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Abstract

Vegetation green leaf phenology directly impacts gross primary productivity (GPP) of terrestrial ecosystems. Satellite ob-

servations of land surface phenology (LSP) provide an important means to monitor the key timing of vegetation green leaf

development. However, differences between satellite-derived LSP proxies and in-situ measurements of GPP make it difficult to

quantify the impact of climate-induced changes in green leaf phenology on annual GPP. Here we used 1,110 site-years of GPP

measurements from eddy-covariance towers in association with time series of satellite LSP observations from 2000-2014 to show

that while satellite LSP explains a large proportion of variation in annual GPP, changes in green-leaf-based growing season

length (GSL) had less impact on annual GPP by ˜30% than GSL changes in GPP-based photosynthetic duration. Further,

maximum leaf greenness explained substantially more variance in annual GPP than green leaf GSL, highlighting the role of

future vegetation greening trends on large-scale carbon budgets. We conclude that satellite LSP-based inferences regarding

large-scale dynamics in GPP need to consider changes in both green leaf GSL and maximum greenness.
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Abstract10

Vegetation green leaf phenology directly impacts gross primary productivity (GPP)11

of terrestrial ecosystems. Satellite observations of land surface phenology (LSP) provide12

an important means to monitor the key timing of vegetation green leaf development.13

However, differences between satellite-derived LSP proxies and in-situ measurements of14

GPP make it difficult to quantify the impact of climate-induced changes in green leaf15

phenology on annual GPP. Here we used 1,110 site-years of GPP measurements from16

eddy-covariance towers in association with time series of satellite LSP observations from17

2000-2014 to show that while satellite LSP explains a large proportion of variation in18

annual GPP, changes in green-leaf-based growing season length (GSL) had less impact19

on annual GPP by ∼30% than GSL changes in GPP-based photosynthetic duration.20

Further, maximum leaf greenness explained substantially more variance in annual GPP21

than green leaf GSL, highlighting the role of future vegetation greening trends on22

large-scale carbon budgets. We conclude that satellite LSP-based inferences regarding23

large-scale dynamics in GPP need to consider changes in both green leaf GSL and24
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maximum greenness.25

1 Introduction26

The timing and duration of vegetation growing seasons have changed across much of the27

Earth’s terrestrial ecosystems over the last several decades (Buitenwerf et al., 2015; Hua28

et al., 2021; Park et al., 2016; Piao et al., 2007). Observed trends of advanced spring and29

delayed autumn increased the growing season length (GSL) globally. The increased GSL is30

generally thought to result in increased gross primary productivity (GPP) (Buermann et al.,31

2018; Dragoni et al., 2011; Keenan et al., 2014; Piao et al., 2019), which reflects the total32

amount of carbon absorbed by vegetated ecosystems during a unit time period. However,33

GSL changes in green leaf development might not always synchronize with changes in GPP34

photosynthetic duration, and geographically heterogeneous patterns of leaf greenness intensity35

changes, so called greening and browning, complicate this relationship, particularly at high36

latitudes (C. Chen et al., 2019; Huang et al., 2018; Liu et al., 2021; Zhu et al., 2016). Since37

global greening and browning trends alter the photosynthetic competence of vegetation in38

sequestering carbon, they significantly affect ecosystem GPP. Understanding the interactive39

roles of changes in GSL and leaf greenness is critical to infer global carbon dynamics and40

future climate change.41

Eddy-covariance (EC) flux towers provide direct measurements of GPP, but over limited spatial42

extents (Baldocchi, 2020). By using EC measurements, previous studies have investigated the43

sensitivity of annual GPP (ΣGPP ) to GPP-based photosynthetic seasonal and physiological44

covariates. For example, Xia et al., 2015 found that over 90% of the ΣGPP variation can be45

explained by photosynthetic GSL and annual maximum GPP. Following the same method,46

Zhou et al., 2016 and Zhou et al., 2017 supported the conclusion and found that changes in47

maximum GPP explain more variability in ΣGPP than the start and end of photosynthetic48

timing. However, whether a similar relationship holds for leaf-greenness-based phenology and49
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physiology remains unclear. More importantly, although GPP upscaling methods that relies50

on leaf greenness related measurements (Jung et al., 2019; Le Quéré et al., 2016) have been51

developed to estimate large spatial scale vegetation productivity, the comparison between52

impacts of GSL changes in green leaf development on vegetation productivity with that of53

GSL changes in photosynthetic duration over large spatial scales have rarely been studied.54

In contrast, satellite remote sensing provides spatially continuous long-term observations55

of green leaf development and GSL at global scale (Friedl et al., 2019; Ganguly et al.,56

2010). Satellite-observed land surface phenology (LSP) data is the only source of global57

green leaf GSL information (Caparros-Santiago, 2021; Piao et al., 2019), and has been58

widely incorporated into both process-based and data-driven ecological models to upscale59

field-based measurements of GPP from eddy covariance towers to larger areas (Falge et al.,60

2002; Richardson et al., 2010; Richardson et al., 2013). However, because LSP measures61

the period of green leaf development rather than photosynthesis, ecosystem-scale phenology62

measured by LSP data sets do not always accurately capture the seasonality of GPP, and63

annual maximum GPP in Xia et al., 2015 is not necessarily reflected by annual maximum of64

leaf greenness. Moreover, although large scale ΣGPP responses to leaf greenness changes65

has been investigated (Huang et al., 2018; Keenan et al., 2014), few studies have explored66

how changes in green-leaf-based GSL and maximum greenness jointly regulate geographic67

and interannual variation in ΣGPP , even though both processes are occurring concurrently68

in many ecosystems. Therefore, investigating the nature and magnitude of how satellite LSP69

observations explain ΣGPP variation, as well as the joint effect of changes in green-leaf-70

based GSL and maximum greenness on ΣGPP , are helpful to understanding how satellite71

observations can be used to study climate change induced dynamics in the global carbon72

cycle.73

In this study, by using extensive EC measurements provided by the FLUXNET2015 project74

(Pastorello et al., 2020) in combination with global time series of LSP observations from75
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NASA’s Moderate Spatial Resolution Imaging Spectroradiometer (MODIS) from 2000 to76

2014, we investigated the strength of the covariance between LSP and GPP seasonality77

and modeled how satellite-observed green leaf phenology and maximum greenness control78

ΣGPP across global terrestrial ecosystems. We aimed to evaluate the performance of using79

satellite LSP-derived green leaf GSL and maximum greenness in inferring ΣGPP , compared80

to GPP-based photosynthetic GSL and maximum GPP derived from EC measurements.81

Using Bayesian hierarchical models, we were able to quantify the variation of the relationship82

between ΣGPP and green leaf phenology within and across global biomes and flux sites. We83

found that satellite LSP-derived GSL had less ΣGPP sensitivity to GPP derived GSL by84

∼30% and that the GSL-ΣGPP relationship varies by biome type and flux site. Importantly,85

we also found that maximum greenness exerted stronger control on ΣGPP than LSP-derived86

GSL, suggesting that future leaf greening trends, represented by trends of increasing maximum87

greenness, would increase global vegetation productivity more than extending the time period88

of green leaf development.89

2 Methods90

2.1 Datasets91

We obtained GPP measurements of 166 EC flux sites distributed across the globe (Fig. 1)92

from the FLUXNET2015 project (https://fluxnet.org/data/fluxnet2015-dataset/). Although93

the flux dataset provides decades of EC measurements until 2014, we only used the EC data94

within 2000-2014 because this time period matches with MODIS observations. Then, we95

filtered out site-years data that contain continuous missing values with more than 45 days.96

After data preprocessing, there were 1,110 site-years data left, representing 11 biome types97

(Fig. 1). To identify which GPP variable in the dataset was better for studying phenology,98

we undertook a sensitivity analysis (Fig. S1) by calculating GPP-based phenometrics from99

each daytime GPP variable in the FLUXNET2015 dataset. As no significant differences100
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were found among those GPP variables, we chose GPP_DT_VUT_REF, which represents101

daytime GPP using a Variable U-star (U∗) Threshold (Pastorello et al., 2020), to conduct102

this research. We extracted ΣGPP measurements for each site-year as well as daily GPP103

time series from the FLUXNET2015 data to conduct this analysis.104

To analyze EC measurements with satellite LSP observations, we extracted satellite LSP105

data from 2000 to 2014 for flux site locations from the MCD12Q2 v6 product (https:106

//lpdaac.usgs.gov/products/mcd12q2v006/) (Friedl et al., 2019; Ganguly et al., 2010). This107

data product provides global, annual LSP estimates at 500 m spatial resolution based on time108

series of the two-band enhanced vegetation index (EVI2; Jiang et al., 2008). The MCD12Q2109

LSP product uses spline functions to smooth the EVI2 time series and percentage thresholds110

to extract phenological dates. The estimated phenometrics include Greenup, MidGreenup,111

Maturity, Peak, Senescence, MidGreendown, and Dormancy, representing 15%, 50%, 90%,112

100% of annual EVI2 amplitude in spring and autumn respectively.113

2.2 GPP-based seasonality estimation and evaluation114

To compare with satellite LSP phenometrics, we applied the MCD12Q2 LSP algorithm115

(Friedl et al., 2019) to the daily GPP time series to retrieve annual GPP-based seasonality116

metrics as well as annual maximum GPP (GPPmax) and annual minimum GPP (GPPmin).117

We followed the same procedure of MCD12Q2 phenometrics estimation, whereby for any118

particular year, we first gathered daily GPP measurements for the full calendar year plus six119

months before and after, and then smoothed the time series using a spline function. The120

GPP-based seasonality metrics were then estimated by the same percentage thresholds as121

MCD12Q2 but were based on GPP amplitude. We obtained 866 site-years of GPP seasonality122

metrics out of the 1,110 site-years of EC measurements from the algorithm. There were 244123

site-years data that had GPP values but the annual amplitudes derived from the smoothed124

spline function were too low (< 4 gCm−2yr−1) to estimate reliable seasonality.125
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Figure 1: The distribution of eddy-covariance flux towers used in this study. (a) Number
of sites and (b) number of site-years per biome type used in this study. The biome type is
determined by the International Geosphere-Biosphere Programme (IGBP) classification data
provided in the FLUXNET2015 dataset.

To evaluate the consistency between the GPP-based seasonality metrics and the satellite LSP126

data, we iteratively searched through each GPP seasonality metric for a potential match127

of the same type of LSP phenometric within a certain time period window (±185 days),128

centered on the GPP metric date. If all of the corresponding LSP phenometrics in a site-year129

were found, the site-year was marked as “match”, otherwise “no-match”. The search window is130

wide enough to capture potential matches, and the consistency between the GPP seasonality131

metrics and the LSP phenometrics was then evaluated by linear regression. Among the132

matched phenometrics and GPP metrics, we linearly regressed GPP seasonality metrics133

against LSP phenometrics. Besides reporting R2 and root mean squared error (RMSE)134

from the linear regression, the mean relative deviation (MRD) and mean absolute deviation135

(MAD) were also calculated to quantify the differences between LSP phenometrics and GPP136

seasonality metrics. Specifically, MRD evaluates bias in the GPP and EVI2 metrics, while137
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MAD quantifies the absolute deviation between the two data sources. With N defined as the138

total number of matched site-years, the formulas of MRD and MAD were used as follows:139

MRD = 1/N ∗ ΣN
i=1(GPP metrici − EV I2 phenometrici) (1)

MAD = 1/N ∗ ΣN
i=1|GPP metrici − EV I2 phenometrici| (2)

The “no-match” site-years were also investigated by comparing their time series data of140

MODIS EVI2 and EC measured GPP, respectively. Five reasons for their mismatch were141

investigated: EVI2 data missing, GPP data missing, EVI2 amplitude too low to retrieve LSP,142

GPP amplitude too low to retrieve GPP seasonality metrics, and both LSP and GPP metrics143

exist but do not match. Note that since the MCD12Q2 LSP product only processed pixels144

with annual EVI2 amplitude greater than 0.1, to distinguish between EVI2 data missing145

and EVI2 amplitude too low to retrieve LSP, we utilized the MCD43A4 Nadir Bidirectional146

Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) dataset (Schaaf147

and Wang, 2015).148

We also investigated the consistency of GPP seasonality metrics with LSP from single pixels,149

3-by-3 pixel windows, and 5-by-5 pixel windows, respectively. The values in pixel windows150

were aggregated by mean and median. We found that single pixel LSP represents GPP151

seasonality metrics the best with higher R2 values, lower RMSE values, compared with pixel152

window based aggregated LSP (result not shown). So, we used single-pixel LSP to conduct153

further analysis in this study.154

2.3 Annual GPP model analysis155

To understand the phenology and physiology effects on ΣGPP , inspired by Xia et al., 2015,156

we introduced five nested Bayesian hierarchical regression models representing different157
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hypotheses. The Bayesian framework allows partial pooling (Gelman and Hill, 2006) that158

accounts for the unbalanced number of site-years for categories of biome types and flux sites.159

More importantly, the Bayesian hierarchical models help us understand the site-level and160

biome-level effects by capturing the variability of model coefficients among flux sites and161

biome types. The models considered are:162

Model 1 : Y ∼ N(β0 + β1GSL+ β2Zmax + β3Zmin, σ
2
y) (3)

Model 2 : Y ∼ N(β0j + β1GSL+ β2Zmax + β3Zmin, σ
2
y)

β0j ∼ N(µ0, σ
2
0)

(4)

Model 3 : Y ∼ N(β0j + β1jGSL+ β2jZmax + β3jZmin, σ
2
y)

βnj ∼ N(µn, σ
2
n), n = 0, 1, 2, 3

(5)

Model 4 : Y ∼ N(β0k + β1jGSL+ β2jZmax + β3jZmin, σ
2
y)

β0k ∼ N(µ0, σ
2
0)

βnj ∼ N(µn, σ
2
n), n = 1, 2, 3

(6)

Model 5 : Y ∼ N(β0k + β1kGSL+ β2kZmax + β3kZmin, σ
2
y)

βnk ∼ N(ηnj, σ
2
0)

ηnj ∼ N(µn, τ
2
n), n = 0, 1, 2, 3

(7)

where Y represents ΣGPP ; j represents biome type; k represents flux site; Zmax and Zmin163

represent the annual maximum and minimum of GPP or EVI2; µn, ηn, n = (0, 1, 2, 3) represent164

the mean values of the population distribution of intercepts and slopes at biome and site165

levels, respectively; σ2
y, σ2

n, and τ 2n, n = (0, 1, 2, 3) are the corresponding variances. Model166

1 is the simplest model that explores whether ΣGPP can be explained by GSL and Zmax167

and Zmin; Model 2 considers background GPP/EVI2 variability among biome types; Model 3168

explores the variability of covariates among biome types; Model 4 adds site-level intercepts to169
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test the importance of considering site-level background GPP/EVI2 rates; Model 5 is the full170

model that considers both site-level and biome-level variability. Cross validation was used to171

determine the significance of model fit improvements when the model complexity increases.172

By using GPP-metrics-based models as benchmarks, we are able to understand the effects of173

phenology and physiology on annual carbon uptake and evaluate the capability of satellite174

observations in capturing these effects. The GSL values were calculated by the duration175

between MidGreenup and MidGreendown dates, representing the timing of the time series176

reaching 50% of amplitude in spring and autumn, estimated from GPP time series for GPP-177

metrics-based models or obtained from the MCD12Q2 LSP product for EVI2-metrics-based178

models. The MidGreenup and MidGreendown were selected because they are more robust and179

reliable in satellite LSP observations than other phenometrics. Note that evergreen plants also180

have leaf-based seasonality and that can be captured by satellite observations (R. Wang et al.,181

2019). To compare the sensitivity of ΣGPP to model covariates, the standardized models182

with centered and scaled covariates were also implemented. Note that to exclude the influence183

of multiple phenological cycles and cross-calendar-year phenology on ΣGPP calculation, we184

focused on the data with a single phenological cycle and locate at northern hemisphere only185

in this modeling analysis. The GPP-based phenological cycles were determined by the fitted186

spline function same as producing the MCD12Q2 LSP product (Friedl et al., 2019).187

The Bayesian hierarchical models were implemented by JAGS software (v4.3.0) and R188

programming language (v3.6.3). All parameters in the models were assigned uninformative189

prior distributions to let data dominate the calculation of posterior distributions. We190

summarized the parameter posterior distributions by median values and 95% credible intervals191

(CIs) obtained from samples of Markov Chain Monte Carlo (MCMC) by JAGS. All the R192

scripts are available online (See section Code availability).193
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3 Results194

3.1 Phenometrics comparison195

To compare the GPP seasonality metrics with MODIS LSP phenometrics, we first aligned196

their dates individually (Fig. 2). Of the 1,110 site year GPP seasonality metrics data, 758197

(68%) matched phenometrics with the MODIS LSP; 124 (11%) did not have GPP seasonality198

metrics due to missing GPP values; 96 (9%) were left because MODIS LSP did not provide199

phenometric values; 11 partially matched with the MODIS LSP phenological cycle; and200

only one of them did not find a match at all. Note that 120 (11%) of the site-years of201

data had GPP and EVI2 amplitudes that were too low to reliably estimate GPP seasonality202

metrics and MODIS LSP phenometrics; this could also be considered consistent between EC203

measurements and satellite LSP observations.204

Figure 2: The match process of MODIS EVI2 phenometrics and flux towered measured GPP
seasonality metrics. Numbers in the figure are number of site-years.

The regression analysis suggests that LSP measurements from MODIS had general agreement205

with EC measurements across sites, but exhibit systematic bias among deciduous and evergreen206

vegetation. Specifically, MidGreenup and MidGreendown from LSP measurements estimate207

later start of GSL for evergreen vegetation and later end of GSL for deciduous vegetation,208
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Figure 3: Phenometrics comparison. Comparison of the phenometrics derived from Flux
GPP time series and MODIS EVI2 time series for MidGreenup (50% greenness in spring) (a)
and MidGreendown (50% greenness in autumn) (b). Box plots show the distributions of flux
phenometrics (“F”) and MODIS phenometrics (“M”).

relative to corresponding metrics from EC measurements (Fig. 3, Table 1). For deciduous sites,209

the satellite-observed MidGreenup showed strong agreement with corresponding estimates210

derived from EC measurements (MRD = 2 days, R2 = 0.78, p-value < 0.05). However,211

MidGreendown LSP measurements showed significant systematic bias relative to EC-derived212

estimates (MRD = -14 days, R2 = 0.79, p-value < 0.05). At evergreen sites, however,213

MidGreenup from LSP observation was systematically late relative to EC estimates (MRD =214

-23 days, R2 = 0.47, p-value < 0.05) and was only weakly correlated with MidGreendown215

dates from EC measurements (MRD = -3 days, R2 = 0.16, p-value < 0.05). The consistent216

MidGreenup and MidGreendown biases for deciduous and evergreen are representative for all217

phenometrics considered in spring and autumn (Fig. S5).218
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Table 1: Regression statistics for comparison of phenometrics in Fig. 3 from EC versus LSP
measurements. MRD = mean relative deviance; MAD = mean absolute deviation.

Phenometric Slope Intercept R2 MRD MAD
Evergreen MidGreenup 1.00 (±0.15) -23.2 (±21.07) 0.47 -22.81 23.39
Deciduous MidGreenup 0.83 (±0.03) 23.12 (±4.93) 0.78 1.82 15.36

Evergreen MidGreendown 0.51 (±0.16) 126.42 (±42.26) 0.16 -3.32 16.84
Deciduous MidGreendown 0.76 (±0.03) 46.16 (±8.45) 0.79 -14.03 23.30

3.2 Annual GPP sensitivity219

Nearly all of the variance in large-scale ΣGPP is explained by three characteristics of220

seasonality in the EC measurements: growing season length (GSL), growing season maximum221

GPP (GPPmax), and growing season minimum GPP (GPPmin) (Fig. 4 a,b); the model with222

both biome- and site-level effects explained 98% of variance in ΣGPP , with a root mean223

squared error (RMSE) of 73.65 gCm−2yr−1 (Fig. 4b). This corresponds to roughly 5%224

of the average ΣGPP across all site-years. These results are consistent with results from225

previous studies (Xia et al., 2015; Zhou et al., 2016), but is based on more site-years of EC226

measurements and a different model structure.227

The results in Fig. 4a and 4b demonstrate that GPP phenology effectively explains geographic228

and interannual variance in ΣGPP measured at EC tower sites. However, because EC towers229

provide a sparse and non-representative sample of global terrestrial ecosystems, it is difficult230

to use these data to make inferences regarding large-scale dynamics in GPP arising from231

changes in phenology. To explore how well leaf greenness based phenological and physiological232

metrics derived from satellite LSP observations explain ΣGPP , we estimated a Bayesian233

hierarchical model with the same basic form, but using the matched MODIS LSP metrics234

(GSL, minimum and maximum EVI2) at northern hemisphere as proxies for corresponding235

metrics derived from EC measurements (Fig. 4c,d). Compared to models fitted using EC-236

derived seasonality metrics, models estimated using MODIS LSP metrics yielded weaker237

agreement with in-situ measurements of ΣGPP (Fig. 4c,d). The LSP-based model with238

site-level effects showed strong overall correlation with ΣGPP (R2 = 0.88), but the RMSE was239
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Figure 4: Bayesian hierarchical model results. (a) GPP metrics-based model with biome-level
intercepts and slopes; (b) GPP metrics-based model with site-level intercepts and slopes; (c)
MODIS LSP-based model with biome-level intercepts and slopes; (d) MODIS LSP-based
model with site-level intercepts and slopes; (e) Comparison showing the normalized effect of
GPP metrics- and LSP-based models on model results with site-level intercepts and slopes.
Bars show 95% Bayesian credible intervals. The larger red and blue points in (e) show the
overall effect across all biomes from the LSP- and GPP-derived metrics, respectively. ΣGPP
is the annual GPP at each EC tower.

nearly double that obtained using metrics based on EC measurements (190.45 gCm−2yr−1).240

These results indicate that satellite-based LSP metrics are able to estimate ΣGPP , but241

include substantial uncertainty. Consistent with results based on EC-derived seasonality242

metrics, the strong positive relationship between ΣGPP and LSP-derived GSL and EV I2max243

(Fig. 4e) demonstrate that satellite-based observations of green leaf duration and maximum244

greenness (e.g. Keenan et al., 2014; Park et al., 2016) explain a large proportion of variability245

in ΣGPP across global terrestrial ecosystems.246
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Models estimated from MODIS LSP metrics suggests a smaller magnitude of green-leaf-247

based GSL effect on ΣGPP relative to the EC metrics-based models. To quantify this,248

we estimated models using standardized EC- and LSP-derived metrics, which allowed us249

to compare the magnitude of coefficients (i.e., the relative sensitivity of ΣGPP ) for each250

predictor variable across models (Fig. 4e). After controlling for EV I2max and EV I2min, the251

influence of satellite LSP-derived GSL was roughly half the magnitude of GSL derived from252

EC measurements after controlling for GPPmax and GPPmin. An increase of one standard253

deviation in EC-derived GSL increased the standard deviation in ΣGPP by 0.48 (0.33 to 0.63,254

95% Bayesian credible interval), versus 0.27 (0.04 to 0.50) for GSL derived from MODIS LSP,255

controlling for GPPmax and GPPmin. Controlling for GPPmax and GPPmin and extending256

the photosynthetic GSL by one day in the model estimated from EC-derived metrics leads257

to an increase in ΣGPP of 7.2 gCm−2yr−1, but only 5.0 gCm−2yr−1 in the corresponding258

LSP-metrics-based model controlling for EV I2max and EV I2min. Stated more directly, the259

result suggests that GSL changes in green leaf development had roughly 30% less effect on260

ΣGPP on average across biomes compared to changes in photosynthetic duration.261

The magnitude of the GSL effect in models estimated using both EC metrics and MODIS LSP262

metrics varied across biomes. Overall, variance in the GSL effect across biomes was smaller263

in the EC metrics-based models (4.7 gCm−2yr−1) than in the LSP metrics-based models (7.6264

gCm−2yr−1) (Fig. 4e, Fig. 5). Croplands (CRO) and deciduous broadleaf forests (DBF) had265

the largest GSL effects, with values of 8.4 gCm−2yr−1 and 8.2 gCm−2yr−1 respectively in266

the EC metrics-based model, and 7.2 gCm−2yr−1 and 6.2 gCm−2yr−1, respectively, in the267

LSP metrics-based model. Evergreen needleleaf forests (ENF) and grasslands (GRA) showed268

lower GSL effects, with a value of 6.0 gCm−2yr−1 and 6.3 gCm−2yr−1 estimated by the EC269

metrics-based model, compared with 3.9 gCm−2yr−1, and 1.9 gCm−2yr−1 estimated by the270

LSP metrics-based model. While the EC metrics-based model identified a substantial GSL271

effect on ΣGPP in Wetlands (WET) (7.67 gCm−2yr−1), the LSP metrics-based model found272

almost no effect of GSL on GPP. In general, the LSP metrics-based model had a smaller273
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Figure 5: Growing season length coefficients for each site and biome type from the EC
metrics- and LSP metrics-based models. The numbers at the bottom of the figure show the
number of sites (the first row) and number of site-years (the second row) for each biome type.
Biome types are cropland (CRO), deciduous broadleaf forest (DBF), evergreen needleleaf
forest (ENF), grassland (GRA), mixed forest (MF), and wetland (WET). Vertical lines show
Bayesian 95 percent credible intervals.

estimated GSL effect on ΣGPP and larger uncertainty ranges for most biome types compared274

to the EC metrics-based model. The magnitude of the differences regarding the role of GSL275

between EC metrics- versus LSP metrics-based models varies among different places on Earth276

depending on their dominant vegetation types.277

Relative to the EC metrics-based models, the LSP metrics-based models showed greater278

sensitivity to site-level variability in ΣGPP . In the EC metrics-based models, the biome-level279

model explained the large majority of variance in ΣGPP (R2 = 93%), and accounting for280

site-level variability provided only modest improvement (R2 = 98%) (Fig. 4a, b). Indeed, cross-281

validation experiments indicate that accounting for site-level variability did not significantly282

improve the model (Fig. S6). In the LSP metrics-based models, however, inclusion of site-level283

variability increased the proportion of explained variance in ΣGPP from 55% to 84% (Fig. 4c,284
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d), with similar results achieved in cross-validation experiments (Fig. S6). Stated another way,285

ΣGPP modeled using LSP-derived phenology metrics is more sensitive to site-to-site variation286

in phenological metrics than corresponding metrics and models based on EC measurements.287

In fact, inclusion of site-specific intercepts explained the largest proportion of variance in288

ΣGPP in the LSP metrics-based models (Fig. S6). This suggests that phenological and289

physiological metrics derived from LSP observations do not capture differences in overall290

productivity across the EC sites included in this analysis; i.e., sites with the same GSL,291

EV I2max, and EV I2min derived from LSP metrics can have significantly different ΣGPP .292

The EC metrics- and LSP metrics-based models indicate that ΣGPP is more sensitive to293

GPPmax and EV I2max, respectively, than GSL (Fig. 4e). Normalized GPPmax and EV I2max294

effects were both about 60% larger than normalized GSL effects. Holding GSL and GPPmin295

constant, an increase in GPPmax of one standard deviation increases ΣGPP by 0.77 (0.58296

to 0.94) standard deviations. The corresponding sensitivity in the LSP-based model was297

0.43 standard deviations (0.17 to 0.70). Similar to GSL, biome-level variability in ΣGPP298

associated with variability in GPPmax and EV I2max was higher in the EC metrics-based299

model. In fact, EV I2max, which represents maximum leaf greenness was significantly related300

to the GPPmax at each site (Fig. S7). At the same time, variance in GPPmax increases with301

EV I2max (Fig. S7), which suggests that while maximum leaf greenness is a good indicator of302

mean maximum vegetation productivity, other factors exert substantial control on GPPmax303

at local scale.304

GPPmin and EV I2min play a modest role in regulating ΣGPP uptake in most, but not all,305

biome types (Fig. 4e). The normalized coefficient of GPPmin ranged from -0.03 to 0.27 (40%306

less than the normalized GPP GSL effect) and normalized coefficient of EV I2min ranged307

from -0.07 to 0.33 (20% less than the normalized EVI2 GSL effect). The effects of both308

variables are slightly lower than 95% significance level (Amrhein et al., 2019) based on our309

data, but ignoring the minimum seasonal productivity or aggregating maximum and minimum310
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metrics into the seasonal amplitude may obscure important factors that are diagnostic of311

total seasonal carbon update, especially in evergreen systems which have higher minimum312

greenness and smaller greenness amplitude.313

4 Discussion314

The result that EV I2max had a larger effect on ΣGPP suggests that increases in maximum315

leaf greenness alters ΣGPP more than increases in the growing season duration of green leaves.316

Previous studies have shown that while regional decreases in leaf greenness are present in the317

satellite record (Jong et al., 2012; Sulla-Menashe et al., 2018), so-called ’greening’ of global318

vegetated land areas has been ongoing since at least the early 1980’s (C. Chen et al., 2019;319

Huang et al., 2018). Satellite observations and ecological models suggest that this greening320

is diagnostic of enhanced terrestrial vegetation productivity, and has potential to mitigate321

climate warming by increasing the terrestrial carbon sink (Piao et al., 2020). However,322

a variety of studies have also suggested that increases in early and mid-growing season323

productivity can negatively impact end-of-season GPP, effectively offsetting early season324

increases in GPP (Buermann et al., 2018; Piao et al., 2008; Zani et al., 2020). Therefore,325

improved understanding of how changes in leaf greenness and GSL jointly impact ΣGPP326

is required to forecast future change in large-scale carbon budgets. Our results (Fig. 4e)327

indicate that maximum greenness increasing caused greening trends might have a larger328

impact on net carbon uptake of terrestrial vegetation than changes in growing season length329

of leaf development.330

Our results showing that satellite LSP-derived metrics had a smaller GSL effect on ΣGPP331

compared to EC-based metrics might have important implications for the use of remotely332

sensed LSP metrics to infer vegetation productivity at regional, continental, and global scales333

(e.g., Keenan et al., 2014; Richardson et al., 2010; Richardson et al., 2013). The smaller334

magnitude of green leaf based GSL effect on ΣGPP has the potential to bias understanding335
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regarding if and how changes in the satellite LSP-derived growing season of terrestrial336

ecosystems impact the sign and magnitude of net carbon fluxes. Future warming is expected337

to extend both the leaf and photosynthetic GSLs in many ecosystems, thereby potentially338

increasing ΣGPP (Hua et al., 2021; Piao et al., 2019). However, our results suggest that339

leaf GSL changes had smaller effect on ΣGPP than photosynthetic GSL changes, but the340

extended leaf GSL in spring and autumn (Buermann et al., 2018; Piao et al., 2008; Piao341

et al., 2007; Wolf et al., 2016) might increase carbon loss by ecosystem respiration, and thus342

reduce the total net carbon uptake.343

Differences in the timing of phenology from LSP and EC measurements may explain differences344

in model results from each data source. Our comparisons of phenophase transition dates345

derived from LSP and EC measurements of GPP are broadly consistent with prior work346

(D’Odorico et al., 2015; Lu et al., 2018; Shen et al., 2014), but are based on a much larger347

data set that supports additional and more nuanced interpretation. First, at deciduous sites,348

the timing of autumn phenology in LSP measurements was biased late compared to the349

timing estimated from EC measurements (Fig. 3b, 6a). The reasons for this are unclear,350

but this result almost certainly reflects complexity in the relationship between the timing351

of leaf coloration and decline in photosynthesis late in the growing season (X. Wang et al.,352

2020). As a consequence, LSP-derived leaf GSL was systematically longer than EC-derived353

photosynthetic GSL (Fig. S3, Fig. S4), which explains why the LSP-based model showed354

smaller GSL effect on ΣGPP for deciduous sites. Second, at evergreen sites, the timing of355

spring phenology from LSP measurements is biased late relative to corresponding timing356

from EC measurements (Fig. 3a, 6d), and the timing of autumn phenology from the two357

sources was only weakly correlated (Fig. 3, Table 1). This result has been previously noted358

(e.g., Melaas et al., 2013) and arises from the fact that photosynthesis in conifers starts well359

before the timing of leaf flushing and pigment changes later in the spring (Barr et al., 2009;360

Gao et al., 2021). These differences yielded shorter leaf GSL from LSP measurements relative361

to photosynthetic GSL from EC measurements and large site-level uncertainty for evergreen362
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vegetation observed by satellite LSP observations compared to EC measurements (Fig. S3,363

Fig. S4). These results highlight the importance of developing methods to better match364

remotely sensed phenology with vegetation photosynthetic activities such as solar-induced365

chlorophyll fluorescence (SIF) and better vegetation indices (Gonsamo et al., 2012; Jin and366

Eklundh, 2014; Mohammed et al., 2019).367

The result that site-level variability contributes a substantial proportion of total variance368

in ΣGPP modeled by LSP metrics across sites and years is consistent with Butterfield369

et al., 2020; Richardson et al., 2010; Richardson et al., 2013, who found that the remotely370

sensed phenology-productivity relationship was strong across flux sites but does not capture371

interannual variability in ΣGPP at individual sites. Local environmental factors such as372

temperature, precipitation, forest age, and soil moisture are more important regulators of373

GPP than leaf phenology and physiology at fine spatial scales (Barr et al., 2009; Churkina374

et al., 2005; Piao et al., 2009; Richardson et al., 2010). However, when investigating ΣGPP375

variability across large spatial scales, we found these local environmental factors tended to be376

averaged out, so the effects of remotely sensed leaf phenology and physiology on ΣGPP were377

stabilized. In addition, factors complicating the relationship between GPP measurements378

and remotely sensed LSP metrics also contribute to the site-level variability (X. Chen et al.,379

2018; Peng et al., 2017; Zhang et al., 2017). Further, EC measurements are affected by380

site-specific characteristics such as wind direction and measurement height (Chu et al., 2021;381

Schmid, 2002), factors that cannot be captured by satellite LSP observations. Thus, the382

magnitude of the estimated GSL-ΣGPP relationship at any particular site depends on383

both the natural variability of the relationship and the interaction with local characteristics.384

Our results support the conclusion that it is feasible to infer large-scale spatio-temporal385

patterns in ΣGPP from satellite-observed leaf GSL, but large uncertainty at fine spatial scales.386

Developing ways to explain this site-level variability, perhaps using ecological covariates, has387

the potential to substantially improve our models designed to infer large scale ΣGPP using388

satellite LSP observations.389
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5 Conclusion390

In summary, this study suggests that satellite LSP-based green leaf phenological and phys-391

iological metrics are capable of inferring vegetation productivity over large spatial areas392

for most biome types, and satellite observed leaf GSL trends are meaningful for projecting393

carbon cycle impacts into the future. However, caution must be used as satellite observed394

leaf GSL changes do not synchronize photosynthetic GSL changes for evergreen vegetation395

in spring and deciduous vegetation in autumn. Changes in leaf GSL had a smaller effect396

on ΣGPP compared to changes in photosynthetic GSL. Moreover, although changes in397

leaf GSL have a significant impact on ΣGPP , trends of vegetation greening or browning398

indicated by maximum leaf greenness changes might have more carbon impacts than the399

extended leaf GSL caused by current climate warming. Therefore, changes in both leaf GSL400

and maximum greenness need to be considered in satellite LSP-based inferences regarding401

large-scale dynamics of vegetation productivity.402
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Figure 6: Representative GPP and EVI2 time series along with estimated MidGreenup and
MidGreedown dates. Black lines in the GPP time series show fitted splines. (a) Deciduous
broadleaf forest (DBF) site US-Ha1; (b) Grassland (GRA) site CH-Fru; (c) Evergreen
needleleaf forest (ENF) site CZ-BK1; (d) Cropland (CRO) site IT-BCi. GPP values in
gCm−2d−1
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Supplementary figures and tables

Figure 1: Sensitivity analysis of the different FLUXNET2015 GPP DT variables. Each variable
(y-axis) was compared against our focal variable, GPP DT VUT REF using the difference in days
between phenometrics (a-g) or GPP itself (h).
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Figure 2: Growing season length coefficients for each site and biome type from the EC metrics-
and LSP metrics-based models. The numbers at the bottom of the figure show the number of sites
(the first row) and number of site-years (the second row) for each biome type. Biome types are
cropland (CRO), deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), grassland
(GRA), mixed forest (MF), and wetland (WET). Vertical lines show Bayesian 95 percent credible
intervals.

Table 1: Regression results for Figure 5

Phenometric Slope Intercept R2 MRD MAD
1 Greenup ever 0.54 (±0.13) 24.64 (±14.94) 0.24 -25.14 32.55
2 Greenup deci 0.77 (±0.05) 24.28 (±4.86) 0.67 4.21 24.17
3 Mid-Greenup ever 1 (±0.15) -23.2 (±21.07) 0.47 -22.81 23.39
4 Mid-Greenup deci 0.83 (±0.03) 23.12 (±4.93) 0.78 1.82 15.36
5 Maturity ever 0.77 (±0.16) 28.03 (±27.62) 0.31 -11.14 16.6
6 Maturity deci 0.81 (±0.03) 31.65 (±5.68) 0.78 2.34 15.39
7 Peak ever 0.61 (±0.17) 66.29 (±32.38) 0.21 -7.61 15.86
8 Peak deci 0.77 (±0.03) 40.68 (±6.91) 0.73 -0.16 16.97
9 Senescence ever 0.6 (±0.19) 79.54 (±40.55) 0.17 -5.55 16.29
10 Senescence deci 0.78 (±0.03) 41.15 (±7.92) 0.73 -3.65 18.81
11 Mid-Greendown ever 0.51 (±0.16) 126.42 (±42.26) 0.16 -3.32 16.84
12 Mid-Greendown deci 0.76 (±0.03) 46.16 (±8.45) 0.79 -14.03 23.3
13 Dormancy ever 0.3 (±0.1) 210.03 (±31) 0.14 -2.6 21.23
14 Dormancy deci 0.84 (±0.04) 28.59 (±10.83) 0.78 -16.59 24.65
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Figure 3: Comparison of multi-year mean growing season length for eddy-covariance flux site loca-
tions derived from MODIS EVI2 time series and FLUX GPP time series.
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Figure 4: The growing season length derived from MODIS EVI2 time series and FLUX GPP time
series. (a) Growing season length distribution for each biome type; (b) The difference between
growing season length derived from the two sources of observations.

Figure 5: The comparison of phenometrics derived from MODIS EVI2 time series and Flux GPP
time series.

4



Figure 6: Leave-one-year-out cross validation results of EC metrics- and LSP metrics-based models
representing different assumptions. Model 1 pools all data together; Model 2 considers biome-level
intercepts; Model 3 considers biome-level intercepts and slopes; Model 4 considers site-level intercepts
and biome-level slopes; Model 5 considers both site-level intercepts and site-level slopes.
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Figure 7: The relationship between flux site mean EVI2 maximum and GPP maximum across years.
Lines show linear regression results and polygons show 95% confidence intervals.
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