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Abstract19

We introduce the concept of ‘symbiotic’ ocean modeling where high- and low-resolution20

dynamical models coexist and benefit from each other through data-driven improvements.21

In this work we specifically focus on how a low-resolution model may benefit from such22

a symbiotic setup. The broader aim is to improve the efficiency of high-resolution mod-23

els, while simultaneously enhancing the representation of unresolved processes in low-24

resolution models. To achieve a symbiosis we use a grid-switching approach together with25

hybrid modeling techniques that combine linear regression-based methods with nonlin-26

ear echo state networks (ESNs). The approach is applied to both the Kuramoto–Sivashinsky27

equation and a single-layer quasi-geostrophic ocean model, and shown to simulate short-28

term and long-term behavior better than either purely data-based methods or low-resolution29

models.30

Plain Language Summary31

Models of the ocean vary in complexity. Some are very detailed and manage to show32

oceanic vortices, whereas others are very efficient but coarse, and unable to compute such33

vortices. The idea in this paper is to let these different model types work together, as34

if in a symbiosis. With knowledge of differences between the detailed and coarse model35

we can use machine learning techniques to improve the coarse model, while a coarse model36

can be used to aid a detailed model computationally. Here we focus on the former part37

and perform numerous experiments to test different kinds of coarse model improvements.38

We apply our ideas to the Kuramoto–Sivashinsky (KS) model and a quasi-geostrophic39

(QG) ocean model, where we show that promising short-term KS results may general-40

ize to models of the ocean. Long-term equilibrium experiments with QG show in addi-41

tion how the correction strategies let a coarse model produce correct flow properties, where42

standalone physics- or data-based approaches fail.43

1 Introduction44

One of the most important spatial scales in the ocean circulation is the internal Rossby45

radius of deformation LD; it ranges from 50-100 km at midlatitudes to a few km in the46

polar regions (Hallberg, 2013). At this scale, perturbations are amplified on mean flows47

through mixed barotropic/baroclinic instability, giving rise to ocean eddies. Interactions48

between these eddies and the mean flow can lead to upgradient momentum transport49

affecting the strength and separation of ocean western boundary currents such as the Kuroshio50

and Agulhas (Chassignet et al., 2020).51
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Most climate models, in particularly those used in CMIP5 and CMIP6, do not re-52

solve ocean processes at the scale LD as the spatial grid size used is too large, e.g. typ-53

ically 1◦ (Eyring et al., 2016). The main reason is computational costs, as doubling the54

horizontal resolution increases these costs roughly by a factor 10. Effects of subgrid-scale55

processes are hence parameterized in these models. For example, the effect of ocean ed-56

dies on tracer transport is represented by the Gent–McWilliams (Gent et al., 1995) scheme,57

but such a scheme cannot capture, for example, the upgradient momentum transport.58

Hence, western boundary flows are too weak and diffuse, and do not separate at the cor-59

rect location (Chassignet et al., 2020).60

Over the last few years, first simulations have been performed with global climate61

models, where the ocean model component has a resolution of 0.1◦, which is smaller than62

LD for many locations on the globe (Chang et al., 2020; Jüling et al., 2021). We will re-63

fer to those models as high-resolution (HR) models to contrast them with the 1◦ mod-64

els which we will call low-resolution (LR) models. But also the high-resolution models65

are not completely eddy-resolving as this requires an even higher spatial resolution. There66

is now a substantial amount of model data available to compare results on ocean-climate67

variability and climate change for both types of models. Clearly, high-resolution mod-68

els reduce biases compared to observations particularly in western boundary currents,69

sea surface temperature variability patterns and Southern Ocean mean flows (Chang et70

al., 2020; Jüling et al., 2021).71

However, HR model simulations form a great drain on computational resources and72

hence there are still many efforts to represent the effects of unresolved processes in LR73

models. This parameterization process has been around for decades and approaches can74

be grouped into three types. First, semi-empirical parameterizations are used, where ob-75

servation motivated schemes are implemented (Gargett, 1989; Viebahn et al., 2019). Sec-76

ond, theoretically derived schemes, where specific approximations are made in the un-77

derlying equations (Gent et al., 1995) have been used. Third, stochastic schemes derived78

from sample high-resolution model simulations (Berloff, 2005; Mana & Zanna, 2014) have79

shown potential in representing unresolved processes in LR models (Hewitt et al., 2020).80

To this, recently a new approach has been added, where the subgrid-scale model81

is derived from a machine learning (ML) model, such as a neural network. In Bolton &82

Zanna (2019), a convolutional neural network (CNN) was trained with data from a high-83

resolution model of the midlatitude gyres. This CNN was shown to successfully capture84

the small-scale processes and the effects of those on the mean flow in the low-resolution85

version of the same model. Traditional feedforward neural network models (FFNN) have86

also been used as subgrid-scale representations in both ocean and atmospheric models87
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(Irrgang et al., 2021; Rasp et al., 2018). Another ML technique that shows promise in88

the modeling of climate physics is the reservoir computing approach, often referred to89

as an echo state network (ESN). An ESN is a type of recurrent neural network (RNN)90

that is especially suited to simulate chaotic dynamics (Jaeger & Haas, 2004; Pathak et91

al., 2017) and is shown to be capable of emulating EOF interactions (Nadiga, 2021). Where92

FFNNs are generally regarded as functions, RNNs can be seen as artificial dynamical93

systems (Lukoševičius & Jaeger, 2009). Computationally there are close relations be-94

tween ESN-based methods, linear regression and models based on a dynamic mode de-95

composition (DMD) (Schmid, 2010; Kutz et al., 2016). Theoretical connections between96

the ESN approach, DMD and also vector autoregression (VAR) have been explored in97

Bollt (2021).98

Recent ‘hybrid’ (or physics-controlled) ESN advances (Pathak et al., 2017, 2018)99

provide an elegant approach to correct known model imperfections, such as those due100

to the lack of eddies in LR ocean models. With training data based on ground truths101

and imperfect model predictions, model tendencies and nonlinear model mismatches are102

encoded in an ESN. The result is an artificial dynamical system that can be controlled103

using an imperfect model. Combining an imperfect model with corrections from a trained104

ESN creates a hybrid dynamical system that greatly outperforms both the network and105

the imperfect model (Wikner et al., 2020). This approach was recently applied to an at-106

mospheric model (SPEEDY) and shown to be able to improve the simulations of mean107

flow and variability considerably on short time scales (Arcomano et al., 2022).108

In this paper we use the hybrid modeling framework as key ingredient for a ‘sym-109

biotic’ ocean modeling approach. The idea is to couple models of different complexities110

and configure them to solve the same problem, where we distinguish between perfect and111

imperfect models in terms of differing resolution and parameterizations. This model co-112

existence can be made mutually beneficial using data-driven techniques. With the sym-113

biotic approach we aim to improve the computational efficiency of HR models, while si-114

multaneously enhancing the parameterizations of unresolved processes in LR models. We115

will focus on the latter part and use the hybrid modeling strategy with data generated116

from both LR and HR models to correct imperfect model transients. Model corrections117

made can then be seen as modeling subgrid effects. To this end, we employ a grid-switching118

approach and introduce a correction framework that includes models based on linear re-119

gression, DMD, ESN and hybrid variants (Section 2). We apply the correction strategy120

to coupled LR and HR versions of the Kuramoto–Sivashinsky equations (Section 3) and121

a single-layer quasi-geostrophic ocean model (Section 4). Both short-term predictions122

and long-term equilibrium runs are performed with the ocean model to compare the avail-123
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able corrective models. A summary and discussion with the main conclusions is provided124

in Section 5.125

2 Methodology126

In a general framework, the HR model is defined on a fine grid Ωf and is regarded127

as a perfect model. An LR model is considered as an imperfect model, and is defined on128

a coarse grid Ωc. The grids Ωf and Ωc have dimensions Nf and Nc, respectively, and129

cover the same domain. Both models attempt to solve the same problem, but apart from130

different grids we also allow differences in key parameters and forcings between the per-131

fect and imperfect model. The physics resolved by the perfect model is then used as ground132

truth and the imperfect model results are considered to be in need of correction.133

The perfect model is a system of coupled partial differential equations (PDEs), spa-134

tially discretized on Ωf , which leads to a large system of differential-algebraic equations135

(DAEs):136

MP ξ̇ = FP (ξ), with ξ ∈ RNf . (1)137

Here, ξ = ξ(t) is a time dependent state vector and MP ∈ RNf×Nf is a mass matrix138

that determines the dependence on temporal derivatives. The nonlinear operator FP :139

RNf → RNf is a spatial discretization of the perfect model physics. Similarly, the semi-140

discretized imperfect model has a coarse state x = x(t) that evolves according to141

MI ẋ = FI(x), with x ∈ RNc , (2)142

where MI ∈ RNc×Nc and FI : RNc → RNc are again the mass matrix and spatial dis-143

cretization operator. For simplicity we only consider models in this form (equations (1)144

and (2)), but the methodology explained here is not restricted to this formulation.145

Transfers between the solutions on the two grids Ωf and Ωc are made through a146

fully weighted restriction R ∈ RNc×Nf and a prolongation operator P ∈ RNf×Nc . We147

choose these operators for their convenient (variational) property that they are each other’s148

transpose up to a constant factor: R = cP⊤ (Briggs et al., 2000). The perfect model149

evolves according to ϕP : R × RNf → RNf . Similarly, the evolution of the imperfect150

model is given by ϕI : R×RNc → RNc . The evolution operator ϕI solves for the tran-151

sient state x̃k+1 according to a certain time-discretization and hence x̃k+1 = ϕI(x
k).152

The imperfect spatial discretization FI is incapable of capturing the physics resolved153

by the perfect model and we therefore attempt to improve the imperfect evolution ϕI154

with a combination of linear and non-linear corrections. We employ an auxiliary (sur-155

rogate) model f with auxiliary state s ∈ RNr of size Nr, that is forced by imperfect and156
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improved predictions. As these corrections are data-driven we divide our approach into157

a data gathering and a prediction phase.158

2.1 Data gathering159

We gather data from a trajectory of ξ(t) on Ωf . From this transient, associated160

restricted states, imperfect predictions and auxiliary states are computed. Starting at161

time t0, we collect NT + 1 snapshots of the evolving state ξ(t):162 {
ξ0, ξ1, . . . , ξNT

}
, ξk = ξ(t0 + k∆t), (3)163

at fixed time intervals ∆t such that we cover the model time T = NT∆t. The snap-164

shots are restricted to the coarse grid and combined into two data matrices:165

X =
[
x0, x1, . . . , xNT−1

]
=

[
Rξ0, Rξ1, . . . , RξNT−1

]
, (4)166

X
′

=
[
x1, x2, . . . , xNT

]
=

[
Rξ1, Rξ2, . . . , RξNT

]
. (5)167

Apart from the restricted data matrix X ∈ RNc×NT and its shifted version X
′ ∈ RNc×NT ,168

we also create a collection of imperfect predictions Φ (X):169

Φ (X) =
[
ϕI

(
x0

)
, ϕI

(
x1

)
, . . . , ϕI

(
xNT−1

)]
∈ RNc×NT . (6)170

The elements of X and Φ(X) serve as forcing to the auxiliary model f , which we evolve171

and gather snapshots from. We iterate according to172

uk = h
(
xk, ϕI

(
xk

))
, (7)173

sk+1 = f
(
sk,uk

)
, (8)174

with combined input u given by a mapping h and with initialization s0 = s0 at t =175

t0. For h we either use a selection, e.g. h
(
xk, x̃k+1

)
= xk or combine the forcing such176

that h
(
xk, x̃k+1

)
=

(
xk; x̃k+1

)
, where ( ; ) denotes vertical stacking. These are the177

most straightforward choices and of course other options are possible here. The surro-178

gate model f comes in the form of an Echo State Network (ESN) and is described in Sec-179

tion 2.3. From the evolution of f we gather NT+1 state snapshots s0, . . . , sNT and com-180

bine them into a data matrix, with the exception of the initialization s0:181

S =
[
s1, s2, . . . , sNT

]
∈ RNr×NT . (9)182

2.2 Prediction183

The data gathered up until time t = t0+T is used to obtain linear best fit oper-184

ators. Given data X, X
′
, Φ(X) and S, these operators optimally combine x, ϕI (x) and185
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s to improve the imperfect evolution given by ϕI alone. Here we provide a general tran-186

sient strategy that covers a number of different corrective methods.187

A corrected imperfect transient is started at t0 + T . Now, the models ϕI and f188

operate in isolation from any perfect model data and f augments ϕI . Using starting states189

xNT and sNT , the transient proceeds as follows:190

x̃k+1 = ϕI
(
xk

)
create an imperfect model prediction, (10)191

uk = h
(
xk, x̃k+1

)
construct a forcing, (11)192

sk+1 = f
(
sk,uk

)
evolve the auxiliary state, (12)193

xk+1 = Axk +Bx̃k+1 + Csk+1 create an improved prediction, (13)194
195

for k = NT , NT+1, . . .. Hence the trajectory of x is initialized with a restricted truth196

(xNT = RξNT ) but continues independently of the perfect model (xNT+1 ̸= RξNT+1).197

With the general formulation in (10)-(13) we aim to include several methods and198

their combinations in the same framework. The operators A,B,C have separate inter-199

pretations. On its own, A is obtained as a linear best fit of the propagation from X to200

X
′
. Its eigendecomposition is known as a dynamic mode decomposition (DMD) (Schmid,201

2010; Kutz et al., 2016) and A is often called a DMD-operator. The matrix B is the best202

direct correction of Φ(X) to X
′
in the least squares sense. Lastly, as f is a neural net,203

the operator C is the optimal output layer, i.e., the linear best fit translation of S to X
′
.204

Hence these different methods can be seen as special cases in (10)-(13).205

Combinations of the operators A,B and C are fitted at t = t0 + T using regu-206

larized linear regressions with the data matrices X, X
′
, Φ(X) and S. Choices for the ar-207

chitecture of f and h and the use of operators A,B,C lead to a variety of predictive meth-208

ods (Table 1). A model only approach uses B = I and ignores A and C. The transient209

(10)-(13) is reduced to only the imperfect model evolution. In an ESN prediction we trans-210

late from states of the neural net (ESN) to predictions using a best fit C. Here, f is forced211

with restricted states only: xk. A DMD prediction is based on the best linear approx-212

imation of the propagation from X to X
′
. When the operators B and C are combined213

and uk =
(
xk, x̃k+1

)
, the auxiliary model f is subjected to a physics-based control ϕI (x),214

both internally through u and externally through B. With f an ESN this is referred to215

as ESNc, which is equivalent to the hybrid scheme in Pathak et al. (2018). DMDc de-216

notes DMD with control (Proctor et al., 2016) and is obtained by combining operators217

A and B. In DMDc the imperfect physics assist the DMD model which, on its own, gen-218

eralizes poorly outside the training data. A basic correction-only approach follows from219

using only B, whereas additional combinations lead to the varieties ESN+DMD and ESN+DMDc.220
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Table 1: Overview of corrective methods based on operator configurations in (13). The

associated minimizations are linear regression problems for which we do not include the

regularization here; || ||F is the Frobenius norm. Additional variations on these methods

rely on the specific architecture chosen for h and f . The choices we make for h are added

as a separate column to this table.

Method h
(
xk, x̃k+1

)
Operator choices Minimization to compute operators

Model only A = 0, B = I, C = 0 No minimization necessary

ESN xk A = 0, B = 0, C =? min
C

∥∥∥CS −X
′
∥∥∥
F

DMD A =?, B = 0, C = 0 min
A

∥∥∥AX −X
′
∥∥∥
F

ESNc

 xk

x̃k+1

 A = 0, B =?, C =? min
[B C]

∥∥∥∥∥∥∥∥
[
B C

]Φ(X)

S

−X
′

∥∥∥∥∥∥∥∥
F

DMDc A =?, B =?, C = 0 min
[A B]

∥∥∥∥∥∥∥∥
[
A B

] X

Φ(X)

−X
′

∥∥∥∥∥∥∥∥
F

Correction-only A = 0, B =?, C = 0 min
B

∥∥∥BΦ(X)−X
′
∥∥∥
F

ESN+DMD xk A =?, B = 0, C =? min
[A C]

∥∥∥∥∥∥∥∥
[
A C

]X
S

−X
′

∥∥∥∥∥∥∥∥
F

ESN+DMDc

 xk

x̃k+1

 A =?, B =?, C =? min
[A B C]

∥∥∥∥∥∥∥∥∥∥∥
[
A B C

]


X

Φ(X)

S

−X
′

∥∥∥∥∥∥∥∥∥∥∥
F

Connections between ESNs and DMD exist (Bollt, 2021) and within this framework it221

is straightforward to combine (and consequently isolate) both approaches.222

The minimizations shown in Table 1 are computed using Tikhonov regularization,223

which introduces an additional penalty on the size of the fitted operator. Regularization224

is crucial as it reduces overfitting and improves the stability of a long-term transient (Luko-225

sevicius, 2012). For instance, the DMD-operator actually minimizes226

min
A

(∥∥∥AX −X
′
∥∥∥
F
+ λ2

∥∥∥A∥∥∥
F

)
, (14)227

with λ > 0 a regularization parameter.228
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2.3 Echo State Network229

An echo state network (Jaeger, 2001; Jaeger & Haas, 2004) will act as the auxil-230

iary predictive model f . Here we will roughly outline the organization of an ESN. For231

a detailed explanation we refer to Pathak et al. (2018), which we follow closely. An ESN232

is a recurrent neural network that can be viewed as an artificial nonlinear dynamical sys-233

tem with a state s ∈ RNr of sufficient dimension Nr. The components of s interact through234

a sparse, random linear operator W : RNr → RNr that is not altered after initializa-235

tion. The average degree of the adjacency graph associated with W is denoted with d.236

Input data u ∈ RNu is standardized (every unknown has zero mean and unit variance)237

and is fed as forcing to the system, where it is combined with the state using a fixed lin-238

ear operator Win : RNu → RNr . The input operator Win is random and sparse, with239

only a single element per row that is drawn from a uniform distribution on [−1, 1]. The240

internal state evolves according to241

sk+1 = f(sk,uk) = (1− α)sk + α tanh
(
W sk +Winu

k
)
, s0 = s0 (15)242

with initialization s0 and a relaxation parameter α ∈ (0, 1] (also known as the leaking243

rate) that controls the ‘speed’ of the artifical dynamics (Lukoševičius & Jaeger, 2009).244

Hence the state s evolves according to a deterministic iteration with internal interactions245

given by a random (but fixed) W and forcing provided by the input data. The tanh(·)246

activation function introduces a nonlinearity that is controlled by the weights in Win.247

The spectral radius ρ(W ) determines the damping (or memory) of the system. From (15)248

it is apparent that α allows a matching of time-scales between the network and the vari-249

ability in the training data, which is beneficial to the network’s predictive performance250

(Lukoševičius & Jaeger, 2009). The addition of the relaxation parameter α is the only251

significant difference between our formulation of f and that in Pathak et al. (2018).252

Starting at t = t0 with s0, the recursion (15) generates NT new states that are253

combined into a data matrix S, as described in Section 2.1. A linear operator C provides254

output predictions by translating the auxiliary state to a prediction. In the standard ESN255

approach the output operator C : RNr → RNc is computed from a regularized mini-256

mization problem using S⋆ and X
′
, see Section 2.2. Here S⋆ is an adapted version of257

S. As in Pathak et al. (2018), we take the square of the even elements in each state sk ∈258

S. The motivation for this is largely empirical but related to problems that may orig-259

inate with capturing symmetry in the model equations (Lu et al., 2017).260
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3 Results: Kuramoto–Sivashinsky model261

In Pathak et al. (2018) a hybrid ESN was applied to the Kuramoto–Sivashinsky262

(KS) equation. Here we will begin with a test of our framework by replicating these re-263

sults. We will first consider equal grids (Nf = Nc) and introduce an imperfection through264

a perturbation in one of the parameters. Later we explore a perfect/imperfect model setup265

with Nf = 2Nc and no parameter perturbation in the KS-equation.266

The KS-equation is capable of displaying rich spatiotemporal dynamics and is used267

to study a variety of phenomena such as flame front dynamics (Sivashinsky, 1977) and268

reaction-diffusion dynamics (Kuramoto, 1984). In one dimension it is given by269

∂u

∂t
+ u

∂u

∂x
+ (1 + ϵ)

∂2u

∂x2
+
∂4u

∂x4
= 0, (16)270

with u ∈ [0, L], initial value u (x, 0) = u0 (x) and periodic boundaries u (x, t) = u (x+ L, t).271

The domain size L is also the bifurcation parameter of the problem. In Pathak et al. (2018),272

the domain size is chosen at L = 35, for which the KS-equation has a positive maxi-273

mum Lyapunov exponent λmax and produces chaotic behavior (Hyman & Nicolaenko,274

1986). A perturbation ϵ ≥ 0 is introduced to create an imperfection. With ϵ = 0 we275

obtain the true, ‘perfect’ evolution whereas our ‘imperfect’ model will have ϵ > 0.276

The KS-equation is discretized on an equidistant grid: xi = i/Nf with i = 1, 2, . . . , Nf =277

Nc = 64. We use a fully-implicit time stepping scheme with ∆t = 0.25 and initialize278

with279

u0(xi) =

1, i = 1,

0, i > 1.

280

Starting at t = t0, a transient is computed up to T = 6000 from which we select a large281

number of training and testing intervals. In the remaining experiments we also use long282

transients to sample training periods from. This approach is efficient from a data-management283

perspective but does not guarantee uncorrelated data.284

The ESN used closely follows that in Pathak et al. (2018). The spectral radius is285

set at ρ(W ) = 0.4, the average degree is d = 3, we use training intervals of size T =286

5000 and ignore any relaxation with α = 1. The KS-equation and its discretization are287

also equivalent to Pathak et al. (2018) so, for a coherent interpretation of the predictions,288

we scale the obtained timings with the same Lyapunov exponent λmax = 0.07.289

The methods summarized in Table 1 are compared in a scaling experiment where290

the auxiliary state size Nr is doubled several times (see Fig. 1). Only those methods based291

on an ESN depend on this parameter which leads to constant results for the other pre-292
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(a)

ϵ = 1

(b)

ϵ = 0.1

(c)

ϵ = 0.01

Figure 1: Results for the replication of the experiments in Pathak et al. (2018) where the

imperfect model is a perturbed version of the KS-equation with perturbation parameter

ϵ. ‘Valid time’ is the time it takes until the error threshold is passed: E
(
xk,yk

)
> 0.4.

These timings are in Lyapunov units (λmaxt). The experiment is repeated for 100 dif-

ferent training intervals and network realizations. For each Nr a box plot is depicted

showing the first, second and third quartile.

dictions. For each method we use 100 different training intervals and hence network re-293

alizations, as we do not reuse W . We fix the regularization parameter at λ = 1·10−5.294

The pure DMD-based methods (DMD and ESN+DMD) are not shown as they did not295

produce meaningful results. This is likely caused by DMD generalizing poorly and show-296

ing only valid predictions for a short period after t0 + T .297

The short-term prediction accuracy is measured using the normalized error used298

in Pathak et al. (2018). We compare the k-th prediction xk with the restricted truth yk =299
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Rξk through300

E
(
xk,yk

)
=

∥∥xk − yk
∥∥√〈

∥yk∥2
〉 , (17)301

with ⟨·⟩ the mean over a time window up until k.302

In Fig. 1 we see a strong resemblance with the results in Pathak et al. (2018). The303

imperfect model performs poorly on its own and the ESN-based methods improve the304

prediction as expected. A standalone ESN is able to achieve decent predictions for ϵ =305

1 and ϵ = 0.1. For ϵ = 0.01, however, it appears impossible for a standalone ESN to306

perform better than the imperfect model. In all studied cases it is remarkable how the307

hybrid variant ESNc stands out. By combining the imperfect model physics with the ESN308

a significant improved is achieved.309

The three additional models in Table 1 further explain the advantage of the hy-310

brid ESNc over the standalone ESN. The correction-only and DMDc predictions do not311

depend on Nr and show up here as constant solutions. These two regression-based cor-312

rections outperform the standalone ESN for ϵ = 0.1 and ϵ = 0.01. The third approach,313

ESN+DMDc, follows the ESNc performance but with an overall slight advantage for the314

two largest perturbations ϵ. This advantage is explained by the performance of DMDc315

and correction-only, as these are the linear components of ESN+DMDc and ESNc, re-316

spectively. In experiments where DMDc outperforms the correction we find a similar over-317

all gain between ESN+DMDc and ESNc. From the experiments in Fig. 1 it is apparent318

that ESN+DMDc and ESNc reduce to their linear components for low Nr, which is what319

would be expected from the correction equation (13). Hence the performance of the lin-320

ear models can be seen as a departure point for hybrid variants that add a nonlinear ESN.321

This largely explains the performance gain of, e.g. ESNc over the standalone ESN.322

In a different perfect/imperfect model setup, illustrating the symbiotic modeling323

approach, the models both use ϵ = 0 and have different spatial resolutions instead. The324

perfect model is discretized on a grid with twice the resolution, Nf = 2Nc. The domain325

size, ESN parameters and regularization remain unchanged. As explained in Section 2.1,326

fine grid information is restricted to the coarse grid and any data-driven corrections are327

made to the imperfect, coarse model evolution. Hence, instead of a model perturbation,328

it is now the difference in truncation errors and resolved scales between two resolutions329

that causes a model mismatch. With this setup the approach given by Equations (10)-330

(13) can be seen as a subgrid modeling technique.331

The coarse model is capable of a good prediction in this setup (Fig. 2). DMDc, the332

correction-only and the standalone ESN are all unable to improve the coarse model. How-333
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Figure 2: Grid experiment with the KS-equation. The imperfect model consists of the

same equations but discretized on a grid half the resolution of the perfect model. Solu-

tions are valid until E
(
xk,yk

)
> 0.4. As in Fig. 1, we repeat the experiment for 100

different training sets and network realizations.

ever, the hybrid variants ESNc and ESN+DMDc do show an overall improvement and334

an increase in predictive skill for larger Nr, similar to the parameter perturbation results335

(Fig. 1). For large values of Nr the hybrid methods double the predictive performance.336

This, again, shows the benefit of introducing the imperfect physical predictions to both337

force and control the artificial ESN. Hence the hybrid approach in Pathak et al. (2018)338

shows promise as a nonlinear subgrid modeling technique.339

4 Results: quasi-geostrophic model340

The barotropic quasi-geostrophic (QG) vorticity equation for a square (length L,341

constant depth D) ocean basin is solved on a β-plane. The ocean flow is driven by an342

idealized zonal wind-stress forcing τx. Typical horizontal length and velocity scales are343

denoted L and U , from which the time scale follows as L/U . Using L = 106 m and U =344

3.17·10−2 ms−1, we obtain a time scale of approximately one year. The equations are345

solved on a square domain, x ∈ [0, 1], y ∈ [0, 1], with periodic boundaries in both di-346

rections.347

The QG equations in non-dimensional form are given by348

[
∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂x

∂

∂y

] (
ω + βy

)
=

1

Re
∇2ω + ατCτ (x, y), (18)349

ω = ∇2ψ, (19)350
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with ω the vertical component of the vorticity vector and streamfunction ψ. The Reynolds351

number is Re = LU/AH , where AH is the horizontal mixing coefficient and β = β0L
2/U ,352

with β0 = 1.6·10−11 (ms)−1. Wind forcing enters through the nondimensional param-353

eter ατ = τ0L/(ρDU
2), with forcing amplitude τ0 = 0.3 Nm−2, density ρ = 1 · 103354

kg m−3 and layer depth D = 6 · 102 m. We use a constant idealized wind-stress curl355

forcing in the form of a stirring pattern with stirring wavenumber kf = 5 in both di-356

rections:357

Cτ (x, y) = cos (2kfπ x) cos (2kfπ y) . (20)358

This problem setup is a variant of the approach in Edeling & Crommelin (2019), but here359

we add a rotating frame.360

4.1 Approach361

Following the perfect/imperfect model approach we discretize the QG equations362

on two different grids. The perfect model uses a fine discretization on Ωf with Nf =363

2 ·2562 unknowns and the imperfect variant is discretized on Ωc with Nc = 2 ·322 un-364

knowns (Nf = 64Nc). Furthermore, for both grids we model a flow with a Reynolds365

number that does not cause any numerical artifacts. With the perfect model we can run366

with Ref = 2000. A stable flow for this Reynolds number and forcing amplitude τ0 is367

impossible to achieve on the coarse grid and we therefore choose to use Rec = 500 for368

the imperfect model.

(a) (b)

Figure 3: Snapshots of the vorticity fields (in day−1) at the end of the transient de-

picted in Fig. 5. (a) Perfect model vorticity snapshot from a statistical equilibrium with

Nf = 2 · 2562 and Ref = 2000. (b) Imperfect model vorticity, also in a statistical equilib-

rium, Nc = 2 · 322 and Rec = 500.

369
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For the discretization in time we use a fully implicit time stepping scheme that al-370

lows the use of the same time step for both models. In our experiments we will use ∆t =371

1 day. The perfect QG solution (ω, ψ) is randomly initialized and run into a statistical372

steady state. From the steady state we select training periods of size T = NT = 10, 000373

days and follow the data gathering process described in Section 2.1. To get an idea of374

the perfect and imperfect flows we restart the imperfect model from a restricted fine state375

and run it into a steady regime. Snapshots from the two different statistical steady states376

are shown in Fig. 3. The imperfect model solution in Fig. 3b is highly diffusion domi-377

nated and shows a flow that strongly reflects the forcing pattern. The ‘perfect’ solution378

in Fig. 3a is — with 2562 grid points — a moderately high-resolution flow and the dif-379

ference in resolved features with the imperfect model is substantial, which makes it an380

ideal testing ground for the corrective approaches in Table 1.381

For the QG flow problem we will investigate the performance of the corrected tran-382

sients, following (10)-(13), in two different ways. We will make short-term predictions383

with the methods in Table 1 and compare with the truth using a normalized error, sim-384

ilar to the KS results in the Figs. 1 and 2. Then we let the different corrective mod-385

els run into a statistical equilibrium regime and compare the probability density func-386

tions (PDFs) of key flow properties with the perfect model equilibrium using their Kullback–387

Leibler divergence DKL.388

4.2 Short-term predictions389

In Fig. 4 we present a short-term prediction experiment using the methods in Ta-390

ble 1. Only the standalone DMD and DMD+ESN corrections are excluded for their lack391

of meaningful results. For the ESN operators we again use ρ(W ) = 0.4 and d = 3, but392

with T = 10, 000 days and ∆t = 1 day we use half the amount of training data. For393

this problem we find that the optimal relaxation parameter lies around α = 0.2 and394

the regularization is increased to λ = 1 · 10−4. The number of accurate days is mea-395

sured using a stricter tolerance E
(
xk,yk

)
< 0.2, allowing only a small departure from396

the true trajectory.397

The poor performance of the imperfect QG model shown in Fig. 4 is improved by398

all studied methods. The standalone ESN needs at least Nr = 1600, while the other399

methods show a significant improvement for all chosen Nr. From Equation (13) and Ta-400

ble 1 it is evident that ESNc is an ESN combined with the correction-only approach. In401

the short-term QG predictions we find that these methods coincide for small Nr. A sim-402

ilar observation can be made for DMDc and the combination ESN+DMDc, which also403

coincide for low Nr. Controlled DMDc has better short-term predictive power than the404
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imperfect model

ESN

ESNc

DMDc

correction only

ESN+DMDc

Figure 4: Short-term prediction experiments with the imperfect QG equations in a setup

similar to Fig. 2. The experiments are repeated for 50 different network realizations and

training sets. ‘Accurate days’ marks the time steps (∆t = 1 day) it takes until the error

threshold is passed: E
(
xk,yk

)
> 0.2.

correction-only variant, which is also reflected in the behavior of ESN+DMDc and ESNc405

at low Nr. With this domain setup we expect DMDc to perform reasonably well on short406

time scales and it can therefore be viewed as a linear benchmark. The nonlinear ESN+DMDc407

hybrid improves on it immediately and it takes at least Nr = 3200 for the other ESN-408

based methods to take over. For large Nr both hybrid methods (ESN+DMDc and ESNc)409

almost coincide and any positive influence of the DMD component is negligible.410

The Nr doubling results are reminiscent of the findings with the KS-equation here411

and in Pathak et al. (2018). Similar to the KS scaling results, increasing Nr improves412

the short-term predictions of ESN-based methods for the QG problem. Based on the ex-413

periments with the KS-equation we expect that also here a plateau or a maximum will414

be reached for Nr > 12800. For ESN state sizes ranging between 200 and 1600 the ESN+DMDc415

combination gives the best results, where ESNc shows a slight decrease in performance.416

After Nr = 1600, the ESN component begins to dominate the results and ESNc becomes417

comparable to ESN+DMDc. Note, however, that also the standalone ESN is doing re-418

markably well for large state sizes.419
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4.3 Long-term dynamical regime420

For the short-term results in the previous subsection, we used a normalized error421

based on the full fields (ω, ψ) for a comparison of the ‘hybrid’ model results with the (re-422

stricted) perfect model truth. Failure in terms of this measure does not imply the pre-423

dictions are invalid, only that the exact truth is not reproduced. We are therefore also424

interested in reproducing ergodic properties of long-term time series as in Pathak et al.425

(2017). In this fashion we will continue here and investigate three flow properties for long-426

term transient runs: mean kinetic energy Km, eddy kinetic energy Ke and enstrophy Z.427

Horizontal velocities u, v follow from the streamfunction ψ, with u = −∂ψ/∂y, v =428

∂ψ/∂x, and are decomposed into a (time) mean and transient component: u = ⟨u⟩ +429

u
′
, v = ⟨v⟩+v′

with the mean ⟨·⟩ taken over a window of 50 days. The quantities Km,430

Ke and Z are then given by431

Km =

∫
Ω

(
⟨u⟩2 + ⟨v⟩2

)
dΩ, (21)432

Ke =

∫
Ω

(〈
u

′2
〉
+
〈
v

′2
〉)

dΩ =

∫
Ω

(〈
u2

〉
− ⟨u⟩2 +

〈
v2
〉
− ⟨v⟩2

)
dΩ, (22)433

Z =

∫
Ω

ω2 dΩ, (23)434

where the integral is approximated with a Riemann sum over the coarse domain Ωc.435

A switch from the perfect (Nf = 2·2562, Ref = 2000) to the imperfect (Nc = 2·436

322, Ref = 500) QG model solution will inevitably lead to a different statistical steady437

state. An example of this process is presented in Fig. 5. The perfect QG model is ran-438

domly initialized and runs into a statistical equilibrium. Predictions using imperfect QG,439

a standalone ESN and the hybrid ESNc then start from a restricted perfect QG state440

and run for 100 years. For stable long-term transients with the ESN-based methods we441

need a significantly larger regularization parameter (λ = 1) compared to the short-term442

experiments. Vorticity snapshots of the perfect and imperfect model depicted in Fig. 3443

are taken at the end of the trajectories in Fig. 5. In Fig. 6 we present vorticity snapshots444

at the end of the ESN and ESNc trajectories.445

The imperfect model reaches a very different statistical equilibrium after a tran-446

sition period of approximately 10 years. A corrected transient based on (10)-(13) should447

stay closer to the perfect model’s dynamical regime and the presented ESN and ESNc448

trajectories show that this is feasible. Especially the hybrid ESNc shows a significantly449

better reproduction of the perfect model’s Km PDF, compared to imperfect model (Fig. 5b).450

In Fig. 7 the average energy spectrum over the final 80 years in Fig. 5a is shown.451

The spectrum provides another demonstration of the improved dynamics given by the452
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perfect QG

confidence interval

imperfect QG

ESN prediction

ESNc prediction

(a) (b)

Figure 5: Spinup and long-term transient dynamics indicated by mean kinetic energy

Km. (a) A 100 year spinup with the perfect QG equations using a time step ∆t = 1 day

is followed by a training period of NT∆t = T = 10, 000 days. After the training period,

100 year predictions with imperfect QG, ESN and ESNc are shown, using Nr = 3200 and

λ = 1. (b) Approximations of the probability density functions (PDFs) associated with

the equilibrium transients, using 20 bins and excluding spinup/transition periods. Vortic-

ity snapshots at the end of the depicted trajectories are shown in Figs. 3 and 6. The ESN

results are with single realizations and serve as a demonstration of the corrected dynam-

ics.

standalone ESN and the hybrid ESNc. The imperfect QG solution strongly reflects the453

forcing, which is also noticeable in the vorticity snapshot (Fig. 3b). In an incompress-454

ible 2D flow we expect energy to be transferred from the stirring wavelength to the larger455

scales, whereas enstrophy is transferred to the smaller scales and dissipated (Vallis, 2019).456

Both the energy and the enstrophy transfer are poorly represented in the imperfect model.457

The ESN-based methods are a lot better at producing the correct energy transfer and458

achieve a good correspondence for the lowest frequencies. Around the stirring frequency459

ESNc still performs well, whereas the standalone ESN is overestimating. The enstrophy460

transfer appears even more difficult to capture correctly but still the hybrid ESNc shows461

a great improvement over the standalone ESN at these scales.462

The transients shown in Fig. 5 are specific examples and provide only information463

for a single realization of the ESN and a single training range. For a more rigorous ap-464

proach we compute transients for 50 training periods (and hence network realizations).465
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(a) (b)

Figure 6: Snapshots of the vorticity fields (in day−1) at the end of the transient in Fig. 5.

(a) standalone ESN prediction with Nr = 3200 and λ = 1, (b) hybrid ESNc prediction

with Nr = 3200 and λ = 1.

Figure 7: Average equilibrium energy spectrum based on the final 80 years of the trajec-

tories in Fig. 5a. A dashed line is added to mark the frequency of the forcing.

We turn to all models studied in the short-term experiment (Fig. 4) and, to maintain466

a stable iteration, need to increase the regularization parameter λ. For the ESN-based467

methods we use λ = 1, for correction-only we will use λ = 5 and with DMDc we use468

λ = 10 to compute stable evolutions. Later in this section we explore how these meth-469

ods perform for various other λ choices.470

From the trajectories we compute flow properties (Km, Ke, Z) and compare their471

PDFs to the perfect model using their Kullback–Leibler (KL) divergence (Cover & Thomas,472
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Long-term (100 year) transient results for 50 different training intervals. DKL

results from methods that do not depend on an ESN are shown in (a), (c) and (e), for

Km, Ke and Z, respectively. In (b), (d) and (f) the respective scalings with Nr are de-

picted for models with an ESN-dependence. Missing values in the plots are caused by

unstable configurations.
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2006): for two discrete distributions P and Q, the divergence of Q from P is given by473

DKL(P,Q) =
∑
i

Pi ln

(
Pi

Qi

)
. (24)474

The PDFs are approximated using a domain that ranges beyond the perfect model’s PDF475

with twice the standard deviation. This domain is divided into 100 bins and every tran-476

sient is truncated to exclude initial spinup effects. For each flow property the divergence477

of its PDF from the ‘truth’ is computed and combined into boxplots for different ESN478

state sizes Nr (Fig. 8). We avoid division by zero in (24) by substituting zero-values with479

machine precision. This leads to large but finite divergences for non-overlapping distri-480

butions (∼ 32) . The imperfect model shows a poor representation of the variability, which481

should be expected from the transient example in Fig. 5. The PDFs for all flow prop-482

erties show no resemblance with the true PDF, giving DKL results that remain at the483

maximum divergence value. Controlled DMDc and correction-only methods are better484

at capturing the variability, although this is higly dependent on the stabilizing regular-485

ization. Especially for the correction-only approach it is possible to find a configuration486

such that PDFs give a reasonable correspondence.487

The KL–divergences for ESN-based methods in Fig. 8 are partly missing. For low488

Nr, ESNc and ESN+DMDc are unstable when λ = 1. The remaining results show an489

overall improvement for increasing ESN state size Nr (cf. Fig. 1), although not very clear490

for all flow properties. Both mean and eddy kinetic energy KL–divergences are some-491

what irregular with optima at moderate Nr values. For enstrophy, the ESN-based meth-492

ods gradually improve with ESN state size. From the energy spectrum in Fig. 7 we know493

that the enstrophy transfer is difficult to capture and here a similar effect is visible in494

the correspondence between PDFs. ESNc requires at least Nr = 1600 to obtain small495

KL–divergences from the enstrophy PDF, further improving for larger Nr.496

Diverged trajectories show up as non-overlapping with either a maximal KL–divergence497

or a missing value in the DKL results. Poor performing methods are hence indistinguish-498

able from unstable ones. Especially the combination ESN+DMDc appears to suffer from499

stability issues for small Nr, leading to missing DKL values. We find that the ESN sta-500

bilizes regression-based corrective methods, as already noted in Arcomano et al. (2022).501

When the regression-based methods run on their own we choose a regularization that502

stabilizes sufficiently such that divergent trajectories are rare.503

To provide an idea of how regularization affects the long-term performance of var-504

ious methods we perform numerous equilibrium runs for different λ. In Fig. 9 we present505

the results for enstrophy Z. The correction-only approach gives remarkably good results506

within a narrow optimal region for λ. It is also only slightly enhanced by the combina-507
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Figure 9: Reproduction of the enstrophy Z variability for different regularization param-

eters using an equidistant spacing in
√
λ. Long-term (100 year) equilibrium runs are per-

formed for 50 different (but partially overlapping) training sets and network realizations.

Boxplots show the first, second and third quartile of the resulting spread of divergences

DKL. The ESN-based methods have dimension Nr = 3200.

tion with an ESN (i.e. ESNc). The hybrid ESNc and ESN+DMDc are, however, much508

more robust and overall better at reproducing the correct enstrophy variability. From509

the regularization parameter study it is clear that DMDc needs a stronger regulariza-510

tion than the correction-only approach. The KL–divergences in Fig. 8 show a related prob-511

lem for the models that incorporate an ESN, where the ESN that combines with DMDc512

needs a much larger state size Nr to achieve sufficient stabilization. Hence stabilization513

is achieved through both regularization λ and ESN complexity Nr.514

5 Summary and discussion515

In this paper we demonstrated part of a symbiotic ocean modeling approach, i.e.,516

a framework in which models with different complexities are coupled in order to bene-517

fit from each other. We distinguish between perfect and imperfect models in terms of518

differing spatial resolutions and key parameterizations, and focus on how an imperfect519

model can benefit from a symbiotic setup. With data generated from both model types520

we seek to correct imperfect model transients. To this end, we make use of hybrid mod-521

eling techniques that combine linear regression-based methods with nonlinear echo state522

networks (ESNs). Currently, efforts are under way to demonstrate the second part of the523

symbiotic framework, i.e., HR models that benefit computationally from LR models.524
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We establish that our hybrid (or physics-controlled) ESNc implementation repro-525

duces short-term predictions for the Kuramoto–Sivashinsky equation (KS) that are con-526

sistent with earlier work in Pathak et al. (2017). Our framework furthermore allows a527

straightforward comparison with purely regression-based methods. We show how cor-528

rections based on linear regression contribute to the success of the hybrid machine learn-529

ing combinations and serve as a departure point for hybrid methods. When we apply530

these techniques to a subgrid modeling version of the KS problem, we observe a simi-531

lar scaling behavior with ESN complexity and departure points rooted in the linear re-532

gression techniques. For the subgrid modeling problem of the single-layer quasi-geostrophic533

potential vorticity equations (QG), short-term predictions give results that are compa-534

rable to the findings with the KS-equation. A scaling behavior is found with the size of535

the ESN. When the ESN complexity is negligible, the hybrid methods reduce to their536

linear regression components. For the long-term flow development, our comparison of537

statistical steady states shows that the hybrid combinations are robust and perform well538

for various flow parameters. The parameter study with long-term statistics also shows539

how the ESN-based methods improve with ESN state size, reminiscent of the short-term540

full-field reproductions. For our purposes, however, the comparison of long-term flow char-541

acteristics is more informative than an error norm on state differences.542

The parameter studies with equilibrium simulations show that subgrid models based543

on only an ESN or regression are often inaccurate or difficult to stabilize. We control the544

stabilization through regularizing the regression-problem, which is another (hyper) pa-545

rameter to tweak. For purely regression-based methods, regularization is the only tun-546

able apart from data choices. A benefit of combining regression with an ESN is appar-547

ent from our regularization experiments. Here we observe that the ESN stabilizes its regression-548

based component, which was also mentioned in Arcomano et al. (2022). We conclude549

that stabilization is achieved through both regularization λ and ESN state size Nr. How-550

ever, other parameters such as the spectral radius ρ(W ) (controlling damping in the ESN)551

were not studied in this context and may have similar stabilizing effects. Combinations552

with a DMD model are available within our framework, which yields interesting com-553

parisons, especially in the short-term QG experiments. Benefits of adding a DMD model554

are visible for moderate ESN state sizes. For long-term transient runs the advantage of555

hybrid DMD-ESN models is less pronounced, which is possibly due to the DMD model556

being valid for only a short period and hence it should be (partially) rebuilt in an on-557

line fashion (Pendergrass et al., 2016).558

Obviously, the QG ocean model used here is highly idealized compared to state-559

of-the-art ocean models. However, we think that these ideas are applicable to the gen-560
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eral problem of correcting large scale flows, i.e., improving a coarse and more viscous ver-561

sion of the flow problem at hand. For models with a higher dimension than studied here562

a reduced order version of the corrective transient framework, as defined by (10)-(13),563

is worth investigating. Here the best choice of reduced coordinates (POD, Fourier, wavelets)564

in combination with an ESN remains uncertain. Projecting with global POD modes, for565

instance, greatly reduces the ESN’s predictive skill (Vlachas et al., 2020). A localized566

representation as used in Wan et al. (2021) shows more promise. Another way to tackle567

high-dimensional problems is through parallelization. A parallel hybrid ESNc based on568

a local domain decomposition is used in Wikner et al. (2020) and Arcomano et al. (2022).569

It would be interesting to apply this approach as a subgrid model and reproduce long-570

term flow characteristics, comparing especially its ability to correctly capture energy and571

enstrophy transfer at low wave numbers.572
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