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ABSTRACT: Atmospheric reanalyses are widely used to estimate the past atmospheric near-

surface state over sea ice. They provide boundary conditions for sea ice and ocean numerical

simulations and relevant information for studying polar variability and anthropogenic climate

change. Previous research revealed the existence of large near-surface temperature biases (mostly

warm) over the Arctic sea ice in the current generation of atmospheric reanalyses, which is linked

to a poor representation of the snow over the sea ice and the stably stratified boundary layer in the

forecast models used to produce the reanalyses. These errors can compromise the employment of

reanalysis products in support of polar research. Here, we train a fully connected neural network

that learns from remote sensing infrared temperature observations to correct the existing generation

of uncoupled atmospheric reanalyses (ERA5, JRA-55) based on a set of sea ice and atmospheric

predictors, which are themselves reanalysis products. The advantages of the proposed correction

scheme over previous calibration attempts are the consideration of the synoptic weather and cloud

state, compatibility of the predictors with the mechanism responsible for the bias, and a self-

emerging seasonality and multi-decadal trend consistent with the declining sea ice state in the

Arctic. The correction leads on average to a 27% temperature bias reduction for ERA5 and 7% for

JRA-55 if compared to independent in-situ observations from the MOSAiC campaign (respectively

32% and 10% under clear-sky conditions). These improvements can be beneficial for forced sea

ice and ocean simulations, which rely on reanalyses surface fields as boundary conditions.
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SIGNIFICANCE STATEMENT: This study illustrates a novel method based on machine learning31

for reducing the systematic surface temperature errors that characterize multiple atmospheric32

reanalyses in sea-ice-covered regions of the Arctic under clear-sky conditions. The correction33

applied to the temperature field is consistent with the local weather and the sea ice and snow34

conditions, meaning that it responds to seasonal changes in sea ice cover as well as to its long-term35

decline due to global warming. The corrected reanalysis temperature can be employed to support36

polar research activities, and in particular to better simulate the evolution of the interacting sea ice37

and ocean system within numerical models.38

Copyright information39

This Work has been accepted to Monthly Weather Review. The American Meteorological Society40

(AMS) does not guarantee that the copy provided here is an accurate copy of the Version of Record41

(VoR).42

1. Introduction43

An atmospheric reanalysis is a realistic retrospective description of the atmospheric state obtained44

by constraining an atmospheric model simulation with observations through the application of data45

assimilation techniques. The resulting products are continuously available over a relatively long46

period (currently the last 40 to 70 years), retain consistency because they are realized with a47

single model and data assimilation version, and feature a uniform and continuous spatial coverage48

(Lindsay et al. 2014). This is a particularly desirable property in the polar regions, where only a few49

in-situ environmental observations are available (Jung et al. 2016). For these reasons, reanalyses50

are widely used as an estimate for the present and past atmospheric near-surface state over the51

Arctic sea ice, with one relevant application being to serve as boundary conditions for sea ice52

and ocean simulations (Large and Yeager 2008; Tsujino et al. 2018), fundamental tools to study53

the effects of climate change on the polar regions and to predict the sea-ice evolution at various54

timescales.55

Because of the lack of measurements assimilated over the polar regions by the reanalysis models,56

the near-surface Arctic atmospheric state is only weakly constrained by observations and strongly57

dependent on the formulation of the models, and this can lead to errors when this formulation is58
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not appropriate (Zampieri et al. 2018, 2019). Furthermore, when measurements are available, the59

presence of a shallow atmospheric boundary layer and temperature inversion—challenging features60

to simulate correctly even for state-of-the-art models—reduces the effectiveness of the assimilation61

procedure. In this respect, previous research revealed large surface temperature biases over the62

Arctic sea ice for most atmospheric reanalyses (Tjernström and Graversen 2009), a fact that has63

been later linked to a poor representation of the snow and sea-ice state in the numerical surface64

schemes of the reanalysis models (Batrak and Müller 2019). Most reanalysis models prescribe65

a constant sea ice thickness in time and space and do not account for the presence of a snow66

layer over the sea ice, erroneously quantifying the insulating effect of the sea ice system and thus67

the heat conduction through this medium. As a result, the reanalyses surface temperature tends68

to be too warm in regions where the real insulating effect of ice and snow would be larger than69

that prescribed in the models, and too cold in regions where the sea ice and snow are thin and70

consequently exhibit lower insulating properties (Fig. 3 of Batrak and Müller (2019)). Given the71

intra- and inter-annual spatiotemporal variability of the sea ice and snow thickness in the Arctic, the72

resulting model biases tend to be heterogeneous but particularly accentuated during winter Clear73

Sky Events (CSE), when the surface experiences strong radiative cooling (Serreze et al. 2007), a74

process hard to simulate correctly without modeling the insulating snow layer over the sea ice.75

Numerical Weather Prediction (NWP) centers will likely address this model deficiency in future76

reanalysis versions by employing fully coupled modelling systems (Keeley and Mogensen 2018;77

Arduini et al. 2022; Day et al. 2022) and assimilating new kinds of near-surface observations. A78

first step in this direction has been taken in the C3S Arctic Regional Reanalysis (Copernicus Climate79

Change Service 2021), where the snow over sea ice is modeled more accurately. Nevertheless, the80

reduction of the temperature bias in coupled systems is still subordinated to a correct simulation81

of the sea ice system, and in particular the snow and sea ice thickness. Meanwhile, this study82

explores the possibility of correcting offline the existing generation of uncoupled reanalyses by83

training a Machine Learning (ML) algorithm that links key atmospheric and sea ice variables84

to a realistic estimate of the surface temperature carefully derived from remote sensing surface85

observations that are currently not assimilated in the reanalyses models. The resulting correction86

is by design state-dependent and therefore consistent with the large-scale Arctic weather, as well87

as the declining trend of the sea ice thickness. Furthermore, it increases the heterogeneity and88
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realism of the reanalysis surface state in sea ice regions, and it can be derived seamlessly in time89

and space because it relies entirely on reanalysis-based predictors. Our correction model can be90

adapted to multiple reanalysis products but here we focus in particular on the European Centre for91

Medium-range Weather Forecasts (ECMWF) Reanalysis version 5 (Hersbach et al. 2020) (ERA5)92

and the Japanese Meteorological Agency second reanalysis project (Onogi et al. 2007; Kobayashi93

et al. 2015) (JRA-55), arguably among the most used reanalyses for sea ice and polar applications.94

The main objectives of this study are summarized in the following points:95

1. Presenting the methodology behind the ML bias correction strategy for the skin surface96

temperature over sea ice, including its practical implementation.97

2. Quantifying the bias reduction and describing the relation of the correction with the sea ice98

and atmospheric states.99

3. Analyzing the seasonality and interannual variability of the correction, including its impact100

on the historical warming trend observed in the Arctic during recent years.101

2. Methods102

This section provides details on the ML algorithm used to correct the atmospheric reanalysis,103

the datasets employed for its training and validation, and the criteria for its application. The104

reader should note that, in practice, two identical correction models are trained and employed in105

parallel for this study, one for each reanalysis product considered. Unless otherwise stated, these106

ML models share the same network structure (but different weights estimates) and therefore the107

description in the method section will be generalized to keep the exposition more compact and108

clear. Prior to presenting the correction strategy, we begin with a description of the observations109

that serve as an improved estimate of the surface temperature and have key implications for the110

correction model itself.111

a. Satellite Observations of the Ice Surface Temperature112

While typically not a problem when investigating slow evolving sea ice variables such as the sea113

ice concentration, the sub-daily variability of the temperature field can be substantial due to the evo-114

lution of the local weather and changes in insolation. For these reasons, this quantity can vary at the115
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sub-daily timescales in both observations and reanalyses even if polar regions experience a reduced116

or absent daily cycle for most of the year. This study employs swath-based temperature observations,117

commonly referred to as Level 2, to capture this sub-daily temperature variability. More informa-118

tion on the data levels definitions can be found at https://www.earthdata.nasa.gov/engage/119

open-data-services-and-software/data-information-policy/data-levels. A120

Level 2 product type informs us of the exact time and location a satellite observation was taken.121

The swath-based satellite data used in this study are from the Arctic and Antarctic Ice Surface122

Temperatures from thermal Infrared satellite sensors dataset (AASTI; Høyer et al. (2019)), avail-123

able from 2000 to 2009. This dataset is based on the work of Høyer and She (2007); Høyer et al.124

(2014); Rasmussen et al. (2018) at the Danish Meteorological Institute and it was created in the125

framework of the EUSTACE project (EU Surface Temperature for All Corners of Earth). The126

dataset is built by combining observations from the Advanced Very High Resolution Radiome-127

ter (AVHRR) instruments onboard different satellites of the National Oceanic and Atmospheric128

Administration (NOAA) and the European Organisation for the Exploitation of Meteorological129

Satellites (EUMETSAT; see Fig. 2 in Nielsen-Englyst et al. (2021) for further details on the ob-130

servational platforms). Only clear-sky observations are included in the dataset and considered for131

this study. In cloudy-sky conditions, the satellite sensor would measure the thermal signature of132

the cloud top rather than that of the sea ice or snow at the surface. The total uncertainty of the133

AASTI observations is on the order of ∼ 2 𝑜𝐶. The uncertainty is partitioned into three compo-134

nents: random uncertainty, locally systematic uncertainty, and large-scale systematic uncertainty135

(Nielsen-Englyst et al. 2021). A quality level flag from 1 (bad data) to 5 (best quality) is provided,136

and in this study, we consider only observations with quality levels 3, 4, and 5. The observations137

have a spatial resolution of ∼ 0.05𝑜, meaning that they can resolve the temperature signal of ice138

features with a typical length scale of a few kilometers, such as big leads, coastal polynyas, and139

extensive sea ice floes. Because the Arctic sea surface is characterized by the occurrence of open140

water and newly refrozen leads down to the meter scale (Thielke et al. 2022), there can be a certain141

level of ambiguity regarding what surface type is represented by the temperature observation. This142

additional source of uncertainty cannot be easily taken into account: the temperature retrieval143

algorithm is nonlinear, and the exact ice surface temperature cannot be reconstructed based on the144

observed sea ice concentration. However, this aspect does not affect our study substantially, as we145
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focus on the winter season and the pack-ice regions, which feature the occurrence of open water146

only sporadically mostly due to dynamical sea ice processes.147

Finally, the reader should note that in Fig. 1c, we show the daily aggregated number of surface148

temperature observations from a Level 3 dataset (Dybkjær et al. 2012) rather than the Level 2149

AASTI dataset used to train the correction model.150

b. The Machine Learning Bias Correction Model151

Network Predictors152

As already mentioned in Sec 1, previous studies have highlighted links between the reanalyses153

temperature bias and different aspects of the atmosphere and sea ice systems, such as the cloud154

state, the sea ice and snow thickness, and the surface atmospheric temperature itself. Based on the155

previous considerations, the following four model predictors have been chosen as input for the ML156

model:157

SKT Reanalysis Skin Temperature: The skin temperature is the theoretical temperature that is158

required to satisfy the surface energy balance. This temperature is converted to an ice-only159

temperature based on the reanalyses open water fraction. This is the same field we aim to160

ultimately correct.161

STRD Reanalysis Surface Downward Longwave Radiation: This physical quantity is the162

amount of thermal (or longwave) radiation emitted by the atmosphere and clouds that reaches163

a horizontal plane at the surface.164

SIT Sea Ice Thickness: The sea ice thickness represents the average depth of sea ice observed165

inside a grid cell. Here, we do not use in-situ thickness measurements or remote sensing166

retrievals of this quantity due a high fragmentation in time and space. Instead, a gap-free167

reanalysis-based estimate from the Pan-Arctic Ice Ocean Modeling and Assimilation System168

(PIOMAS) (Zhang and Rothrock 2003) is obtained by dividing the point-wise volume of sea169

ice per unit area by the sea ice area fraction.170

SND Snow Thickness on Sea Ice: Similarly to the sea ice thickness, the snow thickness estimates171

employed here also come from a reanalysis product, the SnowModel-LG (Liston et al. 2018,172

2020), where a Lagrangian snow-evolution model forced with the precipitation from the173
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ERA5 atmospheric reanalysis is used to produce daily pan-Arctic snow-on-sea-ice depth174

distributions.175

The predictors can be divided into an atmospheric group (SKT and STRD), and in an ice group176

(SIT and SND). The source of SKT and STRD changes according to the atmospheric reanalysis177

product under consideration, while SIT and SND remain the same for all reanalyses. The output178

data used to train the network is defined as the difference between the original reanalysis skin179

temperature and the surface temperature observations described in Sec. 2a. To build the training180

dataset for the ML correction model, all the input variables are interpolated to the exact location181

and time of the observations by using a bi-linear interpolation scheme provided by the Xarray182

Python package (Hoyer and Hamman 2017). Being all model-based reanalysis fields, the inputs183

are available over the whole Arctic domain for 40 years (01.08.1980 to 31.07.2021), allowing the184

temperature correction to be consistently computed over sea ice regions without spatiotemporal gaps185

if observations were available to fully characterize the bias. Because the snow and sea ice thickness186

data are not available for some isolated ocean points along the coastlines due to grid conversion187

issues, we filled these points with data from the nearest neighboring grid cells. This occurrence188

is rare and confined to complex coastal domains (e.g. the Canadian Archipelago). Ultimately, the189

resulting temperature correction has the same time-step as the atmospheric predictors SKT and190

STRD (1h for ERA5, 3h for JRA-55).191

A further correction skill source could come from the inclusion of the wind speed among the192

predictors. Based on our physical intuition, the turbulent heat flux tends to decrease in low-wind193

conditions, enhancing the radiative cooling and the boundary layer stratification. On the contrary,194

in high-wind conditions the heat is redistributed much more efficiently between the surface and the195

boundary layer, reducing the importance of the ice state in determining the surface temperature.196

At present, this aspect is outside the scope of our work and therefore not considered in the current197

manuscript, but we acknowledge the potential of a better representation of the turbulence and198

stratification in our model design.199

Network Design200

A fully connected neural network (NN) has been chosen to model the reanalysis temperature201

correction because it is flexible, easy to implement and train, and able to capture the nonlinear202
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relations between the system state and the correction. After testing different network designs, we203

chose a simple setup consisting of a Deep Feed Forward (DFF) NN with 5 hidden layers featuring204

16 nodes each, resulting in 80 trainable weights. All the network nodes, except those linearly205

activated belonging to the last layer, feature a standard “ReLu” activation function. The network206

cost function is minimized using an “Adam” algorithm, a mean squared error loss function is207

employed, and the learning rate is 0.01. Note that the uncertainties of the observations are not208

taken into account during the minimization process of the cost function. The chosen batch size is209

1024 and the training epochs are 10. The correction model was developed in Python based on the210

Pytorch package (Paszke et al. 2019).211

The network inputs have been normalized with a linear transformation to fit the interval [−1;+1].212

This ML standard procedure is necessary since the NN input data combines different physical213

quantities with values spanning several orders of magnitude. This fact could induce the NN to214

overweight some predictors while neglecting others. The size of the NN combined dataset varies215

depending on the reanalysis in consideration because of the different spatiotemporal resolutions,216

but it remains in the order of 5× 107 points collected over the period 01.2000–12.2009 for both217

ERA5 and JRA-55. The data are divided into training, validation, and test subsets following218

a simple approach that guarantees that neighboring data points, which are likely correlated, are219

not distributed into more than one subset. First, we subdivide the dataset into multiple five-day220

portions. For each of these, the first three days are dedicated to the training subset, the fourth day221

to the validation subset, and the fifth day to the testing subset. The three subsets are then shuffled222

separately before the training step. The test subset provides an unbiased evaluation of the final223

model fit on the dataset by using data never seen by the model during the training and validation224

phase. All the plots presented in the next section of this paper refer to the test subset. The training225

and validation phases of the correction model were completed in approximately one wall-clock226

hour when run on a single cluster node with 72 processors.227

c. Application Criteria of the Bias Correction Model228

Given the features of observations and reanalyses presented in the previous paragraphs, we237

conclude that the correction model should not be applied indiscriminately to the entire Arctic238

domain but rather to the regions experiencing clear-sky conditions, where observations are more239
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Fig. 1. (a) ERA5 total cloud coverage (TCC) on 2015-03-01 at 12:00. (b) Difference between the ERA5

all-sky and clear-sky surface downward thermal radiation on 2015-03-01 at 12:00 (ΔSTRD). Low values of Δ𝑆𝑇𝑅𝐷

are an indication of little or absent cloud coverage. (c) Number of observations collected by the AVHRR satellite

sensors orbiting on 2015-03-01. An high observation count is an indication of the absence of clouds. Note that

the date choice is arbitrary. (d) and (e) are the same as (a) and (b) but for JRA-55. (f) satellite imagery retrieved

from NASA’s Global Imagery Browse Services for 2015-03-01 (daily composite) based on the MODIS false

color ‘snow RGB’ (Bands 3-6-7). Note that the image is available only in regions experiencing direct sunlight

on the day.
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reliable and, at the same time, the reanalysis bias is larger. For this reason, identifying the240

occurrence of CSE in atmospheric reanalysis is a key step for an appropriate development and241

application of our correction strategy. In the framework of this study, two alternative approaches242

have been considered for this classification. The first identification approach is based on the total243

cloud cover (TCC) from atmospheric reanalyses. The TCC variable is defined as the proportion244

of a grid-cell covered by clouds, resulting in a single level field based on the clouds occurring245

at different vertical model levels by making assumptions on the degree of overlap/randomness246
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between clouds at different heights. The performance of TCC for diagnosing CSE over the Arctic247

sea ice appears to be poor for the ERA5 reanalysis, which tends to overestimate the winter cloud248

cover (Gryning et al. 2020), but good for the JRA-55 product. This is shown in the qualitative249

comparison between the reanalyses TCC (Fig. 1; a and d), the number of measurements collected250

daily by the AVHRR sensor (Fig. 1c), and the satellite image retrieved by the MODIS instrument251

(Fig. 1f). Two more snapshots of the same panel are included in the supplementary materials (Figs.252

S1 and S2) to show that this condition is not only found in this specific case. Note that we do253

not use the number of measurements collected by the AVHRR sensors as the base for our cloud254

classification procedure because a low number of measurements can indicate a cloudy atmospheric255

state, but also an observational gap that has nothing to do with the cloud conditions. In contrast,256

the second classification approach relies on information about the atmospheric thermal (longwave)257

state, a variable typically described in atmospheric reanalyses both for a realistic atmosphere with258

clouds and for a hypothetical atmosphere without clouds. The difference between the all-sky and259

clear-sky surface downward thermal radiation (ΔSTRD) provides good indications of the presence260

of clouds for ERA5, as qualitatively illustrated by its good agreement with the observation density261

and the observed cloud state (Fig. 1; b, e, and f). Note that, due to the rapid evolution of the262

cloud as well as temperature states, analyzing snapshots from reanalysis and observations instead263

of long-term averages is more insightful for diagnosing similarities between weather patterns, an264

approach that we follow in the remainder of this manuscript.265

After some manual calibration to identify the threshold values for each classification method, we266

decided to apply the temperature correction for the ERA5 reanalyses (i.e. assert a cloud free part)267

only to regions where ΔSTRD ≤ 15W/m2. To avoid the development of nonphysical discontinuities268

in the surface temperature fields, we assign a temperature that proportionally combines corrected269

and original temperatures to transition regions where 15W/m2 < ΔSTRD ≤ 40W/m2, building a270

transition zone between the corrected and uncorrected part of the domain. Finally, cloudy regions271

where ΔSTRD > 40W/m2 retain their uncorrected temperature. Given the good correspondence272

between TCC, cloud observations, and observation count for JRA-55, the application domain273

for this reanalysis product is defined based on the TCC variable. The corrected temperature is274

assigned where TCC ≤ 15%, the transition regime occurs where 15% < TCC ≤ 70%, and finally275

no correction is applied where TCC > 70%. In addition, for both reanalyses we further limit the276
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correction to the sea ice pack (where sea ice concentration is larger than 80%), and locations with a277

reanalysis surface temperature lower than −5 𝑜C. For higher temperatures, the surface temperature278

discrepancy between model and observation tends to be generally small. Under these conditions,279

we typically observe a low conductive heat flux because of the low temperature gradient between280

atmosphere, ice, and ocean, making a correction less relevant, and furthermore, there are not281

enough observations to perform a robust training of the correction model because of prevailing282

cloudy conditions in warm months.283

d. The Correction Model Skill Score284

We adopt the Correction Model Skill Score (CMSS) as a metric to measure the skill of the285

correction model in reducing the bias against independent observations.286

𝐶𝑀𝑆𝑆 = 1− | 𝑆𝐾𝑇𝐶𝑜𝑟 − 𝑆𝐾𝑇𝑂𝑏𝑠 |
| 𝑆𝐾𝑇𝑂𝑟𝑔 − 𝑆𝐾𝑇𝑂𝑏𝑠 |

, (1)

where 𝑆𝐾𝑇𝐶𝑜𝑟 is the corrected reanalysis skin temperature, 𝑆𝐾𝑇𝑂𝑟𝑔 is the original reanalysis skin287

temperature, and 𝑆𝐾𝑇𝑂𝑏𝑠 is the skin temperature measured independently. This metric should be288

interpreted as follow:289

• CMSS = 1 means that the correction model brings the reanalysis temperature to match the290

observations and fully corrects the bias.291

• For 0 < CMSS < 1, the correction model reduces the bias.292

• CMSS = 0 means that the correction model has a neutral impact on the bias. Note that293

because the CMSS is an absolute metric, this case could refer both to the application of a null294

correction, but also to the introduction of a bias of the opposite sign.295

• CMSS < 0 means that the correction model degrades the reanalysis.296

3. Results297

a. Characterization of the Temperature Bias and its Correction298

The role of the atmospheric and sea ice predictors in shaping the skin temperature correction has299

been investigated during the training phase of the ML correction model. The relationship between300
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the ERA-5 and JRA-55 temperature bias and the predictors is visualized in Fig. 2 (plots a, b, e,301

f). Only 105 randomly selected points out of the approximately 107 composing the test datasets302

are shown here to allow clearer visualization of the bias features. As a reminder, the test dataset303

is built with reanalysis data and observations from the years 2000 to 2009 that fulfill the clear304

sky classification and, for this reason, the considerations on the bias nature can only refer to the305

clear sky state, an essential condition for ensuring precise observations of the surface temperature.306

The temperature bias is defined as the difference between the reanalysis state and the observed307

temperature. As such, in the context of this study, a positive temperature bias indicates that the308

reanalysis product is warmer than the observations, while the opposite is true for a negative bias.309

The emerging structure of the bias confirms the finding of previous studies and our physical310

understanding of the coupled atmospheric-sea ice system. The main features of the temperature311

bias are summarized in the following points:312

• Large positive temperature biases are evident for cold reanalysis temperatures and low down-313

ward longwave radiation values, particularly for ERA5 (Fig. 2 a and e).314

• Large positive temperature biases occur in regions with thick sea ice, thick snow, or a combi-315

nation of both conditions (Fig. 2 b and f).316

• Moderate negative biases tend to occur for thin sea ice, thin snow, or a combination of both317

conditions (Fig. 2 b and f).318

• Despite the well recognizable features described in the previous points, the bias also shows319

a certain random error component that can be linked to inevitable differences between the320

observed and reanalysis state.321

The mismatch between reanalysis and observations ranges approximately between −8 𝑜𝐶 and326

+2 𝑜𝐶 for ERA5, and −8 𝑜𝐶 and +6 𝑜𝐶 for JRA-55. These large values are in agreement with the327

estimates of previous studies. A comparison between ERA5 and JRA-55 reveals some differences328

in the relationship between the bias and the atmospheric predictors (Fig. 2 a and e). While the329

largest positive temperature bias in ERA5 is observed for cold temperatures (−40 𝑜𝐶 to −25 𝑜𝐶),330

the situation is less obvious for JRA-55, which also exhibits a higher level of noise. Note that the331

truncation for temperature values above −5 𝑜𝐶 (plots a, c, e, and g) is obtained by construction, as332

no correction is applied for temperatures warmer than −5 𝑜𝐶. For a given temperature, the spread333
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Fig. 2. Comparison between the skin temperature bias (reanalysis temperature minus observed temperature;

(a), (b), (e), (f)) and modelled skin temperature correction (output of the ML correction model; (c), (d), (g) to

(h)). These color coded quantities are plotted as function of the atmospheric predictors SKT and STRD and the

ice predictors SIT and SND.
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of the downward longwave radiation values is bigger in ERA5 than in JRA-55 (y-axis in Fig. 2 a334

and e). When considering the sea ice predictors, the bias shows a functional relation to the sea335

ice thickness in both reanalyses, while the dependence on the snow depth is less pronounced and336

seems relevant only for sea ice thinner than 1m. This is consistent with our physical understanding337

of the system: for thick sea ice, the effect of snow on heat conduction is small because the sea ice338

already saturates the insulation, while for thin sea ice the snow drives the conduction properties of339

the system.340

The temperature correction predicted by the ML correction model is shown in Fig. 2 as a function341

of the four predictors (plots c, d, g, and h). Note that the same test points are displayed for the bias342

plots (first and third row) and correction plots (second and fourth row). Overall, the structure of343

the correction captures well the features of the original bias discussed in the previous paragraphs.344

The opposite sign of correction and bias makes physical sense and, ideally, a perfect correction345

would exactly cancel out the reanalysis bias. The predicted correction tends to be smooth and does346

not exhibit the same noise as the bias. On one hand, this is a positive feature and it indicates that347

the NN captures the systematic error while neglecting the random component. On the other hand,348

due to this behavior, the NN seems unable to correct extreme cases when the absolute difference349

between reanalysis and observed temperature is high. The latter is a feature of the correction model350

and not of the training procedure (i.e. it is not linked to size limitation in the training dataset or to351

the frequency of occurrence of these extreme events).352

As the next step, we want to understand whether the correction learned by the ML model during353

the training phase can be applied to the reanalysis temperature field in a more operational setup,354

thus investigating if the corrected temperature fields retain the spatial coherency of the original355

reanalysis products, ideally also outside the training time window.356

Maps a and d in Fig. 3 exhibit the original skin temperature field for ERA5 and JRA-55 respec-360

tively. Part of this discrepancy is simply explained by the different spatiotemporal resolutions of361

the two reanalyses (lower in JRA-55 than in ERA5). Nevertheless, another part originates from362

the different model physics and, in particular, for the resulting cloud states, with ERA5 featuring363

more clouds than JRA-55 (Fig. 1). Note that considering the same reanalysis snapshot in Figs. 1364

and 3 allows us to relate the surface skin temperature and its correction to the cloud and downward365

longwave radiation state. While both maps show similar spatial features, they also reveal different366
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Fig. 3. (a) 2015-03-01 original ERA5 skin temperature over sea ice and open ocean. (b) 2015-03-01 corrected

ERA5 skin temperature over sea ice and open ocean. (c) 2015-03-01 ERA5 temperature correction over sea ice.

(d), (e), and (f) are respectively the same as (a), (b), and (c) but for the JRA-55 reanalysis.

357

358

359

temperatures. The warm regions (−20𝑜𝐶 < SKT < −15𝑜𝐶) are larger in ERA5 but, at the same367

time, the cold regions are also slightly colder for this dataset. The correction application leads to368

a marked cooling in the clear-sky portion of the domain. Note that the difference in the active369

correction domain for the two reanalyses, as well as the magnitude of the correction, is in part370

due to differences in the cloud state representation, in part to the application of different classi-371

fication strategies for the clear sky state in reanalyses (Sec. 2c), and in part to the application of372

two different correction models. The locations on which the temperature correction is applied are373

generally continuous over relatively wide portions of the Arctic and evolve dynamically following374

the movement of large-scale weather systems. The presence of localized cloud formations and375

clear-sky gaps introduce heterogeneity to the active correction domain. This feature is particularly376

evident for ERA5, which can resolve smaller cloud formations due to the higher spatiotemporal377

resolution. No further unexpected spatial noise or sharp gradients emerges from the correction,378
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indicating that the choices made concerning the application mask are reasonable. Overall, each379

reanalysis maintains consistency with its atmospheric state after the correction application.380

b. Comparing the Corrected Skin Temperature to Independent In-situ Observations381

A rigorous evaluation of the correction model skill mandates comparing the corrected temper-382

atures with independent measurements, possibly outside the training decade. The meteorological383

dataset collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate384

(MOSAiC) expedition in the winter of 2019–2020 (Shupe et al. 2022; Reynolds and Riihimaki385

2019) provides an ideal basis for building this assessment. During MOSAiC, a set of longwave386

broadband up- and down-welling observations were made from a location on the sea ice. The sur-387

face skin temperature was derived from these measurements assuming a fixed surface emissivity388

of 0.985, which is reasonable for the winter observations used here.389

As expected, Fig. 4a and b reveal large positive skin temperature biases for both the reanalyses395

when compared to the in-situ observations, particularly in association with clear sky conditions.396

The correction model performs reasonably well and tends to substantially mitigate the bias for397

ERA5, with a 27% average bias reduction, while the improvement is modest for JRA-55, with a398

7% average bias reduction. The above reduction percentages have been quantified by computing399

the Mean Absolute Error (MAE) based on all the winter MOSAiC observations available from400

October 2019 to June 2020 (Tab. 1, columns 2 and 3 – All Observations), including instances of401

cloudy conditions when the temperature correction does not act. The error reduction for ERA5402

and JRA-55 increases respectively to 32% and 10% when restricting the analysis only to clear-403

sky conditions according to each reanalysis classification (Tab. 1, columns 4 and 5 – Clear-sky404

Observations). The Pearson correlation between the reanalysis and observation time series is 0.89405

for ERA5 and 0.75 for JRA-55, with negligible differences between the corrected and original406

cases. The complete MOSAiC temperature time series for ERA5 and JRA-55 are available in the407

supplementary materials (Fig. S3), while Fig. 4 focuses on four winter months only for better408

readability of the panel.409

Comparing gridded reanalysis fields at relatively low resolution with single-point measurements415

is challenging and requires additional care to draw the correct conclusions. Firstly, reanalyses data416

represent spatially an average sea ice and snow state, while in-situ observations capture a unique417
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(a) ERA5 Skin Temperature Evaluation
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(b) JRA-55 Skin Temperature Evaluation
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(c) ERA5 Longwave Rad.  Evaluation
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(d) JRA-55 Longwave Rad.  Evaluation
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(e) ERA5 Correction Model Skill
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(f) JRA-55 Correction Model Skill
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Fig. 4. (a) and (b): Skin temperature measured during the MOSAiC expedition and estimates from the

corrected and original reanalyses from 01-12-2019 to 31-03-2020. (c) and (d): Same as (a) and (b), but

exhibiting the downward longwave radiation. (e) and (f): Correction model skill score as function of the

downward longwave radiation difference between reanalyses and MOSAiC observations. Note that the different

point density in the two plots is due to the different time resolution of the reanalyses.

390

391

392

393

394

ice state. There is no straightforward way to accurately downscale the gridded data and account418

for this uncertainty. Secondly, the cloud state of in-situ observations and reanalysis should be419
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All Observations Clear-sky Observations Compatible Observations

ERA5 JRA-55 ERA5 JRA-55 ERA5 JRA-55

Original 3.75 𝑜𝐶 3.52 𝑜𝐶 4.06 𝑜𝐶 3.83 𝑜𝐶 3.56 𝑜𝐶 4.41 𝑜𝐶

Corrected 2.75 𝑜𝐶 3.29 𝑜𝐶 2.75 𝑜𝐶 3.45 𝑜𝐶 1.80 𝑜𝐶 3.52 𝑜𝐶

Error Reduction 27% 7% 32% 10% 49% 20%

Table 1. Average temperatures mismatch between reanalysis and MOSAiC observations (October 2019 to June

2020) quantified by the Mean Absolute Error (MAE) metric for the corrected and original case considering all

the available MOSAiC observations (columns 2 and 3), only clear-sky observations according to each reanalysis

classification (columns 4 and 5), and only the observations with a longwave radiation state compatible with the

reanalysis (columns 6 and 7).

410

411

412

413

414

similar for a meaningful comparison, which is not necessarily the case in our situation, as shown420

in Fig. 4c and d. Specifically, the STRD in JRA-55 is substantially lower than in the measurements421

when clouds are present (i.e. for the highest values in STRD), and also the ERA5 evaluation422

reveals differences in multiple instances. Therefore, we display the CMSS (Fig. 4; plots e and423

f) as a function of the downward longwave radiation difference between the two reanalyses and424

the MOSAiC observations (Δ𝑆𝑇𝑅𝐷∗). We argue that the model skill is meaningful only when this425

difference is small (-10 W/m2 < Δ𝑆𝑇𝑅𝐷∗ < 10 W/m2). Under these conditions, the model skill426

scores are generally positive, with 49% bias reduction for ERA5 and 20% for JRA-55 (Tab. 1,427

columns 6 and 7 – Compatible Observations), and we observe only a few instances when the428

correction degrades the reanalysis. Outside this range, the skill score can capture a bias reduction429

or degradation for the wrong reasons.430

Given the results that emerge from this independent evaluation, we believe that our method431

provides a useful correction for ERA5. However, for JRA-55, the correction performance is quite432

small. We expand on possible reasons for this discrepancy between the different reanalysis products433

below and discuss possible steps forward.434

c. Spatiotemporal Variability of the Temperature Correction435

Because of the rapid changes that the Arctic experienced during the last few decades, such436

as the decline of the sea ice extent and volume in response to the warming of both the near-437
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surface atmosphere and the ocean, there are good reasons to believe that also the reanalysis438

skin temperature bias, as well as its correction, will present some trends and a certain level of439

spatiotemporal variability. This hypothesis is reasonable also given our understanding of the440

mechanism inducing the bias, which is ice thickness and temperature-dependent. For instance, the441

constant sea ice thickness assumption (e.g. 1.5m in ERA5) made in the reanalysis models, appears442

to be more compatible with the recent (post 2007) winter sea ice condition compared to those443

observed at the end of the 20th century. Similarly, for a given year and depending on the season,444

this assumption might be appropriate for certain Arctic locations while penalizing for others. We445

will begin exploring these aspects by making some consideration on the average spatial distribution446

of the correction during the different seasons.447

Fig. 5 exhibits the 1981 to 2020 average temperature correction for the months December-448

January-February (DJF), March-April-May (MAM), and September-October-November (SON).449

Note that cloudy regions and open water regions, where the correction is zero, are also included450

in this spatiotemporal average. For both reanalyses, the correction exhibits a moderate seasonality.451

Specifically, it reaches a maximum in winter (DJF; Fig. 5 a and d), when the Arctic is colder and452

drier, and a minimum in the summer months, when by design no correction is applied because of too453

warm temperatures (maps not shown for June, July, and August). Furthermore, the fall correction454

(SON; Fig. 5 c and f) is smaller than the late winter/early spring one (MAM; Fig. 5 b and e), a455

fact that can be counter-intuitive given Arctic temperature similarities during these two periods,456

but that it is explained by the presence of thicker and thus more insulating snow and ice layers in457

MAM, which is conducive to the warm bias (see Fig. 2). Furthermore, given that zero correction458

regions are included in the average, this behavior can also be caused by different cloud and open459

water conditions in SON than in MAM, particularly for the most recent years. Both reanalyses460

feature a large negative correction over thick sea ice regions (north of the Canadian Archipelago461

and Greenland), and a smaller one (in absolute terms) in peripheral seas with a seasonal ice cover.462

A similar structure, including the differences between JRA-55 and ERA5, has been evidenced in463

the temperature bias quantification by Batrak and Müller (2019) (Fig. 3 of their paper; maps c and464

d), even though the comparison is possible only in qualitative terms due to the different periods and465

methodologies of our analyses. Even though instances of a positive correction up to 2 𝑜𝐶 occur in466

single snapshots, particularly during the fall months in peripheral Arctic seas, these disappear in467
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the multi-year, multi-month average of Fig. 5. A positive temperature correction instance can be468

observed in Fig. 3c along the Kara Sea coast, and it is linked to a sea ice divergence area which469

leads to a thinner sea ice and snow cover. Note that the overall corrections to ERA5 are slightly470

smaller than corrections to JRA-55, which might lead the reader to conclude that the original ERA5471

temperature is closer to observed than JRA-55. However, this is not the case for the MOSAiC472

analysis (Tab. 1, row 1, columns 1 to 4), and this feature might be also explained by the effect of a473

larger cloudiness in ERA5 compared to JRA-55, hence less opportunity to correct the temperature474

field under the clear sky state.475

The plot in Fig. 6a shows the annual cycle of the difference between the uncorrected and corrected476

atmospheric surface temperature averaged over the region north of 70N. In this context, positive477

difference values correspond to a negative correction as defined in Figs. 2 and 5. The results478

have been grouped in four different periods, roughly representative of the last four decades, to479

reveal the possible interannual trends of the correction. The seasonal cycle of the temperature480

difference confirms previous evidence that the correction reaches a maximum in winter and a481

minimum in the summer. Furthermore, a declining trend characterizes both the ERA5 (solid lines)482

and JRA-55 (dashed lines) corrections for the last decade (2010—2019; red lines). During the483

last decade (2010–2019), the average correction for both reanalyses becomes almost zero for the484

transitions months of May and October, demonstrating a generalized time reduction of the active485

correction season as the sea ice thickness decreases and the Arctic warms. During the winter486

months (February to April), the multi-decadal evolution of the reanalysis correction before 2010487

becomes less obvious, likely due to a strong reduction of the heat conduction through the ice after488

a certain effective conductivity threshold (defined by the sea ice and snow thickness) is reached.489

Applying the correction to the reanalyses fields tends on average to cool the climatological tem-490

perature state over the Arctic sea ice, and this could in principle impact the reanalysis representation491

of the warming that the Arctic experienced during the last decades. We investigate this aspect in492

Fig. 6 (plots b and c), where the anomalies for the corrected and uncorrected skin temperatures493

(computed against their climatological reference based on the period 1981-2010) are respectively494

displayed for the ERA5 (plot b) and JRA-55 (plot c) reanalyses. Note that each anomaly time495

series is built by subtracting its individual climatological state, and not a common one. For both496

reanalyses, the anomaly variability is similar for the original (red lines) and the corrected data (blue497
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lines), with only small differences between the two. The warming trend of the original product is498

slightly smaller than that of the corrected product for both reanalyses: ERA5 exhibits a warming499

of 0.98 𝐾
10𝑦 for the corrected case and 0.82 𝐾

10𝑦 for the uncorrected case. JRA-55 exhibits a warming500

of 0.92 𝐾
10𝑦 for the corrected case and 0.80 𝐾

10𝑦 for the uncorrected case. Thus, the correction impact501

on the warming trend for JRA-55 75% of that of ERA5. This difference is still relatively small502

(∼ 10% to 20%) if compared to the absolute magnitude of the warming signal and in line with the503

trend of differences between the two reanalysis products.504

Fig. 5. 1981 to 2018 average temperature correction for the months December-January-February (DJF), March-

April-May (MAM), and September-October-November (SON). The ERA5 and JRA-55 maps are respectively

grouped in the upper and bottom row. The summer months are not shown because the correction is zero. All the

maps share the same color scheme illustrated by the color bars on the right. Note that, in agreement with Fig. 2,

the sign of the correction is opposite of that of the bias.
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(a)

(b)

(c)

2010-2019

1990-1999
1981-1989

ERA5     JRA-55

Fig. 6. (a) Annual cycle averaged over four decades of the difference between the original (uncorrected) and

the corrected ERA5 (solid lines) and JRA-55 (dashed lines) skin temperatures averaged over the regions north

of 70N. (b) and (c) Corrected (blue dashed lines) and original (red lines) ERA5 and JRA-55 skin temperature

anomalies computed against their own climatological reference based on the period 1981-2010. The dashed

straight lines quantify the average warming trend experienced by the Arctic over the period under consideration.
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4. Discussion515

a. Limitations of the Proposed Bias Correction Strategy516

The bias correction strategy presented in this study proved to be effective in partially correcting517

the near-surface temperature bias that affects the current generation of atmospheric reanalysis in518
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the Arctic region. Nevertheless, some limitations associated with our methodology deserve some519

more in-depth discussion.520

The first caveat of our approach is that the ML correction model is trained on a limited portion521

of the reanalysis period (2000 to 2009) while being applied also to previous or future decades522

experiencing different conditions (i.e. on average colder temperatures and thicker sea ice and snow523

before 2000, and the opposite after 2010). We argue that this assumption is acceptable, given that524

our correction model design relies on state-dependent predictors and not on spatiotemporal infor-525

mation such as the location and the time of the year—also legitimate predictors that would however526

strongly bind the model to the background climate state. Furthermore, the misrepresentation of527

the conductive heat flux through sea ice and snow, which is the mechanism at the heart of the528

observed bias, tends to saturate for thick ice and snow, for which the conductive heat flux becomes529

very small. Nevertheless, we cannot exclude that the correction is sub-optimal for sea ice regimes530

underrepresented in the training dataset, such as very thick ice conditions, and we can only rely on531

the extrapolation capabilities of the ML model under these conditions. Encouraging indications of532

the robustness of our approach to this kind of issue come from the self-emerging declining trend533

of the correction for both the reanalyses products considered, which highlight the dependence of534

the model on the sea ice state, and the convincing comparison to MOSAiC in-situ observations535

outside of the training window.536

A second point worth discussing is the fact that the correction model relies entirely on reanalysis537

products, which have themselves well-known shortcomings. For example, in terms of the ice538

predictors, the limitations of the PIOMAS product, which consistently underestimates the sea ice539

thickness in regions of thicker ice and overestimates it in regions of thinner ice, are well documented540

in the literature (Labe et al. 2018). The physical sophistication of the SnowModel-LG thickness541

product is remarkable, but this product is by design impacted by errors in the snow precipitation and542

sea ice drift description used to force the reanalysis model. While alternative direct Arctic-wide543

observations of the snow thickness are presently not available, remote sensing sea ice thickness544

observations (e.g. from EnviSat, CryoSat-2, SMOS, and IceSat2 satellites) and reanalyses (Mu545

et al. 2020, 2022) have become available for the past 20 years. While we considered employing546

some of these products as an alternative to PIOMAS, we decided against this approach in order to547

apply the correction model consistently over the entire reanalysis period with no spatiotemporal548
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gaps due to missing observations. A complementary correction approach considered for this study549

consisted of nudging the reanalysis surface state to the satellite observations when these were550

available. Even though this would have certainly led to good temperature estimates in areas with551

a high density of observations, and also limited the episodes of bias degradation associated with552

the application of the correction model, we decided against this strategy to avoid the introduction553

of inconsistencies in the corrected reanalysis field, as observations are not regularly available over554

the whole domain, and they are temporally incompatible with the reanalysis products (daily versus555

sub-daily representation).556

The discussed bias correction approach targets the Arctic, while we expect similar biases to557

emerge also for the Antarctic sea ice. The main motivation for this is the absence of ice predictors;558

with no reliable long term Antarctic sea ice and snow thickness estimates our correction model559

would lose a substantial portion of its skill, a fact that prevents us from even testing our Arctic560

trained correction on the Antarctic domain. Furthermore, the compatibility of the reanalyses with561

the true atmospheric state is strongly linked to the number of observations assimilated in the forecast562

system. A better reanalysis quality for more recent years than the past should thus be expected563

due to the advances in observational techniques. While under clear-sky conditions the Arctic564

boundary layer is strongly decoupled from the rest of the atmosphere and poorly characterized by565

observations also for recent years, the locations at which clear-sky conditions occur can be affected566

by the quality of the circulation in the reanalysis. Correcting for circulation issues in reanalyses567

goes beyond the scope of this study, and this aspect should be kept in mind when using these568

products in polar regions, with or without bias correction.569

A further aspect to consider is the difference between skin temperature and 2m temperature in570

reanalysis products. Given that the observed temperatures used to quantify the reanalysis bias are571

representative of the surface layer, the resulting correction is also applied to the skin temperature572

of the reanalysis. However, most of the reanalysis temperature applications in polar regions are573

based on the 2m temperature, including the forcing fields for sea ice and ocean models. To574

maintain consistency between the reanalysis fields, we transfer the skin temperature correction to575

the 2m temperature variable by assuming that the temperature difference between these two model576

levels would remain unchanged. The robustness of this assumption is hard to prove, given that the577

stratification of the near-surface atmosphere cannot be observed from remote sensing products, and578

25



thus its characterization mostly relies on local measurements. Other reanalysis variables defining579

the surface energy budget, such as the surface turbulent heat flux and the upwelling longwave580

radiation, must also be affected by biases because the uncorrected skin temperature is biased. Both581

these quantities have an impact on boundary layer and cloud processes. Once the skin temperature582

is corrected using the method presented here, it is then inconsistent with the other uncorrected583

terms in the reanalyses surface energy balance, and this aspect should be considered carefully to584

avoid misuse of the corrected product.585

The correction application domain is tightly linked to the cloud state, and the assumptions made586

in the classification of clear-sky versus cloudy regions impact the correction. Unfortunately, the587

lack of direct surface observations in cloudy conditions made an extension of the ML model to the588

cloudy state impossible. Also, in these conditions there are many more physical processes involved,589

(e.g. cloud radiative properties) which would make the ML model training more challenging. In the590

attempt to overcome this limitation, during the preliminary phase of our work, we tried to integrate591

the remote sensing observations with arguably more precise in-situ measurements collected by592

automatic buoys and weather stations deployed on the Arctic sea ice. These observations are less593

abundant than satellite products, but provide a more complete overview of the surface temperature594

state in the Arctic, also covering earlier decades, cloudy conditions, as well as being available for595

the Southern Ocean sea ice. However, comparing localized observations representative of a very596

specific sea ice state to gridded products that capture an average sea ice state representative of an597

area spanning several kilometers, proved to be unfeasible, as we also argue in Sec. b.598

Finally, the correction skill difference between ERA5 and JRA-55 deserves additional discussion.599

The model skill that emerges from the comparison to independent MOSAiC observations reveals600

better performances for ERA5 than JRA-55. We speculatively attribute the low JRA-55 skill to601

lower synoptic and moisture compatibility of this reanalysis with the true atmospheric state, as602

suggested by the lower temporal correlation with the MOSAiC observations and the downward603

longwave radiation analysis. First, the discrepancy impacts the correction at the model training604

stage, as the learned bias signal generates not only from the snow-related mechanism but also from605

unrelated sources. Second, the discrepancy results in penalization at the evaluation stage, as the606

correction can exacerbate the bias if observations and reanalysis are in different regimes. Never-607
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theless, further analyses are needed to quantitatively verify the previous statement and formulate a608

correct attribution of the correction skill difference.609

b. Comparing the Bias Correction Methodology to Previous Correction Strategies610

Even though a clear understanding of the physical mechanism responsible for the winter tem-611

perature bias in atmospheric reanalysis has been uncovered only in recent years, the existence of612

the bias itself has been established earlier and several measures have been taken for mitigating its613

effect. In particular, the ocean and sea ice modeling community realized that employing uncor-614

rected reanalysis temperature fields as forcing (i.e. boundary conditions) for regional and global615

sea ice and ocean general circulation models leads to an unsatisfactory representation of the sea ice616

(mainly not enough sea ice formation during winter), with errors propagating also to other seasons617

and ultimately to the oceanic circulation in the Arctic and beyond. Two alternative approaches can618

be taken to mitigate this problem: 1. tuning underconstrained key model parameters to partially619

compensate the forcing effect (Zampieri et al. 2021; Sumata et al. 2019), for example by increasing620

the sea ice and snow conductivity to foster the heat conduction through the sea ice system, and621

2. calibrating the reanalysis, and thus following the same reasoning that motivated this study.622

The latter approach has been attempted by the DRAKKAR project, which develops consistent623

global forcing datasets based on a combination of ECMWF reanalysis and observed flux data,624

called Drakkar Forcing Sets (DFS). To correct the ERA40 warm Arctic bias, the DFS adopts a full625

spatially dependent monthly rescaling of ERA40 air temperature over ice-covered regions north of626

70°N, using a monthly climatological sea-ice mask (Brodeau et al. 2010), a stratagem that follows627

the work of Large and Yeager (2004) and Large and Yeager (2008) in the context of the Coordi-628

nated Ocean Reference Experiments and the “CORE2” forcing. More recently, the community629

participating in the Ocean Models Intercomparison Project (OMIP) proposed a calibration strategy630

for the JRA-55 temperature in the Arctic (Tsujino et al. 2018) based on data from the International631

Arctic Buoy Programme (IABP) / Polar Exchange at the Sea Surface (POLES) (IABP-NPOLES;632

(Rigor et al. 2000)), and implemented in the JRA-55-do forcing.633

The previously mentioned strategies can be classified as climatological calibration, meaning that634

they aim to a correct climatological representation of the temperature in the Arctic. However, we635
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argue that our correction approach, compared to the previous attempts, brings a higher level of636

sophistication for three main reasons:637

1. The correction is state-dependent, meaning that it is coherent with the reanalyzed sea ice638

conditions and with the local weather. It favors clear-sky conditions, in agreement with the639

observation-based characterization of the reanalysis bias. Furthermore, its predictors can640

be associated with the physical mechanism causing the bias in the first place, which is the641

misrepresentation of the conductive heat flux through the snow and sea ice.642

2. Even though the reanalysis bias in the Arctic is on average warm, our model is able to correct643

also less common occurrences of cold biases occurring on thin ice, mostly at the beginning644

of the freezing season.645

3. A self-emerging property of the correction is its declining trend for the last decade, which646

is compatible with our physical understanding of the bias and with the changing sea ice647

conditions in the Arctic due to global warming.648

In addition, a characteristic of our correction is that, similarly to the climatological calibration649

approaches, it has only a minor impact on the reanalysis representation of the near-surface warming650

trend of the Arctic observed in the past four decades. A quantitative comparison of our correction651

strategy with previous efforts falls outside the scope of this work.652

5. Conclusion653

In this study, we have presented a machine learning correction model that reduces the (mostly654

warm) winter bias over the Arctic sea ice in uncoupled atmospheric reanalyses due to a misrep-655

resentation of the conductive heat flux through the sea ice and snow. Our work focused on the656

widely used ERA5 and JRA-55 products, but no constraint would prevent the model from being657

trained also on other reanalysis products, as well as on coupled forecast systems exhibiting similar658

biases. The correction relies on four reanalysis predictors, which have been chosen because they659

are skillful and linked to the physical mechanism that causes the bias. These are the reanalysis660

surface temperature itself, the downward longwave (or thermal) radiation reaching the surface,661

the sea ice thickness, and the snow thickness. The skill of the correction model is investigated662

by comparing the original and corrected reanalyses to independent in-situ measurements from the663

28



MOSAiC campaign. This comparison revealed an overall positive impact of the correction, with664

a substantial reduction of the bias and only limited instances of degradation for ERA5, while the665

improvement is modest for JRA-55. The self-emerging properties of the correction are compatible666

with our understanding of the bias and of the ice system: the correction varies seasonally with667

a maximum in winter and a minimum in summer, it is spatially heterogeneous and on average668

stronger on thicker sea ice, and finally, it shows a declining trend linked to the sea ice reduction669

and warming of the Arctic. Overall, the ML correction results confirm the physical understanding670

of the bias.671

We envisage that the correction presented in this study will find its main application in support672

of uncoupled sea ice and ocean simulations that rely on reanalysis fields as atmospheric boundary673

conditions. A better representation of the near-surface weather could be beneficial for a correct674

simulation of the Arctic sea ice and should reduce the use of nonphysical tuning choices aiming675

at compensating the reanalyses bias, rather than at an accurate simulation of the sea ice processes.676

In this context, more research is needed to understand the impact of the corrected fields on model677

simulations, and an in-depth evaluation of these aspects, as well as a quantitative comparison with678

previous reanalysis-based forcing fields, is out of the scope of this work.679

Finally, we argue that the state-dependent approach to bias-correct reanalysis fields that was680

followed in this study is beneficial compared to simpler climatological calibration techniques,681

and we expect that similar correction models could be adapted also for other reanalysis variables682

affected by bias related to model deficiencies. The MOSAiC-based skill assessment presented683

in this study reveals that part of the bias remains despite our correction, and further efforts are684

needed, both in the context of coupled model development and post-processing, for improving the685

quality of atmospheric reanalysis over sea ice. For this reason, developing a correction that directly686

targets the mechanism generating the bias can be informative and guide future development efforts687

to improve the realism of the atmospheric reanalysis system, in the Arctic and beyond.688
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