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Abstract

We conduct a global assessment of the spatial heterogeneity of cloud phase within the temperature range where liquid and ice can

coexist. Single-shot CALIOP lidar retrievals are used to examine cloud phase at the 333-m scale, and heterogeneity is quantified

according to the frequency of switches between liquid and ice along the satellite’s path. In the global mean, heterogeneity is

greatest from -15 to -2C with a peak at -4C, when small patches of ice are prevalent within liquid-dominated clouds. Above

-20C, heterogeneity is greatest in the northern midlatitudes and lower over the Southern Ocean, where supercooled liquid clouds

dominate. Zonal mean heterogeneity undergoes an annual cycle with a peak that follows seasonal shifts in the extratropical

storm track. These results can be used to improve the representation of subgrid-scale heterogeneity in general circulation

models, which has the potential to reduce model biases in phase partitioning and radiation balance.

1



manuscript submitted to Geophysical Research Letters

The spatial heterogeneity of cloud phase observed by1

satellite2

Adam B. Sokol1, Trude Storelvmo2
3

1Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA4

2Department of Geosciences, University of Oslo, Oslo, Norway,5

Key Points:6

• Cloud phase heterogeneity observed by lidar is greatest a few degrees below freez-7

ing, when single-phase patches are 6 km in length on average8

• Heterogeneity is greatest in the northern mid-latitudes and relatively low over the9

Southern Ocean10

• Extratropical heterogeneity undergoes an annual cycle that reflects seasonal shifts11

in the storm track12
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Abstract13

We conduct a global assessment of the spatial heterogeneity of cloud phase within the14

temperature range where liquid and ice can coexist. Single-shot CALIOP lidar retrievals15

are used to examine cloud phase at the 333-m scale, and heterogeneity is quantified ac-16

cording to the frequency of switches between liquid and ice along the satellite’s path. In17

the global mean, heterogeneity is greatest from -15 to -2°C with a peak at -4°C, when18

small patches of ice are prevalent within liquid-dominated clouds. Above -20°C, hetero-19

geneity is greatest in the northern midlatitudes and lower over the Southern Ocean, where20

supercooled liquid clouds dominate. Zonal mean heterogeneity undergoes an annual cy-21

cle with a peak that follows seasonal shifts in the extratropical storm track. These re-22

sults can be used to improve the representation of subgrid-scale heterogeneity in gen-23

eral circulation models, which has the potential to reduce model biases in phase parti-24

tioning and radiation balance.25

Plain Language Summary26

At temperatures where ice and liquid can coexist within clouds, climate models pro-27

duce too much ice and too little liquid compared to satellite observations. This bias is28

caused by the assumption that liquid and ice are uniformly mixed, which results in the29

rapid conversion of liquid to ice for thermodynamic reasons. To reduce this bias, mod-30

els need to account for the spatial heterogeneity (“patchiness”) of liquid and ice that ex-31

ists in the real atmosphere. The goal of this paper is to quantify this spatial heterogene-32

ity using satellite observations of cloud phase. To do so, we use vertical profiles of cloud33

phase observed by the CALIOP lidar every 333 m along the satellite’s path. Clouds with34

small alternating pockets of liquid and ice are said to be more heterogeneous. We find35

small pockets of ice in liquid-dominated clouds to be more common than small pockets36

of liquid in ice-dominated clouds. The greatest heterogeneity is found in the northern37

midlatitudes and follows seasonal shifts in storminess. Phase is relatively homogeneous38

over the Southern Ocean, where supercooled liquid clouds dominate. These results can39

be used in the future to improve model representations of the thermodynamic processes40

responsible for biases in cloud phase.41
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1 Introduction42

Cloud feedbacks remain a leading source of uncertainty in estimates of climate sen-43

sitivity (Zelinka et al., 2020). One such feedback is the cloud phase feedback, which was44

first described by Mitchell et al. (1989) as a negative feedback resulting from a shift in45

cloud phase partitioning from ice to liquid with warming. The feedback is negative be-46

cause liquid cloud droplets are generally smaller and more numerous than ice crystals,47

which means that liquid clouds are optically thicker than ice clouds of equal condensate48

mass. A shift in phase partitioning from ice to liquid therefore produces an increase in49

cloud albedo.50

The magnitude of the cloud phase feedback has proved tricky to constrain using51

models, largely because of its sensitivity to the phase partitioning of the initial state (Storelvmo52

et al., 2015; Choi et al., 2014; Tsushima et al., 2006). General circulation models (GCMs)53

systematically produce too much ice and too little liquid within the mixed-phase tem-54

perature range (-40 to 0◦), especially over the Southern Ocean (Cesana et al., 2015; Ko-55

murcu et al., 2014; Kay et al., 2016). As a result, present-day cloud albedo is too low56

in many GCM simulations, and the albedo enhancement associated with ice-to-liquid tran-57

sitions is too dramatic. Adjustment of present-day phase partitioning to more closely58

match observations results in a weakened cloud phase feedback and an increase in sim-59

ulated climate sensitivity (Tan et al., 2016; Frey & Kay, 2018)60

Model biases in phase partitioning are thought to be caused, at least in part, by61

an overactive Wegener-Bergeron-Findeisen (WBF) process (Tan & Storelvmo, 2016; McIl-62

hattan et al., 2017). The WBF process is a consequence of the difference in saturation63

vapor pressures with respect to liquid and ice, which, in a mixed-phase environment, can64

cause ice crystals to grow at the expense of nearby liquid droplets (Storelvmo & Tan,65

2015). GCM parameterizations of the WBF process typically assume that liquid and ice66

are homogeneously mixed throughout a model grid box, which allows for efficient WBF67

glaciation of supercooled liquid. But aircraft observations, while limited, suggest that68

mixed-phase clouds often contain discrete liquid-only and ice-only pockets much smaller69

than a GCM grid box (A. V. Korolev et al., 2003; Chylek & Borel, 2004; Field et al., 2004).70

By reducing the spatial overlap of ice and liquid condensate, this heterogeneity could limit71

WBF efficiency in the real atmosphere, and previous work has shown that accounting72

for heterogeneity can mitigate model biases in phase partitioning (Tan & Storelvmo, 2016;73
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Zhang et al., 2019; Huang et al., 2021). An important takeaway from this previous work74

is that there is no one-size-fits-all adjustment to WBF efficiency that improves model75

phase biases across the board: the sensitivity of phase biases to WBF efficiency varies76

with location, season, and temperature, and this variability presumably reflects differ-77

ent degrees of phase heterogeneity in the real world. Attempts to reduce model phase78

biases, if they are to be physically grounded, must therefore account not only for the ex-79

istence of phase heterogeneity but also for its spatial and temporal variability.80

Understanding phase heterogeneity in the real atmosphere is a difficult problem81

because it occurs on scales ranging from microns to kilometers (A. V. Korolev et al., 2003;82

Atlas et al., 2021). Capturing this range of scales requires in situ aircraft observations,83

which typically have a measurement frequency of 1 Hz (every 100-200 m, depending on84

aircraft speed). Studies making use of the measurements have generally shown that a85

relatively small portion of 1-Hz observations within the mixed-phase temperature range86

contain both liquid and ice; most are single-phase or heavily dominated by one phase87

or the other (A. V. Korolev et al., 2003; Field et al., 2004; D’Alessandro et al., 2019; D’Alessandro88

et al., 2021; Zhang et al., 2019). For example, Zhang et al. (2019) analyzed data from89

the HIPPO aircraft campaign and found that only 13.4% of 1-Hz observations between90

-40-0°C were mixed-phase. Even when the data were smoothed by a 100-s (∼20-km) rolling91

average, only 25.8% were mixed-phase. On the whole, these aircraft studies suggest that92

mixed-phase conditions at the 100-m scale are relatively rare. This is not surprising given93

that mixtures of liquid and ice are thermodynamically unstable, which is what gives rise94

to the WBF process in the first place. Nevertheless, these observational assessments come95

with considerable uncertainty arising from imperfect phase classification algorithms and96

varying definitions of “mixed-phase”. Perhaps most importantly, aircraft observations97

are limited in number, and the generalizability of existing observations is unknown.98

Spaceborne satellite observations are a largely untapped resource for studying cloud99

phase heterogeneity. Thompson et al. (2018) assessed cloud-top phase heterogeneity us-100

ing retrievals from the Hyperion spectrometer, but the spatial coverage of the observa-101

tions was sparse and included very few measurements of the mid-latitude oceans, where102

model phase biases are most severe. Moreover, the reliance of the spectrometer retrieval103

on reflected sunlight meant that observations were limited to daytime hours and only104

reflected conditions near cloud top. These limitations can be largely overcome by polar-105

orbiting satellites with active sensors, which offer near-global coverage over extended pe-106
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riods of time and can penetrate below cloud top until their signal is attenuated. While107

these satellites cannot capture the fine spatial scales observable by aircraft and Hype-108

rion, the aircraft observations discussed previously suggest that a resolution of a few hun-109

dred meters can capture a large portion of cloud phase variability. For these reasons, we110

believe active-sensing satellites are a promising avenue for understanding phase hetero-111

geneity on a global scale and improving its representation in models.112

The goal of this work is to quantify cloud phase heterogeneity and its spatiotem-113

poral variability using spaceborne lidar measurements. The lidar observations are de-114

scribed in section 2. In section 3, we develop a metric that is used to characterize phase115

heterogeneity in the satellite record. Results are presented in section 4 and 5 and dis-116

cussed in section 6.117

2 Observational Data118

Observations of cloud phase were obtained from the Cloud-Aerosol Lidar with Or-119

thogonal Polarization (CALIOP) aboard the polar-orbiting CALIPSO satellite (Winker120

et al., 2009). The reasons for using CALIOP are its near-global coverage and its rela-121

tively high horizontal resolution: single-shot profiles of the atmosphere have a horizon-122

tal footprint of 90 m and are recorded every 333 m along the satellite’s path.123

In the CALIOP retrievals used here (version 4), cloud phase is determined based124

on the layer-integrated attenuated backscatter and depolarization ratio (Hu et al., 2009;125

Avery et al., 2020). Each cloudy pixel is classified as liquid, randomly oriented ice, hor-126

izontally oriented ice, or unknown. Each phase determination is accompanied by a qual-127

ity indicator, which we use to eliminate low-confidence determinations. The lack of a mixed-128

phase classification is a clear limitation of the CALIOP phase retrievals, since mixed-129

phase conditions are known to occur on length scales much smaller than 333 m (Field130

et al., 2004; Atlas et al., 2021). Clouds identified as supercooled liquid may contain small131

amounts of ice that cannot be detected by spaceborne lidar because, in mixed-phase con-132

ditions, the number concentration of ice crystals is generally much lower than that of liq-133

uid droplets (Mace et al., 2021).134

The cloud phase data used here are from CALIOP Level 2 Vertical Feature Mask135

data product (version 4.20; NASA/LARC/SD/ASDC, 2018b), which provides cloud phase136

retrievals at the single-shot resolution of 333 m up to an altitude of 8.2 km, above which137
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the resolution if coarsened due to bandwidth limitations. Because we wish to use the finest138

resolution possible, we restrict our analysis to levels below 8.2 km. This is not an issue139

for studying the mid- and high latitudes, where clouds above 8.2 km are almost entirely140

ice (Cesana et al., 2015). We use all available data for the three-year period between 2009-141

12-01 and 2012-11-30. This amounts to over 35 billion individual cloud observations, 83%142

of which have medium- or high-quality phase determinations. Temperature data for the143

same period are obtained from the CALIOP Level 2 Cloud Profile data product (version144

4.20; NASA/LARC/SD/ASDC, 2018a), which provides temperature from the GEOS-145

5 reanalysis interpolated onto the CALIPSO track with a horizontal resolution of 5 km146

and a vertical resolution of 60 m. We further interpolate the temperature data onto the147

single-shot grid of the cloud phase observations.148

3 Quantification of Phase Heterogeneity149

Previous work has quantified phase heterogeneity based on the frequency of switches150

between liquid and ice along an aircraft flight track or on the horizontal extent of single-151

phase patches within a cloud (Atlas et al., 2021; D’Alessandro et al., 2021). Here we use152

a metric that is similar in nature but adjusted for use with CALIOP retrievals. We de-153

fine the interface density I [km−1] as the number of interfaces between observations of154

unlike phase per horizontal kilometer of cloud detected by CALIOP. To compute I, we155

compare the phase of each cloud observation to the phase of the immediately adjacent156

observations at the same vertical level. The boundary between two pixels is considered157

to be a liquid-ice interface only if one of the pixels is liquid and the other is ice (either158

randomly or horizontally oriented) and only if both phase determinations are of medium159

or high confidence. Each cloud observation is assigned a value of 0, 1, or 2 equal to the160

number of liquid-ice interfaces at its horizontal edges. We can then compute I for any161

subset of observations as162

I =
(N1/2 +N2)

Nc ·∆x
(1)

where N1 and N2 are the number of cloud observations with one and two adjacent in-163

terfaces, respectively, and Nc = N0 + N1 + N2 is the total number of cloud observa-164

tions with medium- or high-confidence phase determinations. N1 is scaled by a factor165

of 1/2 so that interfaces are not double-counted. ∆x is the horizontal resolution of the166

retrievals (333 m).167
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When I is large, cloud phase is more heterogeneous: single-phase cloud segments168

are shorter in length and there is a greater contact area between liquid-only and ice-only169

patches. Conversely, smallI corresponds to large patches of uniform phase. WhileI can170

be conceptualized as the inverse of the average length of a single-phase patch, we note171

that the two quantities are not numerically equal because the edge of a cloud is not a172

liquid-ice interface but nevertheless constitutes the end of a single-phase patch. The two173

quantities are equal only in the limiting case of a cloud with in�nite length.174

Figure 1. Schematic illustrating the interface density metric, I , used to quantify cloud phase

heterogeneity. Each box represents one single-shot lidar pro�le and its associated high-quality

phase retrieval, with the number below indicating the number of liquid-ice interfaces adjacent to

the box. Clouds transects A, B, and C all portray clouds that extend for 2-km along the satel-

lite's track. A is single-phase liquid cloud while B and C are mixed-phase clouds with di�erent

degrees of heterogeneity.I is computed for each transect following Equation 1.

Figure 1 illustrates I for three schematic cloud transects of equal length. Transect175

A, an all-liquid cloud with no phase interfaces, represents the most homogeneous pos-176

sibility ( I =0). Transect C, a mixed-phase cloud in which liquid and ice alternate with177

every observation, represents the most heterogeneous possibility. WhileI =2.5 km � 1
178

for transect C, we note that the theoretical maximum I is 3 km� 1 (=1/� x), which cor-179

responds to an in�nitely long cloud with alternating phase retrievals. Transect B, which180

shows a mixed-phase cloud with one liquid-ice interface, is a compromise between the181

two extremes.182
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Figure 3. Zonal monthly mean I throughout the three-year study period for four different

temperature brackets. Data are only shown for bins containing 104 or more cloud phase re-

trievals. The top two panels use a different color scale than the bottom two panels in order to

highlight the variability within each temperature range.

The annual cycle of phase heterogeneity in the SH is similar in some respects to256

that in the NH but different in others. As in the NH, at 30°-40°S I is greatest during lo-257
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cal winter, when the storm track is more equatorward than at any other point in the year.258

Notably, this feature is only seen between -30°and -10°C and not in the warmest tem-259

perature bin. Unlike the NH, there is no clear progression of enhanced I towards the poles260

over the course of the spring. Poleward of 50°S, I is greatest during summer. Uncover-261

ing the shifts in cloud type that are responsible for these seasonal shifts in phase het-262

erogeneity may be a worthwhile endeavor but is beyond our scope here.263

It is notable that I is relatively low over the Southern Ocean (SO) region (∼50-264

70°S) compared to similar latitudes in the NH. This is consistent with the fact that, in265

some models, biases in LCF and absorbed shortwave radiation are larger over the SO266

than in the extratropical NH (Trenberth & Fasullo, 2010; Tan et al., 2016; Kay et al.,267

2016). Lower I over the SO implies relatively little contact area between liquid and ice268

and thus a reduced potential for widespread WBF glaciation. The failure of models to269

account for subgrid phase heterogeneity would thus be expected to produce the largest270

LCF biases where I is low.271

The seasonality in phase heterogeneity over the SO is also consistent with expec-272

tations from previous modeling studies. Kay et al. (2016) found that SO phase parti-273

tioning biases in the CAM5 model were greatest between March and August (see their274

Figs. 9 and 10). Figure 3 shows that I at 60◦S is lowest during this half of the year through-275

out the entire mixed-phase temperature range. These results underscore the need to in-276

corporate seasonal variability into model representations of subgrid heterogeneity.277

6 Discussion278

The results shown here show that cloud phase heterogeneity has strong dependen-279

cies on temperature, latitude, and time of year. Even at fixed latitude and temperature,280

I can vary by factor of ∼2 over the course of the year; such variability has important im-281

plications for WBF glaciation and should be accounted for in any model implementa-282

tion of subgrid phase heterogeneity. Figure 4 proposes one relatively simple way of ac-283

counting for this variability: mean I is computed for five zonal bands, four seasons, and284

four 10-◦C temperature ranges. While these bins are relatively coarse, they capture most285

of the variability in phase heterogeneity evident in Figure 3. The values shown in Fig-286

ure 4 are available in Data Set S2.287

–12–
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Figure 4. Zonally and seasonally averaged I for four different temperature brackets.

Future work will focus on how to meaningfully convert I to a scaling parameter that288

can be used to adjust WBF efficiency in models. Such implementation must consider the289

fact that I is a measure of liquid-ice interface density at a fixed vertical level along a one-290

dimensional satellite track. Even if vertical phase heterogeneity is to be neglected, I must291

still be generalized from one horizontal dimension to two. Implementations may vary from292

model to model due to differences in grid type and WBF parameterizations, and for this293

reason we leave the details of such implementation for future work.294

The use of CALIOP to study phase heterogeneity has several sources of error in295

addition to the limitation of horizontal resolution discussed in section 1. About 17% of296

the cloud observations in our study period lacked a high-quality phase determination and297

were not included in our analysis. Thus, the number of liquid-ice interfaces identified us-298

ing our methodology is almost certainly an underestimate, not to mention the fact that299

some of the excluded observations are likely mixed-phase. Another potential source of300

bias is the fact that the lidar signal attenuates at an optical depth of ∼5 (Winker et al.,301

2009), which means that our results are skewed to represent conditions near cloud top302

for optically thick clouds, such as the low marine clouds common over the Southern Ocean.303

This bias would only affect our results if there is significant vertical variation in cloud304

phase heterogeneity. Lastly, we draw attention to the source of error discussed in Mace305

et al. (2021), who demonstrated the difficulty of observing mixed-phase clouds using space-306

borne lidar. In particular, they documented the presence of low clouds over the South-307

ern Ocean that are mixed-phase but appear to spaceborne lidar as supercooled liquid308
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because the layer scattering characteristics are heavily dominated by liquid droplets. The309

inability of spaceborne lidar to identify the presence of ice in such clouds is an inherent310

limitation of our methodology.311

This paper presents, to our knowledge, the first comprehensive, global assessment312

of cloud phase heterogeneity using spaceborne satellites. Such an assessment is valuable313

because it strikes a balance between horizontal resolution and spatiotemporal coverage.314

While spaceborne lidar cannot be used to study phase heterogeneity on the scale of in-315

dividual cloud particles, our results show that it is capable of capturing differences in316

phase heterogeneity on scales much smaller than a GCM grid box. In this way, it offers317

a useful complement to in situ aircraft observations and a good opportunity to improve318

model representations of cloud phase.319
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