Producing long-term spatially explicit yield information is especially 129 

imperative in tropical countries, where agricultural production is growing rapidly, causing detrimental 130 

impacts to natural environment (Gibbs et al. 2010; Potapov et al. 2022; Song et al. 2018; Zalles et al. 131 

2021). We focus on annual soybean yield in Brazil over 2001-2020 in this study. 132 
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2. Data and Methods 133 

2.1. Study area 134 

Our study area covers the southern hemisphere portion of Brazil. Brazil is the world’s leading producer 135 

and exporter of soybeans, accounting for more than 35% of global production and about half of the 136 

world’s total export (FAO 2020). Based on statistics from the Food and Agriculture Organization of the 137 

United Nations (FAO), soybean production in Brazil has tripled from 37.9 million tons in 2001 to 114.3 138 

million tons in 2019 (FAO 2020). Over the same time period, soybean cultivation area in Brazil increased 139 

from 14.0 Mha to 35.9 Mha, and the national average yield increased from 2.71 to 3.18 tons/ha with the 140 

maximum yield of 3.39 tons/ha achieved in 2018 (FAO 2020). The dramatic increase in soybean 141 

cultivation in Brazil (Figure 1) has directly and indirectly caused widespread natural vegetation loss and 142 

cascading environmental impacts in the Amazon, Cerrado and other biomes (Song et al. 2021a; Zalles et 143 

al. 2019). 144 

 145 

Figure 1. Soybean expansion in Brazil mapped using satellite data. (a) Soybean change during 2001-2010 146 

and 2010-2019. For simplicity to visualize, the annual 2001-2019 classification maps are used to create 147 

bi-temporal change layers. Landsat mosaic of South America is used as the backdrop in (a), and gray 148 

shaded area represents the study area of Brazil. Regional details over two soybean expansion frontiers are 149 
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shown in (b) Mato Grosso and (c) MaToPiBa (Maranhao, Tocantins, Piaui and Bahia). Reduction in 150 

soybean cultivation was observed along the border between Sao Paulo and Minas Gerais, shown in (d).   151 

 152 

2.2. Satellite data and products 153 

We used Landsat and MODIS as the main satellite data to derive vegetation characteristics of soybean 154 

plants, as they represent the most consistent satellite data records over the past two decades. According to 155 

the United States Department of Agriculture (USDA) crop calendars for Brazil, soybeans in Brazil are 156 

typically planted in October to December and harvested in March to May 157 

(https://ipad.fas.usda.gov/rssiws/al/crop_calendar/br.aspx). In our study, all Landsat and MODIS 158 

observations acquired between November 1st and April 30th of the next year from 2000 to 2019 were 159 

processed. The MODIS surface reflectance (SR) data in blue (469 nm), green (555 nm), red (645 nm), 160 

near-infrared (NIR, 858 nm), shortwave infrared (SWIR, 1640 nm and 2130 nm) and thermal (11,030 nm) 161 

wavelengths were obtained as 16-day composites from the MOD44C product, same as the MOD09GA, 162 

MOD09GQ and MODTBGA v006 products (Vermote and Wolfe 2015). Landsat images acquired by the 163 

Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI), 164 

with blue, green, red, NIR, and SWIR bands, were converted from top-of-atmosphere reflectance to 165 

normalized surface reflectance (NSR) through an automated data processing system (Potapov et al. 2020). 166 

Using MODIS SR as normalization target, the system corrected atmospheric and anisotropic effects of 167 

Landsat after at-sensor radiance calculation, cloud, shadow and haze masking. The Landsat NSR, from all 168 

sensors, was then processed to 16-day composites consistent with the MODIS product. Both Landsat 169 

NSR and MODIS SR 16-day time-series were used to create seasonal phenological metrics, including 170 

NDVI, EVI, normalized difference water index (NDWI) and other band ratio indices (Table 1). A 171 

complete description of Landsat data processing and the freely available software tools to generate 172 

phenological metrics is provided in Potapov et al. (2020).  173 
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Table 1. Input features for modeling and mapping soybean yield in Brazil. Please see Supplementary 174 

Information for the complete list of variables.  175 

Category Input Features N 

Landsat-based 
Seasonal vegetation phenological metrics derived from Blue, Green, 

Red, NIR, SWIR1, SWIR2 and thermal bands 
50 

MODIS-based 
Seasonal vegetation phenological metrics derived from Blue, Green, 

Red, NIR, SWIR1, SWIR2 and thermal bands 
24 

Topographic DEM and Slope 2 

Climate 

Long-term (1971-2000 average) climate data, monthly (October to May) 

TMP (mean 2 m temperature), DTR (diurnal 2 m temperature range), 

PRE (precipitation rate), VAP (vapor pressure), WET (wet days), CLD 

(cloud cover), TMN (minimum 2 m temperature), TMX (maximum 2 m 

temperature) and PET (potential evapotranspiration) 

72 

Weather 
Annual (2000 through 2019) in-season weather data, monthly (October 

to May) TMP, DTR, PRE, VAP, WET, CLD, TMN, TMX and PET 
72 

Soil 

Water storage capacity, topsoil and subsoil bulk density, cation exchange 

capacity of the clay fraction in the topsoil and subsoil, topsoil and 

subsoil clay, sand and silt fractions, topsoil and subsoil pH, and area 

weighted topsoil and subsoil carbon content 

15 

 176 

We used a recently developed 30 m resolution (0.00025° × 0.00025°), annual, 2001-2019 soybean 177 

classification map product (Song et al. 2021a) as masks to constrain the yield modeling and mapping to 178 

identified soybean pixels (Figure 1). For simplicity and consistent with the soybean classification map 179 

product, in this study we refer to a cropping year by the harvest year. For example, year 2001 indicates 180 

the 2000/01 cropping year. The soybean classification product was developed using the above Landsat 181 

and MODIS data as input in addition to 30 m resolution topographic features from the Shuttle Radar 182 

Topography Mission (SRTM) data. Continentally distributed field observations collected over three years 183 

(2017, 2018 and 2019) were used as training to calibrate a multi-year bagged decision tree model for 184 
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soybean classification. The overall accuracy of the soybean classification maps for the years of 2017, 185 

2018, and 2019, where we had probability field sample for validation, was 96%, 94% and 96%, 186 

respectively, with high and balanced producer’s and user’s accuracies (Song et al. 2021a).  187 

2.3. Climate and weather data 188 

Monthly climate and weather covariates were obtained from the Climatic Research Unit gridded Time 189 

Series (CRU TS) version 4.04 dataset (Harris et al. 2020). The variables included TMP (mean 2 m 190 

temperature), DTR (diurnal 2 m temperature range), PRE (precipitation rate), VAP (vapor pressure), 191 

WET (wet days), CLD (cloud cover), TMN (minimum 2 m temperature), TMX (maximum 2 m 192 

temperature) and PET (potential evapotranspiration) at a spatial resolution of 0.5° × 0.5°. We calculated 193 

monthly average values from 1971 to 2000 for the months from October to May to represent long-term 194 

climatology. For each year between 2000 to 2019, we directly used the monthly values for the months 195 

from October to May to represent in-season weather (Table 1). 196 

2.4. Soil data 197 

The Regridded Harmonized World Soil Database v1.2 at 0.05° × 0.05° spatial resolution 198 

(FAO/IIASA/ISRIC/ISSCAS/JRC 2012; Wieder et al. 2014) were obtained and processed similar to the 199 

climate and weather data. The soil variables included available water storage capacity, topsoil (0-30 cm) 200 

and subsoil (30-100 cm) bulk density, cation exchange capacity of the clay fraction in the topsoil and 201 

subsoil, topsoil and subsoil clay, sand and silt fractions, topsoil and subsoil pH, and area weighted topsoil 202 

and subsoil carbon content (Table 1).  203 

2.5. Municipal yield statistics 204 

We obtained soybean yield statistics at the municipality scale for every year between 2001 and 2019 from 205 

the Brazilian Institute of Geography and Statistics (IBGE) Municipal Agricultural Production database 206 

(https://sidra.ibge.gov.br/). The size of the municipalities where soybeans are cultivated varies widely 207 

from south (small) to north (large), with a median size of approximately 48 Kha, the first quantile of 22 208 

https://sidra.ibge.gov.br/
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Kha and the third quantile of 135 Kha. These yield statistics were used as reference data for training and 209 

evaluation (Figure 2).  210 

 211 

Figure 2. Municipality-level yield statistics from the Brazilian Institute of Geography and Statistics 212 

(IBGE) were used as reference for modeling and mapping soy yield.  213 

 214 

2.6. Modeling yield 215 

The overall workflow of modeling and mapping soybean yield is presented in Figure 3. Major steps 216 

include spatial aggregation of remote sensing (RS)-based vegetation phenological metrics, topographic 217 

(topo) features, climate, weather, and soil variables to municipal scale, categorical feature selection, 218 

random forests (RF) (Breiman 2001) model training, RF prediction, bias correction, per-pixel RF model 219 

selection and composition, and map evaluation. Details of each step are described as follows. 220 
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 221 

Figure 3. Overall workflow of mapping annual soybean yield 2001-2019 using satellite data, climate, 222 

weather, soil and topography data, municipality statistics, random forests and linear regression models. 223 

Two random forests models were trained and implemented with more details reported in the text. 224 

 225 

The 0.5° × 0.5° climate and weather data, and the 0.05° × 0.05° soil data were first resampled using 226 

nearest resampling to 0.00025° × 0.00025° to match the spatial resolution of the soybean classification 227 

map, remote sensing data and topographic features. With the annual soybean classification map as a 228 

mask, we aggregated these input datasets to municipal scale by taking the average value over soybean 229 

pixels in each municipality.  The spatial aggregation step was conducted for every year independently 230 



Manuscript under review in Agricultural and Forest Meteorology 

13 
 

between 2001 and 2019. To remove the non-soybean and low-soybean municipalities, we selected the 231 

municipalities with annual soybean pixels ≥ 50,000, resulting in a total of 15,784 municipalities across the 232 

19-year period. These municipalities contained 95% of all mapped soybean pixels over the study period. 233 

To investigate the relative utilities of these multi-source, multi-resolution input datasets for yield 234 

modeling, we conducted three progressive experiments using categorical feature selection. Specifically, 235 

we built three random forests models with (1) RS and topo features as input, (2) RS, topo, climate and 236 

weather features as input, and (3) RS, topo, climate, weather and soil features as input. Performance of 237 

model #1 represents the utility of RS and topo features to model yield. Improved performance of model 238 

#2 over model #1 would represent the value of weather and climate data. Likewise, improved 239 

performance of model #3 over model #2 would represent the value of the soil variables.  240 

Municipal yield statistics were used as reference for all three models. For each model, we randomly 241 

selected 80% municipalities as training (n = 12,649) and the remaining 20% was reserved for independent 242 

test (n = 3,135), with both training and test data covering all 19 years. We calculated root-mean-square-243 

error (RMSE), mean bias error (MBE), mean absolute error (MAE), and r2 using both training and test 244 

data for all three models. To further enhance the robustness of the model evaluation and to eliminate 245 

potential bias from a particular realization of sampling, we implemented a Monte Carlo method and 246 

repeated the random training/test split, model training and evaluation 100 times. The final model 247 

performance was represented using box plots of RMSE, MBE, MAE and r2 of the 100 runs. 248 

In addition to model evaluation with 20% withheld test data, we also conducted the leave-one-year-out 249 

model assessment. For every year between 2001 and 2019, we used 18-years of data to calibrate the 250 

random forests models and used the model to predict over the left-out year. For the left-out year, we 251 

compared the predicted yield with reference statistics and calculated error metrics.  252 

Our model assessment revealed that climate and weather variables significantly improved model 253 

performance, but soil variables did not further improve model performance (more details are provided in 254 
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the Results and Discussion sections). Therefore, the model with RS, topo, climate and weather variables 255 

as input (i.e. model #2) was selected as the primary model for yield estimation. However, due to the 256 

coarse spatial resolution (0.5° × 0.5°) of the climate and weather data, spatial grid patterns were noticed in 257 

some regions. To remove these artifacts, we implemented model #1 (RS and topo features as input) as a 258 

secondary model, and results of the two models were combined (see more details below).  259 

To improve computational efficiency, we conducted individual feature selection for both models. For 260 

each RF model, we trained the model using all features as input, ranked each feature and selected the top 261 

features with a cumulative importance of greater than 95%. We also constructed a correlation matrix of 262 

the features and removed those less important features that had a correlation coefficient of greater than 263 

0.95 with the more important ones. Error metrics were calculated for all as well as selected features to 264 

demonstrate the comparable performance of trained models. We implemented the random forest classifier 265 

function in the sklearn package in python. The RF parameters fine-tuned included n_estimators (number 266 

of trees), max_features (number of features to consider at every split), max_depth (maximum number of 267 

levels in a tree), min_samples_split (minimum number of samples required to split a node), 268 

min_samples_leaf (minimum number of samples required at each leaf node). We applied a randomized 269 

search on hyper-parameters followed by a grid search to determine the exact values for these parameters.  270 

The immediate output of the two RF models include predicted soybean yield, represented as the mean 271 

value of all trees in the forest, and associated uncertainty, represented as the standard deviation of all trees 272 

in the forest. For continuous variables, random forests could generate underestimation at the high-end of 273 

the variable and overestimation at the low-end of the variable because of the effect of “regression to the 274 

mean” (Huang et al. 2016; Zhang and Lu 2012). Such is the case for our yield modeling in this study. To 275 

correct these systematic biases, we followed Zhang and Lu (2012) and Huang et al. (2016), and applied 276 

linear regression using the municipal yield statistics as the dependent variable and the RF-predicted yield 277 

as the independent variable. The derived linear equation was subsequently applied to the adjust the RF-278 

predicted yield and uncertainty.  279 
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We implemented the two calibrated random forest models (models #1 and #2) and their associated linear 280 

regressions independently using the annual input datasets. The outputs were two sets of 30 m resolution 281 

soybean yield and uncertainty maps for every year between 2001 and 2019. We created a final soybean 282 

yield and uncertainty map for every year through per-pixel composition, where, for every pixel, the 283 

soybean yield and associated uncertainty were selected from the model with a smaller uncertainty.  284 

2.7. Yield map evaluation 285 

We evaluated the quality of the annual, 30 m resolution soybean yield maps at the municipal scale. 286 

Average yield was derived from the maps, and compared to municipal yield statistics as reference. We 287 

computed the difference of the two datasets and constructed a histogram. We calculated RMSE, MAE, 288 

MBE, and r2, and created scatter plots using the 19 years of data. We also calculated these error metrics 289 

for every year to evaluate the temporal consistency of the yield map time series.  290 

3. Results 291 

3.1. Model selection and performance 292 

Using remote sensing-based vegetation phenological metrics and topographic features as input to random 293 

forests (model #1) produced an r2 of 0.74, an RMSE of 323 kg/ha, an MBE of 0 kg/ha and a MAE of 240 294 

kg/ha for training data. Compared to the 2001-2019 national average yield of 2,869 kg/ha, this RMSE 295 

represents 11% error. Adding climate and weather variables to input (model #2) significantly improved 296 

model performance, as represented by the increase in r2 and reduction in RMSE and MAE, for both 297 

training and test data. The improved model had an r2 of 0.79, an RMSE of 294 kg/ha, an MBE of 0 kg/ha 298 

and a MAE of 218 kg/ha for training data, and an r2 of 0.69, an RMSE of 356 kg/ha, an MBE of 15 kg/ha 299 

and a MAE of 264 kg/ha for test data. Adding soil variables to input (model #3) showed little to no value 300 

in further improving model performance. Therefore, we discarded model #3 and implemented model #1 301 

and #2 in this study. Both model #1 and #2 were chosen because although climate and weather data 302 

demonstrated considerable utility in modeling soybean yield, their coarse spatial resolution (0.5° × 0.5°) 303 
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caused apparent grid patterns when the model was applied to 30 meter spatial resolution, whereas model 304 

#1 generated spatially coherent results. Moreover, individual feature selection not only improved 305 

computational efficiency but also improved model accuracy. Consistent for all model categories, there 306 

remained some differences between training and test, indicating potential overfitting of the models. This 307 

was likely due to the lack of high-quality soil data and other important agricultural management variables 308 

(e.g. fertilizer use) in the model (please see more details in the Discussion section).   309 

Predicted yield from random forests models were highly consistent with reference yield from municipal 310 

statistics (Figure 4). However, the direct outputs of the random forests models under-estimated yield at 311 

the high end and over-estimated yield at the low end (Figure 4a and 4c). Applying a linear regression 312 

successfully corrected these systematic biases for both models (Figure 4b and 4d). Moreover, the overall 313 

model performance was also slightly improved, as demonstrated by the reduction in RMSE and MAE for 314 

both training and test results. For instance, the training accuracy in terms of RMSE was reduced from 294 315 

to 278 kg/ha and the test accuracy was improved from 356 to 344 kg/ha for model #2 after bias 316 

adjustment (Figure 4a vs 4b).  317 

 318 



Manuscript under review in Agricultural and Forest Meteorology 

17 
 

Figure 4. Performance of yield models before and after systematic bias adjustment using linear 319 

regression. a) Random forests (RF)-predicted soybean yield against reference yield from municipal 320 

statistics. Input data for RF include remote sensing, topographic features, climate and weather variables. 321 

The left panel is density scatter plots using training data and the right panel is density scatter plots of 322 

independent test data. The red lines on both panels represent the linear regression line. b) Same as a), but 323 

a linear regression was applied to adjust bias in RF outputs. c) RF-predicted soybean yield against 324 

reference yield. Input data for RF only include remote sensing and topographic features. d) Same as c), 325 

but after linear bias adjustment.  326 

 327 

Although the model was trained using all 19-years of data as input, evaluation of model performance at 328 

the annual time scale revealed consistent model performance across all 19 years (Figure 5). Based on the 329 

withheld test data, the 19-year overall RMSE was 344 kg/ha and the r2 was 0.69. The RMSE represents 330 

12% error relative to long-term yield mean. The annual RMSE values ranged from 214 kg/ha in 2010 to 331 

456 kg/ha in 2005, and the annual r2 values ranged from 0.39 in 2003 to 0.76 in 2004. No significant 332 

systematic bias was observed for any of the years (Figure 5). 333 

The leave-one-year-out model assessment revealed that the yield models performed well for most of the 334 

19 years, but performed relatively poorly for 2005 and 2015 with notably higher RMSE and lower r2, 335 

respectively (Figure 6). The RMSE of the leave-one-year-out assessment ranged from 259 kg/ha to 816 336 

kg/ha. These results are in general comparable to regional studies of satellite-based soybean yield 337 

mapping in the Midwest of the United States (Lobell et al. 2015) and Southern Brazil (Schwalbert et al. 338 

2020). Both 2005 and 2015 did not show notable performance deficiency when data of the two years were 339 

included in training (Figure 5). Comparison between annual accuracies of the two model assessments 340 

(Figures 5 and 6) suggests that model trained with long time series of data generally perform well for 341 

unseen years. The comparison also highlights the significance of including both good and poor harvesting 342 

years in training for enhancing the temporal generalization and predictive capability of trained models.   343 

 344 
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 345 

Figure 5. Performance of yield model at an annual time scale. X-axis represents model-predicted yield, 346 

and y-axis represents reference yield from municipal statistics. The top-left scatter plot is a combination 347 

of the two scatter plots in Figure 5b. Scatter plots are made using training data and withheld test data. 348 

Input data for model include remote sensing, topographic features, climate and weather variables. 349 
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 350 

 351 

Figure 6. Leave-one-year-out model assessment. For each year between 2001 and 2019, 18-years of data 352 

were used to training the model (blue dots and text), which was used to predict over the left-out year. 353 
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Municipal statistics of the left-out year were used as reference to evaluate the model performance (red 354 

dots and text).  355 

 356 

3.2. Annual soybean yield and uncertainty maps 357 

Implementing the calibrated random forests and linear regression models at 30 m spatial resolution 358 

generated spatially and temporally coherent soybean yield distributions across Brazil from 2001 to 2019 359 

(Figure 7a). Considerable spatial heterogeneity in soybean yields was observed across the country. In 360 

2001, the highest soybean yield regions included central Mato Grosso and western Parana (also see Figure 361 

2a), and the lowest yield regions included Rio Grande do Sul, eastern Goias, western Minas Gerais, and 362 

western Bahia. Increase in soybean yield was found in many regions, most notably in northern Rio 363 

Grande do Sul and western Bahia (also see Figure 2b). Soybeans in Mato Grosso experienced not only a 364 

substantial area expansion but also considerable yield growth. Per-pixel uncertainty of soybean yields 365 

(Figure 7b) showed that the uncertainty estimates were mostly between 300 kg/ha to 500 kg/ha. 366 

Moreover, the uncertainty distribution varied both spatially and temporally, with the south region (e.g. 367 

Rio Grande do Sul) appeared to have slightly higher uncertainties than center west (e.g. Mato Grosso).  368 
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369 

Figure 7. Annual soybean yield and uncertainty maps for selected years over Brazil. Yield and 370 

uncertainty maps were produced at 30 m spatial resolution and averaged to 1 km for the purpose of 371 

display. Regional details at 30 m resolution are shown in Figure 8. 372 

 373 

The annual, 30 m resolution maps revealed field-level heterogeneity in soybean yields (Figure 8). Large 374 

contiguous soybean fields in central Mato Grosso have moderate-to-high yield and small variations 375 

between fields (Figure 8a), whereas smaller fragmented fields in Rio Grande do Sul show much larger 376 

variations (Figure 8b). Over the past 19 years, soybean yields in central Mato Grosso experienced an 377 

overall increase in most fields, whereas in Rio Grande do Sul, larger fields appeared to have relatively 378 

greater yield growth than smaller fields (Figure 8b).  379 
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 380 

Figure 8. Spatial and temporal details of soybean yield at 30 m resolution in two selected regions: a) 381 

central Mato Grosso and b) northern Rio Grande do Sul. Field-level yield heterogeneity is revealed by the 382 

time series of high-resolution maps.  383 

3.3. Map evaluation 384 

The annual 30 m soybean yield maps were aggregated to municipal scale for a quantitative quality 385 

assessment. Compared to the reference data from official statistics, the yield map product had an overall 386 

RMSE of 418 kg/ha, a MAE of 311 kg/ha, an MBE of 92 kg/ha, and an r2 of 0.60. Compared to the 2001-387 

2019 national average yield of 2,869 kg/ha, the RMSE represents 15% error. These error metrics were all 388 

slightly worse than the model performance, with the RMSE about 20% higher (compared to 344 kg/ha; 389 

see detailed numbers of other error metrics in Figure 4). An overall slight positive bias was noted (mean 390 

bias of 92 kg/ha or 3% error compared to long-term average yield, Figure 9). Moreover, systematic 391 
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underestimation was still noticed at the high end of yield and overestimation at the low end of yield 392 

(Figure 10), although a linear regression successfully corrected model bias at the training stage at the 393 

municipal level (Figure 4). At the annual time scale, the map accuracy was comparable to model 394 

performance for the majority of the 19 years (Figure 10). The comparison between model performance 395 

and map quality assessment suggested that uncertainties at the 30 m pixel scale were larger than those at 396 

the aggregated municipal scale, highlighting a general multi-scale issue in the applications of regression-397 

based machine learning algorithms in remote sensing.   398 

 399 

Figure 9. Histogram of the difference between predicted yield and reference yield at the municipal level 400 

between 2001 and 2019 (n=15,784) indicating a slight positive bias in the predicted yield. 401 
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 402 

Figure 10. Quality assessment of 30 m soybean yield maps for every year between 2001 and 2019. The 403 

annual maps were averaged to the municipal scale to derive predicted yields (x-axis). Reference yields (y-404 

axis) are official statistics.  405 

 406 
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4. Discussion 407 

4.1.Uncertainty sources for yield modeling 408 

Model performance and the quality of the annual yield maps are influced by a number of factors, 409 

including the temporal density of satellite observations, the coarse spatial resolution and uncertainties of 410 

climate and weather variables, lack of up-to-date soil measurements, unknown uncertainties in the official 411 

statsitics, lack of field-level reference data, missclassifications in the annual soybean masks, and the muti-412 

scale modeling and prediction procedure. The impacts of these factors are discussed in detail as follows.  413 

Depending on the type of cultivar, environmental conditions and agricultural management practices, 414 

soybean plants take 90 to 150 days from planting to maturity. During this short growing window, 415 

vegetation cover in the field experiences rapid transitions from bare ground to nearly closed canopy and 416 

to bare ground again. Such phenological dynamics require dense time-series data to capture the key 417 

growth stages that are critical to crop biomass accumulation and yield formation. Studies have 418 

demonstrated that the peak growing period in vegetation index is most important for modeling yield for 419 

wheat, corn and soybeans (Becker-Reshef et al. 2010; Johnson 2014). In addition, natural disasters during 420 

or after the seed-filling stage can cause severe yield reduction (Hosseini et al. 2020). In this study, we 421 

used MODIS and Landsat as the main remote sensing data source. Due to the sparse temporal interval of 422 

Landsat, cloud-free Landsat observations vary considerably in space and time (Figure 11).  423 

 424 
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Figure 11. Cloud-free Landsat observations between November 1st and April 30th in selected years over 425 

Brazil. 426 

 427 

On the other hand, daily MODIS acquisitions are more robust to cloud contamination. Indeed, the 428 

important features identified by random forests include many MODIS-based spectral features. The most 429 

important feature of the random forests model (model #1) was “M_NDVI_av90max”, which represented 430 

the average value of the 90th percentile and maximum NDVI (i.e. peak NDVI) derived from MODIS 431 

(Figure 12). The second and third most important features were MODIS-based peak-season NIR 432 

reflectance and middle-season NDVI, respectively. These top three features accounted for >40% of 433 

cumulative feature importance (Figure 12). Another inherent factor that enabled MODIS to be an efficient 434 

sensor for modeling soybean yield is the large field size in Brazil (Fritz et al. 2015). The feature ranking 435 

analysis suggested that improving the temporal density of high spatial resolution satellite data, such as the 436 

Harmonized Landsat and Sentinel-2 product (Claverie et al. 2018), may improve yield mapping at the 437 

field scale. Further research is also needed to investigate the utility of other freely available satellite data, 438 

particularly radar data (e.g. Sentinel 1) for yield estimation, as radar data can provide complementary 439 

infromation to optical data for crop monitoring (Song et al. 2021b; Veloso et al. 2017) in addition to their 440 

all-weather data acquisition.  441 
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 442 

Figure 12. Cumulative feature importance for the random forests-based soybean yield modeling using 443 

MODIS and Landsat phenological metrics as input. Features with a prefix of “M*” represents MODIS-444 

based metrics, features with a prefix of “L*” represents Landsat-based metrics, and features with a prefix 445 

of “T*” represents topographic variables. “av” stands for “average”. The metrics are sorted from high to 446 

low along the vertical axis from bottom to top. Please see supplementary Table S1 for more explanation 447 

of metric names.  448 

 449 
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Our study explicitly demonstrated the value of climate and weather data for modeling crop yield. For the 450 

trained random forests model with all the features as input, climate and weather variables accounted for 451 

36% of the total feature importance (Table 2). Compared to the models with only remote sensing data as 452 

input, adding climate and weather variables reduced RMSE by about 7 to 9%, and the improvement was 453 

statistically significant. However, adding coarse-resolution climate and weather variables could also 454 

introduce undesirable artifacts. By constructing two models and through per-pixel composition of model 455 

outputs, our strategy effectively combined the advantages of the two respective models. For any given 456 

year, the primary model (i.e. the one with climate and weather variables as input) was chosen for the 457 

majority of soybean growing regions of the country, while the secondary model (i.e. the one without 458 

climate and weather variables) was selected only for some clustered regions (Figure 13). This data-driven 459 

approach relied on the explicit uncertainty outputs associated with predictions of random forests, and the 460 

composited map had minimum uncertainties from the multi-model ensemble. Future research will 461 

evaluate the uncertainty of climate and weather variables to yield estimation, and incorporate higher-462 

resolution weather dataset for improved yield estimation, e.g. the Climate Hazards Group Infrared 463 

Precipitation with Stations (CHIRPS) precipitation data (Funk et al. 2015). 464 

 465 

Table 2. Importance of the five categories of input variables in random forests model for soybean yield 466 

prediction. Details of the variables are listed in Table 1. The total importance of all variables within each 467 

category was calculated and reported. 468 

Category of variables Importance in random forests model 

Landsat-based 0.1883 

MODIS-based 0.4371 

Climate 0.1037 

Weather 0.2539 

Topographic 0.0041 

Soil 0.0128 

 469 
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 470 

Figure 13. Maps of random forests models chosen for predicting annual soybean yield. The model with 471 

climate and weather varaibles as input was more accurate and was used in the majority of the soybean 472 

growing regions of the country in every year. 473 

 474 

The lack of contribution by soil variables to soybean yield modeling was likely because the soil data were 475 

outdated. Soil characteristics and topography are strong determinant of cropland suitability (Ishikawa and 476 

Yamazaki 2021). We used the Harmonized World Soil Database (HWSD) in this study, which was 477 

complied from multiple data sources (FAO/IIASA/ISRIC/ISSCAS/JRC 2012). The data source for Brazil 478 

was the Soil and Terrain database for Latin America and the Caribbean, at the scale of 1:5 million and 479 

released in 1998. Therefore, HWSD represents the soil conditions in Brazil before 1998. From 2000 to 480 

2019, soybean cultivation area in Brazil nearly tripled, and new soybean fields were mostly converted 481 

from pasture and forests (Song et al. 2021a). The conversion process involves removal of surface 482 

vegetation and extraction of the root systems. Subsequently, soil prerparation is critical for cultivating 483 

soybeans on the newly converted land. In the Cerrado, the largest soybean growing biome in Brazil, the 484 

native soil condition is poor for crop production. Most of the soils in the Cerrado are highly weathered 485 

Oxisols and Ultisols, with high acidity and serious definicieny in nutrients (Lopes 1996). Improved 486 

management practicies such as liming and fertilizerization have greatly increased soil fertility for growing 487 
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soybeans (Lopes 1996). These important changes in soil property are not reflected by the HWSD soil 488 

database — likely the principal reason why the soil data did not contribute to soybean yield modelilng. 489 

Crop modeling studies suggest that soil-related yield variability outweighs the simulated year-to-year 490 

variations in yield due to weather when no fertilizer is applied (Folberth et al., 2016). Up-to-date high-491 

quality soil data may improve modeling yiled for soybean and other crops in the tropics where agriculture 492 

is expanding (Eigenbrod et al. 2020). Future studies will investigate the utility of higher resolution soil 493 

dataset for yield mapping (Hengl et al. 2017). Generating other spatially explicit data on agricultural 494 

management that are important for crop production such as seed variety and fertilizer use, is another 495 

potential way of improving yield mapping.   496 

Lastly, a common practice in crop yield mapping is to construct a machine learning model at an 497 

aggregated spatial scale where public yield statsitics are available, and apply the model to a finer scale at 498 

which remote sensing data are acquired (e.g. Johnson 2014). The upscaling process (e.g. spatial 499 

aggregation from pixel to municipal) can reduce uncertainties in the original data, as pixel-level errors 500 

may be averaged out. Our yield models were calibrated at the municipal scale. More problematic is the 501 

downscaling process (i.e. applying the trained model to pixels), as pixel-level errors often exist from e.g. 502 

atmospheric correction or misclassification. The discrepency between model performance (Figure 5, 503 

overall RMSE 344 kg/ha) and yield map assessment at the same municipality scale (Figure 10, overall 504 

RMSE 418 kg/ha) revealed a positive bias in the predicted yield (Figure 9), although the models were 505 

unbiased after linear adjustment (Figure 4). This bias was primarily stemmed from the downscaling 506 

process, where pixel-level errors couls corrupt the results. Such bias may be removed using field-based 507 

yield measurements. However, such datasets are traditionally held by private industry without public 508 

access especially over large areas such as the national scale (see Deines et al. (2021) for the case of the 509 

United States). Open access to field observations is rare in most parts of the world (Coutu et al. 2020). 510 

Increasing the access to historical field observations is a potentially effective way of advancing crop yield 511 

research. 512 
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4.2.Towards operational yield mapping 513 

Achieving operational yield prediction using satellite data alone is a cost-effective approach of generating 514 

timely information on crop production. To demonstrate the predictive capability of our yield models, we 515 

applied the models, trained on 2001-2019 data, to 2020 data and produced a 30 m resolution soybean 516 

yield map for 2020 (Figure 14). We also collected municipal yield statistics for 2020 and compared with 517 

our 2020 yield map. Our random forests models, trained on 2001-2019 data, were able to predict 2020 518 

yield with comparable accuracy as the withheld 2001-2019 test data. The RMSE, MBE and r2 of the 519 

direct output of random forests predictions for 2020 was 555 kg/ha, -145 kg/ha and 0.66, respectively. 520 

Consistent with the model performance on 2001-2019 test data, an overall bias was noted. To eliminate 521 

this bias, we applied the linear regression approach as reported above. We randomly selected 3% of 522 

municipalities (n=34) from the 1,136 municipalities, and constructed a linear regression model using the 523 

random forests-predicted yield as the independent variable and the 2020 municipal yield statistics as the 524 

dependent variable. After bias correction, the MBE was reduced to -37 kg/ha, and RMSE was reduced to 525 

462 kg/ha (Figure 14b). The RMSE represents 13% error relative to the national average of 3480 kg/ha in 526 

2020. This result suggests that our pre-trained models can be used to generate high-resolution soybean 527 

yield maps for future years with the caveat that a small amount of reference data are still needed for the 528 

final bias correction. Given the continued operational satellite data acquisitions, including Landsat 8, 529 

Landsat 9, MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS), the demonstrated predictive 530 

capability of our pre-trained yield models may be used for future yield mapping in a semi-operational 531 

mode.  532 
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 533 

Figure 14. Soybean yield in year 2020 predicted using models trained on 2001-2019 data. a) 30-m map of 534 

soy yield 2020. b) Density distribution of the soy yield map. The colors match those shown on the map, 535 

and each color corresponds to approximately 1/6 of the total soy pixels. c) Comparison between predicted 536 

yield and municipal yield statistics as reference. 537 

 538 

The rapidly developing technology of satellite remote sensing is transforming global agriculture. Earth 539 

observation data are increasingly used in research and operational settings for mapping crop types, 540 

monitoring crop growth, improving agricultural management and forecasting food production. Increasing 541 

the comprehensiveness within a single data product, including area, yield, cropping intensity and 542 

calendar, at high spatial and temporal resolution has been identified as one of the future research areas in 543 

developing global gridded cropping system data product (Kim et al. 2021). We showed in a previous 544 

study that satellite data could be used retrospectively mapping soybean over South America since 2001 545 

(Song et al. 2021a). Our 30 m South America soybean map product is being updated at an annual 546 

frequency in an operatioanl mode as new satellite data are acquired. This study extends our research from 547 
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crop type mapping to yield mapping, and we demonstrated that pre-trained machine learning models 548 

could be applied for yield mapping in future years. Our current approach for yield mapping and updating 549 

uses satellite data of the entire growing season as input. This post-season mapping can generate highly 550 

relabile data products, but lacks sufficient timeliness to capture production shocks resulted from e.g. 551 

extreme weather events within the growing season. Recent research has demonstrated that early- and in-552 

season crop type mapping and crop yield forecasting could be achieved using advanced machine learning 553 

algorithms (e.g. Lin et al. 2022), seasonal climate forecast (Iizumi et al. 2021), and in-season weather 554 

observations (Schauberger et al. 2017). Implementing robust in-season forecasting methods in monitoring 555 

systems is needed to mitigate the adverse impacts of climate change (Fritz et al. 2019; Kim et al. 2021; Li 556 

et al. 2019; Lobell and Burke 2010; Nakalembe et al. 2021).  557 

5. Conclusions 558 

We developed a machine learning-based approach to map annual soybean yield in Brazil over the past 559 

two decades. Consistent satellite observations from the open Landsat and MODIS data archives were used 560 

to calibrate unbiased yield models using random forests followed by linear regression. Soybean yield 561 

maps were generated at 30-meter spatial resolution for every year from 2001 to 2020. NDVI at the peak 562 

of the growing season was found to be the most important variable for modeling soybean yield. Our study 563 

explicitly demonstrated the utility of climate and weather variables for crop yield estimation. Our multi-564 

scale approach was effective in integrating official yield statistics at political unit level with remote 565 

sensing data. Our study demonstrated that models trained on long-term historical data could be employed 566 

to predict yield for future years. Our research also highlights that improving the temporal density of high-567 

resolution satellite observations, and enhancing the accessibility to field-level yield measurements are 568 

viable ways to improve crop yield mapping over large areas.   569 

 570 

 571 
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