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Abstract

A number of models have been developed to simulate hypoxia in the Chesapeake Bay, but these models do not agree on what

processes must be included. In this study we implemented a previously published biogeochemical (BGC) code developed for

open-ocean waters that includes “cryptic” microbial sulfur cycling, a process that can increase denitrification and anammox

rates in anoxic waters. We ran this BGC code within the ChesROMS physical model of the Chesapeake Bay, then compared

the results to those of a ChesROMS simulation with an estuarine BGC code previously implemented and calibrated in the

Bay. The estuarine BGC code neglects sulfur cycling but includes burial of particulate organic matter (POM) and cycling of

dissolved organic matter (DOM) and uses different values for many parameters governing phytoplankton growth and particle

dynamics. At a key test site (the Bay Bridge Station), the model with sulfur cycling gives better results for oxygen and

nitrate. However, it also gives a worse overprediction of ammonium-suggesting that its greater accuracy in predicting these

two variables may result from cancellation of errors. By making comparisons among these two models and derivatives of them,

we show that the differences in modeled oxygen and ammonium are largely due to whether or not the BGC codes include

cycling of DOM and sedimentary burial of POM, while the differences in modeled nitrate are due to the other differences in

the modeled biogeochemical processes (sulfur cycling/anammox/optics). Changes in parameters used in both BGC codes (in

particular particle sinking velocities) tended to compensate the other differences. Predictions of hydrogen sulfide (H 2 S) within

the Bay are very sensitive to the details of the simulation, suggesting that it could be a useful diagnostic.

Supplementary Material

Table S1. Biochemical
parameters used in
models

Parameter N BUR DOM CHES/
N BUR DOM -
PERU/SNP CHES

SNP PERU/SNP BUR -
DOM CHES/
SNP BUR DOM PERU

Unit

half-saturation
concentration of O2 in
oxic mineralization

*/*/0.3 0.3 mmol O m-3
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Table S1. Biochemical
parameters used in
models

half-saturation
concentration of NO3
in nitrate reduction

*/*/15 15 mmol N m-3

half-saturation
concentration of NO2
in denitrification

*/*/30 30 mmol N m-3

half-saturation
concentration of O2
inhibition in nitrate
reduction and
denitrification

1/1/1 1/1/1 mmol O m-3

half-saturation
concentration of O2
inhibition in sulfate
reduction

*/*/0.1 0.1 mmol O m-3

half-saturation
concentration of NO3
inhibition in sulfate
reduction

*/*/4 4 mmol N m-3

constant rate of sulfide
oxidation by NO3

*/*/0.93 0.93 d-1

constant rate of sulfide
oxidation by NO2

*/*/0.33 0.33 d-1

constant rate of sulfide
oxidation by O2

*/*/0.93 0.93 d-1

half-saturation
concentration of O2 in
sulfide oxidation

*/*/1 1 mmol O m-3

half-saturation
concentration of NO3
in sulfide oxidation

*/*/2.9 2.9 mmol N m-3

half-saturation
concentration of NO2
in sulfide oxidation

*/*/6 6 mmol N m-3

half-saturation
concentration of O2
inhibition in sulfide
oxidation

*/*/0.1 0.1 mmol O m-3

constant rate of
anammox rate

*/*/0.07 0.07 d-1 (mmol N m-3)-1

maximum rate of
aerobic ammonium
oxidation

*/*/0.1 0.1 d-1

maximum rate of
aerobic nitrite
oxidation

*/*/0.1 0.1 d-1

2
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Table S1. Biochemical
parameters used in
models

half-saturation
concentration of O2 in
nitrification

*/*/1 1 mmol N m-3

radiation inhibition
threshold of
ammonium

0.0095 0.0095 W m-2

radiation inhibition
threshold of nitrite

*/*/0.0364 0.0364 W m-2

light intensity at which
inhibition is
half-saturated for
ammonium

*/*/0.036 0.036 W m-2

light intensity at which
inhibition is
half-saturated for
nitrite

*/*/0.074 0.074 W m-2

Small detritus
remineralization rate
N-fraction

0.03/0.1/0.03 0.1/0.03/0.1 d-1

Small detritus
remineralization rate
C-fraction

0.03/0.1/0.03 0.1/0.03/0.1 d-1

Large detritus
remineralization rate
N-fraction

0.01/0.1/0.01 0.1/0.01/0.1 d-1

Large detritus
remineralization rate
C-fraction

0.01/0.01/0.01 0.01/0.01/0.01 d-1

Q 10 2.4/1/2.4 1/2.4/1 Null
phytoplankton growth
rate at 0°C

0.69 0.69 d-1

chlorophyll to
phytoplanktonic
maximum ratio

0.053 0.053 mgChl mgC-1

initial slope of
planktonic growth to
light curve

0.125/0.025/0.125 0.025/0.125/0.025 (W m-2)-1 d-1

half-saturation
concentration for
uptake of NO3 by
phytoplankton

0.5 0.5 mmol N m-3

half-saturation
concentration for
uptake of NH4 by
phytoplankton

0.5 0.5 mmol N m-3

stoichiometry of P to N
in phytoplankton and
zooplankton

1/16 1/16 dimensionless

3
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Table S1. Biochemical
parameters used in
models

half-saturation
concentration for
uptake of PO4 by
phytoplankton (kNO3
/16)

*/*/0.03125 0.03125 mmol P m-3

excretion rate due to
basal metabolism

0.1 0.1 d-1

excretion rate due to
phytoplankton
assimilation

0.1 0.1 d-1

assimilation efficiency 0.75 0.75 dimensionless
maximum
phytoplankton grazing
rate

0.6 0.6 (mmol N m-3)-1 d-1

phytoplankton
mortality

0.15 0.15 d-1

zooplankton mortality 0.025 0.025 d-1
half saturation of
phytoplankton
ingestion

2 2 (mmol N m-3)-2

aggregation parameter 0.005 0.005 d-1
sinking velocity of
phytoplankton

0.1 0.1 m d-1

sinking velocity of
small detritus

0.1/2/0.1 2/0.1/2 m d-1

sinking velocity of large
detritus

5/20/5 20/5/20 m d-1

maximum nitrification
rate

0.05/0.05/* * d-1

light intensity at which
the inhibition of
nitrification is
half-saturated

0.1/0.1/* * W m-2

threshold for
light-inhibition of
nitrification

0.0095/0.0095/* * W m-2

Table S2. Differences among the models

N BUR DOM PERU/N BUR DOM CHES SNP PERU/SNP CHES SNP BUR DOM PERU/SNP BUR DOM CHES
Phytoplankton limitations NO3, NH4 NO3, NH4, PO4 NO3, NH4, PO4
Growth rate/grazing/mortality/coagulation/sinking constants Al Azhar et al. (2014)/ Da et al. (2018) Al Azhar et al. (2014)/ Da et al. (2018) Al Azhar et al. (2014)/ Da et al. (2018)
Nitrogen species NO3, NH4,DON,SdeN, LDeN NO3, NH4,NO2,SdeN, LDeN NO3, NH4,NO2,DON,SdeN, LDeN
Nitrogen fixation No Turned off Turned off
Burial depending on flux bottom velocity Yes No Yes
Annamox No Yes Yes
SRRA No Yes Yes

4
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Table S2. Differences among the models

DSR No Yes Yes
Sedimentary denitrification Yes Yes Yes

Table S3. R2 of CB2.2

N BUR DOM CHES SNP PERU SNP CHES N BUR DOM PERU SNP BUR DOM CHES SNP BUR DOM PERU
Oxygen 0.28 0.73 -0.17 -0.23 -2.47 -1.41
Nitrate -0.03 0.11 0.02 -22.66 -3.82 -7.57
Ammonium -1.49 -6.99 -5.72 0.01 -0.27 -0.36

Table S4. R2 of CB5.3 Table S4. R2 of CB5.3

N BUR DOM CHES SNP PERU SNP CHES N BUR DOM PERU SNP BUR DOM CHES SNP BUR DOM PERU
Oxygen 0.82 0.47 0.78 0.50 0.23 -0.03
Nitrate -7.29 -4.54 -0.43 0.45 -0.59 -0.20
Ammonium -9.48 -9.37 -9.13 0.72 0.27 -0.46

S1. Oxygen (first row), Nitrate (second row), Ammonium (third row) profiles from SNP CHES, N BUR -
DOM PERU, SNP BUR DOM CHES and SNP BUR DOM PERU at the Bay Bridge station (CB3.3C) in
year 2017.
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Abstract 16 

 17 

A number of models have been developed to simulate hypoxia in the Chesapeake Bay, but 18 

these models do not agree on what processes must be included. In this study we implemented 19 

a previously published biogeochemical (BGC) code developed for open-ocean waters that 20 

includes “cryptic” microbial sulfur cycling, a process that can increase denitrification and 21 

anammox rates in anoxic waters. We ran this BGC code within the ChesROMS physical model 22 

of the Chesapeake Bay, then compared the results to those of a ChesROMS simulation with an 23 

estuarine BGC code previously implemented and calibrated in the Bay. The estuarine BGC 24 

code neglects sulfur cycling but includes burial of particulate organic matter (POM) and cycling 25 



of dissolved organic matter (DOM) and uses different values for many parameters governing 26 

phytoplankton growth and particle dynamics. At a key test site (the Bay Bridge Station), the 27 

model with sulfur cycling gives better results for oxygen and nitrate. However, it also gives a 28 

worse overprediction of ammonium—suggesting that its greater accuracy in predicting these 29 

two variables may result from cancellation of errors. By making comparisons among these two 30 

models and derivatives of them, we show that the differences in modeled oxygen and 31 

ammonium are largely due to whether or not the BGC codes include cycling of DOM and 32 

sedimentary burial of POM, while the differences in modeled nitrate are due to the other 33 

differences in the modeled biogeochemical processes (sulfur cycling/anammox/optics). 34 

Changes in parameters used in both BGC codes (in particular particle sinking velocities) tended 35 

to compensate the other differences. Predictions of hydrogen sulfide (H2S) within the Bay are 36 

very sensitive to the details of the simulation, suggesting that it could be a useful diagnostic. 37 

 38 

Key words: Coupled nitrogen and sulfur cycles; Biogeochemical parameters; Model comparison; 39 
Predictions of H2S 40 
 41 

1. Introduction 42 

 43 

Estuaries are key locations where rivers couple terrestrial processes with ocean biology and 44 

chemistry. These systems have generated research interest due to their abundant biological 45 

resources and their crucial role in global carbon and biogeochemical cycles (Bauer et al., 2013; 46 

Bianchi and Bauer, 2011; Canuel et al., 2012). As the largest estuary in North America, the 47 

Chesapeake Bay plays a particularly important role in coastal nutrient transformation, transport 48 

and burial. Much effort has been made to study these processes, which can impact the Bay’s 49 

ecosystem and its economic productivity. 50 

 51 



Of all the processes affecting the Bay, eutrophication has emerged as a principal threat. 52 

Eutrophication arises from an increase in nutrient and dissolved organic matter (DOM) 53 

concentrations, leading to a greater production of particulate organic matter (POM) in the water 54 

column or on the seabed (Gary et al., 2002). This results in hypoxia (defined here as oxygen 55 

concentrations less than 62.5 mmol/m3) when the oxygen consumed during the degradation of 56 

POM exceeds the oxygen supplied from gas exchange, mixing and advection. Hypoxia has 57 

been shown to cause mortality events (for recent events within the Chesapeake Bay see 58 

Luckett, 2020), contributing to metazoan population decline and resulting in so-called “dead-59 

zones” devoid of fisheries resources including crabs, shrimp and fish (Rabalais et al., 2002; 60 

Renaud, 1983). 61 

 62 

Under intense hypoxia (as oxygen levels become undetectable), sulfate reduction produces 63 

hydrogen sulfide (H2S) in the water column (a state known as euxinia), which can reduce 64 

biodiversity by harming surviving organisms through lethal and sublethal impacts (Luther et al., 65 

1988). Benthic organisms are especially vulnerable to coastal hypoxia, anoxia and euxinia 66 

because they live in and near the sediments, where oxygen tends to be depleted relative to the 67 

overlying water column (Seliger et al., 1985; Vaquer-Sunyer and Duarte, 2008).  68 

 69 

The production of H2S also has the potential to change biogeochemical cycling in the 70 

Chesapeake Bay. Marvin-DiPasquale and Capone (1998) estimated that decomposition of 71 

organic matter via sulfate reduction remineralized 18-32% of the primary production at three 72 

sites in the Bay. H2S produced by this process can move upwards in the water column and act 73 

as a sink for oxygen when it is oxidized, further accelerating hypoxia (Roden et al., 1992). 74 

However, recent work has shown that sulfide can also be oxidized using nitrite and nitrate, 75 

resulting in a loss of bioavailable nitrogen (Canfield et al., 2010). Such losses reduce the 76 



potential for hypoxia. This process has been referred to as “cryptic" sulfur cycling as sulfide 77 

produced from sulfate can be rapidly recycled (and thus may not be detected in the water 78 

column on observational time scales). Arora-Williams et al. (2022) find that organisms which are 79 

known to have these capabilities are ubiquitous and relatively abundant within the Chesapeake 80 

Bay.  81 

 82 

Some Chesapeake Bay models (Testa et al., 2014; Cerco and Noel, 2017) incorporate 83 

biogeochemical cycling (BGC) codes which have a simplified representation of the impacts of 84 

sulfur cycling in which an idealized reductant (representing either H2S or methane) is released 85 

from sediments and oxidized in the water column. However, these models do not directly 86 

simulate water column sulfate reduction, sulfide oxidation by nitrate or sulfide oxidation by 87 

nitrite.  88 

 89 

Other models (for example Feng et al., 2015; Da et al., 2018; Testa et al., 2018) have been able 90 

to produce relatively skillful simulations of hypoxia within the Bay using BGC codes that 91 

simulate nitrogen without coupling it to sulfur. In this paper we use one of these models 92 

(the ChesROMS_ECB model of Feng et al., 2015 and Da et al., 2018) as our baseline. The 93 

physical component of this model is run in the Regional Ocean Modeling System (ROMS; 94 

Shchepetkin and McWilliams, 2005), while its biogeochemical component builds on the Fennel 95 

et al. (2006) BGC code, which partitions fixed nitrogen between nitrate and ammonium. Feng et 96 

al. (2015) add to the Fennel BGC module by including dissolved organic nitrogen and 97 

carbon and simulating the burial of sinking particles in sediment. The resulting model does a 98 

relatively successful job in simulating the annual cycle of oxygen in the Bay, but still simulates 99 

significant offsets with observations when it comes to nitrate and ammonium (Da et al., 2018).  100 

 101 



This raises the question of whether simulating sulfide oxidation by nitrate and nitrite would 102 

improve the model or change its sensitivity to perturbations in nitrogen input. In order to 103 

examine this question as well as to learn more about nutrient cycles and patterns of hypoxia in 104 

the Chesapeake Bay, we implement the BioRedoxCNPS BGC code of al Azhar et al. (2014), 105 

which includes sulfur, nitrogen and phosphorus cycles, into the ChesROMS physical 106 

model used in Da et al. (2018). While the BioRedoxCNPS code has many similarities to the 107 

ChesROMS_ECB code, it was developed for the open ocean; thus, it does not include 108 

organic matter burial or DOM, and it has a different optics scheme. Additionally, many 109 

processes common to the two codes have different parameter settings. While some 110 

improvements emerge between the solutions produced by the ChesROMS_ECB and 111 

BioRedoxCNPS codes when run in a physically identical simulation of the Chesapeake Bay, it is 112 

impossible to tell whether these are due to the inclusion of more complex nutrient cycling, the 113 

inclusion of burial and DOM, or to differences in model parameters. To evaluate this, we 114 

therefore present a merged version of the two codes that includes both the sulfur and 115 

nitrogen cycling of BioRedoxCNPS and the burial and dissolved organic matter cycling of 116 

ChesROMS_ECB. This then enables us to isolate sources of differences between the 117 

simulations. In what follows we will distinguish between codes, models, and simulations. Codes 118 

have different representations of biogeochemical or physical processes. Models implement 119 

these codes in a particular configuration but may produce simulations with different values of 120 

parameters.  121 

 122 

This manuscript is structured as follows. The codes used in this study, the details of how 123 

they are implemented into models, and the simulations run with them are described in section 2. 124 

We begin our results in section 3 by looking at how the three sets of changes affect predicted 125 

oxygen, nitrate and ammonium fields. While the model of al Azhar does produce an 126 

improvement in the simulation of oxygen in the Bay, this is not primarily driven by adding sulfur 127 



cycling. Instead, we find that changes in parameters common to both models, as well as the 128 

BioRedoxCNPS code’s exclusion of burial, DOM cycling, and absorption by CDOM 129 

(chromophoric DOM) produced large compensating effects. In Section 4 we discuss implications 130 

of these results for modeling the Bay. This study moves towards a more complete model for 131 

simulating chemical species and highlights key processes and parameters that control 132 

biogeochemical cycles in the Chesapeake Bay. As such our results provide guidance for future 133 

experimental studies focused on hypoxia, anoxia and euxinia. 134 

 135 

2. Model description 136 

 137 

2.1 Physical model 138 

 139 

The coupled physical-biogeochemical models used in this study were run with version 3.6 140 

(revision 898) of the Regional Ocean Modeling System (ROMS). ROMS is a three-dimensional, 141 

time-dependent simulation that uses the hydrostatic primitive equations (Shchepetkin and 142 

McWilliams, 2005). Physical circulations were set to be identical across the different model runs 143 

as there was no feedback between biology and physical circulation. While accounting for 144 

feedbacks between chlorophyll and shortwave absorption may improve temperature simulations 145 

(Kim et al., 2020), ignoring such feedbacks for now allows us to attribute all differences between 146 

the models to the direct impacts of biogeochemical processes. 147 



 148 
Figure 1. Model bathymetry used in ChesROMS. Stations regularly monitored by the states of 149 

Virginia and Maryland are shown in red. In the main text we focus on the CB3.3C station 150 

marked with orange circle that is in the heart of the hypoxic zone. In supplemental material we 151 

also report comparisons from the CB2.2 (near the northern edge of the hypoxic zone) and 152 

CB5.3 (near the southern edge of the hypoxic zone) stations marked with black circles.  153 

 154 

We use an implementation of the ROMS code for the Chesapeake Bay developed by Xu et al., 155 

(2012) and known in the literature as ChesROMS. The ChesROMS model domain extends from 156 

77.2°W to 75.0°W and from 36°N to 40°N, covering the main stem and primary tributaries of the 157 

Chesapeake Bay. The model extends seaward to the Mid-Atlantic Bight (Figure 1) to prevent 158 

boundary effects from altering tracer fields and mean velocity fields. The horizontal grid uses 159 

orthogonal curvilinear coordinates, with varying resolution. The highest resolution (430 m) is 160 

found in the northern Bay, the lowest resolution (~10 km) in the southern end of the Mid-Atlantic 161 



Bight, and the average grid spacing within the Chesapeake Bay is 1.7 km. Governing equations 162 

are discretized over a stretched terrain-following s-coordinate with 20 vertical levels. To 163 

interpolate between a higher resolution in the surface and the bottom boundary layers in deeper 164 

waters and relatively constant resolution in shallow waters, the standard stretching function in 165 

ROMS was used with values θs=6.0 and θb=4.0 (standard values in this version of ROMS) with 166 

an hc = 10 m. 167 

 168 

Tidal constituents were adopted from the Advanced Circulation (ADCIRC) model (Leuttich et al., 169 

1992) and from observed nontidal water levels from Duck, NC and Lewes, DE (Scully, 2016) 170 

and were imposed on the model at the open boundary. Atmospheric forcing, including winds, air 171 

temperature, relative humidity, pressure, precipitation, short-wave radiation and longwave 172 

radiation, were obtained from the North American Regional Reanalysis (originally described in 173 

Mesinger et al., 2006). 174 

  175 

The MPDATA 3-D advection scheme (Smolarkiewicz, 1983; Smolarkiewicz and Margolin, 1998) 176 

was used for tracers. MPDATA 3-D is a third-order upstream advection scheme that ensures 177 

that advection does not generate spurious maxima or minima while minimizing numerical 178 

diffusion (this is particularly important for biogeochemical tracers). Momentum is advected with 179 

a third-order centered difference scheme in the horizontal and fourth-order centered difference 180 

in the vertical. The vertical turbulent mixing scheme and background mixing coefficients for both 181 

momentum and tracers were all set to the same values as in Feng et al. (2015). 182 

 183 

2.2 BGC codes and simulation setups 184 

 185 

In this study, we examined the behavior of three biogeochemical codes (ECB, BioRedoxCNPS, 186 

and our merger of the two: SNP_BUR_DOM), which we implemented using two parameter sets 187 



for phytoplankton growth, coagulation and sinking governed by equations in common to the 2 188 

codes. One parameter set is taken from the Da et al. (2018) model of the Chesapeake and the 189 

other is taken from the al Azhar et al. (2014) model of the Peru upwelling system. This 190 

experimental design thus combines three codes with two parameter sets for each code, giving 191 

us a total of six core simulations. In order to highlight the differences between simulations we 192 

use a nomenclature that makes it evident what nutrients are cycled, whether the model includes 193 

burial and DOM, and which parameter set (Peru vs. Chesapeake) is used within each 194 

simulation. The resulting nomenclature shows the increasing complexity and realism in the 195 

setup of the simulations. 196 

 197 

We denote these simulations N_BUR_DOM_CHES, SNP_PERU, SNP_CHES, 198 

N_BUR_DOM_PERU, SNP_BUR_DOM_PERU and SNP_BUR_DOM_CHES. N vs. SNP 199 

contrasts whether the code models only Nitrogen (as in ChesROMS_ECB) or Nitrogen, Sulfur 200 

and Phosphorus (as in BioRedoxCNPS). BUR_DOM indicates that the code includes organic 201 

matter burial in sediments and dissolved organic matter (as in ChesROMS_ECB). Finally, 202 

CHES vs. PERU denotes whether the biogeochemical parameters common to both of the two 203 

original codes are taken from Da et al. (2018) in the Chesapeake or al Azhar et al. (2014) in the 204 

Peru upwelling system. For example, the ChesROMS_ECB model of Da et al. (2018) thus is 205 

identical to our N_BUR_DOM_CHES simulation, while the implementation of BioRedoxCNPS 206 

with the original parameters used in al Azhar et al. (2014) corresponds to our SNP_PERU 207 

simulation. A more complete description of each simulation is given below. 208 

 209 

2.2.1 N_BUR_DOM_CHES 210 

The BGC code in the N_BUR_DOM_CHES simulation is the same as the code used in Da et al. 211 

(2018), which is derived from a nitrogen-based ecosystem code (Fennel et al., 2006). This code 212 

includes a simplified nitrogen cycle with 8 nitrogen pools (and model acronyms): nitrate (NO3), 213 



ammonium (NH4), phytoplankton (P), zooplankton (Z), semilabile and refractory dissolved 214 

organic nitrogen (DONsl and DONrf) and small and large nitrogen detritus (SDeN and LDeN). 215 

Additionally, the code simulates semilabile and refractory DOC (DOCsl and DOCre), inorganic 216 

suspended solids (ISS), chlorophyll (Chl), dissolved inorganic carbon (DIC), alkalinity (Alk), and 217 

dissolved oxygen (O2). As implemented in the ChesROMS_ECB model, phytoplankton growth is 218 

limited by nitrogen and light and the dominant phytoplankton loss is via coagulation and sinking. 219 

Fractions of phytoplankton and large detritus are partially resuspended as small detritus once 220 

they reach the bottom, depending on near-bottom turbulent velocities. Some fraction of the 221 

remaining benthic flux is buried permanently with the rest being remineralized. The burial 222 

fraction 𝑓"#$ follows Henrichs and Reeburgh (1987), where it is a function of the carbon flux to 223 

the bottom 224 

 225 

𝑓"#$ = min	(0.75,0.023 ∗ 𝑐𝑎𝑟𝑏𝑜𝑛	𝑓𝑙𝑢𝑥	𝑡𝑜	𝑡ℎ𝑒	𝑏𝑜𝑡𝑡𝑜𝑚@.ABCB)   (1) 226 

 227 

This means that burial is very small when the flux of material is small and increases nonlinearly 228 

as the flux to the bottom does. In this model, there are three pathways involved in transforming 229 

the organic material to inorganic nitrogen: 1. Solubilization of excreted materials produces DON. 230 

Both DON and detrital material are remineralized to NH4, 2. using oxygen if it is available and 3. 231 

nitrate (resulting in denitrification) if it is not. Table S1 lists the biogeochemical parameters used 232 

in this simulation. The source of these parameters can be found in Da et al. (2018). 233 

 234 

2.2.2 SNP_PERU 235 

The second biogeochemical simulation, SNP_PERU, uses the code developed by al Azhar et 236 

al. (2014) to capture interactions between the cycles of nitrogen, phosphorus and sulfur in the 237 

Peru coastal ocean upwelling system. Like the ECB code, this code was also derived from the 238 



BGC code of Fennel et al. (2006), and it has previously been referred to as BioRedoxCNPS (al 239 

Azhar et al., 2014) and Fennel_CNPS (Hantsoo et al., 2018). We refer to the unaltered version 240 

of this code implemented in the ChesROMS physical model domain with BGC parameters from 241 

al Azhar et al. (2014) as the SNP_PERU simulation. This code adds new explicit kinetic 242 

processes to the Fennel BGC code: 1. Sulfate is reduced to H2S during organic matter 243 

remineralization when other oxidants (oxygen and nitrate) are limiting. Sulfide is reoxidized to 244 

sulfate 2. by oxygen, 3. by nitrate reduction to nitrite through chemolithoautotrophic nitrate 245 

reduction or 4. by nitrite reduction to N2 gas through sulfide-driven denitrification. When the 246 

water is anoxic, ammonium can also be oxidized by nitrite through anammox to produce N2 gas. 247 

The SNP simulations used in this paper thus include six state variables not included in 248 

N_BUR_DOM_CHES: nitrite (NO2), sulfate (SO4), hydrogen sulfide (H2S), phosphate (PO4) and 249 

small and large detrital phosphorus (SDeP, LDeP). Autotrophic nitrogen fixation by diazotrophs 250 

(which was included in the original study of al Azhar et al., 2014) was turned off in our 251 

simulations as it resulted in numerical instability and is not expected to play a major role in 252 

Chesapeake nitrogen dynamics given the excess of fixed nitrogen over phosphorus. It is notable 253 

that there are no sedimentary burial processes in the SNP code so that all organic materials 254 

hitting the bottom are remineralized. Thus, in comparison to N_BUR_DOM_CHES, SNP_PERU 255 

has two new pathways (anammox and sulfide-driven denitrification) by which nitrogen is lost to 256 

the system, but it simultaneously neglects the loss of nitrogen via burial. Additionally, dissolved 257 

organic materials are not included in this model. Finally, as described in Table S1, although the 258 

equations for phytoplankton growth, grazing, coagulation, and detrital sinking can be cast in 259 

identical forms in SNP_PERU and N_BUR_DOM_CHES, many of the parameters within these 260 

equations are different in these two models. In particular, grazing and remineralization rates in 261 

N_BUR_DOM_CHES have an exponential dependence on temperature with a 𝑄F@ of 2.4 taken 262 

from Lomas et al. (2002) while those in SNP_PERU do not (corresponding to a 𝑄F@ of 1). 263 

 264 



An additional difference between the N_BUR_DOM_CHES (ChesROMS_ECB) and SNP 265 

(BioRedoxCNPS) codes is the parameterization of penetrating photosynthetically active 266 

radiation (PAR). In N_BUR_DOM_CHES, PAR is attenuated by water, suspended sediments 267 

and implicitly by colored dissolved materials (via a dependence on salinity) but not by 268 

chlorophyll. In SNP_PERU it is attenuated by water and chlorophyll alone.  269 

 270 

2.2.3 SNP_CHES 271 

With the exception of temperature dependencies for grazing and remineralization, the code in 272 

SNP_CHES is the same as in SNP_PERU. However, in any equations which are also in 273 

common with N_BUR_DOM_CHES, all common parameters were set to the values in the latter 274 

simulation. We also adopted the temperature dependences from the N_BUR_DOM_CHES 275 

simulation. 276 

 277 

2.2.4 N_BUR_DOM_PERU 278 

In parallel, we ran N_BUR_DOM_PERU by replacing common parameters in the 279 

N_BUR_DOM_CHES code with PERU parameters, including setting Q10 to 1 for grazing and 280 

remineralization. Thus, comparing SNP_PERU (original BioRedoxCNPS) to SNP_CHES 281 

(BioRedoxCNPS with parameters from ChesROMS_ECB) or N_BUR_DOM_CHES (original 282 

ChesROMS_ECB) to N_BUR_DOM_PERU (ChesROMS_ECB with parameters from 283 

BioRedoxCNPS, see Table S1 for list of parameters) helps to distinguish the differences that 284 

can be attributed to biological parameters (e.g. phytoplankton growth rate) within identical 285 

pathways from the differences caused by changing the biogeochemical pathways themselves 286 

(e.g. adding anammox). 287 

 288 

2.2.5 SNP_BUR_DOM_PERU 289 



Since the biological model from al Azhar et al. (2014) was developed for an open-ocean/coastal 290 

upwelling system rather than an estuary with strong forcing from riverine runoff and significant 291 

rates of organic matter burial, we modified the SNP code by adding the resuspension and burial 292 

code that was used in ChesROMS_ECB. We also added dissolved organic matter cycling, 293 

extending the ECB code which simulated DON and dissolved organic carbon (DOC) to include 294 

dissolved organic phosphorus (DOP). Including burial without DOM cycling resulted in an 295 

excessive fraction of the nutrients delivered to the model being buried in the river mouths. We 296 

denote this merged code as SNP_BUR_DOM, and we denote the simulation made with this 297 

new code as SNP_BUR_DOM_PERU when biological constants in common with SNP_PERU 298 

are set to those in the latter model. 299 

 300 

2.2.6 SNP_BUR_DOM_CHES 301 

For the simulation SNP_BUR_DOM_CHES, the code is identical to that of 302 

SNP_BUR_DOM_PERU.  However, in those equations which are identical to those in 303 

N_BUR_DOM_CHES, all parameters are set to the values in the latter simulation.  304 

 305 

2.3 Pairing simulations to isolate sources of the differences between SNP_PERU and 306 

N_BUR_DOM_CHES 307 

 308 

With our six simulations, we can isolate which differences between SNP_PERU and 309 

N_BUR_DOM_CHES contribute to the different simulated results. Differences between 310 

SNP_BUR_DOM_PERU and SNP_PERU (or SNP_BUR_DOM_CHES and SNP_CHES) are 311 

thus purely due to the inclusion of DOM and burial/resuspension of organic matter. Differences 312 

between SNP_BUR_DOM_PERU and N_BUR_DOM_PERU (or SNP_BUR_DOM_CHES and 313 

N_BUR_DOM_CHES) are due to differences in whether we include sulfur and phosphorus 314 

cycling, or to differences in the optical scheme used to parameterize the penetration of 315 



shortwave radiation. Figure 2 shows a schematic of the merged SNP_BUR_DOM code 316 

(corresponding to the SNP_BUR_DOM_CHES/PERU simulations). Detailed differences among 317 

the six simulations are listed in Table S2. 318 

 319 

2.4 Initial conditions and boundary forcings   320 

 321 

All simulations were run for the year 2017. Riverine inputs for N_BUR_DOM_CHES were taken 322 

from the Dynamic Land Ecosystem Model (as in Feng et al., 2015). Tracers found in common 323 

across multiple models (ISS, NH4, NO3, and DON when included) were set to have the same 324 

inputs for SNP_PERU, SNP_CHES, SNP_BUR_DOM_PERU, SNP_BUR_DOM_CHES and 325 

N_BUR_DOM_PERU. The riverine input PO4 was set to be the riverine input NO3 divided by 326 

36.6, a ratio calculated from field data (https://www.chesapeakebay.net/state/pollution). The 327 

riverine inputs of SDeP and LDeP were set to the values of SDeN and LDeN divided by 16, 328 

respectively, which is the Redfield ratio (reflecting observations of particulate nitrogen and 329 

phosphorus within the Bay). Semilabile and refractory DOP were also set to the corresponding 330 

DON concentrations divided by 16 when included. Sulfur was not included in the riverine input in 331 

this study, consistent with Burke et al. (2018) who found sulfate concentrations in these waters 332 

being low (<0.5 mM) compared to much higher concentrations in seawater. At the seaward 333 

boundary, we applied a mix of radiative boundary conditions (in which tracers like detrital 334 

organic matter are allowed to leave the domain but do not return through the boundary) and 335 

radiation with nudging (in which tracers like temperature and salinity entering the domain are set 336 

to climatological values). Our new sulfur variables are set to have zero flux on the seaward 337 

boundary, which makes little difference on the short time scales for which we run here, 338 

especially given the low levels of water column sulfur cycling on the shelf. We will amend this in 339 

future iterations of the code. Atmospheric deposition of dissolved inorganic nitrogen (DIN) was 340 



also included in the models as a source of DIN to the estuary, since it is an important fraction of 341 

the total DIN inputs to the Chesapeake Bay (Da et al., 2018). 342 

 343 

Initial conditions for the N_BUR_DOM_CHES simulation were taken from a previously run 344 

ChesROMS_ECB simulation that started in model year 1979 and thus represent a “spun-up” 345 

state of the system. Those initial conditions in common with N_BUR_DOM_CHES were set to 346 

be the same in SNP_PERU, SNP_CHES, SNP_BUR_DOM_PERU, SNP_BUR_DOM_CHES 347 

and N_BUR_DOM_PERU. The initial values of PO4, SDeP, LDeP, and DOP were all set to be 348 

16 times smaller than their corresponding nitrogen variables from Da et al. (2018). All the other 349 

initial values of new state variables were set to zero.  350 

 351 
Figure 2. Schematic of the merged biogeochemical code (used in the SNP_BUR_DOM_ 352 

CHES/PERU simulations) developed in this paper. Nitrate, phosphate and ammonium come 353 

down the rivers (light blue lines) and can be taken up by phytoplankton via photosynthesis 354 

(green lines). Phytoplankton are primarily lost via coagulation into large and small detritus (red 355 

lines) which sink to the bottom. A fraction of phytoplankton and large detritus are partially 356 



resuspended (fluorescent blue lines) as small detritus once they reach the bottom. There is a 357 

small loss to zooplankton (grey lines) which we do not focus on here. Detritus is solubilized to 358 

DOM (purple lines). Both detritus and DOM can be remineralized (brown lines) to phosphate 359 

and ammonium. This remineralization consumes oxygen, but in the absence of oxygen (dotted 360 

lines) can proceed using nitrate and nitrite. In the absence of nitrate, nitrite and oxygen, 361 

remineralization proceeds using sulfate and produces hydrogen sulfide. Hydrogen sulfide is 362 

oxidized back to sulfate (orange lines) using oxygen (solid) or nitrate/nitrite (dotted) with the 363 

latter process resulting in denitrification. Ammonium can either be nitrified (dark blue lines) or 364 

consumed with nitrite via anammox (dotted magenta lines) in the absence of oxygen. 365 

 366 

3. Results 367 

 368 

In what follows below, we first compare simulated oxygen, nitrate and ammonium profiles from 369 

the simulations of the original BGC codes, N_BUR_DOM_CHES and SNP_PERU, in model 370 

year 2017 with the observational data from the Chesapeake Bay Program (CBP, 371 

https://www.chesapeakebay.net/what/downloads/cbp_water_quality_database_1984_present). 372 

We focus on the annual evolution of these three fields at CB3.3C, a station located near the 373 

Chesapeake Bay Bridge in the heart of the hypoxic zone. This station has also been a target of 374 

extensive genomic sampling (Arora-Williams, 2020; Arora-Williams et al., 2022), which we will 375 

examine in a future manuscript. We also make some comparisons with two other stations, 376 

CB2.2 and CB5.3, at the northern and southern edges of the hypoxic zone, respectively. In 377 

general, the model does not perform as well at these stations because the annual cycle there is 378 

very sensitive to where the edge of the hypoxic zone occurs, and not primarily to the intensity of 379 

hypoxia.  380 

 381 



We then compare the differences between the SNP and N_BUR_DOM codes 382 

(SNP_CHES/PERU versus N_BUR_DOM_CHES/PERU) in order to examine how much of the 383 

difference between model fits to the available observations is due to differences in parameters 384 

(growth rates, sinking speeds of detritus) that are common to both models. Next, we compare 385 

the SNP and SNP_BUR_DOM codes (SNP_CHES/PERU versus 386 

SNP_BUR_DOM_CHES/PERU) to examine how adding/removing dissolved organic matter and 387 

burial processes affects simulated results. Finally, we show a comparison of N_BUR_DOM and  388 

SNP_BUR_DOM codes (N_BUR_DOM_CHES/PERU versus SNP_BUR_DOM_CHES/PERU) 389 

to isolate how much of the difference between model fits to the available observations is due to 390 

the addition of sulfur and phosphorus cycling and changes in the optics. Note that by definition, 391 

the sum of the differences between SNP_PERU minus SNP_BUR_DOM_PERU, 392 

SNP_BUR_DOM_PERU minus SNP_BUR_DOM_CHES and SNP_BUR_DOM_CHES minus 393 

N_BUR_DOM_CHES add up to the difference between SNP_PERU and N_BUR_DOM_CHES, 394 

our two original models. We then evaluate the joint fit of all six simulations to oxygen, 395 

ammonium and nitrate. Finally, we present the sensitivity of H2S to our different model 396 

formulations. 397 

 398 

3.1 Comparing the base simulations found in the literature：N_BUR_DOM_CHES and 399 

SNP_PERU 400 

3.1.1 Qualitative comparison of annual cycle of oxygen at CB3.3C   401 



 402 
Figure 3. Oxygen (a), (b), Nitrate (d), (e), Ammonium (g), (h) profiles from N_BUR_DOM_CHES 403 

(left) and SNP_PERU (right) at the Bay Bridge station (CB3.3C) in year 2017. The colored 404 

contours represent model results; the circles represent Chesapeake Bay Program observations. 405 

Modeled oxygen (c), nitrate(f) and ammonium (i) difference between SNP_PERU and 406 

N_BUR_DOM_CHES at coincident times and locations are shown in the third column. 407 

 408 

 409 
Figure 4. Modeled versus observed oxygen (mmol O2/m3) (a), nitrate (mmol N/m3) (b) and 410 

ammonium (mmol N/m3) (c) at coincident times and locations. Linear fits are shown with colored 411 

lines and 1:1 line is shown in black. 412 



Both N_BUR_DOM_CHES and SNP_PERU produce reasonable simulations of oxygen. Figure 413 

3a and 3b show the oxygen concentrations in these two simulations with observations overlaid 414 

as colored circles (mismatches can be seen where the circles are visible against the 415 

background of the model). N_BUR_DOM_CHES simulates a relatively high oxygen 416 

concentration near the surface from January to mid-April, around 350 mmol O2/m3. From mid-417 

May to late August, a large hypoxic zone (the so-called dead zone, shown by magenta shading) 418 

extends from near the bottom to around 8 m in depth. Around this time period, the oxygen 419 

concentration is still high near the surface but decreases rapidly at increasing depths in the 420 

water column, corresponding to water column stratification and warming in the Bay during the 421 

summer. However, during May and October the observations show noticeably lower oxygen 422 

concentration near the bottom than the N_BUR_DOM_CHES simulation does. The SNP_PERU 423 

simulation, as shown in Figure 3b, shows a similar distribution of oxygen although the hypoxic 424 

zone lasts longer, indicative of earlier onset of hypoxia in 2017.  425 

 426 

3.1.2 Quantitative evaluation of model skill in simulating oxygen 427 

 428 

Compared to observations, N_BUR_DOM_CHES fits both very low and very high 429 

concentrations of oxygen well, but overpredicts intermediate values in the 50-200 mmol/m3 430 

range (Fig. 4a). SNP_PERU does better in this range. A useful way to objectively compare 431 

these fields is the coefficient of determination (referred to as R2) which can be written as 1-error 432 

variance/sample variance. Note that the coefficient of determination can become negative if the 433 

error variance exceeds the sample variance; in this sense, it differs from the r2 produced by a 434 

regression model where by definition the error variance is smaller than the sample variance. 435 

Both r2 and R2 are affected by differences in the pattern of spatiotemporal variation between 436 

modeled and predicted fields. However, R2 also incorporates the contribution to error variance 437 

from differences in the mean value and from the amplitude of spatiotemporal variation, and as 438 



such it is a more comprehensive normalized measure of the error. With respect to observed 439 

oxygen, SNP_PERU produces a substantial increase in R2 from 0.72 to 0.85 (Table 1), even 440 

though it underpredicts oxygen near the surface. This is because lower observed oxygen 441 

concentrations near the bottom are better simulated in SNP_PERU than in 442 

N_BUR_DOM_CHES. 443 

 444 

3.1.3 Evaluation of the simulations of nitrate and ammonium 445 

 446 

Simulations of nitrate from N_BUR_DOM_CHES and SNP_PERU at the Bay Bridge station are 447 

shown in Figure 3d and 3e. In the N_BUR_DOM_CHES simulation, the nitrate concentration 448 

near the surface is around 40-50 mmol N/m3 from January to late May with some occasional 449 

drops. This is somewhat higher than the observations. Nitrate then drops quickly beginning in 450 

early June. The nitrate concentration remains between 0 and 8 mmol N/m3 throughout the water 451 

column during the summer months until early November. The low values are in part due to 452 

denitrification removing nitrate in the summer months. In SNP_PERU, the spatiotemporal 453 

distribution of nitrate is similar to N_BUR_DOM_CHES from June to November, although the 454 

maximum nitrate concentration in the spring is lower, around 48 mmol N/m3. Depleted nitrate 455 

throughout the water column is also observed in this model in the same time period as in 456 

N_BUR_DOM_CHES. However, from near the bottom to around 11 m in depth, nitrate 457 

decreases in mid-April and remains low until late October. Comparing with observations shows 458 

that SNP_PERU more accurately models low nitrate concentrations between around 10 m in 459 

depth and the bottom from mid-January to mid-April while results from N_BUR_DOM_CHES are 460 

higher than the observations. A scatter plot of nitrate (Figure 4b) also shows that modeled 461 

nitrate in SNP_PERU is closer to the observational data, with the linear fit (red line) lying on top 462 

of the black 1:1 line, while the linear fit for N_BUR_DOM_CHES is offset above this line. The R2 463 

for nitrate is much higher in SNP_PERU (0.46) than in N_BUR_DOM_CHES (-0.29), with the 464 



negative value indicating that the RMS error variance is larger than the observational variance 465 

at this site.  466 

 467 

Figure 3g and 3h compare the simulations of ammonium from N_BUR_DOM_CHES and 468 

SNP_PERU. In N_BUR_DOM_CHES, the ammonium concentration from near the bottom to 469 

around 10 m in depth begins to increase from mid-April and peaks at 42 mmol N/m3 in mid-470 

June. Then from late July, it drops gradually and becomes low again in early October. Given 471 

that peak values of ammonium between 2015 and 2019 at this site never exceeded 25 mmol 472 

N/m3 we conclude that N_BUR_DOM_CHES predicts too much ammonium during the summer. 473 

In SNP_PERU the ammonium concentration near the bottom increases in mid-April and 474 

decreases in early September. It peaks at a value of 68 mmol N/m3 in June. The ammonium-475 

depleted zone near the surface is similar to N_BUR_DOM_CHES. After early September, the 476 

ammonium concentration throughout the water column is lower than N_BUR_DOM_CHES. By 477 

contrast, in the summer the ammonium concentration in SNP_PERU is about twice that in 478 

N_BUR_DOM_CHES. A scatter plot of observed vs. modeled ammonium (Figure 4c) shows 479 

that the modeled results of N_BUR_DOM_CHES are closer to the observational data while 480 

SNP_PERU gets worse results when it comes to ammonium. The significant overprediction in 481 

ammonium means that the R2 for this variable decreases between N_BUR_DOM_CHES (-0.32) 482 

and SNP_PERU (-1.12), though clearly errors are large in both simulations. Note, however that 483 

the overprediction in SNP_PERU is greatest deep in the water column—there is actually less 484 

ammonium above the pycnocline/thermocline/oxycline during the summertime (compare Fig. 3g 485 

and h, more blue lines show up above the pycnocline in Fig. 3g, also Fig. 3i).  486 

 487 

3.1.4 Annual cycle of differences between the two published models 488 

 489 



For most of the year, the oxygen difference between N_BUR_DOM_CHES and SNP_PERU is 490 

small, in the range of 0-30 mmol O2/m3 (Fig. 3c).  From the bottom to around 10 m in depth, 491 

SNP_PERU shows obviously lower oxygen than N_BUR_DOM_CHES during middle April to 492 

middle May. Near the surface during the same time period, oxygen in SNP_PERU is slightly 493 

higher than N_BUR_DOM_CHES. During the summer months near the surface, SNP_PERU 494 

shows a lower oxygen concentration. 495 

 496 

Nitrate predicted by SNP_PERU is lower than that predicted by N_BUR_DOM_CHES for the 497 

whole year (Fig. 3f). Specifically, from middle April to early June, nitrate concentrations in 498 

SNP_PERU are much lower than N_BUR_DOM_CHES throughout the water column compared 499 

to other times, with differences up to 50 mmol N/m3. The high nitrate associated with the spring 500 

freshet is less persistent in SNP_PERU than in N_BUR_DOM_CHES. 501 

 502 

Figure 3i shows the ammonium difference between SNP_PERU and N_BUR_DOM_CHES. 503 

SNP_PERU simulates more ammonium than N_BUR_DOM_CHES for the most part from 504 

January to August. From middle April to the end of June and from near-bottom to around 10 m 505 

in depth, ammonium in SNP_PERU is about 20-30 mmol N/m3 higher than 506 

N_BUR_DOM_CHES. The differences in ammonium have a pattern that is somewhat 507 

anticorrelated with the differences in oxygen, suggesting a tradeoff between oxygen and 508 

ammonium that we will see more clearly in some of our other simulations. 509 

 510 

3.2 Impact of using the PERU parameter set vs CHES parameter set in the 2 BGC codes 511 

 512 

While there are many differences between the biogeochemical cycles in the two published 513 

codes, parameters such as growth rates and sinking speeds of detritus that are found in both 514 

codes also differ. These common parameters would be expected to have effects on our model 515 



results. To quantify this effect, we compare two pairs of models: SNP_PERU minus SNP_CHES 516 

(left-hand column of Fig. 5) and N_BUR_DOM_PERU minus N_BUR_DOM_CHES (right-hand 517 

column of Fig. 5).  This comparison isolates the differences contributed by changing common 518 

parameters from their values in Da et al. (2018) to the values in al Azhar et al. (2014) and vice 519 

versa. Color scales are the same as in the third column of Fig. 3, enabling a direct comparison 520 

of the pattern and magnitude of differences.   521 

 522 

 523 



Figure 5. Modeled oxygen (a,b), nitrate(c,d) and ammonium (e,f)  for SNP_PERU minus 524 

SNP_CHES (left column, a, c and e) and N_BUR_DOM_PERU minus N_BUR_DOM_CHES 525 

(right column, b, d and f) at coincident times and locations at the Bay Bridge station (CB3.3C) 526 

during 2017.  527 

 528 

Switching parameters from CHES values to PERU values does not explain the differences in 529 

Fig. 3; in fact, the changes seen have the opposite sign. Qualitatively similar changes are seen 530 

in the two pairs of simulations. Oxygen becomes higher from near the bottom to around 8 m in 531 

depth. Nitrate gets higher while ammonium becomes lower. SNP_PERU minus SNP_CHES 532 

shows more extreme change for oxygen and ammonium with more moderate change for nitrate 533 

compared to N_BUR_DOM_PERU minus N_BUR_DOM_CHES. SNP_PERU has much more 534 

oxygen than SNP_CHES from late January to middle April and late November to end of 535 

December from near the bottom to 10 m in depth, with relative increases of up to 200 mmol 536 

O2/m3. SNP_CHES extends the hypoxic zone at CB3.3C through much of the year. Oxygen in 537 

N_BUR_DOM_PERU is also higher than N_BUR_DOM_CHES during the same time period, 538 

consistent with a smaller hypoxic zone shown in time series (Fig. S1 in supplementary 539 

materials). In both pairs, using PERU parameters leads to a lower oxygen concentration near 540 

the surface, especially during the summer months. From late January to middle April as well as 541 

in December, nitrate in SNP_PERU is up to 25 mmol N/m3 higher than SNP_CHES. This can be 542 

explained in terms of the higher levels of oxygen in SNP_PERU reducing denitrification rates, 543 

allowing nitrate to persist longer for the PERU parameters relative to the CHES parameters. 544 

Nitrate in N_BUR_DOM_PERU is always higher than N_BUR_DOM_CHES, especially from 545 

early June to middle July, by up to 50 mmol N/m3. For ammonium, SNP_PERU is almost always 546 

up to 20 mmol N/m3 lower than SNP_CHES from near the bottom to 10 m in depth, while 547 

N_BUR_DOM_PERU is also lower than N_BUR_DOM_CHES but the largest differences 548 

appear only in June. 549 



 550 

3.3 Measuring the effects of adding BUR and DOM to the SNP code 551 

 552 
Figure 6. Modeled oxygen (a, b), nitrate (c, d) and ammonium (e, f) for SNP_CHES minus 553 

SNP_BUR_DOM_CHES (left column, a, c and e) and SNP_PERU minus 554 

SNP_BUR_DOM_PERU (right column, b, d and f) at coincident times and locations at the Bay 555 

Bridge station (CB3.3C) during 2017.  556 



Next, we turn to the differences between the simulations induced by adding or removing burial 557 

of organic matter and cycling of dissolved organic matter, processes which are not included in 558 

the original SNP code of al Azhar et al. (2014). Differences between SNP_CHES versus 559 

SNP_BUR_DOM_CHES (left column) and SNP_PERU versus SNP_BUR_DOM_PERU (right 560 

column) in oxygen, nitrate and ammonium are shown in Figure 6. We choose to show the 561 

impacts of removing burial and DOM cycling so as to make it easier to visually attribute the 562 

differences between the original models to different sources (we want to know whether the 563 

differences between SNP_PERU and N_BUR_DOM_CHES seen in the third column of Fig. 3 564 

are induced by removal of these processes). 565 

 566 

For both pairs of simulations, removing dissolved organic matter and burial processes generally 567 

more than balances the oxygen and ammonium changes caused by changes in common 568 

parameters and thus helps explain the differences seen in Fig. 3. Both pairs of simulations show 569 

decreases in oxygen and increases in ammonium concentrations from the bottom to around 8 m 570 

in depth, although the time period during which the decrease is seen is different in the two 571 

models. Oxygen in SNP_CHES is lower than SNP_BUR_DOM_CHES for most of the year, with 572 

significant differences appearing from middle January to early May and late November to late 573 

December. During the summer months, oxygen in SNP_CHES is slightly higher than 574 

SNP_BUR_DOM_CHES near the surface. Larger difference values for SNP_PERU versus 575 

SNP_BUR_DOM_PERU are found from early April to early October. For the most part, surface 576 

oxygen concentrations during summertime in SNP_PERU are slightly higher than 577 

SNP_BUR_DOM_PERU. SNP_CHES shows much higher values of ammonium than 578 

SNP_BUR_DOM_CHES from middle February to late August, while in SNP_PERU the higher 579 

values appear from late May to middle August. For nitrate, SNP_CHES is almost always higher 580 

than SNP_BUR_DOM_CHES with largest differences appearing near the surface from late 581 

January to middle May and middle November to late December. However, from late April to 582 



mid-May nitrate in SNP_PERU is slightly lower than SNP_BUR_DOM_PERU. The differences 583 

in nitrate are much smaller than the increases resulting from changing common parameters and 584 

so do not explain the differences between the original configurations seen in Fig. 3. 585 

 586 

3.4 Direct comparison of the effects of nutrient cycling between the 2 BGC codes: Coupled 587 

sulfur, nitrogen and phosphate cycling 588 

 589 



Figure 7. Modeled oxygen (a, b), nitrate (c, d) and ammonium (e, f) for SNP_BUR_DOM_PERU 590 

minus N_BUR_DOM_PERU (left column, a, c and e) and SNP_BUR_DOM_CHES minus 591 

N_BUR_DOM_CHES (right column, b, d and f) at coincident times and locations at the Bay 592 

Bridge station (CB3.3C) during 2017. 593 

 594 

We now turn to the differences induced by adding the pathways for sulfur and phosphorus 595 

cycling, explicitly modeling nitrite and anammox and changing the optics in al Azhar et al. (2014) 596 

but not changing burial or dissolved organic matter cycling. Differences between 597 

SNP_BUR_DOM_PERU versus N_BUR_DOM_PERU (left column) and 598 

SNP_BUR_DOM_CHES versus N_BUR_DOM_CHES (right column) simulations of oxygen, 599 

nitrate and ammonium are shown in Figure 7. 600 

 601 

Adding more complex nutrient cycling and changing the optics produces large decreases in 602 

nitrate—explaining why we see decreases in this field in Fig. 3f—but produces smaller changes 603 

in oxygen and ammonium. Similar changes for the two pairs of simulations are seen in nitrate 604 

and ammonium. Relative to the original ChesROMS_ECB code, the SNP code decreases 605 

nitrate concentration: large decreases (up to 50 mmol N/m3 ) appear from early May to middle 606 

July for SNP_BUR_DOM_PERU minus N_BUR_DOM_PERU, and from late January to early 607 

June for SNP_BUR_DOM_CHES minus N_BUR_DOM_CHES. The changes in pathways thus 608 

appear to dominate the differences in nitrate seen in Fig. 3. For ammonium, 609 

SNP_BUR_DOM_PERU is up to 15 mmol N/m3  higher than N_BUR_DOM_PERU from early 610 

May to early June from bottom to 14 m in depth but up to 30 mmol N/m3 lower in July. Similar 611 

changes can be observed in SNP_BUR_DOM_CHES minus N_BUR_DOM_CHES but the 612 

range is less extreme. The changes in nutrient cycling and optics are important for determining 613 

the timing of the differences in ammonium seen in Fig. 3 but are not the dominant driver of 614 

these differences.  615 



 616 

In contrast to nitrate and ammonium, the differences in oxygen induced by adding nutrient 617 

cycling and changing the optics depend more on the base simulation. From the bottom to 12 m 618 

in depth, oxygen in SNP_BUR_DOM_PERU is lower than N_BUR_DOM_PERU from late April 619 

to early June, while from early June to early October, oxygen in SNP_BUR_DOM_PERU 620 

becomes higher than N_BUR_DOM_PERU. During the same period and at the same location, 621 

SNP_BUR_DOM_CHES and N_BUR_DOM_CHES only exhibit minor differences. During the 622 

summer months near the surface, SNP_BUR_DOM_PERU is mostly higher than 623 

N_BUR_DOM_PERU while SNP_BUR_DOM_CHES is mostly lower than 624 

N_BUR_DOM_CHES. Overall, these differences are smaller than those associated with the 625 

previous pairs of experiments.  626 

 627 

3.5 Evaluating the accuracy of the model simulations 628 

 629 

 
R2/bias for O2 R2/bias for NH4 R2/bias for NO3 

N_BUR_DOM_CHES 0.72/36.44 -0.32/5.32 -0.29/7.49 

N_BUR_DOM_PERU 0.59/41.61 0.27/-0.69 -4.77/24.94 

SNP_CHES 0.75/10.66 -8.17/14.14 0.62/-3.19 

SNP_PERU 0.85/17.39 -1.13/6.58 0.46/1.08 

               SNP_BUR_DOM_CHES 0.59/51.23 -0.03/3.14 0.20/-6.02 

               SNP_BUR_DOM_PERU 0.19/78.95 0.46/-2.28 0.49/0.86 

Table 1: Error metrics for the model suite compared with observations. A perfect model would 630 

have R2=1 and bias=0. Values of R2<0 are associated with large biases, which result in the error 631 

variance being larger than the sample variance.  632 



 633 

3.5.1. Statistical analysis: Is there a “best simulation”? 634 

 635 

Examining the R2 and biases for oxygen, nitrate and ammonium across the models listed in 636 

Table 1 demonstrates that the “best” model is not the same for each variable. Large biases play 637 

a significant role in decreasing R2: SNP_CHES has a high ammonium bias of 14.14 with an R2 638 

of -8.17 while N_BUR_DOM_PERU has a high nitrate bias of 24.94 with an R2 of -4.77. In terms 639 

of R2 averaged across the three variables and also low biases for nitrogen variables, 640 

SNP_BUR_DOM_PERU produces the best simulation at CB3.3C. However, the results come at 641 

the cost of a degradation of the simulation of oxygen. A tradeoff can be seen between 642 

nitrate/ammonium and oxygen simulations among the six simulations. We will return to the 643 

implications of this result in the following section. 644 



 645 

Figure 8. Simulated versus observed oxygen (mmol O2/m3) (a,b), nitrate (mmol N/m3) (c, d) and 646 

ammonium (mmol N/m3) (e, f) at coincident times and locations from SNP_CHES (blue), 647 

SNP_PERU (orange), N_BUR_DOM_CHES (yellow), N_BUR_DOM_PERU (green), 648 

SNP_BUR_DOM_PERU (purple) and SNP_BUR_DOM_CHES (light blue). Solid black lines 649 

show 1:1 line, colored lines show linear trend. Note that the scales differ between (a) and (b), 650 

(e) and (f) in order to make the differences between simulations more visible. 651 



By examining scatter plots comparing observations (horizontal axis) to the modeled values 652 

(vertical axis) across these sets of simulations (Figure 8), we can see more details about which 653 

mismatches contribute to R2 difference, and whether this remains consistent across simulations.  654 

The top row shows the model-data mismatch for oxygen. We can look at the impact of changing 655 

parameter sets by comparing SNP_CHES (yellow, Fig. 8a) with SNP_PERU (orange, Fig. 8a), 656 

N_BUR_DOM_CHES (blue, Fig. 8a) with N_BUR_DOM_PERU (green, Fig. 8a) and 657 

SNP_BUR_DOM_CHES (light blue, Fig. 8b) with SNP_BUR_DOM_PERU (purple, Fig. 8b). All 658 

the models generally overpredict oxygen with the worst mismatch in the 50-200 mmol O2/m3 659 

range. Switching from PERU to CHES parameters reduces this mismatch across all three pairs, 660 

with the trend lines for SNP_PERU, N_BUR_DOM_PERU and SNP_BUR_DOM_PERU 661 

(orange, blue, purple) lying above those for SNP_CHES, N_BUR_DOM_CHES and 662 

SNP_BUR_DOM_CHES (yellow, green, light blue). However, at higher values of oxygen the 663 

trends reverse. Which parameter set is used modulates the impact of adding new pathways 664 

(illustrated in Fig. 8b). SNP_BUR_DOM_PERU has more oxygen at the low end of the range 665 

than N_BUR_DOM_PERU but less at the high end, while the reverse is true for 666 

SNP_BUR_DOM_CHES with respect to N_BUR_DOM_CHES. Adding dissolved organic matter 667 

and burial processes slightly increases the overestimation of oxygen relative to observations in 668 

the 50-200 mmol O2/m3 range.  669 

 670 

For nitrate (middle row) and ammonium (bottom row) the changes are clearer and more 671 

consistent across the range of observed values. Holding other factors constant, the PERU 672 

parameter set lies above the corresponding CHES parameter set for almost all nitrate samples 673 

and below it for almost all ammonium samples. However, for nitrate the ranges over which the 674 

changes occur are not the same. N_BUR_DOM_PERU largely increases nitrate at the low end 675 

of the range relative to N_BUR_DOM_CHES while the SNP_PERU/SNP_BUR_DOM_PERU 676 

simulations see the increase more at the upper end of the range relative to 677 



SNP_CHES/SNP_BUR_DOM_CHES. Adding dissolved organic matter and burial processes 678 

lowers both the nitrate and ammonium concentrations. Adding pathways generally lowers nitrate 679 

(Fig. 8d) and has a relatively small impact on ammonium (Fig. 8f). 680 

 681 

3.5.2 Model predictions of H2S 682 

 683 
Figure 9. Simulation of hydrogen sulfide distribution from (a) SNP_PERU (b) SNP_CHES (c) 684 

SNP_BUR_DOM_PERU and (d) SNP_BUR_DOM_CHES. Values are averaged in July in 2017 685 

and only benthic cells are plotted. Note that the color scales are different in 4 panels-this was 686 

done so that the spatiotemporal pattern of the hydrogen sulfide fields could be more easily 687 

visualized (enabling us to evaluate whether maxima occurs at the same time and location). 688 

 689 

Our suite of simulations shows wide variation in the predictions of the H2S concentration. Fig. 9 690 

illustrates the sensitivity of simulated bottom water H2S concentration within 691 



SNP_PERU/SNP_CHES and SNP_BUR_DOM_PERU/SNP_BUR_DOM_CHES. The 692 

distribution of maximum H2S in July is very sensitive to whether organic matter burial and DOM 693 

are included in the model. In SNP_PERU, significant levels of H2S appear in the upper Bay, 694 

peaking at 120 mmol H2S/m3 along the main stem. In SNP_BUR_DOM_PERU, the zone of 695 

euxinia appears in the same region but it is smaller in extent than SNP_PERU, and the peak 696 

values are roughly 3.5 mmol H2S/m3, nearly two orders of magnitude smaller. SNP_CHES has 697 

an even higher peak of H2S concentration, reaching 160 mmol H2S/m3. Adding burial and DON 698 

helps lower H2S in both pairs of simulations, while applying CHES parameters to either code 699 

tends to increase H2S concentration. These results suggest that H2S could be a sensitive 700 

diagnostic for improving models of the Bay. 701 

 702 

4 Discussion 703 

 704 

In order to develop an understanding of which of the many parameters changed between the 705 

models has the biggest impact on model performance, we performed a number of sensitivity 706 

studies. Here we report on two that we found to have major impacts on hypoxic volume: particle 707 

sinking velocities (i.e., using different sinking velocity constants from CHES versus PERU) and 708 

optics (adding or removing CDOM absorption, which is parameterized as a function of DOC). 709 

We report on three such simulations here: 710 

 711 

1. Starting with SNP_BUR_DOM_PERU, we first reduced the sinking velocities for large 712 

and small detritus to those used in the CHES code.  713 

2. We changed the optics scheme of SNP_BUR_DOM_PERU so that CDOM absorption 714 

was included.  715 

3. Finally, both changes were added to SNP_BUR_DOM_PERU.  716 



 717 

 718 
Figure 10. Hypoxic volume (waters with O2 < 62.5 mmol/m3) from simulation of N 719 

_BUR_DOM_CHES (black), SNP_BUR_DOM_PERU (green), SNP_BUR_DOM_PERU with CHES 720 

sinking velocities (red), SNP_BUR_DOM_PERU adding CDOM absorption (dark blue), 721 

SNP_BUR_DOM_PERU with CHES sinking velocities and adding CDOM absorption (light blue), 722 

SNP_BUR_DOM_CHES (purple) 723 

 724 

Both sinking velocity and CDOM absorption impact the volume of hypoxic waters. Figure 10 725 

compares the seasonal evolution of hypoxic volume from these simulations with the hypoxic 726 

volume of the original simulation N_BUR_DOM_CHES. In SNP_BUR_DOM_PERU, hypoxia 727 

almost vanished (green line) reflecting the high bias seen in Table 1. Decreasing sinking 728 

velocities (red) or adding back CDOM absorption (dark blue) resulted in hypoxic volume 729 

increasing by roughly the same amount. Changing all the parameters (SNP_BUR_DOM_CHES, 730 

purple) but not the optics produces an increase in hypoxia late in the summer. Changing both 731 



sinking velocities and optics further increases the hypoxic volume (light blue) to about half the 732 

integrated hypoxia of the original simulation (black), with lower hypoxia than 733 

N_BUR_DOM_CHES seen late in the summer. 734 

 735 

CB3.3C 
SNP_BUR_DOM_PERU+CDOM 
absorption with SNP_BUR_DOM_PERU N_BUR_DOM_CHES 
PeruSV/ChesSV 

Nitrogen burial 0.1032/0.04001 0.2041 0.0304 
Denitrification (sediment) 0.004/0.002  0.846*10-3 0.012 
Denitrification (water 
column) 0.095/0.131 0.02525 1.64 

Total nitrogen 1.145/1.229 1.042 1.298 

reduction of nitrate by sulfide 0.1026/0.1747 0.04615 NA 
reduction of nitrite by sulfide 0.09122/0.1244 0.02515 NA 

Whole Bay 
SNP_BUR_DOM_PERU+CDOM 
absorption with SNP_BUR_DOM_PERU N_BUR_DOM_CHES 
PeruSV/ChesSV 

Nitrogen burial 3.159/1.446 4.736 1.348 
Denitrification (sediment) 0.36/0.18 0.039 0.81 
Denitrification (water 
column) 0.089/0.14 0.055 1.015 

Total nitrogen 2.72/3.16 2.33 3.02 
reduction of nitrate by sulfide 0.146/0.1949 0.11 NA 
reduction of nitrite by sulfide 0.086/0.1209 0.054 NA 
 736 

Table 2. Nitrogen budget comparisons from (top) CB3.3C and (bottom) the whole Bay. Values 737 

shown for CB3.3C are in mol/m2 while those shown for the whole Bay are in Gmol. Burial, 738 

sedimentary denitrification, water column denitrification and reduction of nitrate/nitrite by sulfide  739 

represent amounts removed from January through July. Total nitrogen is shown as the vertical 740 

integral (at CB3.3C) or volume integral (for the whole Bay) of all living, particulate and dissolved 741 

N species averaged from January through July.  742 

 743 



These changes in results call for a detailed examination of the budget of nitrogen (Table 2). As 744 

shown in the lower half of Table 2, compared to N_BUR_DOM_CHES, SNP_BUR_DOM_PERU 745 

has significantly more nitrogen burial. This is because the particle sinking velocity determines 746 

the particulate flux to the sediments (Eq. 1), such that the higher the sinking velocity, the greater 747 

the fraction of primary productivity that is buried. When sinking velocities switch from PERU to 748 

CHES (i.e., from high to low), nitrogen burial decreases. This then means that more nitrogen is 749 

available to fuel productivity and draw down oxygen. 750 

  751 

Including absorption by CDOM also reduces the organic matter burial flux, as this moves 752 

primary production up in the water column, allowing more time for remineralization to occur 753 

before organic matter hits the sediment. As SNP_BUR_DOM_PERU with CDOM absorption 754 

and CHES sinking velocities shows, when both of these processes are added, the total nitrogen 755 

inventory for the entire Bay is actually slightly higher than in N_BUR_DOM_CHES (3.16 Gmol 756 

vs. 3.02 Gmol). As shown in the top half of Table 2, the corresponding values at CB3.3C 757 

qualitatively reproduce the sensitivities for individual loss terms (large relative decrease in water 758 

column denitrification and large relative increase in burial for SNP_BUR_DOM_PERU relative to 759 

N_BUR_DOM_CHES), but the relative importance of these terms is different at CB3.3C. 760 

Because CB3.3C is much deeper (~24 m) than the Bay as a whole, water column 761 

remineralization has more time to prevent organic matter from reaching the bottom and being 762 

buried. 763 

 764 

Table 2 also lists the flux values for sulfur-driven denitrification. Compared to the total 765 

N_BUR_DOM_CHES heterotrophic denitrification sink, the autotrophic loss of bioavailable 766 

nitrogen via sulfide oxidation in all of the SNP-based models is quite small. On the other hand, 767 

when looking only at the results of the SNP models, nitrogen loss via sulfide oxidation is a 768 

comparable flux to nitrogen loss through heterotrophic denitrification. For example, in 769 



SNP_BUR_DOM_PERU+CDOM with Chesapeake particle sinking velocities, the whole-Bay flux 770 

of nitrate and nitrite reduction by sulfide from January to July in 2017 (0.19 and 0.12 Gmol, 771 

respectively) is similar to the heterotrophic denitrification fluxes in the water column and the 772 

sediment (0.14 and 0.18 Gmol, respectively). Thus, the SNP simulation results—particularly 773 

those with lower particle sinking velocities—suggest that sulfide-driven denitrification could be a 774 

significant component of the Chesapeake Bay's nitrogen cycle, a result consistent with the 775 

findings in Arora-Williams et al. (2022). However, some caution is warranted in making such an 776 

interpretation in light of the large mismatch between the heterotrophic denitrification fluxes in 777 

N_BUR_DOM_CHES versus the SNP models.  778 

 779 

The denitrification rate in N_CHES_BUR_DOM is further driven up by the larger volume of 780 

hypoxic water produced in that simulation. This, in turn, remains a notable difference between 781 

N_BUR_DOM_CHES and other simulations (Figure 10), even the SNP_BUR_DOM_CHES 782 

simulation, which differs only in terms of the water column remineralization systematics. The 783 

discrepancy in hypoxic volume between these two simulations probably results from the 784 

different oxic respiration rate coefficients (r) used by the N vs. SNP base models. The N 785 

simulations, based on a modification by Da et al. (2018), use a temperature-dependent 786 

exponential term for this coefficient such that r = 0.05*exp(0.0742*T), while the SNP simulations 787 

use a constant value of r = 0.1. The result is a higher oxic respiration rate in the N-based 788 

simulations. At a temperature of 15 ºC, the oxic respiration rate term for the SNP code is still 789 

only ~2/3 that of the N code; at 25 ºC, this ratio drops to ~1/2.  790 

 791 

 792 

 R2/bias for O2  R2/bias for NH4  R2/bias for NO3  

 SNP_BUR_DOM_PERU with CDOM and PeruSV 0.65/45.23 0.63/-1.35 0.36/3.04 



 SNP_BUR_DOM_PERU with CDOM and ChesSV 0.70/37.65 0.59/-1.04 0.17/4.68 

 SNP_BUR_DOM_PERU with ChesSV 0.63/44.95 0.66/1.34 0.39/1.64 
 793 

Table 3: Error metrics for the model suite compared with observations. A perfect model would 794 

have R2=1 and bias=0.  795 

 796 

Picking and choosing which aspects of the ChesROMS_ECB model (N_BUR_DOM) we 797 

incorporate into the RedoxCNPS (SNP) model does allow us to improve the joint simulation of 798 

nitrogen and oxygen. The R2 and bias for SNP_BUR_DOM_PERU+CDOM absorption with 799 

PeruSV/ChesSV are listed in Table 3. Including CDOM absorption results in a significant 800 

increase in R2 for oxygen and ammonium, but this improvement comes at the cost of slightly 801 

reducing R2 for nitrate. If we were to weight all three fields equally, 802 

SNP_BUR_DOM_PERU+CDOM absorption with PeruSV would be chosen as best capturing 803 

these three fields.  804 

 805 

However, given that oxygen is the field most of interest to Bay water quality managers, we 806 

believe that we will need pursue alternative hypotheses to get a simulation that produces 807 

comparable improvements in nitrogen species while not compromising the simulation of oxygen. 808 

The fundamental tradeoff between oxygen and nitrogen accuracy seen across these simulations 809 

suggests that there are also issues with the relationship between them represented by the 810 

Redfield ratio. In particular, the stoichiometric ratios used in both of the original codes (O:N of 811 

138:16) are lower than those used in many modern models (Lenton and Watson, 2000; 812 

Emerson and Hedges, 1988) with too little oxygen consumed per unit nitrogen added. 813 

Preliminary work suggests that changing the stoichiometry of remineralization as well as making 814 

the changes we discussed above would generate a simulation which predicts hypoxic volume 815 

with comparable skill as N_BUR_DOM_CHES while giving a better prediction for oxygen, nitrate 816 



and ammonium. However, full discussion is beyond the scope of this paper where we have 817 

chosen to focus on understanding the differences between two published models. We plan to 818 

report more fully on this work in a future manuscript. 819 

 820 

We recognize that there are other important differences between the models presented here. In 821 

particular, the temperature dependence of the remineralization differs between the 822 

N_BUR_DON (ChesROMS_ECB) and the SNP (RedoxCNPS) models, with remineralization 823 

rates generally being higher in the former. In the absence of burial, if we decrease the 824 

remineralization rates we will increase the PON, partially compensating the decreased 825 

remineralization rate. However, decreasing the remineralization rates does allow more of the 826 

POM to get transported from the head of the Bay to the deep channel and consume more 827 

oxygen there. In the presence of burial, it gets trickier to understand the impact of 828 

remineralization rates, because if we decrease the rates, more particulate organic matter 829 

survives to hit the sediment. As this means more organic matter is buried we don’t increase the 830 

organic matter as much because more nutrient is buried and the vertical distribution of nutrients 831 

is then different. While changing sinking velocities also changes burial and the vertical 832 

distribution of nutrients we have found the resulting changes to nutrient budgets more 833 

straightforward to understand. One challenge to investigating the impact of these processes is 834 

that they affect small detritus, large detritus and semilabile DON differently, and only total 835 

particulate and dissolved nitrogen are currently measured in the Bay.  836 

 837 

5. Conclusions 838 

 839 

To date, most models of the Chesapeake Bay have focused on heterotrophic denitrification as 840 

the major loss term for fixed nitrogen. While the release of sulfide from sediments has 841 



previously been proposed to play an important role in biogeochemical cycling within the 842 

Chesapeake Bay (Roden and Tuttle, 1992; Testa et al., 2014; Cerco and Noel, 2017) it has 843 

been mostly thought of as a sink for oxygen. However, in recent years it has become clear that 844 

other processes, including anammox and cryptic sulfur cycling, can be significant drivers of fixed 845 

nitrogen loss in anoxic waters (Canfield et al., 2010). In order to model these additional 846 

processes in the Bay, a biogeochemical model for the Peru Upwelling System that included both 847 

anammox and sulfide oxidation with denitrification (al Azhar et al., 2014) was implemented in 848 

the Bay using the original set of parameters calibrated for the open ocean (SNP_PERU).   849 

 850 

While the SNP_PERU model apparently resulted in an improved simulation for oxygen and 851 

nitrate, it did not necessarily do so for the right reasons. Its improvement in modeled oxygen 852 

and nitrate concentrations came at the cost of overpredicting the concentration of ammonium. 853 

Furthermore, the differences in oxygen concentrations were not driven by the inclusion of new 854 

sulfur cycling terms, but rather by the neglect of burial and dissolved organic matter cycling. 855 

Omitting organic matter burial and DOM cycling also resulted in increasing the error in 856 

ammonium concentrations by allowing ammonium to accumulate in the water column. While 857 

differences in nitrate were due to the other differences in equations (sulfur 858 

cycling/anammox/optics) we found that optics played an important role in explaining these 859 

differences, rather than the inclusion of the cryptic sulfur cycle. Differences in parameters 860 

common (PERU vs CHES) to the two codes tended to compensate the other differences, so 861 

that using the parameters calibrated for the Chesapeake in the model developed for the open 862 

ocean actually made the solution worse. This highlights the extent to which model parameters in 863 

Chesapeake Bay models are “best” depends critically which processes are included within the 864 

model.   865 

 866 



Our model suite shows a tendency to trade off errors between oxygen and nitrogen species: 867 

when the nitrogen simulation gets better, the oxygen simulation gets worse and vice versa. For 868 

example, allowing for burial removes nitrogen from the Bay, but if this happens too early in the 869 

season, the nitrogen is not present to draw down oxygen in the summer.  As noted above, one 870 

pathway to address this bias may be the stoichiometric ratio. Alternatively, recent genomic work 871 

(Preheim S., S.A. Morris, C. Holder, K. Arora-Williams, Y, Zhang, P. Gensigler, A. Hinton, R. 872 

Jin, M.A. Pradal and A. Gnanadesikan, Major trends and environmental correlates of 873 

spatiotemporal shifts in the distribution of genes compared to a biogeochemical model 874 

simulation in the Chesapeake Bay, manuscript in prep.) suggests that microenvironments 875 

(particles, animal guts) may host denitrification in the spring and nitrogen fixation during the 876 

summer. Further observational quantification of elemental stoichiometry, as well as the 877 

spatiotemporal distribution of nitrification, denitrification and anammox might help to resolve this 878 

issue. 879 

 880 

In addition to improving simulations of the seasonal cycling of nitrogen and ammonium, our new 881 

SNP_BUR_DOM model allows for predictions of H2S in the deep Bay (Fig 9). Roden and Tuttle 882 

(1992) found the concentration of H2S is around 6.1 to 27.0 mmol H2S/m3 at the mouth of the 883 

Choptank River. In Oldham et al. (2015), the concentration ranges more, from 4.28 to 39.7 884 

mmol H2S/m3 at the Bay Bridge Station. Even higher values of H2S concentration at the Bay 885 

Bridge (up to 60 mmol H2S/m3) were reported in Luther et al. (1988). Though we were unable to 886 

find measurements of H2S within the Bay during 2017, our model suite is able to bracket the 887 

historical observations. Meanwhile, our simulations show that H2S is high in SNP_CHES and 888 

low in SNP_BUR_DOM_PERU, which suggests that H2S could be a useful measure of model 889 

accuracy.  890 

 891 



As the most realistic BGC code and parameter setup, our SNP_BUR_DOM code with CDOM 892 

absorption and low sinking velocities can serve as a basis for further work. In addition to the 893 

changes to O:N stoichiometry alluded to above there are a number of additional biogeochemical 894 

phenomena that could be added to the model; sediment processes that we are interested in 895 

expanding include cable bacteria which are capable of harvesting electrons from free sulfide in 896 

deeper sediment (Malkin and Meysman, 2015) and deposition of organic sulfur in sediments 897 

(Jiang et al., 2021). Water column processes include nitrogen fixation by N2–fixing 898 

phytoplankton and heterotrophic bacteria. It is also important to examine whether thresholds for 899 

these microbial processes like sulfate reduction are too low as previous work (Arora-Williams et 900 

al., 2020; Arora-Williams et al., 2022) shows that genes associated with sulfur cycling may not 901 

be limited to the lowest oxygen levels. 902 
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