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Abstract

While more hydrological data is being generated than ever before, the power of modelling this collected information is not

fully realized unless it is of high quality, especially considering hydrological data from sensor networks, which is often errant

due to the possibility of malfunction or non-conducive environmental conditions. Fluctuations or errors are difficult to predict,

identify, and interpret. Manual models of quality assurance are not designed for managing datasets with continuous timeseries or

spatially extensive coverage, resulting in time- consuming models that rely on humanmade decision making and lack statistical

inference. This research hypothesizes that the stochasticity of rainfall and deterministic properties of flow can be used in concert

to create a more characteristic quality assurance model for high-resolution environmental data. An automated implementation

of this model is presented herein with the application of two use-cases, which maintains statistical integrity and circumvents

biases and potential for user error of manual frameworks.
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Abstract: 

While more hydrological data is being generated than ever before, the power of modelling this 

collected information is not fully realized unless it is of high quality, especially considering 

hydrological data from sensor networks, which is often errant due to the possibility of 

malfunction or non-conducive environmental conditions. Fluctuations or errors are difficult to 

predict, identify, and interpret. Manual models of quality assurance are not designed for 

managing datasets with continuous timeseries or spatially extensive coverage, resulting in time-

consuming models that rely on humanmade decision making and lack statistical inference. This 

research hypothesizes that the stochasticity of rainfall and deterministic properties of flow can be 

used in concert to create a more characteristic quality assurance model for high-resolution 

environmental data. An automated implementation of this model is presented herein with the 

application of two use-cases, which maintains statistical integrity and circumvents biases and 

potential for user error of manual frameworks.  

 

Highlights: 

• The stochasticity of rainfall and deterministic properties of flow are harnessed.  

• Anomalies are corrected with high confidence and no data volume constraints. 

• Risk of committing unintended questionable research practices and bias is reduced. 

 

Keywords: 

Quality assurance and control, sensor networks, hydrological data, data quality, anomalous data 

 

Software and Data Availability: 

Name of software: QAQC_nonRegression.py and QAQC_Regression.py  

Developers: Matthew McGauley  

Contact: mmcgau01@villanova.edu  

Year first available: 2022  

Hardware required: A personal computer  

Software required: Microsoft Windows or MacOS  

Software availability: https://github.com/mwm021/QAQC 

Cost: Free. Code released under the MIT License. 
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1 Introduction 

Recent innovations in technology and available data have created exciting opportunities for 

advancements across the spectrum of scientific disciplines (Philbeck and Davis 2018). The 

overwhelming benefits of large datasets, however, can be weighed down by the conjugate 

increase in error potential. This is true of all data, regardless of the source or method of 

derivation. The present work seeks to explore methodological means by which a model to 

resolve such issues and its potential was demonstrated by use cases on hydrological data. Data of 

this type is subject to a slew of external variables that cannot be controlled, allowing for 

instances of chaotic values to arise within the larger set. Despite the characteristic predictability 

of hydrologic systems (as they are often well modeled within the environmental context prior to 

institution), complex interactions with local climate and landscape introduce inherent 

complications (Sivakumar 2017). The insurance of quality data is an integral aspect of making 

informed decisions about modeled data in the field of stormwater resources management, as in 

other fields (Refsgaard et al. 2005; Wadzuk et al. 2021). For example, water quality and quantity 

data collected from stormwater control measures (SCMs) are utilized to determine system 

performance (Liu et al. 2017). Timely, resource-effective, and information-driven decisions 

about the design and maintenance of SCMs therefore require performance-based conclusions that 

are derived from high-quality data, i.e., that which is correct, consistent, and complete (Chao et 

al. 2015). As these systems become increasing pervasive collecting and managing high quality 

data for aiding in decision making and design becomes increasingly difficult. Further, 

retrospective identification of error in sensor function or quality assurance practices become 

increasingly onerous with larger volumes. Ultimately, these constraints limit the sustainable 

function of these systems. 

 

In-situ sensors can seamlessly capture increasingly large amounts of hydrological data in high-

resolution at continuous time scales. However, they are prone to malfunction for a myriad of 

environmental, internal, and physical reasons (e.g., the loss of site power, reading drift, lack or 

loss of adequate calibration, or sensor fouling) (Figure 1) that are difficult to detect due to 

conjugate system stochasticity in terms of cause and timing (Campbell et al. 2013). As a result, 

sensor-derived data typically requires additional steps to assure its quality. When sensor-derived 
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data is uncharacteristic of the conditions of its collection, there is inherent bias and incorrect 

inference (McCausland 2021) that may become difficult to detect at scale. 

 

 

Relying on manual models for quality assurance introduces a window for human bias and can 

therefore raise questions regarding research practices unless the researcher can report and justify 

standard, repeatable reasoning for the exclusion or augmentation of their outliers (Banks et al. 

2016). Particularly with manual models on large, long-term data sets, many different people 

assess the data over time, employing inconsistent internal decision-making behavior that remains 

procedurally consistent with internally and externally accepted practices (Hertwig and 

Gigerenzer 2011; Hsee et al. 2004). Even with Quality Assurance and Quality Control (QAQC) 

protocols in place, there is always an opportunity for human-imposed bias. Manual models are 

often implemented without statistical foundation, are neither efficient nor feasible with large 

Figure 1 Sensor issues identified and documented at Stormwater Control Measures (SCMs) 

managed by the Villanova Center for Resilient Water Systems (VCRWS). A. an entire SCM 

(outfitted with sensors) that was buried in snow after a storm, B. a sensor that was clogged with 

debris, C. a sensor and conjugate pipe band torn from sample location due to extreme weather, 

D. a datalogger which reported issues with poor signal strength and electrical conductivity. 

Photos were provided courtesy of Dr. Gerald Zaremba. 
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datasets, and exacerbate the issue of bias that uncharacteristic data inherently possesses (Kumari 

and Kennedy 2017).  

 

Quality assurance models are well-documented in the field of hydrology. The United States 

Environmental Protection Agency (EPA) outlines standards for retrieving quality data from 

environmental systems in a Quality Assurance Project Plan (“Guidance for Developing Quality 

Systems for Environmental Programs” 2002), but leaves the implementation of quality assurance 

models to management bodies themselves. Other institutions and research groups have 

developed computer software to detect and correct anomalies in sensor-derived environmental 

data (Asquith et al. 2020; Díaz et al. 2021; Faybishenko et al. 2022; Horsburgh et al. 2015), but 

none have done so on an event-by-event basis, in which environmental observations data is 

contextualized by the unique climatic conditions of its collection. Considering observations on 

an event-by-event basis provides insight into the intricacies of the time, space, and climatic 

conditions of captured data (Blaen et al. 2017). The example of event-specific flow velocity in a 

constructed wetland, provided in Figure 2, demonstrates the need for this approach. Flow 

velocities are flashy as rainfall intensity fluctuates throughout a storm (a period of stormflow, 

Figure 2A) and remain more constant during dry conditions (a period of baseflow, Figure 2C). 

Choosing to examine flow velocities occurring during an arbitrary period, such as within a 10-

hour window, could result in a capturing a distribution of values that encapsulates opposing 

environmental conditions (portion of periods of stormflow in Figure 2A and baseflow in Figure 

2C that are captured together in the arbitrary 10-hour window in Figure 2B).  
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Figure 2 Distribution of measured velocity values from a constructed stormwater wetland in 

February 2020 A. during a period of stormflow, B. during an arbitrary 10-hour period including 

portions of periods storm and baseflow, and C. during a period of baseflow.  
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An event-by-event approach requires little input beyond a local precipitation and flow record to 

contextualize concurrent hydrological observations for the conditions during which they were 

collected. Considering periods of storm and baseflow over time also provide a means of 

remaining robust to the effects of climate change, shifting weather patterns, and watershed 

development. The frequency of more intense rainfall has increased over the past seventy years in 

the United States (Wright et al. 2019), implying that current storm characteristics are inherently 

different from those of the past, and that storm and baseflow periods and an SCMs response to 

them should be considered unique through time. 

 

Employing statistical methods for quality assurance within stormflow (defined as coincident 

precipitation) and baseflow (defined as between precipitation events) periods provides an 

opportunity to limit potential false identification of anomalies in hydrological data that would 

occur due to the comparison of stormflow and baseflow periods, which are characteristically 

incomparable (Poff et al. 1997).  

 

An automated QAQC model, presented here, solves these limitations by harnessing the 

stochastic nature of hydrological data to make efficient, data-informed, and statistically rooted 

inferences for handling poor quality data on a retrospective, event-by-event basis. This model is 

controlled, efficient, and repeatable with any continuous dataset containing observations for 

hydrological data with concurrent rainfall and flow data. By applying this model to sensor-

derived examples using hydrological data, its capability of correcting such data without 

generalizing about the time and space in which it was collected is demonstrated. The resulting 

product is free of bias and the parameters for correction are mutable, which organizations can 

specify additional conditions for the correction of their data as deemed necessary. In all, applying 

this framework aids in mitigating the deleterious effects that poor-quality data can have on 

modeled data. The resulting product of this model, in which the quality of the observations 

within is assured, can be used to derive inference in modeled systems with higher confidence, 

reducing the monetary and humanitarian cost associated with systems that could be developed 

based on inherently erroneous data.   
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2 Methods 

Employing this automated model framework for the correction of uncharacteristic hydrological 

data is achieved in a sequence of five steps. In the first step, a rainfall series for the location of 

collection of the uncharacteristic hydrological data to be corrected is used to assign periods of 

rainstorm (stormflow) and dry (baseflow) conditions. A flow record can be used in conjunction 

with the rainfall record as an added means of assigning storm and baseflow conditions at the end 

of rainstorms but is not required. A rainfall record is required at minimum. An example 

application using a rainfall and flow record together will be considered here. In the second step, 

unique periods of storm and baseflow are assigned. A distribution of values within each unique 

period of storm and baseflow is considered for the purpose of identifying outliers. Before outliers 

are to be corrected, a regression of the cumulative rainfall of each period of stormflow is mapped 

against the concurrent hydrological observations as a means of validation. Upon validation, 

unexplained outliers are corrected using a baseflow-period mean or stormflow-period median 

(due to skew during storm events) for each event identified in the series of data. A full 

illustration of the forthcoming steps in this model is outlined in (Figure 3).  
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Figure 3 QAQC model overview. First, raw data is read into a python script in the proper format. 

Then, storm and baseflow events are assigned using the rainfall data in the input (steps 1 and 2). 

Outliers are determined by assigning z-scores to the distribution of values for each of the 

hydrological variables in the input on an event-by-event basis (step 3). Then, regression-based 

confirmation is performed for each storm event by fitting a 1st through 7th order polynomial 

between the cumulative rainfall throughout each storm and the concurrent hydrological 

variable’s observed value, returning the original data if more than 95% of the observed data can 

be explained by one of the fitted curves (step 4). For periods of stormflow not explained by 

regression-based confirmation, outliers are replaced with the median value for such events. For 

periods of baseflow, outliers are replaced with the mean value for each event (step 5). Plots 

illustrating the changes made to the input data are produced, along with output data. 

 

This automated QAQC model involves the identification and correction of poor-quality water 

quantity data aided by data transformation with the Pandas python package. The Pandas package 

provides a framework for data analysis and manipulation using dataframes which, facilitated by 

the design of the python language, streamlines large-scale analysis of data with mixed types. 

Pandas also provides functionality to parallelize operations applied to dataframes, which enables 

this model to function efficiently on a personal machine.  

 

2.1 Data Formatting 

Columns specify the datetime with observations of rainfall and flow at each timestamp. Rainfall 

and flow must have complementary SI or empirical units. Concurrent data for any number and 
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type of water quantity variables are then included with observations at each timestamp, leaving 

missing values blank. Columns have a header in the first row of the file detailing the variable 

each column represents. Three mandatory columns detail the Datetime, Flow, and Rainfall 

observation used to assign periods of storm and baseflow. Datetime should be in a standard 

format detailing the date and time of the observation. 

 

Datetime, Flow, and Rainfall columns should be named as stated here and appear in this order 

followed by the columns with water quantity data to be quality assured. Pandas provides 

flexibility for the input file type and format of the data via packaged methods. Demonstrated 

here, Excel workbooks were used to read uncharacteristic data into the script used for this model. 

The format mentioned is not required but suggested for the formatting of dataframes within the 

python environment, as it is the most conducive to the operations performed in the following 

steps. 

 

Once this pre-processed data has been formatted appropriately, it can be read into Pandas 

dataframes via the python script. Timestamps in the Datetime column are formatted and set to 

serve as the index for the dataframe. Rainfall data is transformed into a Boolean value that is true 

during a precipitation event and false otherwise. The same process is repeated for flow data, with 

nonzero flow as true and zero flow as false. 

 

2.2 Retrospective Storm and Baseflow Period Assignment 

Periods of stormflow and baseflow are then assigned using the following logic (Figure 4): A 

unique period of stormflow begins when there is any amount of instantaneous rainfall, with 

subsequent periods of rainfall with internal dry periods lasting less than six hours, which began 

at least six hours after the final instance of rainfall of the previous storm. Similarly, a unique 

period of stormflow ends when there are at least six hours until the next instance of rainfall. 

Criteria can require that flow return to below a threshold (e.g., 0.1 cfs) after the final instance of 

rainfall of the current storm before ending stormflow conditions. Otherwise, there is a unique 

period of baseflow. 
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While this logic is specific to the climatic conditions adopted by the Villanova Center for 

Resilient Water Systems (VCRWS) based on nationally accepted storm criteria (Driscoll et al. 

1989), this model provides flexibility for the specification of other location-specific conditions. 

For instance, stormflow conditions can specify a required rainfall depth, duration, and/or 

maximum allowable dry time throughout the course of the identified event. This model can be 

performed without the need of a flow record, for SCM’s that do not collect such information, by 

removing the additional flow criteria. Alterations to the decision criteria (yellow diamonds in 

Figure 4) can be made for an investigator’s location-specific parameters. The decision for flow 

can be bypassed in the instance of an SCM that does not collect such data or altered to better suit 

climatic conditions. 

 

 

 

Figure 4 Logical decision-making process for determining when periods of storm and baseflow 

occur using flow and rainfall data at each timestamp.  
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2.3 Outlier Detection 

Unique periods of storm and baseflow are assigned a unique identifier by appending an integer to 

the storm or baseflow designation assigned in the previous step. A z-score is calculated for the 

values of each variable of interest within the identified periods of storm and baseflow. Values 

with a z-score with an absolute value of greater than three are outliers (Saleem et al. 2014). The 

median of each period of stormflow (Figure 5A) and the mean of each period of baseflow 

(Figure 5B) is then used to impute missing values and detected outliers (outlined in Figure 6). 

Rainfall data is often stochastic in nature (Sivakumar 2017), skewing observations made during 

periods of stormflow. It is therefore better to impute values using the period-specific median in 

periods of stormflow, as it is better suited for skewed data (Hadeed et al. 2020). Rows of data 

containing any remaining missing data are removed, as they occur as a lack of available data to 

determine a mean or median to fill or replace values with for that period.  

 

 

The conditions for outlier detection are mutable. For instance, the standard threshold for outlier 

designation using a z-score is a z-score greater-than an absolute value of three (three standard 

deviations from the mean). Sensitivity to variability in the dataset, by either increasing or 

decreasing the threshold z-score for outlier detection, is allowable. Additionally, in climates 

Figure 5 Illustration of mean, median, and mode for A. skewed data (typical of the distribution 

of hydrological data during stormflow) and B. normally distributed data (typical of 

hydrological data during baseflow) (adapted from von Hippel 2005). 
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where rainfall patterns are more consistent (i.e., rainfall intensity is less variable), a mean can be 

used for imputation during stormflow conditions. Additional parameters can be specified to 

constrain values within a known physical limit of measurement using upper and lower limits of 

detection. 

 

 

 

 

 

Figure 6 Overview of QAQC outlier detection step.  

 

2.4 Regression-based Confirmation 

Sensor-derived data often contains excess noise, which can lead to false outlier detection. As 

these values provide important insight into system function, it is imperative to avoid instances of 

improper exclusion (Basu and Meckesheimer 2007). This can impact not only the observation of 

primary data, but also subsequent calculations that characterize a site.  

 

For example, the relationship between cumulative rainfall for a given storm event and conjugate 

generated runoff is well understood by the National Resources Conservation Service Curve 

Number (NRCS CN) method, which relies on several primary data points (Aron et al. 1977). 

Despite its limitations, the NRCS CN method highlights an important feature of climatic 

conditions and hydrology through its development: developing empirical models to explain 

physical processes (Baiamonte 2019). This analysis builds on the framework of characterizing 
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physical processes using concurrent climatic conditions by building a regression between the 

cumulative rainfall of stormflow events and concurrent observations of physical processes.  

In an additional analysis, the process previously illustrated for stormflow and baseflow period 

identification was performed with a regression fitting step prior to outlier identification (outlined 

in Figure 7). Regressions (first through seventh order) were fit to each period of stormflow to 

assess whether the water quantity variable of interest could be explained by cumulative rainfall. 

If 95% of the observed data (R-Squared value of >0.95) for a stormflow period could be 

explained by one of the nonlinear regressions mapped to that period, outliers were not replaced 

with outlier removal steps, as an empirical model explains the observed data with high 

confidence.  

 

 

 

 

Figure 7 Process diagram for the regression-based confirmation step of QAQC. Once periods of 

storm and baseflow have been assigned in the input, this process is performed.  

 

2.5 Model Performance Analysis 

Plots are constructed using the matplotlib package to show the distribution of each water quantity 

variable in the dataset before and after processing with this model. These figures also delineate 

stormflow and baseflow periods during the observation window and display changes made to 

initial reported values. Summary statistics are computed to determine the effect size of the 

quality assurance model on key data quality metrics using both pre- and post-processed datasets 
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in R. Data quality is assessed for each water quantity variable before and after processing with 

this model by assessing the following parameters: number of missing and extreme values, 

minimum, maximum, standard deviation, and average of each quantity value. These results were 

compared for datasets with and without regression verification for outliers. Before correction, 

population medians of measured values during periods of storm and base flow were compared to 

those of sample of medians of arbitrary time intervals of 1-day, 12-hours, 6-hours, 3-hours and 1-

hour using a Mann-Whitney test. The number of intervals not significantly different from storm 

and baseflow, and the number of groups significantly different from both storm and baseflow 

was reported. This analysis was performed to assess whether arbitrary time intervals for grouping 

values can capture the distribution of values that occur when grouping by storm and baseflow 

periods as employed by the model described herein. 

 

 

3 Results of Use Cases 

The capability of this model at improving the correctness, completeness, and consistency of 

poor-quality data was demonstrated with two case studies. In both case studies, data from SCMs 

managed by VCRWS, each equipped with sensors producing 5-minute hydrological data, was 

QAQC’d. The data from each SCM contained uncharacteristic values because of sensor 

malfunctions and power issues at their respective sites. Each case study considered correcting 

values with and without a regression-based confirmation for comparison.  

 

3.1 Case Study 1: Flow velocity data from a Constructed Stormwater Wetland 

There is monitored water quality and quantity data from the Constructed Stormwater Wetland 

(CSW) located on Villanova University’s campus. The CSW receives runoff from an 18.2 ha (45 

ac) watershed with 53% impervious surfaces. Flow enters through two merging inlets, then 

passes through a series of three meanders, before exiting the system at an outlet preceded by a 

finishing pond. Several sensors have been installed to monitor the flowrate (via a depth-velocity 

sensor) of runoff in each of the two pipes. Data detailing the velocity of flow from one of the 

inlet pipes is used in this example. The flow meter is a BlueSiren® FlowSIREN sensor 

(“FLOWSiren® PRO” n.d.). Several challenges emerge when attempting to collect quality data 

from this sensor. As flowrate is derived from two separate measurements (depth and velocity, 
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related by area-velocity), each value’s error is propagated in the calculated result. This sensor is 

also physically difficult to reach, as it is located inside an underground pipe that leads directly 

into the CSW’s inlet forebay, adding challenges to sensor maintenance. Additionally, there have 

been issues routing and maintaining power to this sensor, which has historically led to negative 

impacts on sensor function. Previously, as a workaround, flow data derived from a SWMM 

(Stormwater Management Model) model for the CSW was used to supplement questionable 

and/or missing data from this sensor. However, while useful, modeled data lacks the same 

inferential power that real-time data can provide. A use case of velocity data from this sensor 

collected between January and June 2020 will be used to explore this automated quality 

assurance and control to overcome these challenges. 

 

Table 1 Parameters for the correction of velocity data from the Inlet of the CSW. All parameters 

were retained as their default as stated in the Methodology, aside from the addition of a 

parameter specifying the correction of negative velocity values. 

Parameter Specification 

Storm and Baseflow 

Designation 

Default conditions described in (Section 2.2, Retrospective 

Storm and Baseflow Period Assignment) 

Outlier Status 
• Z-score of >3 or <-3 

• Negative measured velocity 

Value Replacement 
• Median stormflow velocity when not validated by 

regression-based confirmation 

• Mean baseflow velocity 

 

 

The parameters used in the correction of velocity data from the Inlet of the CSW are summarized 

in (Table 1). Default parameters, described in the Methodology were used, aside from an 

additional parameter specifying the correction of negative velocity values, which this sensor has 

been known to record under low-power conditions. 
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Table 2 Assessment of difference between population median velocity for storm and baseflow in 

comparison to sample medians of velocity values from arbitrary time intervals before processing 

with this model using Mann-Whitney test ( = 0.05). Number of intervals in each category is 

reported. 

Time 

Interval 

No Significant 

Difference from Storm 

Flow 

No Significant 

Difference from Base 

Flow 

Significantly Different 

from both Storm and 

Base Flow 

1-day 2 (1.1%) 33 (18.1%) 147 (80.8%) 

12-hours 7 (1.9%) 92 (25.3%) 265 (72.8%) 

6-hours 20 (2.7%) 268 (36.8%) 440 (60.4%) 

3-hours 59 (4.0%) 699 (48.0%) 698 (48.0%) 

1-hour 308 (7.0%) 3035 (69.5%) 1025 (23.5%) 

 

For each of the arbitrary time interval groupings identified in (Table 2) except the 1-hour 

interval, the groupings have median depth values that are inconsistent with the population 

median storm and base flow depths. The proportion of time intervals falling under the “No 

Significant Difference” increases with shorter arbitrary intervals, with roughly tenfold more 

intervals consistent baseflow than with storm flow for their respective time interval. The 

proportion of time intervals falling under the “Significantly Different from both Storm and Base 

Flow” category decreases with shorter time intervals. 

 

The result of identifying and correcting velocity data from this sensor is shown in Figure 8. The 

model mostly corrects observations that occur during rainstorms (gray-shaded portions Figure 8) 

and occasionally during baseflow periods (unshaded portions of Figure 8). Where corrections are 

made, velocity values are typically reduced by less than 10 ft/s with changes of between 10 and 

100 or more ft/s occurring with much lower frequency (blue stars in Figure 8, on right-hand axis, 

“Velocity Change (Before – After)”).  

 

The moving 1-day average velocity of runoff entering the CSW at Inlet West is typically less 

than 10 ft/s both before and after processing with this model (red and black lines in Figure 8, on 

left-hand axis, “Velocity (ft/s)”). There are instances of instantaneous velocity measurements of 

greater than 100 ft/s in June 2020 before processing with this model (orange, dotted line in 
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Figure 8, June 2020). This identification and correction model typically makes no changes to 

velocity during periods of baseflow, with only two instances of alteration during baseflow 

conditions in May and June of 2020 (blue stars in Figure 8, on left-hand axis, “Velocity (ft/s)” in 

unshaded portions for baseflow). During stormflow, alterations to velocity measurements flagged 

as outliers have a greater effect on the moving 1-day average velocity, typically reducing the 

moving average velocity by more than 1 ft/s (black and red lines in Figure 8, on left-hand axis, 

“Velocity (ft/s)”). One such instance with significant reduction in this value can be seen in the 

beginning of June 2020 during a period of baseflow that preceded a storm, where instantaneous 

velocity was reduced by more than 100 ft/s (blue stars in Figure 8, on left-hand axis, “Velocity 

(ft/s)”, at the beginning of June 2020) 

 

 

 Figure 8 Distributions of the instantaneous and rolling, 1-day average Velocity before and after 

processing with regresssion confirmation. Instantaneous velocity values are shown by the orange 

(Before) and green-blue (After) lines with values on the left axis. Moving 1-day average before 

and after processing are shown with red and black lines, respectively. The change in value 

Before and After processing is shown with blue, star-shaped markers on the right axis. Periods of 

Storm (shaded) and BaseFlow (unshaded) are filled. 



 19 

 

Regardless of whether regression-based confirmation is used, this model reduces the number of 

outliers and missing values in the processed dataset (Figure 9, Number of Outliers and Number 

of Missing Values, “After” and “Regression”). There is an apparent reduction in the average, 

maximum, and standard deviation from the original dataset’s velocity values for both processing 

methods (Figure 9, Average, Maximum, and Standard Deviation, “After” compared to 

“Regression”). Regardless of processing method, there is no alteration in minimum observed 

velocity (Figure 9, Minimum, “Before,” “After,” and “Regression”). Regression-based 

confirmation does not result in any further reduction in outliers when compared to regression-

exclusionary iterations (Figure 9, “Regression” distribution in comparison to “After” and 

“Before” distributions). Outliers are corrected in the same manner as those in non-regression-

based iterations (when < 95% is explained by the regression) and explainable outliers are 

retained, producing a more characteristic illustration of site performance (Figure 9, “Regression” 

distribution in comparison to “After” and “Before” distributions). 

 

 

 

Figure 9 Frequency of Velocity values Before processing, labeled with key statistics. 

 

Missing Values 19 0  0 

Outliers 62 58  58 

Standard Deviation 3.768 1.78  1.78 

Maximum 214.209 161.257  161.257 

Minimum 0.894 0.819  0.819 

Average 0.104 0.104  0.104 
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3.2 Case Study 2: Depth data from a Redeveloped Site 

Villanova University recently (2019) completed the redevelopment of a 100% impervious 

parking lot with no stormwater management into a student housing facility known as The 

Commons. The Commons redevelopment project reduced the impervious surface area by 

roughly 40% and added 15 SCMs both above ground (rain gardens) and underground (water 

harvesting cisterns and infiltration beds). Most of the precipitation that falls on the site is 

conveyed to at least one stormwater SCM to promote infiltration and ultimately attenuate peak 

flow rates and volumes leaving the site. Runoff depth and velocity was monitored at the 

downstream portion of a re-developed site at a pipe to understand how the hydraulics and 

hydrology have changed with the newly implemented stormwater control measures.  

 

A Greyline Instruments® OCF 5.0 area velocity flow meter (“Greyline Instruments OCF 5.0 

Open Channel Flow Monitor | Ultrasonic Flow Meters | Instrumart” n.d.) is used to collect the 

data, and the data stored using a Campbell Scientific® CR 800 datalogger. The monitoring 

system is powered by a 12-V DC battery with a 20-W and subsequently 100-W solar panel. 

When the system loses power and starts back up again, the readings can default to the system 

maximums until the system is manually reset; in this case, 18 in (45.7 cm) pipe diameter and 12 

ft/s (3.66 m/s) velocity. Monitoring precipitation within the vicinity of the flow meter allows for 

data validation through this QAQC model. During times of baseflow, depths greater than four 

inches and less than three inches were not realistic due to the dam placed behind the sensor. A 

shallow concrete dam was constructed behind the AV sensor which requires a minimum depth of 

at least one in for accurate readings and to maintain a more laminar flow. Unlike the long-

established dataset from the CSW, the dataset from The Commons is relatively new because 

post-construction monitoring was only started in June 2020.  

 

To demonstrate the capability of this automated QAQC model at compensating for the issues 

with the depth sensor at The Commons, 5-minute water depth from June through December 2020 

were analyzed. During this time, the sensor was known to have issues related to losing power, 

resulting in the sensor reading a depth of 0 in when there was known to have been a measurable 

depth of water in the pipe. 



 21 

Table 3 Parameters for the correction of depth data from the 18 in pipe of the reconstructed site. 

All parameters were retained as their default as stated in the Methodology, aside from the 

addition of a parameter specifying the correction of negative and zero depth values. 

Parameter Specification 

Storm and Baseflow 

Designation 

Default conditions described in (Section 2.2, Retrospective 

Storm and Baseflow Period Assignment) 

Outlier Status 
• Z-score of >3 or <-3 

• Negative and zero measured depth 

Value Replacement 
• Median stormflow depth when not validated by 

regression-based confirmation 

• Mean baseflow depth 

 

The parameters used in the correction of depth data from the 18 in pipe at The Commons are 

summarized in (Table 3). Default parameters described in the Methodology were used, aside 

from an additional parameter specifying the correction of negative and zero depth values. 

Table 4 Assessment of difference between population median depth for storm and baseflow in 

comparison to sample medians of depth values from arbitrary time intervals before processing 

with this model using Mann-Whitney test (𝛼 = 0.05). Number of intervals in each category is 

reported. 

Time 

Interval 

No Significant 

Difference from Storm 

Flow 

No Significant 

Difference from Base 

Flow 

Significantly Different 

from both Storm and 

Base Flow 

1-day 8 (4.7%) 9 (5.4%) 151 (89.9%) 

12-hours 27 (8.1%) 27 (8.1%) 281 (83.9%) 

6-hours 58 (8.7%) 62 (9.3%) 548 (82.0%) 

3-hours 147 (11.0%) 187 (14.0%) 1001 (74.9%) 

1-hour 695 (17.3%) 892 (22.3%) 2414 (60.3%) 

 

For each of the arbitrary time interval groupings identified in (Table 4), most of the groupings 

have median depth values that are inconsistent with the population median storm and base flow 

depths. The proportion of time intervals falling under the “No Significant Difference” increases 

with shorter arbitrary intervals, with roughly equal proportions of intervals consistent with either 
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storm or base flow for their respective time interval. The proportion of time intervals falling 

under the “Significantly Different from both Storm and Base Flow” category decreases with 

shorter time intervals. 

 

The result of identifying and correcting depth data for the 18 in pipe at the redeveloped site is 

shown in Figure 10. The model mostly corrects observations that occur during rainstorms (gray-

shaded portions Figure 10) and occasionally during baseflow periods (unshaded portions of 

Figure 10). Where corrections are made, depth values are typically changed by less than 1 inch 

with changes of between one and ten inches occurring with much lower frequency (blue stars in 

Figure 10, on right-hand axis, “Depth Change (Before – After)”).  

 

The moving one-day average depth of water in the 18-inch pipe at the redeveloped site is 

typically less than 10 inches both before and after processing with this model (red and black lines 

in Figure 10, on left-hand axis, “Velocity (ft/s)”). This model typically makes changes in the 

moving, 1-day average depth during periods of baseflow, with many instances in both September 

and November 2020 where corrections lead to an increase in the 1-day moving average depth 

(red and black lines in Figure 10, on left-hand axis, “Depth (in)” in unshaded portions during 

September and November 2020). In instances where there was an alteration in the moving one-

day average depth, the average was increased to within the expected depth range of between 

three and four inches. During stormflow, alterations to depth measurements flagged as outliers 

have a larger effect on the moving, one-day average depth, increasing the moving average depth 

by more than one inch (red and black lines in Figure 10, on left-hand axis, “Depth (in)”, in 

shaded portions in August, September, and October 2020). In most instances of missing data, 

erroneous instances where there is a measured depth of zero (Figure 10, red line “Before” on 

left-hand axis “Depth (in)”), this model compensated by filling with the appropriate mean for 

baseflow periods or median for stormflow periods. Only one instance could not be compensated 

for, when a large swath of missing data coincided with an extended period of baseflow (Figure 

10, red and green lines on left-hand axis, “Depth (in), mid-July 2020”) and a representative mean 

could not be determined to replace the missing data. 
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Figure 10 Distributions of the rolling, 1-day average Depth before and after processing with 

regresssion confirmation. Instantaneous Depth values are shown by the orange (Before) and 

green-blue (After) lines with values on the left axis Moving 1-day average Depth values are 

shown by the red (Before) and black (After) lines with values on the left axis. The change in 

value Before and After processing is shown with blue, star-shaped markers on the right axis. 

Periods of Storm (gray) and BaseFlow (white) are filled. 

 

Regardless of whether regression-based confirmation is used, there is no reduction in the number 

of missing values, as the logger recorded a value of zero in place of missing data (Figure 11, 

Number of Missing Values, “After” and “Regression”). Both iterations remove outliers from the 

distribution, with each iteration having the same number of outliers in its distribution (Figure 11, 

Number of Outliers, “Before,” “After,” and “Regression”). Regardless of method, there is no 

alteration in the average, minimum, and maximum depth, and the standard deviation of the 

distribution (Figure 11, Average, Minimum, Maximum, and Standard Deviation, “After” and 

“Regression” with respect to “Before).  

 

Outliers are corrected in the same manner as those in non-regression-based iterations (when < 

95% is explained by the regression) and explainable outliers are retained, producing a more 
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characteristic illustration of site performance (Figure 11, “Regression” distribution in 

comparison to “After” and “Before” distributions). In this scenario, there is no difference 

between the non-regression and regression-based confirmation iterations (Figure 11, Average, 

“After” and “Regression”). 

 

 

4 Discussion 

This automated QAQC model proves useful in many situations, not the least of which is sensor 

malfunction. Errant operation allows for the corruption of otherwise reliable datasets through the 

introduction of incorrect, negative, or even missing values. Though traditional statistical methods 

or even manual data manipulation can be utilized to remove these as outliers, reduction in the 

size of a dataset provides a conjugate reduction in inference power. With the aforementioned 

quality assurance model, there is improved maintenance of large datasets by reducing the number 

of excluded points through the understanding of reasonable extremes (i.e., those that likely hold 

significance rather than improper skew) and the capacity for selective interpolation. While most 

methodologies treat points in a given dataset without discrimination, this model considers 

external environmental factors that impact sensor readings of interest. As a result, output values 

Figure 11 Frequency of depth values before processing, labeled with key statistics. 

 

Missing 

Values 

0 0  0 

Outliers 347 333  333 

Standard  

Deviation 

1.766 1.634  1.634 

Maximum 17.48 17.42  17.42 

Minimum 0 0  0 

Average 3.104 3.195  3.195 

 



 25 

can be categorized, allowing for individualized interpolation where necessary. The processed 

data, therefore, is unique to the system at that point in time.   

 

In the two use-case studies outlined for testing the power of this model at improving data quality, 

the forthcomings and limitations of this model were demonstrated. In the case where velocity 

data from the CSW was corrected, this model demonstrated the ability to compensate for poor 

quality, while remaining consistent with the original dataset. In the iteration where regression-

based confirmation was used, extreme, but not necessarily incorrect, data points were maintained 

from the original dataset. In comparison to the iterations where regression-based confirmation 

was not used, there was no difference in the resulting dataset. This is largely due to extreme, 

non-characteristic values having occurred during periods of baseflow, and being flagged as 

outliers and removed as such. In one such instance, a velocity reading of 181.157 ft/s that 

occurred hours after a previous storm ended was changed to the average of that period of 

baseflow. Regression-based confirmation is only employed in periods of stormflow where the 

relationship between the observed rainfall and concurrent hydrological observations can be 

determined, therefore there is no way to confirm if the extreme values during periods of baseflow 

are valid. In instances where values were changed during periods of stormflow (i.e., when the 

observation was an outlier and <95% of the observations for that storm could be explained by the 

concurrent rainfall), there is added confidence for the value that was changed. 

 

The resulting dataset from correcting velocity data from the CSW demonstrates good 

performance under consideration of the resulting values of correction that occurred during 

rainstorms of the early summertime, which are characterized by short, flashy frontal rainstorms 

that are being more intense with shifts in the climate paradigm (Schlef et al. 2021). This model 

accounts for observations made during such storms, as demonstrated by the more frequent, large 

corrections that occurred during the storms of late May and June 2020 at the CSW (Figure 8). 

Regression-based confirmation could not determine a relationship between the observed velocity 

and the concurrent cumulative rainfall with great enough confidence (Figure 9), leading to the 

outliers observed during these storms to be reduced to a more characteristic value.  
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Contextually, based on the physical limitations of the depth of water that can be measured in the 

pipe, the resulting dataset produced by the depth in the 18-inch pipe at the redeveloped site 

demonstrates improved data quality. There is a decrease in the frequency of measured depths of 

zero inches in the eighteen-inch pipe regardless of whether regression-based confirmation is 

performed, indicating compensation for a known impossibility (Figure 10). There is an increase 

in the consequential average depth over the duration of the scenario (Figure 11). However, this 

scenario demonstrates another shortcoming of this model; correcting data where this is no 

aggregable mean or median for a period of storm or baseflow. While this is a rare occurrence, 

having only occurred once over the six-month period examined here, it presents a potential issue 

for arid climates, where sensor malfunction could occur concurrently with extended periods of 

no rainfall. Using the known physical limitation for the depth in the pipe (being that the pipe is 

18 inches in diameter) adds confidence to the resulting dataset. In future iterations, it is proposed 

that this model incorporates measurable limits for sensors where possible as an added outlier 

detection mechanism. This way, the known possible values of data from the sensor can help to 

identify true anomalies. 

 

From the use cases considered above, several inferences can be made regarding model 

performance. When regression-confirmation is applied, there is a greater reported instance of 

maximum-value retention. In datasets where this value is likely a result of extreme weather, it is 

less likely to be considered errant or outlying relative to data in a temporal locality. There is 

additional evidence that this method tends towards the preservation of average and standard 

deviation values of initial, raw datasets, though there is not enough support to conclude that with 

great confidence (Figure 9, Figure 11). As is often the case, these trends can be seen with 

increasing magnitude as the datasets to which they apply grow large. The confidence of changes 

made by the quality assurance model, therefore, can be understood to be at its highest when data 

input (from both sensors of interest and environmental considerations) is robust. 

 

Regression-based confirmation and event-by-event consideration demonstrate two often 

overlooked aspects of existing quality assurance models. As shown here, simply detecting 

outliers and replacing their values is not enough to determine that they are invalid. Performing a 

regression-based confirmation step provides validity to the observed without making 
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assumptions about the underlying data being invalid is automatically incorrect for being extreme. 

No outliers that were identified in the iteration without regression-based confirmation were then 

retained by regression-based confirmation, but it is expected that this is a possibility. In instances 

of extremely high intense rainfall, this possibility is likely to occur, as the sudden change in the 

cumulative rainfall should correlate well with flashes in observed hydrological processes, thus 

leading to these values being retained. This underscores the importance of event-specific 

conditions. While rainstorms can be classified by their recurrence interval, observed intensity, 

and depth over a specified period of time (McGraw et al. 2019), this does not capture the 

intricacies of time-specific considerations that a sequential event-by-event approach accounts for 

(Table 2, Table 4). As demonstrated, choosing an arbitrary time interval, and extracting the 

values in that window, often does not capture the observed characteristics of both periods of 

storm and baseflow. Choosing smaller arbitrary time intervals to group values together (of 1-

hour of data at a time) for correction more often captures the conditions of periods of storm and 

baseflow than larger intervals of 3-hours or more, but at the expense of having fewer values to 

correct from. Taking a smaller sample size reduces the statistical power of the z-score test, 

increasing its sensitivity to outliers. At the same time, it could result in the misidentification of 

outliers. An outlier, which is repeated and not considered an outlier in a preceding or 

forthcoming interval, could be erroneously removed simply because of the time interval it falls 

under. Using an event-by-event by approach ensures that both a representative sample is 

considered for correction and that it captures the conditions representative of all observations in 

an event. Taking an event-by-event approach also allows for further development using artificial 

intelligence and machine learning techniques. Classification algorithms and deep neural network 

regression techniques could be used to learn the conditions where value correction is needed and 

apply changes when such conditions occur. 

 

The limited requirements for performing correction of hydrological data with this model is far-

reaching. This model requires only that a rainfall and (optionally) a flow record be provided for 

the correction of any number of hydrological variables. Amid the data revolution, where 

hydrological data management is moving to highly organized data structures, the simplistic data 

format requirements for this model make it executable with little to no need for data translation. 

This model also utilizes the capabilities of multi-thread processing and modern technology to 
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provide results in an efficient manner. Processing the two scenarios, each with roughly 50,000 

observations, on a machine with a 3.2 GHz 8-core CPU and 8GB of memory provided results 

within five to ten seconds. Processing the same two scenarios on an older, 2.7 GHz dual-core 

CPU with 8GB of memory provided results in one to two minutes. The interoperability between 

web-based applications and database backends provides an avenue for seamless interaction 

between stored, ready-to-correct hydrological data and this model. Python provides a simple to 

use, packaged interface for interacting with SQL-based databases (Joyce 2022). This model has 

the potential to retrieve and return data to such databases, providing the capability for executing 

this model without the need for command line scripts. 

 

5 Conclusions 

As the present age of research strives toward the collection and maintenance of increasingly 

large volumes of environmental data, it grows significantly more important and difficult to 

assure data quality. Though data quality is considered at length in in-situ, front-end solutions, 

they can only go so far to assist in the achievement of the goal of consistently high-quality data. 

Innumerable and often unavoidable sources of error may only be detected once datasets have 

already been collected, providing research bodies with the challenging task of justifiably 

augmenting that which is meant to appropriately characterize a site’s performance without the 

introduction of personal bias. This is not only difficult and time consuming, but also introduces 

recurring possibilities for poor research practices and unintended data manipulation. Time and 

space are also considered causal rather than coincidental in this model. Each period of 

retrospective storm and baseflow is treated as being distinctive, rather than painting broad 

generalizations about observations that occurred during an arbitrary period. It is based on a 

known rainfall record, directly related to the observed processes to be corrected in the input, 

rather than arbitrary climatic observations, maintaining simplicity of use.  

 

The quality assurance framework described here is a novel method to efficiently overcome these 

hurdles while maintaining confidence in explainable outliers. This not only corrects for 

inaccurate values due to in situ sensor malfunction but allows designated leeway for realistic 

extreme values that would otherwise be improperly excluded by statistical methods. 

Additionally, the level of user input is significantly reduced when compared to manual data 
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quality adjustment. This facet of this model is perhaps highly beneficial to a research body as it 

instantaneously treats all datapoints within a set (reducing temporal investment) and statistically 

justifies all changes. Bias is therefore removed as a possible source of error in subsequent 

calculations, site characterization, and further decision making, especially in the consideration of 

remediating natural data drift that was erroneously identified as error. This model both harnesses 

the power of traditional statistical methods and circumvents their shortcomings resulting in a 

comprehensive method by which to ensure that each dataset, regardless of size, is trustworthy, 

characteristic, and statistically reliable. While this model provides a framework for the 

automation of correcting poor-quality data, it should not be. considered a standalone replacement 

for traditional methods. The power of this model is fueled by and dependent upon the volume of 

data it serves; corrective data processes must be iterative and rely on a baseline of quality 

assurance metrics (i.e., sensor calibration, determination of fitness within reasonable limits, etc.).  

The process of correcting data should be iterative and consider calibration of additional 

parameters were deemed necessary until a satisfactory outcome for the correction of 

uncharacteristic observations is achieved.  

 

Through utilization of data derived from the Villanova CSW and Commons, the model outlined 

through this paper is capable of successfully replacing and interpolating errant and nonexistent 

hydrologic data. In concert with traditional monitoring and data collection, this framework has 

the capacity to improve data resolution and confidence, enabling a dramatic shift in the approach 

to the collection and maintenance of environmental data. 
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8 Appendices 

Appendix A. Regression-based Confirmation Figures 

 

 

 

 

Figure A.1 Example Regression-based Confirmation Plot from the CSW. The relationship 

between the measure Velocity (in feet per second, on y-axis) at the CSW (Section 3.1) and 

concurrent cumulative rainfall depth is shown. The fourth-order polynomial confirming the 

relationship between the observed data and concurrent cumulative rainfall is displayed in the 

bottom left along with its associated coefficient of determination (R2 value).  
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Figure A.2 Example Regression-based Confirmation Plot from the reconstructed site. The 

relationship between the measured Depth (in inches, on y-axis) at the redeveloped site (Section 

3.2) and concurrent cumulative rainfall depth is shown. The seventh-order polynomial 

confirming the relationship between the observed data and concurrent cumulative rainfall is 

displayed in the bottom left along with its associated coefficient of determination (R2 value).  
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