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Abstract

Earthquake detection is critical for tracking fracture networks and fault zone deformation, particularly microseismicity that

produces weak ground motions. We develop deep learning models to detect seismic phase arrivals and first motion polarities.

The detection model is a convolutional encoder-decoder with a multi-head attention latent space that assigns a softmax value

to each data point in continuous seismic records for classifying earthquake waveforms and the phase arrivals. The multi-output

classification model utilizes weighted categorical cross entropy for the different softmax predictions to account for the unbalanced

number of signal points compared to noise. The model training uses a benchmark data set of global seismic waveforms and

the events are augmented using various techniques to reduce the signal-to-noise ratio, simulate multiple events arrivals, and

channel failures. Detected p-waves are passed through a second model to obtain the first motion polarity. The phase arrivals,

first motions, arrival waveforms, and additional metrics needed for catalog development are saved in a detection table. A neural

network phase associator is used with the detection table to build an event arrival table. Locations are calculated and double

difference locations are produced using correlation metrics from the waveforms retained in the detection table. The analysis

is wrapped in a multiprocessing workflow to efficiently analyze large data sets. As a case study the workflow is applied to

southern Kansas, a region with increased seismic activity related to hydrocarbon-production and waste water injection. The

deep learning seismicity and focal mechanism catalogs show immensely more seismic activity than standard processing.
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Key Points: 6 

• Deep learning earthquake phase detection and first motion polarity models are developed 7 
and extensively tested for model design performance 8 

• Model layers in neural network are stress tested to determine where performance gains 9 
are attainable while simplifying the design 10 

• Case study for southern Kansas shows widespread activity with twice the number of 11 
relocated events and a dense focal mechanism catalog 12 

Abstract 13 

Earthquake detection is critical for tracking fracture networks and fault zone deformation, 14 
particularly microseismicity that produces weak ground motions. We develop deep learning 15 
models to detect seismic phase arrivals and first motion polarities. The detection model is a 16 
convolutional encoder-decoder with a multi-head attention latent space that assigns a softmax 17 
value to each data point in continuous seismic records for classifying earthquake waveforms and 18 
the phase arrivals. The multi-output classification model utilizes weighted categorical cross 19 
entropy for the different softmax predictions to account for the unbalanced number of signal 20 
points compared to noise. The model training uses a benchmark data set of global seismic 21 
waveforms and the events are augmented using various techniques to reduce the signal-to-noise 22 
ratio, simulate multiple events arrivals, and channel failures. Detected p-waves are passed 23 
through a second model to obtain the first motion polarity. The phase arrivals, first motions, 24 
arrival waveforms, and additional metrics needed for catalog development are saved in a 25 
detection table. A neural network phase associator is used with the detection table to build an 26 
event arrival table. Locations are calculated and double difference locations are produced using 27 
correlation metrics from the waveforms retained in the detection table. The analysis is wrapped 28 
in a multiprocessing workflow to efficiently analyze large data sets.  As a case study the 29 
workflow is applied to southern Kansas, a region with increased seismic activity related to 30 
hydrocarbon-production and waste water injection. The deep learning seismicity and focal 31 
mechanism catalogs show immensely more seismic activity than standard processing.  32 

Plain Language Summary 33 

EQDetect is designed for scanning continuous daily waveforms to detect earthquake phase 34 
arrivals from local to regional (150 km) events. The detections are made with a deep learning 35 
encoder-decoder model. When the model detects an earthquake in the waveforms, a second 36 
model is implemented to determine the first arriving motions. Both deep learning models are 37 
trained with the open source Tensorflow package using publicly available benchmark waveform 38 
data sets. The model output is a data table of time stamped detections, signal amplitude, signal-39 
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to-noise ratio, and softmax probability of the detection in a generic format applicable to post-40 
processing association algorithms for event locations. Additionally, the p-wave and s-wave 41 
waveforms are saved in a data table for rapid access when producing improved locations using 42 
correlation-based techniques. The workflow is designed for multiprocessing with multiple 43 
GPU’s for rapid processing of large data sets. The model performance is shown for a case study 44 
in southern Kansas to detect event associated with wastewater injection activities.  45 

1 Introduction 46 

Earthquake detection relies on signal processing techniques to identify an emergent or 47 
impulsive signal in continuous waveforms. Seismic phase arrival times are the fundamental 48 
pieces of information required to identify and locate sources of ground motion in a 49 
heterogeneous volume of material and track subsurface deformation. Deep learning detection 50 
models specifically designed to identify seismic phase arrivals in continuous waveform data 51 
excel at identifying weak, low-amplitude regional earthquakes in noisy data, and vastly increase 52 
the number of event arrivals to track the microseismicity (Ross et al., 2020). Proof-of-concept 53 
machine learning architectures demonstrate these tools are driving the next phase of large-scale 54 
seismic data processing (Aguiar & Beroza, 2014; Hammer et al., 2012; Perol et al., 2018; Yoon 55 
et al., 2015) and more advanced model designs with a wide range of the number of layers and 56 
trainable parameters are beginning to showcase the full potential of these for application to 57 
earthquake detection (Chai et al., 2020; Mousavi et al., 2020; Mousavi, Zhu, et al., 2019; Reynen 58 
& Audet, 2017; Ross, Meier, Hauksson, et al., 2018; Saad et al., 2021; Woollam et al., 2019; 59 
Zhou et al., 2019; Zhu & Beroza, 2018).  60 

Despite the differences in model design and data used to train the model, each application 61 
shows an increase in detection capability when compared to traditional signal processing 62 
techniques. Efforts are in progress to standardize the training data and test multiple algorithms 63 
for strengths and weaknesses (Münchmeyer et al., 2022; Woollam et al., 2022). As model 64 
designs continue to evolve it is necessary to dissect the architectures and determine what model 65 
layers are contributing most to the output decision and determine if modifying the 66 
implementation produces equivalent or improved results. This is an important consideration 67 
when the model task is to determine the ground motions from very small earthquakes, which can 68 
be masked or contain similar processes to surface processes producing noise (Johnson, Meng, et 69 
al., 2019; Johnson, Vernon, et al., 2019) 70 

The focus here is to test model designs to improve microseismicity detections for a high-71 
resolution catalog of events and focal mechanisms. For this effort we systematically test and 72 
redesign two existing deep learning models; EQTransformer for earthquake phase arrivals 73 
(Mousavi et al., 2020) and a classification model for first motion polarity (Ross, Meier, & 74 
Hauksson, 2018). The models are tested for performance using seismic data from a 5-year 75 
temporary deployment in southern Kansas where active wastewater injection occurs and elevated 76 
seismicity rates are reported (Rubinstein et al., 2018). Results are presented for the development 77 
and testing of the deep learning models and details of the performance when producing a 78 
microseismicity catalog with focal mechanisms.  79 
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2 Earthquake detection and first motion deep learning models 80 

2.1 Earthquake detection 81 

2.1.1 Detection model architecture 82 

The convolutional neural network applied here combines earthquake detection and 83 
precise phase arrival time selection into a single model (Figure 1). The design is conceptually 84 
similar to Mousavi et al. (2020) in that it is a very deep encoder-decoder network with attention 85 
layers, but portions of that model are removed and redesigned, and moreover implemented 86 
differently. Changes to the Mousavi et al. (2020) architecture design were motived by 87 
systemically testing the addition and removal of layers to measure the performance of different 88 
model components, and ultimately many were removed. The deep learning model presented here 89 
includes two inputs—waveform time series and spectrogram, that improve detection of low 90 
signal-to-noise ratio (SNR) events. The model output is two classification probabilities that 91 
define the entire waveform for the presence of an earthquake and the timing of the seismic phase 92 
arrivals. The input and output were implemented to increase the amount of information provided 93 
to the model and to merge the phase arrival outputs into a single classification branch of the 94 
model. The choice to combine the phase arrivals is motivated by the need to weight the data 95 
labels due to the unbalanced nature of the continuous waveform.  96 

As shown in Figure 1, the model inputs are 3 component waveforms and the 97 
corresponding time-frequency amplitude spectrograms. The waveform encoder branch contains 98 
seven 1-dimensional convolutional operators applying Leaky Rectified Linear Unit (ReLU) 99 
activation functions and maxpooling (size = 2). The spectrogram encoder branch contains four 2-100 
dimensional convolutional operators with a Leaky ReLU activation function and maxpooling 101 
(size = [2,2]). The final time-frequency, high-dimensional representation is flattened, padded 102 
with zeros for reshaping, and concatenated to the final layer in the waveform encoder. The 103 
combined high-dimensional representation is passed to one residual connection layer with 10% 104 
drop out, then to a multi-head self-attention model (4 heads), with feed-forward neural network, 105 
skip connections, and 10% drop out (Vaswani et al., 2017). The output of the transformer-106 
encoder is passed to the earthquake decoder using seven 1-dimensional convolutional transpose 107 
operators. The earthquake decoder output layer has 2 filters (size = [6000,2]) and uses a 108 
pointwise softmax activation function. All points in the waveforms are classified as noise or 109 
earthquake in this output branch of the model. The phase-arrival-time decoder branch is similar 110 
except the transformer-encoder is passed to a second transformer model, then seven 1-111 
dimensional convolutional transpose operators. The final layer has 3 filters (size = [6000, 3]) and 112 
a pointwise softmax activation function. Each point in the waveform is classified as noise, p-113 
wave, or s-wave. The maximum classification value is the phase arrival time. 114 
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Figure 1. Earthquake detection and phase arrival deep learning model architecture. The inputs 
include 3-component normalized waveforms and amplitude spectrograms. The inputs are 
passed to 2 convolutional encoder branches that are then concatenated and passed to a residual 
network, attention layer, then to 2 decoder branches. Layer descriptions include the number of 
filters/kernel size. Inset on top right shows the layer design for the residual network and 
attention layer. The example output shows the waveform with the corresponding softmax 
output arrays.  

2.1.2 Training data 115 

High quality data with generalizable characteristics is essential to training an unbiased 116 
deep learning model. We use the seismic waveforms in the STanford EArthquake Dataset 117 
(STEAD; Mousavi, Sheng, et al., 2019), an established benchmark data set containing seismic 118 
phase arrivals, to assemble the training data. The data set contains about 1 million regional 119 
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earthquake examples with p- and s-wave arrival times labeled and about 300,000 examples of 120 
noise waveforms. Each waveform is 1 minute duration at 100 samples per second (size = [6000, 121 
3]) and contains the metadata for the station, events, and arrival time.  122 

We develop a training data set as follows. The p-wave arrival times are randomly shifted 123 
by up to 30 seconds and limited to within 1 second of the waveform. A 2.5% (150 points) cosine 124 
taper is applied. The original data set is augmented using each set of three component waveforms 125 
by selecting a new time-shift for the p-wave arrival and reducing the SNR. To reduce the SNR 126 
the Fourier transform is applied, the real and imaginary components are independently shuffled, 127 
and the inverse transform is performed. The result is a noise signal for each channel that has 128 
nearly identical scaling properties without any energy-based impulsive signals. The noise 129 
waveform is scaled by a value selected from a uniform distribution between (0, 0.25] if the 130 
original SNR ratio is <1.5, otherwise it is scaled between (0.25, 0.5]. The scaled noise is added to 131 
the waveforms to produce a lower SNR phase arrival. For 8.33% of randomly selected 132 
waveforms, 1 or 2 channels are randomly selected and dropped, i.e., replaced with zeros. For 133 
another 8.33%, 1, 2, or 3 channels are randomly selected and intermitted channel drops between 134 
15-30 seconds are simulated in the data. Additionally, to simulate multiple phase arrivals within 135 
a 1-minute window, 8.33% of the waveforms are augmented with a second phase arrival with a 136 
different SNR ratio than the original event in the time series. The final data set contains a total of 137 
2,513,000 examples comprised of the original STEAD earthquake and noise and the augmented 138 
waveforms to represent regularly encountered scenarios in continuous daily seismic records. 139 

The model design has 2 inputs that pass through separate encoder branches. The first is 140 
the 3-component waveforms normalized by the standard deviation with a tensor shape of (size = 141 
[6000, 3]). For the second input the waveforms are used to calculate the time-frequency 142 
amplitude spectrum with short-time Fourier transform using 80 samples per window (40 Hz 143 
Nyquist) with 76.25% overlap (size = [40, 316, 3]). The mean amplitude is removed and the 144 
spectrum is normalized to unit variance with the standard deviation.  145 

The earthquake labels are assigned using a boxcar function between 0-1 starting at the p-146 
wave arrival through the coda wave end time; the noise label is the opposite. The p- and s-waves 147 
are labeled using a normalized Gaussian function with a halfwidth of 0.1 seconds (10 points) 148 
centered on the arrival times. Each seismic phase is a separate vector and the noise label is the 149 
opposite of the combined arrival times. The output tensors are the earthquake duration labels 150 
(size = [6000, 2]) and the seismic phase arrivals (size = [6000, 3]). 151 

The waveforms are split into 2,041,000 for training (81.2%), 314,000 for validation 152 
(12.5%), and 158,000 for testing (6.3%). The data is pre-processed and serialized with the 153 
TensorFlow TFRecordDataset module, which allows rapid access to thousands of files using 154 
optimized IO functions that run in parallel, shuffle the data, and map the tensors to the model 155 
input using the selected batch size. This is ideal when training on a GPU cluster with each node 156 
having 8 NVIDIA RTX6000 GPUs and 40 CPUs to reduce IO performance issues. The 157 
preprocessed data requires about 1 Tb of disk storage. This approach allows us to evaluate model 158 
performance using the same training and validation data while applying changes to the network 159 
design. 160 

The model contains 354,221 trainable parameters and the Adam optimizer is applied with 161 
a learning rate of 1.0e-3 for epochs 0-50, 5.0e-4 for epochs 50-300, and 1.0e-4 for epochs >300. 162 
The loss function applied to each decoder branch is a weighted categorical cross-entropy using 163 
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weights of 0.25 and 1.00 for the noise and earthquake signals, respectively, and 0.006, 1.0 and 164 
0.8 for the noise, p-wave, and s-waves, respectively. The weights are selected to balance the 165 
large number of points that are noise, i.e., the phase arrivals are labeled using a total of 40 points 166 
in a vector of length 6000. The total loss is scaled to 0.05 for the earthquake detector branch and 167 
0.95 for the phase arrival times. The F1-score for each output is also calculated to monitor 168 
training performance. The batch size is set to 32 per GPU for a total 63,781 batches per epoch. 169 
Training is terminated when the combined loss function shows no improvement for 50 epochs. 170 
The model training takes approximately one day if only using 1 node with 8 GPUs. 171 

2.1.3 Evaluating the deep learning architecture 172 

Extensive testing was completed to better understand the model design presented by 173 
Mousavi et al. (2020) to determine the following: (1) What contributes to the model 174 
performance? (2) Does adding additional input information produce gains? (3) Can the model 175 
design be simplified? The final model design presented here contains approximately 354k 176 
trainable parameters, about 18k less than Mousavi et al. (2020), and contains additional input 177 
data with a second encoder branch. Without the second encoder branch the model has about 200k 178 
trainable parameters. The model design (Figure 1) evolved by adding and removing specific 179 
layers to evaluate changes in training performance. Because the training and validation data did 180 
not change, we can infer the performance differences arise from the subtle changes applied with 181 
each training iteration. 182 

A systematic grid search of hyperparameters was not performed because the interest was 183 
learning how changes to the input and altering or removing specific layers would impact 184 
performance. For example, a model that included only 3 component waveforms as inputs 185 
correctly identified 96% of the phase arrivals in the test data. Altering the model to include a 186 
parallel encoder branch that included the spectral amplitudes increased the performance by 2% 187 
and was adopted in future iterations. We found using long-short term-memory (LSTM) layers 188 
subsequent to the encoders produced no improvement in the loss function or validation data 189 
detection metrics. The addition of LSTM layers did increase the model training time by a factor 190 
of 3x-5x due to the sequential calculations required for this operation. Implementing repeating 191 
residual convolutional layers did not improve performance beyond using a single residual 192 
convolutional layer. The model architecture, specifically the encoder and decoder layers, were 193 
stress tested by systematically reducing the layers and the number of filters so we could 194 
determine the lowest model dimensions, i.e., the lowest number of trainable parameters, before 195 
the results began to degrade. Rectified linear units (ReLUs) were used in many of the tests, but 196 
ultimately changed to a Leaky ReLU activation function which improved the model results. This 197 
suggests previous model designs suffered from vanishing gradients, possible due to the very deep 198 
architecture. A stochastic gradient descent optimizer was tested and produced poorer results than 199 
the Adam optimizer. Model results using a constant learning rate of 10-3 produced nearly 200 
identical results when compared to applying the learning rate schedule. However, without the 201 
scheduler the number of training epochs increased by a factor of 2 without any performance 202 
gains, so the scheduler was adopted.  203 

The largest improvements were realized when testing the addition of multi-head self-204 
attention layers (Vaswani et al., 2017). This is different from previous implementations that use a 205 
restricted width self-attention model to isolate the signal of interest (Mousavi et al., 2020). 206 
Instead, we apply multi-head self-attention to solve multiple attention scores simultaneously and 207 
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isolate the signal of interest without a predefined width parameter. The final model design 208 
contains 2 multi-head self-attention models, each with 4 heads. Including more than 4 heads did 209 
not improve performance. The first attention layer is applied following the encoders and residual 210 
convolutional layer and isolates the high-dimensional waveform representation to include only 211 
the portion of the signal relevant to the earthquake detection. Removing this layer produced 212 
many incorrect earthquake detection probabilities where the background noise would produce 213 
softmax values between 0.1-0.3 instead of being near zero. With the attention layer included, the 214 
softmax probabilities during background noise, with no earthquake present, were almost always 215 
near zero. Implementing a second multi-head self-attention layer prior to the phase arrival 216 
decoder branch increased the ability to isolate the different phases without producing ambiguous 217 
results with multiple peaks in the softmax probability curve. Including multi-head self-attention 218 
layers is found to be very important, but incorporating a sequence of attention layers did not 219 
improve model performance.  220 

Another source of improved performance is the phase arrival decoder branch that 221 
contains the p-wave, s-wave, and noise signal classification in a single softmax probability. The 222 
design allows the use of a weighted categorical cross-entropy loss function, which is found to 223 
greatly increase the predicted probabilities at the arrival times to values near 1 for much of the 224 
validation data, which is quite good for low SNR phase arrivals. The weighting was selected 225 
based on the width of the p- and s-waves (~0.2 s each) within the 1-minute time window. The 226 
same approach is applied to earthquake detection and the weight of the noise signal is set to 25% 227 
assuming a duration of about 15 seconds is common for a small earthquake arrival.  228 

2.1.4 Training, validation, and testing 229 

The final model is trained for 495 epochs and no improvement in the validation data loss 230 
function is observed after 445 epochs (Figure S1). The weighed loss function for the best model 231 
is 0.0019 obtained from a combination of a loss function of 0.028 for the earthquake detection 232 
and 0.0005 for the phase arrivals. The f1-scores for the earthquake detection and phase arrivals 233 
are 0.97 and 0.98, respectively. Sudden improvements are observed in the training metrics which 234 
correspond to the learning rate schedule that decreases at set intervals.  235 

The model is applied to the testing data and evaluated using a softmax threshold of 0.9 236 
for earthquake detection and 0.5 for p- and s-wave phases. A mask is developed with the 237 
earthquake detection probably by making a boxcar function with a 2 second padding window. 238 
This boxcar function is multiplied with the p- and s- phase arrival probability functions to 239 
remove any phase detections that do not correspond to an earthquake detection. Of the 158,000 240 
waveform examples, 133,944 contain p- and s-waves while the others are noise. The model 241 
correctly identifies 98.66% and 98.78% of the p- and s-waves, respectively, within 0.5 seconds 242 
of the true value. The residual pick times indicate most detections are within 0.1 second (10 data 243 
points) of the true value (Figure 2). The mean p-wave residual, reported as the pick time less the 244 
actual time, is -0.02 seconds and the s-wave is -0.01 seconds. Both residuals are negative 245 
indicating the model is picking the arrival time slightly later than the true value, which is an 246 
average of 1-2 data points for this sample rate. The results show 20 false positives for p-waves 247 
and 15 for s-waves. There were 406 false negatives for p-waves and 254 for s-waves. The model 248 
performance is encouraging since the evaluation metrics are set to a high threshold that can be 249 
reduced for network data to increase the number of detections. 250 

 251 
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Figure 2. Histogram (black bars) of detection time residuals for (top) p-waves and (bottom) s-
waves. The gray lines show the expected normal distribution and 1-standard deviation for the 
metrics from each set of residuals. 

Waveform examples for the testing data show precise arrival picks, as expected from the 252 
performance metrics. The model correctly identifies the arrival window and selects a p- and s-253 
wave arrival times of 0.03 and 0.00 seconds, respectively, from the actual arrival time (Figure 254 
3a). For an example with a lower SNR, the model correctly identifies the arrival window and 255 
selects a p- and s-wave arrival time at -0.02 and 0.08 seconds, respectively, from the actual 256 
arrival time (Figure 3b). The 2 examples highlight the ability of the model to correctly identify 257 
the window containing the p-wave to the end of the coda wave for a range of augmented SNR 258 
situations. 259 

 260 
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Figure 3. Model predictions for two examples of different durations and noise levels showing 
the Z, E, and N waveform components in black with the earthquake detection probability in 
red (Z frame), the p-wave in green (E frame), and the s-wave in blue (N frame). The solid lines 
are the model prediction and the dashed line is the training label. (a.) Earthquake waveform 
with duration of 7 seconds from the p-wave arrival to the end of the coda waves. (b.) 
Earthquake waveform with longer duration of 22 seconds from the p-wave arrival to the end of 
the coda waves and a lower SNR.  

Another example demonstrates the model performance when multiple arrivals are 261 
present. The predictions are correct with the testing label, with about a 2 second spacing between 262 
arrivals (Figure 4a). However, when a p-wave arrives concurrently with an s-wave, the model 263 
does not predict the correct p-wave arrival, but does select the s-wave (Figure 4b). The model 264 
correctly identifies the first p-wave but does not estimate the arrival of the second that coincides 265 
with the s-wave. Both s-wave arrivals were correctly identified. 266 
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Figure 4. Examples of detection performance for multiple earthquake arrivals. The earthquake 
detection probability in red (Z frame), the p-wave in green (E frame), and the s-wave in blue 
(N frame). (a.) Two arrivals within 2 seconds are correctly identified for both the arrival 
window and the p-waves and s-waves. (b.) Two arrivals with the second p-wave arriving 
nearly simultaneous to the first s-wave.  

An example of how the model performs when no earthquakes are present is also shown 267 
(Figure 5). The earthquake arrival probability is near zero for the entire time window. Both 268 
examples show a high softmax probability prediction for s-wave arrivals, but since the 269 
earthquake detection window is used as a mask the low probability p-wave and s-wave 270 
predictions will not be reported as false detections. 271 
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Figure 5. Examples of waveforms with no earthquake detections as indicated by the red line at 
zero for the entire 60 seconds. False phase arrival predictions with low softmax probabilities 
are observed for p-waves in panel (a) but not in panel (b). In both examples, the false s-waves 
predictions are observed with a high probability, however, the lack of a coinciding earthquake 
detection window would prevent these to be reported as false detections.  

2.2 First motions polarity 272 

2.2.1 First motions model architecture 273 

The first motion for each vertical component seismic record is determined using a binary 274 
(up or down) classification model. The model input is the p-wave with ±1 second at 100 samples 275 
per second to 2 convolutional layers, each containing 16 filters with a Leaky ReLU activation 276 
function. No pooling or downsampling is applied. The high-dimensional p-wave representation 277 
(size = [200, 16]) is passed to a multi-head self-attention model (4 heads) then a single filter 278 
convolutional layer (size = [200,1]) with a liner activation. The transformed p-wave is passed to 279 
a fully connected neural network containing 50 neurons with a Leaky ReLU activation function 280 
and a binary classification layer using a softmax activation function (Figure 6). The model is a 281 
simple architecture that is designed to harness the multi-dimensional filtering of the 282 
convolutional layers as the input to the attention model. The model contains 16,325 trainable 283 
parameters. The primary assumption is that an up or down classification is always attainable 284 
from the data and no ambiguity from emergent signals is accounted for in the model output.  285 

 286 
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Figure 6. First motion polarity classification model design. The input is a vertical component 
p-wave arrival that is passed through 2 convolutional layers then a self-attention layer that is 
described in Figure 1. Layer descriptions include the number of filters/kernel size. The fully 
connected layers are followed by the number of neurons. 

2.2.2 Training data 287 

We use the first motion training data set procured from the Southern California Seismic 288 
Network (Ross, Meier, & Hauksson, 2018) that contains 2,494,194 vertical component 289 
waveforms with a duration of 6 seconds at 100 samples per second and labeled as up, down, or 290 
undetermined. We use ±1 s around the p-wave arrival as the input (size = [200,1]) and calculate 291 
the SNR. Note, the SNR is available in the meta data, but we recalculate it to ensure consistency 292 
since only 2 seconds of the waveform are used. To mimic the p-wave arrivals obtained from the 293 
earthquake detector model, the arrival time is randomly shifted off-center by an error bound of 294 
±0.1 second. The signal is normalized by the maximum amplitude and no additional filtering is 295 
applied. After training many models with 3 classes and extensive manual waveform inspection, 296 
we decided to discard all waveforms with a SNR <1 to remove many incorrectly labeled 297 
examples. The decision to remove the waveforms with an undetermined label is to prevent false 298 
negative predictions if the model correctly identifies the first motion as up or down, but is 299 
labeled as undetermined which was found during testing. This issue is noted in the original study 300 
that produced the data set (Ross, Meier, & Hauksson, 2018) and we opt to eliminate as many 301 
waveform examples as possible that have the potential of an incorrect label.  302 

For a balanced data set, the training data is split into 768,265 up and 767,735 down labels 303 
for a total of 1,536,000 examples, and the validation is split into 61,643 up and 62,122 down 304 
labels for a total of 123,765 examples. The data is pre-processed and serialized with the 305 
TensorFlow TFRecordDataset module. The Adam optimizer is applied using a learning rate of 306 
1.0e-4 for training. The data set is balanced and no weighting is applied. The batch size is set to 307 
32 per GPU (48,000 batches per epoch) and the training is terminated when the loss function 308 
shows no improvement for 25 epochs. 309 

 310 
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2.2.3 Evaluating the model design 311 

The model architecture is a simple design and systematic testing showed increasing the 312 
model complexity did not improve results. The initial modeling tests included a 3-class 313 
prediction for up, down, and undetermined that included architectures mimicking (Ross, Meier, 314 
& Hauksson, 2018) with a series of convolutional layers passed to a fully connected 315 
classification network. During model training the loss function and f1-score plateau quickly with 316 
no additional improvement gains from hyperparameter tuning. This initial observation prompted 317 
testing of the training data by increasing the SNR and rebalancing the data set with equal 318 
numbers of up, down, and undetermined. The final decision was to remove the undermined 319 
labels since many were found to increase the model loss function by correctly identifying the 320 
first motion. Removing as many incorrectly labeled training data produces a more generalizable 321 
and robust model.  322 

The next suite of models tested, and used for the final model, contain a simplified 323 
encoder design to utilize the self-attention network and isolate the important components in the 324 
signal for classification. The final model contains 2 encoder layers with 16 filters, which was 325 
reduced from 5 layer to determine when training performance decreased. This is followed by a 326 
self-attention layer that is passed to a fully connected network, then to a softmax classification 327 
layer. Utilizing a hidden layer improved performance and increasing the number of neurons 328 
above 50 showed no improvement. The final model has relatively few trainable parameters 329 
(~16k), or <1% when compared to the original network presented in (Ross, Meier, & Hauksson, 330 
2018) that has about 2.4M trainable parameters to obtain very similar testing data metrics. This 331 
demonstrates the performance improvements that are possible when applying a self-attention 332 
network to simplify a classification problem.  333 

2.2.4 Training, validation, and testing 334 

The model is trained for 125 epochs and no improvement in the validation data loss 335 
function is observed after 100 epochs (Figure S2). Model training takes approximately 2 hours 336 
with a single node on the GPU cluster. The best model has a loss function of 0.18 and a f1-score 337 
of 0.94 using the validation data.  338 

The test data contains 2,353,054 examples (Ross, Meier, & Hauksson, 2018) and we 339 
remove the waveforms with an undetermined label. The waveforms are selected as ±1 second 340 
around the p-wave arrival for the input and to calculate the SNR. The distance from the source 341 
and event magnitude are taken from the meta data. The model results are shown for these 3 342 
metrics and all show a higher recall value indicating the false-negative predictions are slightly 343 
less impactful than the false-positives, as shown by the reduction in precision (Figure 7). The 344 
SNR indicates improved precision and recall for values >1 and is consistent with the cutoff SNR 345 
applied in the model training data. At the highest SNR the precision and recall are both 346 
approximately 0.97 with a consistent f1-score. The 3 metrics each decay with distance and events 347 
<10 km show the highest values around 0.9 indicating the SNR, regardless of distance to station, 348 
is more important. When evaluated against the magnitude the results show decreased 349 
performance for events with M<1, most likely due to low SNR at greater distances, and values 350 
that increase up to M2 before decreasing for the high magnitudes events. At higher magnitudes 351 
one might expect increased performance, however, this does not account for the increased 352 
number of stations detecting first motions at larger distances, which are shown to have reduced 353 
performance. Overall, the results indicate the model is successfully identifying the first motions 354 
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and the choice to force the model to classify as up or down without an undetermined option is 355 
sufficient when applying additional constraints on the required information to constrain a robust 356 
focal mechanism (Uchide, 2020).  357 

 358 

 
Figure 7. Precision, recall, and f1-score curves for the first motion polarity test data shown as 
a function of signal-to-noise ratio (SNR), distance, and earthquake magnitude. 

3 Application to data from southern Kansas 359 

3.1 Seismic waveform data 360 

Harper and Sumner counties in southern Kansas are the location of increased seismic 361 
activity in recent years due to the deep-injection hydrocarbon-production-activities in the 362 
Arbuckle formation. Daily seismic waveforms are obtained for 19 stations (Table S1) deployed 363 
by the U.S. Geological Survey (Rubinstein et al., 2018). The initial monitoring began in mid-364 
2014 and included 5 accelerometers. The network expanded in 2015 with broadband and 365 
accelerometer sensors operating until mid-2019. Here we utilize 2 accelerometers and all 366 
broadband data from 17 stations in the GS and OK networks that coincide with previous studies 367 
(Cochran et al., 2018; Rubinstein et al., 2018). The daily records are more complete for the GS 368 
stations and many temporal gaps are in the OK network data (Figure S3). The analysis used 369 
26,976 daily waveforms to develop a seismicity catalog for about 5 years in southern Kansas. 370 

3.2 Continuous waveform processing 371 

The continuous waveforms are applied to the processing workflow to build detection and 372 
arrival tables used for developing the event and focal mechanism catalog (Figure 8). The 373 
waveforms are preprocessed to obtain 3-component daily waveforms compatible with the deep 374 
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learning models. The stations in the GS network are recorded at 200 samples per second and are 375 
resampled to 100 samples per second. The accelerometer data is integrated to obtain velocity. A 376 
1 Hz highpass filter is applied to all data. If a daily trace is not complete, gaps are filled with 377 
zeros to produce 3 traces with an equal number of points. The model input uses 1-minute 378 
windows with a 30 second overlap to avoid edge effects.  379 

The normalized waveforms and corresponding short-time Fourier transform amplitude 380 
spectrum are input to the phase detection model. The model outputs 2 sets of softmax probability 381 
vectors describing the earthquake detection and the phase arrivals times. The overlapping 382 
windows are removed by averaging the softmax outputs, which are equal except for the tapered 383 
ends of the waveforms. The onset of an earthquake detection is set to a softmax probability 384 
threshold of 0.3 and extents until a value of 0.05 is observed. This selection is based on setting a 385 
low threshold to allow removal of detections during postprocessing. The onset and offset 386 
detection times are extended by 1 second and used to produce a boxcar function [0,1] that is 387 
applied as a mask to the phase arrival model softmax probabilities. This restricts all phase 388 
arrivals selected to be within a window of high probability of an earthquake in the waveforms. 389 
The 1 second padding allows for the increasing probability of the p-wave arrivals, which is 390 
coincidental with the onset time, and not removing it with the mask. A threshold of 0.3 for p-391 
waves and 0.3 for s-waves is applied for the phase arrival probabilities. If the softmax probability 392 
exceeds the threshold, the maximum value in the earthquake detection window is recorded. 393 
Multiple arrivals within an arrival window are limited to a minimum of 2 second separation, this 394 
follows the criteria used to produce the training data. All p-waves detected are passed to the first 395 
motion polarity model. The processing produces 13,704,495 phase arrivals containing 5,439,700 396 
p-waves and 8,264,795 s-waves for the 19 stations in the ~5-year period. The arrival times are 397 
stored in a data table and additional metrics are collected from the waveforms for post-398 
processing analysis. Additionally, the p-wave and s-wave waveforms are saved using ±1 second 399 
around the arrival times.  400 
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Figure 8. Processing workflow to apply continuous waveforms to deep learning models, build 
a detection table with waveform metrics, associate arrivals into event table, and develop 
catalog. 

3.3 Earthquake locations and focal mechanisms 401 

The phase detections are associated to event arrivals using a modified implementation of 402 
the PhaseLink neural network algorithm (Ross et al., 2019). This is an important processing step 403 
to obtain reliable locations and the neural network method shows much improved performance 404 
when compared to grid search algorithms (Ross et al., 2019). The model is trained using 10M 405 
synthetic phase arrival examples that are calculated for the geometry of the 19 stations using 406 
travel times from a 1D velocity model (Rubinstein et al., 2018). The model is trained for 100 407 
epochs and the epoch with the lowest loss function is selected to perform the associations. Event 408 
association requires a minimum of 5 arrivals with the criteria of a minimum of 3 p-waves, with 2 409 
stations having a corresponding s-waves at the same station. The arrivals are back projected to a 410 
preliminary location, the association procedure is then repeated with a 2 second tolerance for 411 
arrival times in the detection table. A minimum of 5 arrivals is required for a final set of 412 
associated arrival times, but the majority of events have more than 10 arrivals.  413 

Event locations are calculated using NonLinLoc (Lomax et al., 2000) to implement a 414 
probabilistic earthquake location search procedure with a 1D velocity model . The grid search 415 
depth is set to a minimum of 2 km to eliminate events locating at the surface and extends to a 416 
200 km square. The region is set between -98.4˚to -97.1 and 36.6˚to 37.45˚ for a catalog of 417 
32,844 events (Figure 9a). These locations are used with the GrowClust relocation algorithm 418 
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(Trugman & Shearer, 2017). Waveform cross correlations are performed for p- and s-wave phase 419 
arrivals using up to 1,000 events within 10 km that have a correlation coefficient ≥0.5 at a 420 
minimum of 4 stations. The waveforms are filtered between 2-8 Hz and a spline interpolation is 421 
implemented to subsample the waveforms to 1000 samples per second for increased resolution in 422 
the temporal shift to obtain the maximum correlation value (Trugman & Shearer, 2017). The 423 
procedure relocates 12,749 (~39%) events in the catalog. Manual inspection of waveforms for 424 
events not relocated show p-wave and s-wave arrivals with the appropriate moveout, but the 425 
correlations with other events is not sufficient to relocate.  426 

The results for the region of interest between -98.15˚to -97.50˚ and 37.00˚to 37.35˚ shows 427 
widespread seismic activity comprising 19,015 events (Figure 9a), with 8,974 relocatable (Figure 428 
9b). The number of relocated events between 2014-2016 is double the number in the catalog 429 
produced by Rubinstein et al. (2018). With that catalog, Cochran et al. (2018) applied matched 430 
filtering to increase the number of events by an order of magnitude, and applied the template 431 
location to the matched event for a detailed temporal analysis of seismicity. The technique 432 
applied here detects new earthquakes in areas not previously showing activity and allows a 433 
spatiotemporal analysis of the events.  434 

The remarkably widespread seismicity shown in Figure 9a has not previously been 435 
detected in this region, and suggests much of the upper crust has been stressed to failure due to 436 
fluid injections. The highest concentration of activity occurs in similar zones defined by 437 
Rubinstein et al. (2018), but a much more distributed pattern of activity is shown for the entire 438 
region. Injection wells documented by the Kansas Geologic Survey are located throughout the 439 
region, with the largest number in the southeast, many of which are injecting at much higher 440 
volumes than the average. The most active period is throughout 2015 and event numbers steadily 441 
decrease in the following years as injection volumes are reduced (Rubinstein et al., 2018). The b-442 
value is between 0.9-1.1 for the catalog duration. The magnitude of completeness for all events 443 
in the study area is Mc1.4 and is consistent through the duration of the catalog (Figure S4). 444 
However, the local magnitude estimate is obtained by the peak waveform amplitude using the 445 
default parameters in the NonLinLoc software package and inconsistencies are expected if 446 
compared with other microseismicity catalogs that apply specific station corrections or other 447 
magnitude estimation methods (Shelly et al., 2021).  448 

 449 
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Figure 9. (a) Seismicity is shown by circles colored by depth for the entire area that extends 
from northern Oklahoma to Harper and Sumner counties in southern Kansas. Inverted black 
triangles are the seismic sensors. The moment tensors are the U.S. Geological Survey solutions 
for the M4.3 on 02 October 2014 and the M4.9 on 12 November 2014. The black dashed 
rectangle shows the region of interest in southern Kansas as shown the in the lower panel. (b) 
Relocated seismicity in the region of interest with events shown by circles colored by depth.  
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Focal mechanisms are calculated with the HASH algorithm (Hardebeck & Shearer, 2002) 450 
using the first motions determined during the waveform processing. A minimum of 8 polarities 451 
are required and the maximum azimuthal gap and takeoff angle gap are set to 120˚ and 70˚, 452 
respectively. A Monte Carlo procedure using 500 iterations is implemented to perturb the event 453 
depth, and therefore the take-off angle, to obtain a suite of acceptable solutions and report the 454 
average focal mechanism strike, dip and rake. The catalog contains 1,980 focal solutions for the 455 
region of interest with 202 A quality, 485 B quality, 799 C quality, and 494 D quality.  456 

The increased number of focal mechanisms provide information about the stress 457 
orientation throughout the region of interest (Figure 10). Results are shown using quality A, B, 458 
and C solutions (N=1,486) and consist results are found when using only A and B quality 459 
solutions. The mechanisms are divided using a 0.0333˚ (3.7 km) grid to perform a normalized 460 
stress tensor inversion with the SATSI software package (Hardebeck & Michael, 2006). At each 461 
location the 30 best focal solutions are selected and a minimum of 12 are required to include in 462 
the inversion. The tensor shape is used to describe the expected fault type (Simpson, 1997). The 463 
results show a stress environment with oblique normal and strike-slip faulting trending east-464 
northeast and is consistent with previous observations (Rubinstein et al., 2018; Skoumal et al., 465 
2021), but with improved spatial resolution and high concentrations of focal mechanisms in 466 
active regions allowing more detailed investigations.  467 

 468 

 
Figure 10. Focal mechanisms (N=1,486; quality A, B, and C) using the relocated catalog are 
shown in gray scale by depth. The SHmax orientation is shown with as a bar with the color 
indicating the expected slip from the shape of the stress tensor. The two moment tensors are 
the U.S. Geological Survey solutions for the M4.3 on 02 October 2014 and the M4.9 on 12 
November 2014 and colored using the same scale for expected slip. The inverted black 
triangles are the seismic station locations and the black circles are the location of injection 
wells, with solid black indicating a high-volume well.  
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4 Discussions 469 

4.1 Deep learning model improvements 470 

The deep learning models developed here are rigorously tested to simplify the design for 471 
maximum performance. For the earthquake phase detection, we determined how to increase the 472 
information input to the model while reducing the total number of trainable parameters. 473 
Similarly, for the first motion polarity we developed a very simple model that performs at the 474 
same level as the original design. Two points motivate these efforts to refine models to minimum 475 
complexity for maximum performance. The first is to start moving towards explainable machine 476 
learning models (Gunning et al., 2019) that provide information to the end-user describing why a 477 
model decision was made. Systematic tests are needed to see how different models interpret 478 
weak ground motion signals from different training data sets or real-world scenarios. A logical 479 
application is real-time networks (Yeck et al., 2020), where having more information provided to 480 
the user when making automated decisions would be useful. The second point is related to real-481 
time monitoring using edge computing (Chen & Ran, 2019) to make decisions in the field. This 482 
second point is directly applicable to earthquake early warning efforts (Li et al., 2018). These 483 
considerations will increase the interpretability of model decisions and allow deployment onto a 484 
range of sensors without the loss of performance.  485 

Training data is a critical component for all deep learning models and consensus from the 486 
seismology community on a set of benchmark standards is not currently in practice. For example, 487 
3 comprehensive data sets available each use different signal length and sample rate; 60 seconds 488 
at 100 samples per second (Mousavi, Sheng, et al., 2019), 27 seconds at 20 samples per second 489 
(Magrini et al., 2020), and 60 seconds and 40 samples per second (Yeck et al., 2020). This 490 
results from research centers having recording rates appropriate from their network processing. 491 
Different network operations have varying performance standards with respect to real-time 492 
processing for global detection or local to regional events. These differences are expected for 493 
different networks but impactful when designing a training data set. Additionally, the detection 494 
model design needs to be crafted for the data-input and model-output most applicable to the task. 495 
This will be different for real time processing (Yeck et al., 2020) versus exploratory research as 496 
presented in this study. The detection model developed here uses the STEAD data set (Mousavi, 497 
Sheng, et al., 2019), which contains about 300,000 examples of waveform noise. Efforts to detect 498 
very low SNR signals in non-optimal environments will require novel data sets containing a 499 
variety of noise signals. Many natural and anthropogenic processes produce weak ground 500 
motions (e.g., De Angelis & Bodin, 2012; Inbal et al., 2018; Johnson, Meng, et al., 2019; Meng 501 
et al., 2019; Meng & Ben‐Zion, 2018; Qin et al., 2019) that can obscure microseismicity and 502 
contains energy in similar spectral bands. Development of a comprehensive collection of non-503 
tectonic noise signals that is specifically designed to mimic earthquake signals will further the 504 
effort to produce a generalized phase detection model applicable to any environment. 505 

The first motion polarity training data is reduced to only the high SNR waveforms to 506 
ensure correct training labels for an up or down decision (Uchide, 2020). Deep learning models 507 
with very deep architectures have been developed using synthetic data for a specific network 508 
geometry to predict the focal mechanisms directly from the waveforms (Kuang et al., 2021). This 509 
approach is similar to the phase arrival association model here. Our implementation is more 510 
generalized and provides the flexibility to determine the appropriate thresholds, e.g., azimuthal 511 
coverage or number of misfit polarities, when calculating focal mechanisms for a catalog with 512 
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precise locations already determined. Community standards, e.g., duration and sample rate, and a 513 
comprehensive benchmark data set is still needed for first motion polarities.  514 

4.2 Building the enhanced seismicity catalog  515 

The workflow developed here is designed to facilitate the processing of continuous 516 
seismic waveforms at any location, and to study microseismicity and fault structure orientation 517 
inferred from focal mechanisms. Efforts to perform detections and event associations 518 
simultaneously still require applying a location algorithm and precise relocations (Zhu et al., 519 
2022). The approach implemented here is designed to be flexible and obtain the maximum 520 
amount of information from the waveforms during the data processing and build a 521 
comprehensive detection table. The processing workflow is designed for multiprocessing and 522 
functions with multiple GPU’s for rapid processing of large data sets. Building the detection 523 
tables is only performed once using the lowest threshold needed in the subsequent processing 524 
steps, so the continuous waveforms are only passed through the model one time. The required 525 
disk storage for a very large detection table with phase arrival waveforms is negligible when 526 
compared to the complete set of network waveforms and allows rapid postprocessing without 527 
opening the waveform files. To make the detection table applicable to any location requires 528 
training a neural network phase associator with synthetic data for a network geometry of intertest 529 
to obtain good event associations from the detections. The model training is straight-forward and 530 
allows adding and removing station locations, and adjusting the velocity structure for the area of 531 
interest. This workflow allows complete control over the number of detections for an event, the 532 
number of collocated p- and s-wave arrivals, and multiple tunable thresholds, e.g., distance, 533 
softmax probability, etc., to build an arrival table. The choice of the PhaseLink associator and 534 
NonLinLoc location algorithm is applied here, but the detection tables can be applied to any 535 
existing or new algorithms. 536 

5 Conclusions 537 

The accuracy of earthquake phase arrival detection and determining the first motion 538 
polarity has greatly improved with the application of deep learning as a signal processing tool. 539 
Three models are designed and trained to detect microseismicity phase arrivals, predict the first 540 
motion polarity for all p-waves, and associate the detections into event arrival tables. Extensive 541 
testing is performed to ensure all layers in the deep learning models are contributing to the 542 
outcome. Both models implement convolutional filtering to a high-dimensional space and a 543 
multi-head attention layer. The models contain many fewer trainable parameters than comparable 544 
designs and performs with high accuracy. The detection models have a -0.024 second and -0.011 545 
second average residual for the p- and s-wave arrivals, respectively, for the testing data. The first 546 
motion polarity model performs well and the best results are found for the highest SNR signals. 547 
The models are implemented in an efficient processing algorithm to utilize multiple CPU’s and 548 
GPU’s for rapid processing of continuous daily waveforms to build a detection table. The 549 
workflow is applied to data from continuous waveforms recorded by a temporary deployment of 550 
sensors in southern Kansas. The phase association model is trained with synthetic data for the 551 
seismic station network geometry for the region of interest. The associated events are located, 552 
then a double-difference relocation is performed. The first motion polarity of the arrivals is used 553 
to build a focal mechanism catalog. The catalog results show previously undetected widespread 554 
activity throughout southern Kansas with more than double the number of events in the first 3 555 
years than previously reported.  556 
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Figure S1. Earthquake detection model training loss function metrics. Black curve is the 
training data metric and the gray curve is for the validation data. The vertical black 
dashed line is epoch 445 with the lowest validation loss function value. 
 

 

Figure S2. Polarity model training loss function and F1 score. Vertical dashed line is at 
epoch 100 with the lowest validation data loss value and no improvement is observed for 
25 epochs. 
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Figure S3. Waveform data available from 2014 to 2020 for the 17 broadband and 2 
accelerometer stations used from the GS and OK networks. The left axis shows the 
network and station with the total number of daily files listed in the right axis. This 
includes days with missing data but a waveform record does exist for that day. 
 

 

 

Figure S4. Moving window magnitude of completeness and b-value.  
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KAN01 37.15342 -97.75897 
KAN05 37.10865 -97.87228 
KAN06 37.24800 -97.85860 
KAN08 37.22672 -97.97094 
KAN09 37.13613 -97.61832 
KAN10 37.12350 -98.09513 
KAN11 37.20596 -97.91330 
KAN12 37.29738 -97.99800 
KAN13 37.01288 -97.47780 
KAN14 36.95682 -97.96302 
KAN16 37.22561 -98.06471 
KAN17 37.04407 -97.76475 
KS20 37.22973 -97.55432 
KS21 37.28649 -97.66302 
OK32 36.80382 -98.21041 
BLOK 36.76061 -97.21502 
GC02 36.85150 -97.85959 
GORE 36.78563 -97.94706 
KAN02 37.19797 -97.87939 

Table S1. Station identifier and geographic location. 
 

Data Set S1. Seismicity catalog in Growclust output format for study area shown in 
Figure 8.  

Data Set S2. Focal mechanism catalog for study area shown in Figure 10.  

Movie S1. Animation showing the map view, longitude vs. depth, and latitude vs. depth 
for the study area.  


