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Abstract

Transformation of rainfall to runoff is a complex hydrological phenomenon involving various interconnected processes. Besides,

the distribution of rainfall and basin characteristics are not uniform across time and space leading to a poor understanding

of the process. Hydrologists have been using various hydrological models to understand transformation of rainfall into runoff.

Conceptual models developed in the 1960s represent various individual components of hydrological cycle via interconnected

conceptual elements, thus model various aspects of the hydrological cycle. On the other hand, data-driven models such as

Artificial Neural Networks (ANNs) are widely regarded as universal approximators due to their ability to model many complex

problems. Very few studies reported the application of a widely used conceptual model, Sacramento Soil Moisture Accounting

model (SAC-SMA), in the Indian river basins context. Considering that the hydrological cycle is very complex and may never

be fully understood in detail, conceptual models like Sacramento Soil Moisture Accounting model (SAC-SMA) can be integrated

with data-driven models which can take care of poorly described and understood aspects of hydrological modelling. In this

study, a hybrid rainfall-runoff model was developed and applied over the Godavari river basin in India at multiple spatial

scales for capturing the spatial variations in model inputs and catchment charateristics.The hybrid model by virtue of the

semi-distributed configuaration and addition of ANN component led to improved simulations of streamflow in comparison to

the standalone SAC-SMA model.
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elling for Godavari basin8
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Abstract15

Transformation of rainfall to runoff is a complex hydrological phenomenon involving var-16

ious interconnected processes. Besides, the distribution of rainfall and basin character-17

istics are not uniform across time and space leading to a poor understanding of the pro-18

cess. Hydrologists have been using various hydrological models to understand transfor-19

mation of rainfall into runoff. Conceptual models developed in the 1960s represent var-20

ious individual components of hydrological cycle via interconnected conceptual elements,21

thus model various aspects of the hydrological cycle. On the other hand, data-driven mod-22

els such as Artificial Neural Networks (ANNs) are widely regarded as universal approx-23

imators due to their ability to model many complex problems.24

Very few studies reported the application of a widely used conceptual model, Sacra-25

mento Soil Moisture Accounting model (SAC-SMA), in the Indian river basins context.26

Considering that the hydrological cycle is very complex and may never be fully under-27

stood in detail, conceptual models like Sacramento Soil Moisture Accounting model (SAC-28

SMA) can be integrated with data-driven models which can take care of poorly described29

and understood aspects of hydrological modelling. In this study, a hybrid rainfall-runoff30

model was developed and applied over the Godavari river basin in India at multiple spa-31

tial scales for capturing the spatial variations in model inputs and catchment charater-32

istics.The hybrid model by virtue of the semi-distributed configuaration and addition of33

ANN component led to improved simulations of streamflow in comparison to the stan-34

dalone SAC-SMA model.35

Keywords: ANN, Conceptual model, Godavari River Basin, Flood Forecasting,36

Hydrologic Cycle, NWS, SAC-SMA, Scaling37

1 Introduction38

All rainfall-runoff models represent some sort of simplification of the hydrological39

cycle to a varying degree. In hydrological sciences, it’s challenging to set a benchmark40

for model development which has led to an ever-growing list of hydrological models be-41

ing developed to simulate the same mechanism, i.e., rainfall to runoff transformation.42

The rainfall-runoff modelling of today traces its origins to the availability of computing43

power in the 1960s (Todini, 2011; Singh & Woolhiser, 2002). Most of these models were44

of the conceptual type, meaning they represented various individual components of the45

watershed by interconnected conceptual elements such as plane, converging and diverg-46

ing sections and routing channels. Along with the conceptual models, data driven mod-47

els which primarily rely on observational data began to be used for hydrologic studies.48

The Unit hydrograph is viewed as the first data driven model in hydrology (Sherman,49

1932). Similar empirical models relating flow observations to catchment descriptors were50

developed and fall in the category of data driven models. Data driven approach intro-51

duced the loss of “physicality” (no consideration for physical laws) which increased fur-52

ther with development of ANN’s, fuzzy logic and genetic algorithms (Todini, 2007).53

One of the conceptual models used for flood forecasting in the United States is the54

Sacramento Soil Moisture Accounting Model (SAC-SMA), developed by the staff of Na-55

tional Weather Service (NWS), River Forecast Center (RFC) in Sacramento, California.56

SAC-SMA is a 16 parameter hydrological model which treats the watershed (or basin)57

as a soil block and divides it into two zones, i.e., a thin upper zone and a thicker lower58

zone. The upper zone is typically top soil layer and corresponds to the interception stor-59

age, whereas the lower zone represents the bulk of the soil moisture. The depth up-to60

which plant roots can penetrate and extract soil moisture limits the depths of the up-61

per and lower zones (Armstrong, 1978). Within each zone, the soil moisture storage is62

composed of ”Tension Water” and ”Free Water”. Tension water is that portion of soil63

moisture that is bonded with soil particles and is used by evapotranspiration. Free wa-64
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ter is that water which moves under the influence of gravity and is depleted by perco-65

lation, evapotranspiration, interflow, surface runoff and refilling of tension water. The66

SAC-SMA model, by design, first fills the tension water storage in the upper zone be-67

cause the moisture content of soil must be raised to a certain level to initiate the down-68

ward movement of the wetting front; the wetting front corresponds to soil moisture pro-69

file in the ground (Burnash & Ferral, 1996; Bodman & Colman, 1944). Filling of upper70

tension water storage is followed by filling of upper free water storage, which controls71

interflow, generates surface runoff and allows for percolation of water to lower zones. Thus,72

the moisture content in the upper zone filled first and then will meet requirements of the73

lower zone. The ability of the model to perform well depends on simulating extended74

periods of varying flows, comprising of dry periods with low flows and wet periods with75

high flows which necessitate the division of lower zone free water storage into two, pri-76

mary which is slow draining and simulates the year-round base flow and supplementary77

which is quick releasing (Burnash & Ferral, 1996; Anderson, 2002). Thus,the SAC-SMA78

is a continuous water balance model simulates changes in soil moisture based on the wet-79

ting and drying cycles of soil which results due to precipitation and subsequent deple-80

tion of accumulated soil moisture by evapotranspiration, production of runoff and grav-81

ity draining (Shamir et al., 2006). The model conceptualisation is shown in Figure 1. For82

more details on the SAC-SMA model the readers are referred to the companion review83

paper.

Figures/Model.jpg

Figure 1. Conceptualisation of the SAC-SMA model

84

Among the data-driven models, ANN’s are widely used to model many complex85

problems and thus regarded as universal approximators. ANN’s work by imitating the86
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human brain and its neural structure. ANN’s receive the input data at nodes which pass87

on the information to the other nodes depending on layers and structure. The transfer88

of the information is dependent on the connection weights and some bias is also added89

to compensate for the uncertainty effects. The components of an artificial neuron are shown90

in Figure2. By applying a non-linear transformation at each node ANN’s are able to model91

varying engineering problems which is the reason for the widespread adoption (on Ap-92

plication of Artificial Neural Networks in Hydrology, 2000b; Tayfur, 2014). The ability

Figures/ANN.png

Figure 2. Components of an artificial neuron. I1, I2, I3 are the inputs to the neuron with

W1, W2, W3 being the connection weights. B1 is the bias term. The net information is trans-

formed by the activation function and carried forward in proportion to the connection weights.

93

of ANN’s to learn from the input data and adjust the weights and biases make them at-94

tractive for hydrological modelling. Without giving importance to the underlying phys-95

ical considerations, ANN’s can capture the non-linearity inherent in the rainfall-runoff96

process (Singh & Woolhiser, 2002). The usage of ANN’s in hydrologic applications started97

in 1990’s with Daniell (1991) reporting some of the first applications. Halff et al. (1993)98

constructed the earliest rainfall runoff model using ANN’s with the rainfall as inputs and99

streamflow as outputs at Bellvue, Washington. Similar modelling approaches were con-100

sidered for other basins and also by including more inputs such as temperature, snow-101

melt etc. Various researchers reported improved performance with the use of ANN over102

standalone conceptual models. Daliakopoulos and Tsanis (2016) compiled results from103

twenty-two studies comparing performances of conceptual models with ANN for rainfall-104

runoff applications. It is significant to mention that a whopping twenty-one studies re-105

ported per-formance of ANN’s superior or equivalent to conceptual models. Only one106

study by Gaume and Gosset (2003) found the conceptual model GR4J outper-forming107
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the ANN’s and the authors were in favour of a limited complexity conceptual model than108

ANN’s. They also compared SAC-SMA and ANN’s on a standalone basis. SAC-SMA109

was calibrated using Genetic Algorithm optimisation scheme while as for ANN’s, trial110

and error approach was adopted to determine the hidden layer neurons for im-proved111

performance. Although both models performed well, overall, ANN’s results were about112

10 per cent better than SAC-SMA, and it outmatched SAC-SMA’s performance in high113

flows as well. However, SAC-SMA performed better to simulate low flows than ANN’s.114

Use of ANN’s in the hydrologic application is further detailed in the second part of the115

ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. As116

the applications of ANN’s grew it was realised their usage is not without drawbacks such117

as the complete disregard for the physical processes happening in the catchment. Also,118

the results from the ANN are heavily dependent on the quality and length of input train-119

ing data. Thus extrapolation of results can become a issue if the problem domain is out-120

side the scope of the training data. Selection of optimal training data range is mostly121

based on trial and error rather than having a sound scientific basis (on Application of122

Artificial Neural Networks in Hydrology, 2000a).123

With each modeller promoting his own approach and a plethora of hydrological mod-124

els available, there arises a need to reconcile the various lines of thinking. In this regard,125

Koren et al. (2014) integrated a physically-based model (NOAH-LSM) with a concep-126

tual model (SAC-SMA) to include the effect of freeze and thaw on runoff generation. The127

soil moisture changes in the SAC-SMA storages due to rainfall were transferred to a heat128

transfer model which divided the total water content into liquid and frozen water por-129

tions based on the simulated soil temperature profile. The updated soil moisture states130

are computed back into the tension and free water storages. The modified version of SAC-131

SMA is referred to as SAC-HT (SAC Heat transfer) and does not need calibration for132

frozen ground parameters. Julien and Halgren (2014) explored a hybrid approach to hy-133

drologic modelling by combining the SAC-SMA model with the TREX distributed sur-134

face hydrology model. The hybrid model was composed of an additional TREX surface135

layer in addition to SAC-SMA soil zones. The models are linked by infiltration from TREX136

as input to the upper zone of SAC-SMA and sub-surface flow as a point source to TREX137

surface flow. The hybrid model was tested on the California Gultch watershed near Leadville,138

Colorado. The simulations were once obtained with only TREX model and other time139

with the hybrid model. The results show that by introducing the soil moisture compo-140

nent alongside the TREX model, the hydrograph peaks are reduced in overestimation.141

At stations with low infiltration rates of soil, the hybrid model does not improve the per-142

formance due to reduced importance of soil moisture. Chen and Adams (2006) integrated143

three conceptual models (the Xinanjiang model, the Soil Moisture Accounting and Rout-144

ing (SMAR) model, and the Tank model) with ANN’s based on the premise that ANN145

will take care of non-linear transformation of rainfall to runoff. The results from the hy-146

brid models were compared to a lumped, semi-distributed and semi-distributed with lin-147

ear regression configuration. It was consistently observed that the hybrid model outper-148

formed the above-mentioned configurations since the ANN’s were able to map the non-149

linear relationship effectively. Corzo et al. (2009) expanded onto this work by formulat-150

ing two schemes in relation to integrating conceptual models with data-driven models.151

The semi-distributed HBV model over the Meuse river basin was used with a linear re-152

gression model, artificial neural networks and M5 model trees. In the first scheme, out153

of 15 sub-basins in the Meuse river basin on which the semi-distributed HBV model was154

run, some sub-basins were replaced by these data-driven models. The replacement was155

done based on error contribution, runoff response and basin area with the effects were156

seen in per cent of area replaced, average discharge contribution, RMSE reduction. Re-157

placement with an ANN model worked best and was proceeded further. The addition158

of ANN helped improve the simulation performance with low flows simulated better. In159

the second scheme rather than traditional routing techniques, ANN’s were used for rout-160

ing. Any error in the model simulation due to traditional routing techniques was cor-161

rected by ANN’s to some extent resulting in hybrid model outperforming the HBV model.162
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In this study we attempted to integrate a conceptual (SAC-SMA) with a data-driven163

model (ANN) leading to the hybrid model setup shown in Figure 3. As the name sug-164

gests, hybrid models employ two or more modelling approaches, thus combining the strengths165

and masking the limitations of each approach. Considering that the hydrological cycle166

is very complex and may never be fully understood, conceptual models like SAC-SMA167

can be integrated with data-driven models which can take care of poorly described and168

understood aspects of hydrological modelling. This is so since data driven models don’t169

require information of the physical domain.

Figures/Hybridmodel.png

Figure 3. Hybrid model conceptualisation

170

The paper is organised as follows: Firstly we introduce the various modelling ap-171

proaches in first section while building towards the development and the need for a hy-172

brid modelling approach; the second section details the methodology adopted with a fo-173

cus on comparisons between lumped SAC-SMA and hybrid model ; the third section lays174

out the results and its analysis with the fourth section summarising the important ob-175

servations from the study.176
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2 Materials and Methods177

2.1 Overview178

A hybrid modelling approach was developed to estimate streamflows for the Go-179

davari River Basin. As part of this approach, a conceptual model SAC-SMA was inte-180

grated with ANN’s for Cases 2 through 5. The addition of ANN can be seen as a post-181

processing technique similar to bias correction techniques. Thus the hybrid model, in-182

stead of using the principle of superposition for the routed runoff from all the 49 sub-183

catchments in the formation of the total runoff output at the outlet of the entire catch-184

ment uses ANN for non-linear mapping.The overall methodology adopted is enumerated185

below and show in Figure 4:186

1. SAC-SMA was run in lumped mode and streamflows are estimated at the basin187

outlet, Pollavaram, which are then compared with observed streamflows. This is188

considered as Case 1 scenario.189

2. SAC-SMA was run in the semi-distributed mode with model Inputs (Precipita-190

tion and , Potential Evapotranspiration) at sub-basin level and parameters esti-191

mated from lumped mode. The Godavari basin was delineated into 49 sub-basins.192

This is considered as Case 2 scenario193

3. In the third case we again ran SAC-SMA in the semi-distributed mode but with194

mixed parameters. Thus for sub-basins above Godavari Arch bridge (GR bridge)195

station, parameters obtained by calibration at GR bridge were used while as for196

remaining downstream stations lumped parameters were used.197

4. SAC-SMA was run in the semi-distributed mode with model inputs (Precipita-198

tion and , Potential Evapotranspiration) at sub-basin level and distributed param-199

eters that were obtained by parameter transfer techniques. This is considered as200

Case 4 scenario.201

5. SAC-SMA was run in the semi-distributed mode with model inputs (Precipita-202

tion and , Potential Evapotranspiration) at the basin level and distributed param-203

eters that were obtained from Case 4. This is Case 5 scenario.204

2.2 Study Area205

The Godavari river is the third largest river in India and is of immense significance206

in peninsular India. The Godavari river originates in the Western Ghats at an elevation207

of 1067 m and traverses a distance of about 1,465 Km till it drains into the Bay of Ben-208

gal. The basin is situated between latitude 160 16′ North and 220 36′ North and longi-209

tude 730 26′ East and 830 07′ East covering states of Maharashtra, Telangana, Andhra210

Pradesh,Madhya Pradesh, Chhattisgarh, Orissa, Karnataka and the Union Territory of211

Puducherry. The river is joined by various tributaries namely Pravara, Manjira and Maner212

along the right bank, and Purna, Pranhita, Indravathi and Sabari along the left bank.213

Pranhita and Indravathi contribute the most in terms of discharge volume into the Go-214

davari river (Commission et al., 2006; Bhawan & Puram, 2014).215

Based on the availability and quality of observed streamflow data, Pollavaram was216

chosen as the outlet of the basin despite the existence of streamflow measurements at217

Sir Arthur Cotton Barrage (Godavari barrage) 42 Km downstream. Pollavaram dam project218

has immense significance in terms of irrigation potential and tackling drought problems219

in Telangana and Andhra Pradesh. The project has been embroiled in controversies due220

to objections by other states regarding water utilisation and environmental groups (Gujja221

et al., 2006). The drainage area of the Godavari basin up to Pollavarm is 310375.3 Km2.222

Figure 5 shows the Godavari river denoted by red colour and the elevation profile of the223

basin.224
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Figures/Method.png

Figure 4. Overview of the methodology adopted

2.3 SAC-SMA model inputs225

SAC-SMA requires a time-series of precipitation, potential evapotranspiration and226

observed streamflow as input. The modelling time steps depend on the temporal reso-227

lution of the input data and the nature of the problem. Significant number of studies228

of SAC-SMA is are on a hourly, six-hour and daily time-scale (Peck, 1976). The mean229

areal precipitation time-series can be prepared by station weighting schemes such as Thiessen230

polygons or inverse squared distance weighting methods (Anderson, 2002; Zhang, 2003).231

Daily Potential Evapotranspiration(PET) can be estimated from semi-emprical equa-232

tions such as Penman requiring extensive meteorological data (air temperature, solar ra-233

diation, relative humidity and wind speed) (Penman, 1948). In countries such as India234

due to paucity of data simpler temperature based methods can be adopted such as Ha-235

mon’s method for PET estimation (Hamon, 1960). Observed streamflow data is used to236

calibrate the model as it is the response of the basin and contains the combined effects237

of all the processes occurring in the basin.238

Table 1 details about the inputs that are used in the SAC-SMA model while as Ta-239

ble 2 provides the input statistics. Figure 6 presents the time-series plots of the inputs.240
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Figures/Godavaribasin.png

Figure 5. Godavari river basin.Various discharge stations are also shown in the figure.

Precipitation shows the most variability amongst all the inputs, whereas PET which241

was derived based on mean temperature shows the least variability. Around 85 per cent242

of rainfall in Godavari basin happens during the southwest monsoon season of June to243

September. The annual rainfall amount varies from 600 to 3000 mm. Cyclonic depres-244

sions originating in the Bay of Bengal result in extreme rainfall in the basin. The moun-245

tainous region of Western Ghats intercepts the southwestern monsoon winds producing246

heavy rainfall over the thin mountainous belt. This results in arid conditions in the area247

on the leeward side of the Western Ghats. The mean annual surface temperature in the248

Godavari basin is around 260C. The western arid regions of the Godavari River Basin249

barring the Western Ghats are comparatively hotter as compared to the eastern areas250

of Godavari. In the western parts of the Godavari region, the mean daily maximum tem-251

perature generally exceeds 300C while as its slightly less than 300C over the eastern ar-252

eas. The east part of the Godavari being closer to sea shows a comparatively low annual253

range of temperature (Commission et al., 2006).254
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Table 1. Model Inputs (Godavari Basin)

Inputs Scale Source Span

Precipitation Daily IMD Gridded (0.250∗0.250) 1st Jan 1966 to 31st Dec 2014
Temperature (PET) Daily IMD Gridded (10∗10) 1st Jan 1966 to 31st Dec 2014

Observed streamflow at Pollavaram Daily Central Water Commision 1st Jan 1966 to 31st Dec 2014

IMD- Indian Meteorological Department

Table 2. Input statistics

Input(mm/day) Mean Median Standard Deviation Maximum

Precipitation 3 0.35 5.83 69.25
PET 3.83 3.7 1.38 8

Observed streamflow at Pollavaram 0.77 0.13 1.58 17.16

2.4 SAC-SMA in lumped configuration (Case 1)255

SAC-SMA is a lumped conceptual model. Both, precipitation and temperature were256

spatially averaged over the Godavari River Basin from the gridded precipitation and tem-257

perature data obtained from the Indian Metrological Department (IMD). Potential Evap-258

otranspiration was estimated from the mean temperature by Hamon’s method (Hamon,259

1960). Hamon’s formula is given as260

PET = 13.97 ∗Daylightfraction ∗ Saturatedvapourpressure (1)261

Saturated vapour pressure is determined with the help of following relation:262

Saturatedvapourpressure = 4.95 ∗ e(0.062∗Meantemperature)/100 (2)263

The daylight fraction is the total sunshine hours (calculated in the units of 12 h) for a264

particular day. The daylight hours at the centroid (790 00’ E, 190 30’ N) of the Godavari265

basin for the year 2012 were obtained from Astronomical Applications Department of266

U.S. Naval Observatory. Although the daylight hours may vary across the years and the267

basin itself, the difference was observed to be small and hence ignored. Similar perfor-268

mance has been observed among both less data intensive simpler methods and data in-269

tensive Penman equations, therefore,simpler PET estimation methods such as Hamon’s270

method are used in this study (Oudin et al., 2005).271

The SAC-SMA model ran in the lumped configuration supplying the input for the272

entire Godavari basin considering it as a single entity, as shown in Figure 5.The model273

was implemented in the R programming environment using the package ”Hydromad”274

(Andrews & Guillaume, 2018). The version used for this study is 0.9-22. The modelling275

framework consists of the SAC-SMA model and a routing module which transforms the276

effective rainfall into runoff as shown in Figure 7. The routing module includes a unit277

hydrograph transfer function, defined by Autoregressive Moving Average Models with278

exogenous variables (ARMAX) (Jakeman et al., 1990). A warmup period of one year was279

chosen for stable parameter estimates. The model was calibrated automatically using280

the ”Dynamically dimensioned search” (DDS) algorithm. DDS algorithm was introduced281

for automatic calibration of watershed simulation models. It scales the search to find re-282

liable and accurate solutions within the maximum number of user-specified function. The283

adjustment from global to local search is achieved by dynamically and probabilistically284

modifying the set of decision variables or parameters from their best value known as re-285

ducing the dimensions (Tolson & Shoemaker, 2007). The daily streamflow data from 01-286

–10–
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Figures/Inputs.png

Figure 6. Model Inputs (Godavari Basin)

01-1966 to 31-12-1994 and 01-01-1995 to 31-12-2014 was used as calibration and valida-287

tion periods, respectively. The calibration period consists of at least eight years of ex-288

tremes of dryness and wetness, which is considered essential for the good calibration of289

the SAC-SMA model (Anderson, 2002).290

2.5 SAC-SMA in semi-distributed configuration291

The need for a semi-distributed approach comes from the fact that both the pre-292

cipitation and PET are spatially varying across the Godavari basin, and we need to ac-293

count for it for an improved understanding of the watershed behaviour. The high-resolution294

data available from satellites and radars can thus be incorporated in the SAC-SMA model295

leading to improved simulations. In the interior locations of the basin, streamflow es-296

timates can be made which can be mainly used in the construction of hydraulic struc-297

tures and water resources management.298

Automatic delineation of the Godavari basin using the ARC-SWAT plugin in ARC-299

GIS was performed to divide it into 49 sub-basins. Three tiles of the 30 m SRTM DEM300
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Figures/Modellingframework.png

Figure 7. Modelling framework

were mosaicked and then clipped to the shapefile of the Godavari basin and input as the301

source DEM in ARC-SWAT. The stream network was defined based on the DEM, al-302

lowing the software to determine the flow direction based on the eight-direction (D8) flow303

model. The D8 flow model calculates flow direction based on the direction of steepest304

descent with flow travelling into the eight adjacent cells (Jenson & Domingue, 1988). The305

critical stream area threshold to create stream network was set as 5000 Ha (50 Km2).306

It was necessary to incorporate information on the discharge stations into the delineation307

process so as to calibrate the model effectively . From the ”Integrated hydrological data308

book for non-classified river basins”, Table 4 gives the details of the historical observa-309

tion sites located in the Godavari basin (Commission et al., 2006). The coordinates of310

these 48 stations were input to the ARC-SWAT software as outlets for the sub-basins311

thus effectively forcing it to create the sub-basins around these stations. However, only312

44 sub-basins had the sub-basin outlet matching with the on-ground stations since it was313

not possible to create all the sub-basins based on the input stations coordinates. Pollavaram314

outlet was selected as the drainage point for the whole basin, and the basin was delin-315

eated into 49 sub-basins as shown in Figure 8. The station names are also mentioned for316

the input stations.317
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Figures/49subbasins.png

Figure 8. Delineation into 49 Sub-basins

Table 3. Details of the ANN setup

Optimum Number of Hidden Layers 2
Hidden Nodes in First Layer 2
Hidden Nodes in Second Layer 4

Transfer Function Sigmoid

2.5.1 Spatially distributed inputs and lumped parameters (Case 2)318

This case pertains to spatially varying inputs, i.e. Precipitation and PET. Spatially319

averaged precipitation and PET were obtained for all the 49 sub-basins for the period320

spanning 01-01-1966 to 31-12-2014. Using the parameters from the lumped configura-321

tion, the model was run in the lumped mode for each of the 49 sub-basins. However, over-322

all, the model was semi-distributed, and we were taking the spatial variations into ac-323

count. The streamflow outputs from each of the 49 sub-basins were thus obtained and324

passed as inputs to the ANN as shown in Figure 9. The details of the ANN setup are325

mentioned in Table 3.326
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Figures/ANN49.png

Figure 9. ANN setup in the hybrid model

2.5.2 Spatially distributed inputs and mixed parameters (Case 3)327

In this case, five sub-basins upstream of Godavari Arch (GR) bridge station on the328

Godavari river were merged and will be referred to as G.R. Bridge from here on as shown329

in Figure 10. The streamflow data at the G.R. bridge was available from 01-07-1976 to330

31-12-2014. At the same time, the extracted IMD spatially averaged precipitation and331

PET for G.R. bridge was available from 01-01-1966 to 31-12-2014. For calibrating the332

lumped SAC-SMA model over the G.R. bridge sub-basin, observed streamflow correspond-333

ing to 01-01-1977 to 31-12-1995 was selected since the period comprises a sufficient num-334

ber of high and low flow events for meaningful calibration of the model. This case dif-335

fers from the previous case in the aspect that a mix of parameters has been used here.336

Parameters obtained by calibration at G.R. bridge were used along with lumped param-337

eters over the rest of the 43 sub-basins. Hence spatial variability of the parameters has338

been accounted for partially. Again the streamflow outputs from the G.R. bridge and339

rest of sub-basins served as input to the ANN.340

2.5.3 Fully semi-distributed modelling with spatially varying parame-341

ters (Case 4)342

Before proceeding with the fully semi-distributed configuration, we needed to de-343

termine the parameters for all 49 sub-basins. The parameter transfer was done in such344

a way for Godavari, Yelli and Konta basins so as to absorb as much information in the345

calibrated parameters so that the parameter transfer would be meaningful and effective.346

One of the most reliable signs suggesting that the transferred parameters represent the347

spatial and temporal variability in the Godavari basin would be the difference in param-348

eter values among the eastern and western regions of Godavari basins as will be discussed349

in results section.350

2.5.3.1 Parameter transfer - As seen in Figure 8, only basins with with no in-351

lets and only one outlet could be calibrated. However, the streamflow data for many of352

these basin outlets was unavailable or not of sufficient length for effective calibration. Also,353

the basins which had stream order greater than one were effectively ruled out in terms354

of calibration since the contribution to the streamflow at the basin outlet was coming355

from upstream basins in addition to the basin under consideration. Thus we had to re-356

sort to parameter transfer techniques based on various factors which are listed below:357

1. Climatic index, i.e., factors, e.g. ratio of Annual Precipitation to PET358
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Figures/GRbridge.png

Figure 10. Merging of sub-basins leading to creation of G.R Bridge basin. Streamflow at

G.R. Bridge outlet was used for model calibration.

2. Topographic factors e.g. elevation, terrain359

3. Basin characteristics, e.g. stream density, area, land use360

It is a reasonable assumption that the calibrated parameters reflect combined effects of361

all or a few of the factors that are mentioned above.362

The climate index signifies the ”wetness” of the basin (Koren et al., 2006). Figure363

11 shows the spatial distribution of climate index over the 49 sub-basins. Since the pre-364

cipitation and PET were readily available and of very high resolution , it was decided365

to use climate index solely for parameter transfer. This was because the climate index366

also influences the land use as will be seen later. As was already mentioned, most of the367

western Godavari basin lies on the leeward side of the Western Ghats and receives scanty368

rainfall as seen by a lower value of P/PE. Also, comparatively its hotter compared to369

the eastern parts of the basin. The eastern parts are frequented by cyclonic depressions370

originating in the Bay of Bengal result in extreme rainfall (PMP Atlas for Godavari River371

Basin, 2014). In Figure 11 a clear divide can be seen in terms of the climate index be-372
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Figures/pvsPE.png

Figure 11. Spatial distribution of climate index (P/PE)

tween western and eastern parts of Godavari basin. It is assumed that this clear pattern373

must be may most likely reflected in the parameters corresponding to these regions. In374

this context, all the upstream sub-basins in the western part of the basin up to Yelli out-375

let were combined and treated as one single hydrologic unit, referred as Yelli sub-basin.376

Similarly upstream sub-basins in the eastern part of the basin up to Konta outlet were377

merged treating the entire region as one unit and referred as Konta region (or basin).378

The new sub-basins are shown in Figure 12. Differences in parameters emerging from379

these two basins assist in understanding the watershed behaviour under different hydro-380

climatic conditions and consequently in parameter transfer. Both Yelli and Konta out-381

let stations had daily streamflow records available for sufficient years for calibration. Yelli382

has a period of record from 01-06-1978 to 31-12-2011, i.e., approximately 33 years, while383

as Konta streamflow record spans from 01-01-1966 to 31-12-2014, i.e., approximately 48384

years.385

The decadal Land use land cover (LULC) maps for Godavari basin shown in Fig-386

ures 13 and 14 were created by clipping the Indian LULC maps with the Godavari shape-387

file in ARC-GIS. Here only the maps correponding to years 1970 and 2000 have been shown.388

The maps for India were created by Moulds et al. (2018) using the Historic Land Dy-389

namics Assessment (HILDA) land change model fed with district-level environmental and390

socio-economic data. The model allocates a particular pixel to a specific land use pat-391

tern by considering the environmental and socio-economic value of the land use under392

consideration. Table 4 gives the percentage of various land-use patterns from 1970 to 2000393

–16–



manuscript submitted to Water Resources Research

Figures/MergedSB.png

Figure 12. Yelli and Konta regions (shown in yellow)

for the Godavari basin and Yelli and Konta sub-basins. It can be noted that cropland394

and urban areas are increasing in the all three basins at the expense of forest area.The395

LULC pattern is somewhat similar to the climate index map with a stark contrast be-396

tween western (Yelli) and eastern (Konta) regions of Godavari basin. This sharp divide397

in climate index and LULC pattern gives further credence that the parameters obtained398

for these two basins will be quite different from each other in magnitudes. The Yelli basin399

is dominated by agricultural activities where as Konta basin is less influenced by human400

activities. In the Yelli basin obstructions to natural flows has been created to facilitate401

agricultural activities and is one of the reasons for low flows in Godavari river in this basin.402

The elevation and basin slope determine the amount of precipitation which gets403

converted into streamflow at the basin outlet. Table 5 gives the mean elevation, basin404

slope and Q/P ratio for Godavari, Yelli and Konta basins. Again it can be seen that the405

Q/P ratio for Yelli is far lower than Konta, where almost 50 per cent of rainfall gets con-406

verted into streamflow due to a steeper slope in comparison to Yelli. The Godavari basin407

lies in the middle since in a way it averages out both the basins.408
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Figures/LULCMap1970.png

Figure 13. LULC Map for year 1970

Figures/LULCMap2000.png

Figure 14. LULC Map for year 2000

Table 4. Percentage of various LULC classes

Year Cropland Forest Urban Water bodies

Year G Y K G Y K G Y K G Y K
1970 57.66 87.63 29 29.34 3.74 50 0.51 0.46 0.2 3.6 0.62 3.34
1980 57.86 87.58 32.7 29.52 3.71 48.26 0.72 0.64 0.24 3.6 0.62 3.34
1990 58.05 87.625 36.73 29.37 3.62 44.79 0.76 0.79 0.48 3.6 0.62 3.34
2000 58.33 87.61 39.62 29.33 3.68 42.71 1.15 0.84 0.61 3.6 0.62 3.34

G- Godavari basin, Y- Yelli sub-basin, K- Konta sub-basin

Table 5. Mean Elevation, Basin slope and its effect on Q/P ratio

Mean Elevation (m) Basin slope Q/P

G Y K G Y K G Y K
838.5 624.7 648.76 7.65 5.98 12.86 0.25 0.1 0.49

G- Godavari basin, Y- Yelli sub-basin, K- Konta sub-basin

Knowing the factors influencing the SAC-SMA parameters, the next step was to409

create a sort of ”parameter bank ” which would be used for parameter transfer. Account-410

ing for spatial and temporal variability of the parameters is important since that would411

influence the parameter transfer. This was achieved in the following ways:412

1. Calibrating the SAC-SMA model on a three year moving window (blocks of 3-years413

and each block will have a overlap to 2-years with the previous block) for Godavari,414

Yelli and Konta basins for their respective period of record. Three model runs were415

performed for each basin, and 46 sets of calibrated parameters were obtained per416

run for Godavari and Konta while as 30 sets were obtained for Yelli. The calibrated417

parameters were related to the P/PE ratio for the corresponding three years mov-418

ing average window for all three basins.419

2. By including the effects of calibration period since the period of record of observed420

streamflow differs across basin outlets and influences calibration. Thus for the Go-421

davari, Konta and Yelli, the data set that is available for calibration will increase422

every year, therefore, can be treated as updation of parameters every year.423
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2.5.3.2 Methods of parameter transfer- The parameter transfer was accomplished424

using the methods described below:425

1. Linear Regression (L.R.) - It was considered as a baseline method and was ex-426

pected to perform the worst since a linear relationship was assumed between the427

parameters and the climate index (P/PE) when it is not the case as shown in Fig-428

ures 15 and 16.429

2. ANN’s- Knowing that ANN’s can capture the non-linear relationships between430

the parameters and climate index, it made them ideal for this case. The ANN net-431

work was trained on the ”parameter bank” and parameters were estimated for the432

49 sub-basins. The ANN model setup showing the estimated parameters as out-433

put nodes and climate index as input node is depicted in Figure 17.434

3. K-Means algorithm- The K Means algorithm is also suited for parameter trans-435

fer problems. The known parameters were grouped into 49 clusters based on cli-436

mate index values. The algorithm allotted the parameters based on these clusters437

to the 49 sub-basins. This method captured most variability among the param-438

eters.439

Figures/LRUztwm.jpg

Figure 15. Linear regression method for

parameter (Uztwm) estimation

Figures/LRUzfwm.jpg

Figure 16. Linear regression method for

parameter (Uzfwm) estimation

2.6 Semi-distributed with lumped inputs with spatially varying param-440

eters (Case 5)441

This configuration can be seen as the opposite of the second case where the inputs442

were spatially distributed. In this framework, lumped inputs as used in original SAC-443

SMA configuration were combined with the ’best’ performing distributed parameters from444

Case 4.445

3 Results and Discussion446

3.1 SAC-SMA in lumped configuration (Case 1)447

SAC-SMA has 16 parameters out of which only 13 parameters were optimised us-448

ing automatic calibration as given in Table 6. The remaining three parameters were left449

at their defaults as per recommendations of Peck (1976). The visual comparison of per-450

formance for the calibration and validation periods is shown in Figure 18 with the over-451
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Figures/ANNpar.png

Figure 17. ANN model setup for parameter estimation

all verification metrics given in Table 7 . Both, visual verification of hydrographs and452

numerical verification metrics indicate good agreement between the simulated and ob-453

served streamflows and emphasize the simpler lumped modeling. In lumped mode, as454

the values are averaged over the larger area spatial variations in model inputs consequently455

in model output decreased, therefore importance of these variations as-well. Neverthe-456

less, improvements in simulations can be pursued by the hybrid model.

Table 6. Optimised SAC-SMA parameters

Optimised Not optimised

Uztwm Uzfwm Uzk Pctim Adimp Zperc Rexp Lztwm Lzfsm Lzfpm Lzsk Lzpk Pfree Riva Side Rserv
122.06 149.68 0.49 0.07 0.39 7.97 4.96 312.5 543.43 678.88 0.01 0.08 0.04 0 0 0.3

457

Like many other hydrological models, SAC-SMA has its own limitation in the es-458

timation of high and low flows. Probability plot, i.e., quantiles of streamflow data plot-459

ted against quantiles of the standardized normal distribution, is developed separately460

for observed and simulated streamflows in Figure 19. Deviation from the straight line461

suggests that streamflows do not follow Gaussian distribution and both observed and sim-462

ulated streamflows differ in their distribution at high- and low- flows, of which differences463

in distribution of low flows are relatively high. This is so since the model is structurally464

tuned to capture high flows (Onyutha, 2019). The objective function used here ”R Squared465

” also gives more weightage to high flows than low flows. This emphasizes the need to466
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Figures/Case1.png

Figure 18. Visual comparison of model performance for calibartion and validation periods

analyze and assess the high and low flows separately as shown in Figure 20 . There is467

no rationale in selecting 4 and 1/4 times mean criteria and is entirely arbitrary. The daily468

flows which were common between observed and simulated flows were selected since com-469

parison could be made of equal length data. Lower flows dominate in the Godavari basin470

except in monsoon months leading to relatively larger sample size for the low flows. The471

verification metrics for high and low flows are tabulated in Table 8. The better simu-472

lation of the high flows is one of the reasons for the use of SAC-SMA as a flood forecast-473

ing model. However, in Indian conditions, many of the rivers carry low flows , and the474

model performance needs to improve in this aspect. Thus the need for a hybrid model.475

Overall the SAC-SMA model by itself has simulated the flows well and any improvements476

in model performance will come from improving the simulation of high and low flows.477

Beyond some point, it will not be worth the time and effort to improve the model per-478

formance further due to imperfections in model structures, irregularities in inputs and479

uncertainties in parameters.480

3.2 Spatially distributed inputs and lumped parameters (Case 2)481

Based on the verification metrics as given in Table 7, including the spatially dis-482

tributed input information leads to better simulations.The visual comparisons of observed483

and simulated hydrographs are in Figure 21. Although the improvements may appear484

marginal, they are significant when we look at high and low flows (Table 8). We can see485

that the improvement in model performance is mainly result better simulation of high486

flows. In both Cases 1 and 2, the model overestimates the high flows albeit more in Case487

2. However, the lumped SAC-SMA model (Case 1) underestimates the low flows in com-488

parison to the Case 2 configuration of hybrid model as depicted in Figure 22. The neg-489

ative values for the NSE indicate, at least for low flows, the predictive power of Case 2490

configuration of hybrid model decreases with respective to the lumped SAC-SMA model491

(Case 1). A constant value such as mean of daily low flows can be more in agreement492

and better than the models used.493
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Figures/Normalvariate.png

Figure 19. Streamflow plotted against standard normal variate

Figures/Flowcriteria.png

Figure 20. Criteria for high and low flows

3.3 Spatially distributed inputs and mixed parameters (Case 3)494

With the parameters also spatially varying, the overall results are not significantly495

different from Case 2 as given in Table 7. However, the model performance is slighly dif-496

ferent when low- and high- flows are looked at separately (Table 8). Incorporating spa-497

tial variability in hydrologic information mainly led to improved simulations of high flows498

with degradation in the performance of low flows in line with the results of Boyle et al.499

(2001).500

3.4 Fully semi-distributed modelling with spatially varying parameters501

(Case 4)502

3.4.1 Evolved parameters503

One of the constituents of the ”parameter bank” created were the evolved param-504

eters. The mean of 125 parameter sets (47 for the Godavari, Konta and 31 for Yelli) is505
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Figures/VC.png

Figure 21. Visual comparison of observed and simulated hydrographs for various scenarios

Table 7. Verfication metrics (Daily scale) for all scenarios

Case MAE RMSE PBIAS NSE

1 0.24 0.55 8 0.88
2 0.21 0.49 6.6 0.90
3 0.21 0.49 6.6 0.90
4 0.25 0.61 5 0.85
5 0.24 0.56 7.4 0.87

depicted in the bar plot in Figure 23 . It can be observed that Uztwm and Lztwm are506

highest for Yelli in comparison to the Konta basin. This is due to presence of significant507

irrigation and storage structures present in the Yelli sub-basin which influences the ini-508

tial loss and detention storage and subsequently the Uztwm parameter. Due to mean509

annual temperature in Yelli being 4-5 degrees higher than Konta basin, the evapotran-510

spiration losses as represented by the Lztwm parameter acquire a higher value. The high-511

est value of Lzfpm and Lzpk for Yelli indicates that most of the flow contribution is from512

base flow component, which is understood since the basin is primarily semi-arid. Uzfwm513

and Uzk parameters are highest for Konta signalling a significant contribution from sur-514

face runoff and that the streamflow may be particularly flashy due to steeper slope as515

was noted from Q/P ratio in Table 5. Similarly, Lzsk and Lzfsm are also highest for Konta516

indicating a quick release of baseflow and conversion of most of the rainfall to runoff at517

outlet amongst all the basins considered. This is facilitated by the maximum value of518

Zperc also for Konta, which increases the supply of water to the lower zone by perco-519

lation.520

So far, it has been seen that the SAC-SMA model struggles to simulate the extreme521

flows well. This was attributed to the parameters not being “activated” fully and also522

the choice of the objective function. The “activation” of the parameters can be explained523

with the help of the evolved parameters from the point of view of stability. Figure 24524

shows the stability of the evolved parameter (Uztwm) for the calibration period. Although525

results here have been shown for Uztwm, similar behaviour was observed for most of the526

parameters. The blue curves are the 95 % confidence bounds and the red line being the527
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Table 8. Verfication metrics (High and low flows) for all scenarios

Case (High Flows) MAE RMSE PBIAS NSE

1 1.26 1.68 0.3 0.56
2 1.13 1.52 1.5 0.65
3 1.09 1.49 0.8 0.66
4 1.43 2 -2.6 0.48
5 1.28 1.71 0.2 0.54

Case (Low Flows) MAE RMSE PBIAS NSE

1 0.03 0.04 -2.8 -0.02
2 0.04 0.05 39.9 -0.43
3 0.04 0.05 39.9 -0.44
4 0.04 0.05 27.5 -0.24
5 0.04 0.05 34 -0.62

Figures/Filtered Low flows - ANN.png

Figure 22. Scatter plot for comparison of low flows between cases 1 and 2

best fit line. It can be seen that the maximum number of points lie within the 95% con-528

fidence bounds for Konta and Godavari , and only a few points for the Yelli. This in-529

dicates that the parameters for Yelli are not well determined and may have higher un-530

certainty. It is known that the repeated cycles of extremes of dryness and wetness are531

required to determine the parameters with less uncertainty which may not be the case532

with Yelli parameters given that Yelli is a semi-arid basin. For example there will less533

events generating surface runoff in Yelli basin given the dominance of baseflow as was534

seen earlier. Thus the value of UZFWM will generally contain much uncertainty. The535

determination of parameters is well accomplished when there is sufficient runoff gener-536

ated. In very dry regions, there is not enough runoff to be confident in any of model pa-537

rameter values.538
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Figures/Evolvedpar.png

Figure 23. Mean of Evolved parameters for Godavari, Yelli and Konta

Figures/Stabilty.jpg

Figure 24. Stability of Evolved parameter (Uztwm) for (a) Godavari (b) Konta (c) Yelli

Figure 25 shows the bar plot of the standard deviation of the evolved parameters.539

Relatively high variance in capacity (Uzfwm, Uztwm) and withdrawal parameters (Lzpk,540

Uzk, Lzsk) for Yelli basin does reinforce the arguments made above. It is the reason for541

poor model performance in the Yelli basin. On the other hand, the Konta basin, which542

has the highest Q/P ratio also shows the relatively high variance in capacity parame-543

ters (Lzfpm, Lzfsm) leading to the high flows being over or under-estimated . The Go-544

davari basin, which falls in the middle in terms of Q/P ratio and encompasses both the545

Yelli and Konta basins has the least variance in most of the parameters.546
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Figures/SD.png

Figure 25. SD of evolved parameters. It can be seen that both Konta and Yelli which repre-

sent extreme cases in terms of Q/P ratio have higher variance than Godavari basin

3.4.2 Parameter Transfer547

Now knowing the reasons for the decreased model performance in some basins, we548

now focus on the results of parameter transfer.549

1. Linear Regression derived parameters- The baseline linear regression method550

captured a small range of parameter variations as seen in Figure 26. Also, the higher551

values of Uztwm and Lztwm for Western regions of Godavari are due to a higher552

temperature, intensive agricultural activities . A relatively higher value of Uzfwm553

and Uzk over the eastern portions of Godavari indicates a significant contribution554

from surface runoff to total runoff. The base flow dominates the streamflow con-555

tribution in the western Godavari as implied by the higher value of the product556

of Lzpk and Lzfpm. The percolation parameter Zperc is showing its maximum val-557

ues towards the eastern parts of Godavari to dissipate the water from upper to558

lower zones quickly. Thus we see the method is able to replicate some of the pa-559

rameter trends seen for the evolved parameters which are one of the components560

of the ”parameter bank”.561

2. ANN derived parameters- ANN improves upon the range captured by the lin-562

ear regression method, as shown in Figure 26. For the Uztwm parameter derived563

by ANN, the spatial distribution represented a range from 32-112 mm, which is564

a significant improvement over the baseline linear regression method. Thus the565

ANN was able to capture the extreme values of the parameters over the basins.566

Although the overall results are similar to those obtained by linear regression, more567

spatial variation of the parameters was captured.568

3. K Means derived parameters- The parameters applied from this method were569

directly sourced from the “parameter bank” and hence reflected the maximum vari-570

ations in the values as was the case for the “parameter bank”. As illustrated in571

Figure 26, the range of values captured by this method for Uztwm is 12-144 mm.572

Thus with this method, the spatial distribution of the parameters improves fur-573

ther.574
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Figures/Partrans.jpg

Figure 26. Spatial distribution of (a) Linear regression (b) ANN (c) K-Means derived param-

eters. Only Uztwm, Uzfwm, Lzfpm, Lzfsm and Zperc parameters have been shown

3.4.3 Hybrid model with derived parameters575

We can postulate that the methods which capture most of the parameter values576

and the underlying spatial distribution will outperform other methods. This can be ver-577

ified in terms of how well the hybrid model reproduces overall streamflow at Pollavaram.578

1. Hybrid model with LR parameters- A significant drop in model performance579

is seen in comparison to all the methods discussed so far (Table 9). This is expected580

since the parameters have been derived in the absence of any streamflow data for581

many of the sub-basins and an assumption of linearity between parameters and582

climate index.583

2. Hybrid model with ANN parameters- The use of ANN derived parameters584

produced an improvement in model performance with the results comparable to585

the SAC-SMA lumped model as shown in Table 9. The ANN was able to capture586

the underlying non-linearity between parameters and climate index. The ANN de-587
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rived parameters yielded the best results and were selected for the next model con-588

figuration (Case 5) .589

3. Hybrid model with K-Means parameters- The hybrid model run with parameters590

derived by the K-Means method closely followed the hybrid model with ANN pa-591

rameters in terms of model performance (Table 9). As was our initial guess, the592

methods which captured the inherent spatial variations in the parameters did out-593

perform the baseline (L.R) simulated parameters.594

3.5 Semi-distributed with lumped inputs with spatially varying param-595

eters (Case 5)596

The distributed parameters derived from ANN’s in the previous configuration (Case597

4) were used along with lumped inputs. As seen from Figure 21 and Table 7, the model598

simulations did improve in comparison to the fully semi-distributed configuration . It599

seems the model performance is more sensitive to the spatial variation of inputs than600

the parameters. Based on this reasoning, we would have expected then that the fully semi-601

distributed configuration would outperform other hybrid model configurations. However,602

it is not the case since going fully semi-distributed also leads to an increase in complex-603

ity due to a multifold increase in parameters and underlying uncertainty in parameters.604

This may have been the reason for a deterioration in performance in case of fully semi-605

distributed configuration.606

3.6 Selection of the best model framework607

Of all the model configurations (Case 1 to 5), the configuration with spatially dis-608

tributed inputs and lumped parameters (Case 2) was the best performing edging out the609

model configuration (Case 3) based on improved simulations of low flows, utilisation of610

existing parameter sets obtained from lumped calibration, taking spatial variations of611

inputs into account and less intensive (Compuataionally and time required to setup).

Table 9. Verification metrics (Daily flows) for hybrid model with the use of derived parameters

Method MAE RMSE PBIAS NSE

Linear Regression 0.28 0.84 9 0.71
ANN 0.25 0.61 5 0.85

K-Means 0.24 0.64 8.9 0.83

612

4 Conclusions613

In this study, a hybrid model framework was developed for rainfall-runoff modelling614

for Godavari basin. The hybrid model consisted of the well-validated SAC-SMA model615

and ANN component. The ANN’s, with their structural flexibility, improved the runoff616

estimates from the lumped SAC-SMA model. It was seen that increasing the model com-617

plexity does not necessarily improve the accuracy of the simulations as fully semi-distributed618

hybrid model perform as well as the standalone SAC-SMA model . It was a result of the619

increase in the total number of parameters, the challenges in the calibration of the semi-620

distributed form of the SAC-SMA and uncertainty associated with parameters . The un-621

certainty was higher for calibrated parameters derived from basins with low flows as that622

they were poorly determined.623
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For the fully semi-distributed configuration, parameter transfer methods (ANN and624

K-Means) accounting for non-linearity, variations and based on similar hydro-climatic625

conditions performed the best. Overall the hybrid configuration with distributed inputs626

and lumped parameters (Case 2) was found the most suitable in terms of simulating the627

flows and the effort required.The improved results of the Case 2 configuration indicate628

that the model is more sensitive to the spatial variation of rainfall and PET than the629

parameters. This may be a basin specific conclusion since we could not test this on other630

basins.631
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