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Abstract

We investigate the drivers of 40-150 keV hourly electron flux at geostationary orbit (GOES 13) using ARMAX (autoregressive

moving average transfer function) models which remove the confounding effect of diurnal cyclicity and allow assessment of each

parameter independently of others. By taking logs of flux and predictor variables, we create nonlinear models. While many

factors show high correlation with flux (substorms, ULF waves, solar wind velocity (V), pressure (P), number density (N) and

electric field (Ey), IMF Bz, Kp, and SymH), the ARMAX model identifies substorms as the dominant influence at 40-75 keV

and over 20-12 MLT, with little difference seen between disturbed and quiet periods. Also over 40-75 keV, Ey has a modest

effect: positive over 20-12 MLT but negative over 13-19 MLT. Pressure shows some negative influence at 150 keV. Hourly ULF

waves, Kp, and SymH show little influence when other variables are included. Using path analysis, we calculate the total sum

of influence, both directly and indirectly through the driving of intermediate parameters. Pressure shows a summed direct

and indirect influence nearly half that of the direct substorm effect, peaking at 40 keV. N, V, and Bz, as indirect drivers, are

equally influential. Neither simple correlation nor neural networks can effectively identify drivers. Instead, consideration of

actual physical influences, removing cycles that artificially inflate correlations, and controlling the effects of other parameters

using multiple regression (specifically, ARMAX) gives a clearer picture of which parameters are most influential in this system.
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Key Points:8

• Substorms, as measured by AE, are the strongest direct influence on 40-150 keV9
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Abstract14

We investigate the drivers of 40-150 keV hourly electron flux at geostationary or-15

bit (GOES 13) using ARMAX (autoregressive moving average transfer function) mod-16

els which remove the confounding effect of diurnal cyclicity and allow assessment of each17

parameter independently of others. By taking logs of flux and predictor variables, we18

create nonlinear models. While many factors show high correlation with flux (substorms,19

ULF waves, solar wind velocity (V ), pressure (P ), number density (N) and electric field20

(Ey), IMF Bz, Kp, and SymH), the ARMAX model identifies substorms as the dom-21

inant influence at 40-75 keV and over 20-12 MLT, with little difference seen between dis-22

turbed and quiet periods. Also over 40-75 keV, Ey has a modest effect: positive over 20-23

12 MLT but negative over 13-19 MLT. Pressure shows some negative influence at 15024

keV. Hourly ULF waves, Kp, and SymH show little influence when other variables are25

included. Using path analysis, we calculate the total sum of influence, both directly and26

indirectly through the driving of intermediate parameters. Pressure shows a summed di-27

rect and indirect influence nearly half that of the direct substorm effect, peaking at 4028

keV. N , V , and Bz, as indirect drivers, are equally influential. Neither simple correla-29

tion nor neural networks can effectively identify drivers. Instead, consideration of actual30

physical influences, removing cycles that artificially inflate correlations, and controlling31

the effects of other parameters using multiple regression (specifically, ARMAX) gives a32

clearer picture of which parameters are most influential in this system.33

Plain Language Summary34

Satellites may experience damaging surface charging due to high energy electrons35

present in the radiation belts. In this study, we explore the various factors that may in-36

fluence these electron populations. We use an ARMAX statistical model (autoregressive37

moving average transfer function) that removes the confounding effect of diurnal cyclic-38

ity and allows assessment of each variable independently of others. Substorms, which in-39

ject electrons into the magnetosphere, are found to be the strongest influence, with most40

of their effect seen near local midnight. The electric field and pressure of the solar wind41

also show moderate effects. Not all variables that show high single variable correlations42

retain this influence in multivariate analyses. Kp and SymH, two indices of geomagnetic43

activity are highly correlated with electron levels in the magnetosphere, but show little44

influence in models controlling for the effects of solar wind parameters. Identifying di-45

rect, physical drivers, removing cycles that artificially inflate correlations, and control-46

ling the effects of other parameters using multiple regression (specifically, ARMAX) gives47

a clearer picture of which parameters are most influential in this system.48

1 Introduction49

Geostationary/geosynchronous orbit (GEO) is highly populated with active satel-50

lites (http://www.unoosa.org/oosa/osoindex/) that can experience damaging surface charg-51

ing due to high energy electrons present in the radiation belts (e.g., Lam et al., 2012; Loto’aniu52

et al., 2015; Koons et al., 2000; Choi et al., 2011; Matéo-Vélez et al., 2018). These and53

other studies suggest that surface charging is a function of factors in the space environ-54

ment, including solar and geomagnetic activity, electron and ion flux magnitudes, and55

particle energy spectrum hardness. Charging events may also be more likely when the56

satellite is in the Earth’s shadow (eclipse). Surface charging events often occur when there57

are increased electron fluxes at 10 - 50 keV (kilo electronvolt), and < 100 keV electrons58

may be more responsible for the most rapid surface charging events than electrons at higher59

energies (M. F. Thomsen et al., 2013; Matéo-Vélez et al., 2018). The abundance of these60

electrons fluctuates on time scales of minutes and also shows high spatial variability over61

the magnetosphere. For this reason, daily/orbit averaging misses much of the behavior62

of these electrons. Moreover, even moderate storms are not necessary for electron en-63
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hancements in this energy range, with many surface charging events detected during low64

to moderate substorm activity and no direct dependence on substorm strength (Matéo-65

Vélez et al., 2018; Ganushkina et al., 2021).66

A better understanding of keV electron flux behavior is needed, including details67

of how fluxes are driven and by what parameters. While a prediction model may hint68

at the drivers and mechanisms, no matter how well it may forecast, it is not a valid tool69

for effectively testing hypotheses about physical drivers. Hypothesis testing is best done70

with statistical tools developed specifically for this. Regression is one such tool, with mul-71

tiple regression being the more appropriate test if multiple drivers should be considered72

simultaneously. However, as the method of regression can also just as easily be used to73

create linear combination prediction models, there is a danger that the testing of hypothe-74

ses will be confused with mere prediction equation production. This mistake should be75

avoided. The ARMAX method (autoregressive moving average transfer functions), which76

we discuss below, is a refinement of regression that allows the modelling of time series77

behavior before the testing of input parameters. This will reduce possible spurious cor-78

relations that can occur if both dependent and independent variable time series cycle or79

trend simultaneously. Further, possible driving parameters to be tested should be cho-80

sen based on theoretical considerations (i.e., what the physical relationships might be)81

rather than just on what variables happen to have the highest correlation.82

MeV (mega eletronvolt) electron fluxes at GEO have been more extensively stud-83

ied and may show high overall correlations with solar wind parameters when daily av-84

eraged (e.g., Blake et al., 1997), although the hourly response may be much lower (Simms85

et al., 2022). Solar wind speed is often cited as the most important driver (Paulikas &86

Blake, 1979; Li et al., 2001), although the relationship is complex (Reeves et al., 2011)87

and, for example, Lyatsky and Khazanov (2008) and Balikhin et al. (2011) have shown88

that the solar wind density is most associated with MeV electron variations. However,89

the direct influence of many solar wind drivers on even MeV electron flux is still unclear,90

both because much of the solar wind influence may not be direct but instead mediated91

by waves and electron injections following substorms (e.g., Simms et al., 2018a), and be-92

cause simple correlations of solar wind parameters with electrons may be inflated by com-93

mon cycles and trends if these commonalities are not removed via such methods as dif-94

ferencing transformation or ARMAX modelling (Simms et al., 2022). For keV electrons,95

there are even fewer simple answers as to which of the solar wind parameters drive their96

variations.97

Fluxes of low energy electrons have been modeled with a first principle kinetic ap-98

proach in several ring current simulations (e.g., Harel et al., 1981; Fok et al., 2014; Ganushk-99

ina et al., 2014; Chen et al., 2015; Jordanova et al., 2016). These models are driven by100

different sets of solar wind, IMF (Interplanetary Magnetic Field) parameters and geo-101

magnetic indices but the drivers are predetermined. The first principle models cannot102

define the driving parameters themselves.103

Empirical models can determine correlates of electron flux energies from eVs to sev-104

eral MeVs using a variety of fitting techniques. Among them, (i) one of the earliest mod-105

els, the NASA (National Aeronautics and Space Administration) radiation belt models106

for electrons such as AE8 traditionally used to specify the average charged particle flux107

for space missions (Vette, 1991), (ii) the improved AE9/SPM models (Ginet et al., 2013)108

derived from measurements made over an extended period of time by particle detectors109

and dosimeters on board many satellites in a variety of orbits (see Table 3 in Ginet et110

al. (2013)), (iii) a Particle ONERA (Office National d’Etudes et de Recherches Aérospatiales/111

French Aeronautics and Space Research Center)-LANL Electron (POLE) model (Boscher112

et al., 2003) of energetic electron flux developed using 25 years of LANL data with in-113

put as the year in the solar cycle, (iv) the extended POLE model known as the new In-114

ternational Geostationary Electron model (IGE-2006) (Sicard-Piet et al., 2008) created115

by adding the data from the Japanese spacecraft Data Relay Test Satellite (DRTS), and116
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(v) the electrons model (Roeder et al., 2005) based on Polar HYDRA (Hot Plasma An-117

alyzer) data proving the average flux as a function of the position in the Earth’s mag-118

netosphere. The models above were not parameterized on geomagnetic conditions and119

did not capture the MLT (Magnetic Local Time) dependence and variations on time scales120

of less than a day.121

The Kp (Planetarische Kennziffer) index, a simple 0-9 index as compared to the122

more complex variations of solar wind and IMF parameters, has been used to organize123

keV electron fluxes (e.g., Korth et al., 1999). Using LANL satellites data in the range124

from 1 eV to 40 keV at GEO, Denton et al. (2015, 2016) developed a model which pre-125

dicts electron flux values based on energy and local time for given values of the 3-hour126

Kp-index and -VSWBz (the electric field of the solar wind, where VSW is the solar wind127

speed, Bz is the z-component of the IMF), under the assumption that both Kp and the128

solar wind electric field are correlated with magnetosphere activity (e.g., for Kp: (Freeman,129

1974; M. Thomsen, 2004); for -VSWBz: (Akasofu, 1964; Burton et al., 1975). The Kp130

version of the model also provides flux values for given values of the daily F10.7 index131

(solar radio flux at 10.7 cm). However, while the Kp index may correlate well with flux132

(at least in daily averaged data), it is neither the best predictive parameter, nor what133

we would consider to be a physical driver of electron flux variations. Kp, as it Earth-based134

(measured at ground magnetometers), may not represent conditions in the magnetosphere135

well. It is most likely a proxy measure, representing a combination of both relevant and136

non-relevant correlated factors, which tells us little about which specific processes drive137

flux. While the ease of obtaining it might offset this drawback in prediction models, it138

may be nearly useless in models seeking instead to explain what drives electrons. Its 3139

h time cadence may also make it unsuitable even for prediction models, given that elec-140

tron fluxes fluctuate much more rapidly. The -VSWBz measure could be an improvement141

over Kp as it can be obtained hourly and each is a specific physical parameter rather than142

a possible conglomeration of generalized response (as the Kp is). However, being a com-143

bination of VSW and IMF Bz, it combines the effects of two possible drivers rather than144

studying them individually. This measure also only accounts for two possible driving pa-145

rameters rather than studying all possible drivers.146

Several studies have examined the response of geosynchronous keV electron flux147

measured at LANL satellites to solar wind parameters. For example, Shi et al. (2009)148

found electron flux increases due to solar wind dynamic pressure enhancements and Li149

et al. (2005) and Kellerman and Shprits (2012) concluded that higher solar wind speed150

results in higher electron fluxes. Hartley et al. (2014) have found an effect of solar wind151

speed on the 30-600 keV electron density, temperature and energy density from the MAGED152

(MAGnetospheric Electron Detector) instrument onboard GOES (Geostationary Oper-153

ational Environmental Satellites) 13-15.154

Sillanpää et al. (2017), using 5 years of GOES 13 MAGED electron flux data, fit155

an empirical model using both solar wind and IMF Bz to predict electron fluxes at 40,156

75 and 150 keV energies, after concluding that the other two IMF components and so-157

lar wind density, temperature, and pressure were of less importance. This is in line with158

earlier studies (e.g., Li et al., 2005; Kellerman & Shprits, 2012; Ganushkina et al., 2019).159

The effects of multiplicative combinations of parameters (as -VSWBz used in Denton et160

al. (2016) were not studied and it is possible that not a single parameter but the com-161

bined effect of multiple driving parameters that result in the observed fast variations of162

the keV electrons.163

Ganushkina et al. (2021) discovered that the AE/AL (Auroral Electrojet/Auroral164

Lower) indices, together with solar wind speed, provide a better model of the severe en-165

vironments related to surface charging of satellites by keV electrons measured by LANL166

(1990-2005) than do IMFBz, Kp, and solar wind number density. Based on integral elec-167

tron fluxes, among 400 events of worst-case severe environments (categorized based on168

four criteria (Matéo-Vélez et al., 2018) of the solar wind and IMF parameters and ge-169
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omagnetic indices), 100 were in one criterion based on the measured spacecraft poten-170

tial and 300 in the other 3 criteria based on these electron flux measurements.171

In recent years, multivariate approaches have been explored to refine and comple-172

ment physical and single variable empirical models, and to determine the main driving173

parameters of keV electrons. Some techniques used for predictions of mainly MeV ra-174

diation belt electrons include linear prediction filters (e.g., Baker et al., 1990; Rigler et175

al., 2004; Castillo Tibocha et al., 2021), dynamic linear models (e.g., Osthus et al., 2014),176

conditional mutual information (Wing et al., 2022), multiple regression (e.g., Sakaguchi177

et al., 2013; Simms et al., 2014, 2016, 2018a, 2018b; Stepanov et al., 2021), neural net-178

works (e.g., Koons & Gorney, 1991; Freeman et al., 1998; Ling et al., 2010; Simms & En-179

gebretson, 2020), and Nonlinear AutoRegressive Moving Average with eXogenous (NAR-180

MAX) inputs (e.g., Balikhin et al., 2011; Boynton et al., 2015; Balikhin et al., 2016; Boyn-181

ton et al., 2016).182

GOES 13-15 40 keV electron flux data were used by Boynton et al. (2019) to de-183

velop a model of time series of the electron flux for each of 24 MLTs employing NAR-184

MAX methodology. They found that the IMF factor, a combination of IMF By and Bz185

component, (Balikhin et al., 2010; Boynton et al., 2011) Bf (t) = BT (t)sin
6(θ(t)/2), where186

BT (t) =
√

By(t)2 +Bz(t)2 and θ = tan−1(By(t)/Bz(t)), controls most of the output187

variance. Another important variable was determined to be the solar wind velocity. The188

square root of the solar wind pressure and solar wind density were also chosen by the189

algorithm but their contributions are small. Boynton et al. (2019) stressed that the time190

resolution of the parameters used in the model development influences the importance191

of these parameters. For comparison, the earlier study by Boynton et al. (2013), in which192

daily averaged 10-100 keV electron fluxes measured at LANL satellites were used, the193

role of southward IMF was found to be insignificant.194

In the present study, we test the influence of several possible drivers of low energy195

electron flux (40-150 keV) observed by GOES 13 and GOES 16 satellites: solar wind ve-196

locity (V ), number density (N), pressure (P ), and the electric field (Ey), IMF Bz, and197

substorms (as measured by the AE index). We use ARMAX (autoregressive moving av-198

erage transfer function) models both to measure the cumulative effects and to remove199

common cycles and trends that may inflate correlations between variables (Simms et al.,200

2022). These parameters may act in combination, with influence accumulating over time.201

It is also possible that some variables may not influence electron flux directly but indi-202

rectly via other parameters. For the latter case, we develop subset models showing pos-203

tulated direct and indirect effects.204

Regression can be a powerful tool for testing which drivers could have a possible205

controlling influence on electron flux levels. However, regression on time series data, be-206

cause it often violates the assumption of uncorrelated errors, can result in highly inflated207

hypothesis test statistics, giving the impression that certain factors may be strong drivers208

of flux when they are only cycling or trending in common (Simms et al., 2022). While209

this may not be a problem if we are using a regression model to forecast flux, it will in-210

validate the hypothesis tests that allow us to determine if solar wind, IMF, and substorm211

factors are meaningfully correlated with flux. We may also find that using more of the212

information present in the data (i.e., the time behavior) results in more accurate pre-213

dictions.214

There are several approaches to modelling the periodic behavior of a time series.215

We will do so with autoregressive (AR) and moving average (MA) terms (Hyndman &216

Athanasopoulos, 2018; Pankratz, 1991). When chosen well, these reduce the autocor-217

relation in the errors of the model and fully describe the cycling behavior of the series.218

With this behavior effectively removed (by the introduction of these terms) the remain-219

ing variability in the data can be tested for its response to external factors (the indepen-220

dent variables). This last step results in a transfer function model (X), giving the acronym221
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ARMAX. A further assumption of this type of model is a linear relationship between re-222

sponse and predictor variables. To achieve this linearity, we take the logs of the variables223

(excepting those with both positive and negative values). This allows the use of the lin-224

ear model technique (regression) to be used on what is essentially a nonlinear process.225

Other studies have used ARMAX modelling to predict higher energy electron fluxes in226

geostationary orbit, and these provide further information on this approach of describ-227

ing the underlying cyclical behavior of flux with AR and MA terms (Balikhin et al., 2011,228

2016; Boynton et al., 2015, 2016; Simms & Engebretson, 2020; Simms et al., 2022). How-229

ever, we note that nonlinearity was introduced into the models of Balikhin et al. (2011)230

with polynomial terms (square and cubic terms) instead of the logs we use here. Although231

this appears to be a different approach, it results in a similar description of the nonlin-232

ear relationships. We also note that these models may sometimes be called ARIMAX233

models, with the additional I conveying that the data is differenced at some time step234

n with a yt–yt−n transformation. However, as we did not find it necessary to difference235

the present dataset for the full models, ARMAX without the additional I is the more236

descriptive acronym.237

In this study, we extend this previous work by using the ARMAX technique to de-238

termine the most influential drivers of lower energy electron flux behavior. While pre-239

vious studies (e.g., Balikhin et al., 2011) may choose an optimal, parsimonious set of pre-240

dictors that describe the variance in the dataset (e.g., through the Error Reduction Ra-241

tio technique), using least squares regression (as applied to an ARMA model) we are able242

to show the statistically significant, relative contributions of each parameter rather than243

reducing the model to only highlight the most essential variables. In other words, we are244

able to test for the inutility of certain parameters in describing flux, rather than just choos-245

ing those parameters that have the strongest correlation. This provides more informa-246

tion on the additive influence of parameters, even if the influence of some is not as strong247

as others. This results in a deeper understanding of the ensemble effects. We also ex-248

plore a reduced model consisting of just those parameters we hypothesize are the direct249

physical drivers of flux: AE (as a measure of electron injections from substorms), pres-250

sure, and the solar wind electric field (Ey, or −V Bz).251

The description of the data is given in Section 2. Section 3 presents the results for252

drivers for 40-150 keV. The findings are discussed and the conclusions are drawn in Sec-253

tion 4.254

2 Data for Defining the keV Electron Drivers255

For electron fluxes, we use hourly averaged data from the geostationary GOES-13256

satellite. We analyze the measurements from the MAGED instrument consisting of the257

nine collimated solid state telescopes (e.g., Rowland & Weigel, 2012), each with a 30◦258

full-angle conical field of view. All nine telescopes measured the directional differential259

electron fluxes in units of cm−2 ·sr−1 ·keV −1. We use the fluxes in the first three en-260

ergy channels where the fluxes are defined at the midpoints of the energy ranges, i.e.,261

at 40, 75, and 150 keV. We compute one omnidirectionally averaged flux (flight direction-262

integrated differential electron fluxes) for each of the energies using pitch angles calcu-263

lated from the GOES Magnetometer 1 data following the method presented in Sillanpää264

et al. (2017) and Ganushkina et al. (2019). The GOES-13 MAGED data of electron fluxes265

and the data for the pitch angles of each telescope with 5-min averaging are available266

at https://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html.267

The time interval of this study is 10 June 2013 - 6 August 2016. There were min-268

imal data gaps of only several hours during these time periods. For the time-dependent269

analyses (ARMAX models) these gaps were filled with linear interpolation between the270

existing observations.271
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Solar wind parameters (solar wind velocity V , number density N , pressure P , IMF272

Bz and Bs (including only the southward component of Bz), and the electric field Ey)273

and magnetic indices (Kp, AE and SymH) were obtained from from OMNIWeb web (https://omniweb.gsfc219274

.nasa.gov/form/dx1.html) with 1 h resolution with data time-shifted to the bow shock275

nose. We use an hourly ground ULF wave index (ULF ) as a global ULF activity proxy276

reconstructed from 1-min data from the world-wide array of magnetic stations in the North-277

ern hemisphere (data available at: https://doi.org/10.2205/ULF-index) (Kozyreva et al.,278

2007; Pilipenko et al., 2017).279

Analyses based on the least squares regression methodology assume that the re-280

lationship between predictor and response variables be linear, with the residual errors281

(that variance unexplained by the model) being random, normally distributed, and with282

equal variance over the range of predicted values. This requirement applies even to such283

analyses as simple correlation. However, the relationship between flux and predictor pa-284

rameters is often nonlinear and inspection of the residual errors of these analyses per-285

formed on non-transformed data shows this nonlinearity, as well as non-normality and286

an inequality of variances at different levels of the predictors. Fortunately, these prob-287

lems can usually be fixed by taking the log of at least electron flux, with further improve-288

ments obtained by taking the log of transformable predictor variables as well. We there-289

fore take log10 of all variables ≥ 0. Variables containing zero values which cannot be290

logged without creating missing values (i.e., Kp) were transformed by adding 1 to all val-291

ues before the log transformation. Bz and Ey, as they have both positive and negative292

values, were not logged. Examination of residual plots of the ARMAX models (not shown)293

showed that this transformation fixed all three problems.294

Because the dependent variable (electron flux) is log-transformed, this results in295

nonlinear models between flux and all the variables, a power function relationship for296

those predictor variables that are also log-transformed, and an exponential function re-297

lationship for those predictor variables that are not logged.298

Subsequent to the log transformation, all variables were standardized by subtract-299

ing that series mean and dividing by its standard deviation. This creates unitless vari-300

ables (Z-scores) for which regression coefficients (slopes) can be directly compared. Al-301

though it makes no difference to the outcome of the correlations, we also used the Z-scores302

for the correlation analysis for consistency. We note, however, that neither the log nor303

the Z-score transformation reduces either the serial autocorrelation or common cycles304

seen in these time series datasets. This autocorrelation inflates the simple correlations305

and must be further dealt with by describing/removing the autocorrelation and common306

trends and cycles via the introduction of AR and MA terms and/or differencing, as de-307

scribed below in Section 3.2 (Granger & Newbold, 1974; Simms et al., 2022).308

ARMAX models were developed in IBM SPSS Statistics (formerly known as the309

Statistical Package for the Social Sciences), with additional statistical analysis in MAT-310

LAB.311

3 Drivers of 40-150 keV Geostationary Electrons312

3.1 Cross Correlations of Electron Fluxes with Solar Wind and IMF Pa-313

rameters and Geomagnetic indices314

Simple cross correlations of hourly measured parameters (Figure 1) show values315

near 0.5 for some parameters, most notably and in keeping with previous studies, V , ULF ,316

and AE (e.g., (Li et al., 2005; Kellerman & Shprits, 2012; Hartley et al., 2014; Simms317

et al., 2014)). Positive correlations are shown with solid lines, negative with dashed red318

lines. Correlations are performed between electron flux and individual parameters from319

each hour (0-48 h) before the flux measurement. At higher electron energies, the AE and320

ULF correlations are lower, with peak correlations at earlier times. The correlation with321
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V may be somewhat higher, but there is also a tendency for its peak correlation with322

electron flux to occur earlier at higher energies. The correlation of flux with N is less323

than that with V , although it does become more prominent at 150 keV, if negative.324

Bz and Bs correlations with flux are similar to each other. There appears to be no325

particular advantage to using the Bs parameter over Bz. The negative correlations of326

Bz and SymH with flux are as expected, as each of these parameters are measured on327

a negative scale indicating increasing strength at more negative values. While the Bz328

strength shows less association with flux, SymH and Kp show similar patterns of cor-329

relation to each other, likely because both are generalized measures of disturbance at ground330

magnetometers. These parameters also show an increased correlation at earlier time steps331

at higher flux energy.332

P and Ey are somewhat different from the other variables in that they are math-333

ematical combinations of other measured parameters (V 2 and N , and V and Bz in the334

cases of P and Ey, respectively), but, at the same time, they may have more physical335

interpretability. That the P -flux correlation is similar to that of the flux correlation with336

V or N can be seen where the P correlation drops off in a manner similar to the N cor-337

relation, albeit, with some tempering of this decrease as the V correlation rises at the338

same point in time. The Ey-flux correlation follows the pattern of the Bz-flux correla-339

tion nearly exactly.340

3.2 Interpretation Problems with Simple Correlations: Poorly Defined341

Variables, Autocorrelation, and Spurious Correlations342

Most of the parameters of Figure 1 show more association with flux in the few hours343

just prior to a flux measurement at the lower energies, but with maximum correlations344

at the higher energies occurring further back in time. However, it is difficult to interpret345

a single peak or even a rise in correlation at a given hour as a physical process that hap-346

pens at that particular time, given that all these parameters are strongly autocorrelated347

in time. A variable strongly correlated with itself in previous time steps will show a sim-348

ilar correlation with flux at every one of those time steps, making it impossible to de-349

termine the exact time of physical action from simple correlation analysis.350

Another difficulty with simple correlation analysis is that correlations between pre-351

dictor variables may distort the apparent association between a predictor and flux by352

confounding the true relationship. The well known correlation between V and N , for ex-353

ample, even if it is negative, will result in both predictors showing a correlation with flux,354

even if only one of them has an actual association. Besides this, any co-cycling variables355

will show a strong correlation even when there is no association other than a similar re-356

sponse to time. This is a particular difficulty in space weather data where both diurnal357

cycles and longer cycles are common.358

Although we find reasonable correlations of SymH and Kp with flux, to justify in-359

cluding these in a model attempting to find the physical drivers of flux, there must be360

some basis for thinking there is a physical connection between these particular indices361

and electrons. While Kp, derived from midlatitude stations, may be sensitive to vari-362

ations at the inner edge of the electron plasma sheet (M. Thomsen, 2004; Freeman, 1974),363

there is no guarantee that this is all or even most of what Kp measures. As the mea-364

sure itself is merely the maximum geomagnetic disturbance recorded in a 3 h period, it365

may not be specific to that particular area of the magnetosphere, nor temporally fine tuned366

enough to be of much use. The discrete nature of the index values would also work to367

obscure much of the information it could carry. That there are high correlations between368

electron flux and Kp (see Figure 1) is not an argument in favor of its necessary inclu-369

sion in a meaningful physical model, but may more likely only indicate that Kp is a proxy370

that represents a large number of processes that we would, instead, prefer to know the371

effects of individually. In addition, as parameters that are averaged over longer periods372
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Figure 1. Cross correlations between GOES electron flux and possible drivers (hourly aver-

ages) for a. 40 keV, b. 75 keV, c. 150 keV. Solid lines are positive correlations; dashed lines are

negative correlations. Note that most correlations are < 0.5 in magnitude.
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of time tend to show higher statistical correlations without any meaningful increase in373

association ((Simms et al., 2022)), this alone could explain the Kp, at a 3 h cadence, hav-374

ing a higher correlation with flux than that of many other parameters. SymH may be375

an indirect measure of the free energy available for local wave acceleration of keV elec-376

trons up to MeV energies, but is perhaps more representative of inner magnetospheric377

plasma pressure, about 12% of which is keV electron pressure ((Kumar et al., 2021). SymH378

may be worth testing as a representation of these processes, but the applicability to elec-379

tron flux in the outer radiation belts appears weak. While the AE index can be inter-380

preted as a measure of the substorm activity that may result in electron injections, we381

do not have the a similarly meaningful physical interpretation of Kp and SymH other382

than that they measure the overall level of disturbance in the magnetosphere. But if ”dis-383

turbance” is a meaningful concept, it is more accurately measured by such parameters384

as V , Bz, etc., which also have a physical meaning in the system. In previous work it385

has also been found that indices from magnetometers tend to correlate highly with each386

other, meaning that it may only be useful, or possible, to include one index in a mul-387

tivariate analysis without reaching problematic levels of multicollinearity that make it388

impossible to determine which variables are most associated with flux (Simms et al., 2016).389

Therefore, we need to use care in deciding which index to use and not include every one390

possible. Instead, we should settle on the one that best describes the physical processes391

we suspect are occurring.392

However, these arguments are somewhat moot. If we do include all 3 indices (Kp,393

SymH, and AE in a full regression ARMAX model (see below; Table 1), Kp and SymH394

are not strong candidates, as their influence can be up to an order of magnitude below395

that of AE. Although Kp and SymH have high simple correlations with flux, and even396

if we were to believe they represented physical drivers, when variables are tested simul-397

taneously, these two indices do not perform well. In the subset models, we therefore use398

the AE index both because it is representative of substorm activity and because it is a399

stronger correlate, at least at 40 keV. In future work, if we planned to create prediction400

models only, but not to identify physical drivers, this restriction would not apply and401

all three indices could be included (with the caveat that this did not result in overfit-402

ting and, therefore, poor predictive ability).403

Although simple correlations can suggest possible drivers, further work must be done404

to elucidate these relationships. Below, in our ARMAX models, we address these issues,405

performing multivariate analyses to account for spurious simple correlations due to the406

confounding of variables, adding autoregressive (AR) and moving average error (MA)407

terms to account for serial autocorrelation and co-cycling of variables, and choosing pre-408

dictors that have a reasonable basis for some physical relationship with flux. In regards409

to this latter issue, we also choose 4 variables (AE, ULF , P , and Ey) as possible direct410

physical drivers of flux (direct effects) and explore their relationship with the other so-411

lar wind and IMF parameters (indirect effects).412

Addtionally, below, we explore whether certain parameters are more correlated dur-413

ing geomagnetically disturbed periods and at different times of the day. For the former,414

we must use a differencing transformation (yt − yt−1) to reduce serial autocorrelation415

as, without a complete time series, we are unable to remove this with ARMA terms. To416

study varying influences by time of day, we add indicator variables to the ARMAX model417

to identify each hour (MLT: magnetic local time).418

3.3 ARMAX models419

As noted in the previous section, simple cross correlations of time series variables420

may be highly inflated by common cycles and trends often seen in time series data (Granger421

& Newbold, 1974). These correlations may, therefore, not say anything useful about the422

relationship between variables. In addition, analyzing the effect of each predictor indi-423
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vidually gives us no information about the relative importance of each, or the effect of424

each when the others are held constant. Multiple regression analysis would assess the425

strength of the relationship between each predictor with the effects of the other predic-426

tors eliminated. Additionally, as regression gives us the slope of the relationship between427

predictor and flux (the coefficients of the regression equation), there will be more infor-428

mation about the form of the relationship. We can further improve on a multiple regres-429

sion model by introducing terms to specifically describe the cycling, trends, and auto-430

correlation that may be present in time series data. These terms may take the form of431

an autoregressive component (regressing on previous values of the dependent variable:432

an AR term), or a moving average component (regressing on the errors of the model at433

preceding time steps: an MA term). (A difference term, which subtracts a previous value434

from each observation, may also be used to fit an overall trend, but we found this was435

not needed for this full set of hourly averaged flux data.) For data that cycles “season-436

ally” (at a set time period) it may be helpful to also fit seasonal AR and MA terms (Hyndman437

& Athanasopoulos, 2018).438

We fit ARMAX models, using AR and MA terms, along with “seasonal” (daily)439

AR and MA terms, to describe the cycling behavior of the dependent variable. We are440

then able to test input variables for their possible correlation separate from these com-441

mon cycles. The “seasonality” we incorporate is the daily variation in flux seen as the442

observing satellite passes between drift shells due to the asymmetric dipole of the Earth’s443

magnetic field. Typically, higher energy (MeV) electron flux data collected at geosyn-444

chronous orbit shows higher levels on the dayside where the field is compressed and lower445

flux levels on the night side where the fields are stretched (e.g., O’Brien & McPherron,446

2003; Boynton et al., 2019). For keV electrons, fluxes are highest in the morning hours447

and lowest in the evening hours due to their trajectories and losses (e.g., Korth et al.,448

1999; Sillanpää et al., 2017).449

As all variables were standardized by subtracting that series mean and dividing by450

its standard deviation, we are able to compare these unitless regression coefficients be-451

tween variables. Note that these are not correlation coefficients, but slopes. A 1 unit in-452

crease in a predictor variable is thus associated with a certain increase in the dependent453

variable. Taking log10 of those variables for which it made sense (i.e., not Bz, for exam-454

ple, which has both positive and negative values) effectively creates a non-linear model,455

despite how we are using the linear model technique of ARMAX regression.456

For each electron flux energy (40, 75, and 150 keV), we fit an AR1, MA1,2, sea-457

sonal AR1, seasonal MA1 model (abbreviated as (1,0,(1,2))(1,0,1)]. More specifically,458

each regression contained two flux autoregressive terms (from 1 h previous and 24 h pre-459

vious) and the moving average of the errors of the model from 1,2, and 24 h previous as460

predictors, in addition to the exogenous AE, Kp, SymH, ULF , and solar wind and IMF461

variables. The 24 h AR and MA terms represent the ”seasonality” terms that model the462

diurnal fluctuations in flux due to the movement of the satellite through field lines (in463

other words, the “seasons” are days (Table 1). This reduced all terms of the partial au-464

tocorrelation function (PACF) to non-statistically significant levels.465

3.4 Full ARMAX model Including All Variables466

V , N , IMF Bz, AE, ULF , P , Ey, Kp, and SymH were first entered as numera-467

tor (influence) terms at 1 and 2 hour delays, with a denominator (decay) term at 1 hour468

(Table 1. Influence terms with p-value > 0.10 were dropped from the model. The p-value469

is the probability that the null hypothesis of no association is true. p-value < 0.05 is470

generally considered to be statistically significant, or, put another way, that the null hy-471

pothesis of no association has been rejected. Therefore, not all influence and decay terms472

are retained, however, at least one influence and the decay term are retained for each473

predictor, even if statistical significance fell above a p-value > 0.10, in order to describe474
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the relative influence of each term. (The constant term is not significantly different from475

zero because all variables were standardized and therefore centered around zero. How-476

ever, we retain it for the small amount of explanatory value it adds to the model.) We477

report standardized regression coefficients which describe the slope of the relationship478

between predictor and response variables on a standard (unitless) scale. Due to this stan-479

dardization we are able to directly compare the influences of each predictor with all the480

otthers. (These are slopes, not correlation coefficients, so are not constrained to lie be-481

tween -1 and 1.)482

The R2, or coefficient of determination, measures the percent of variation in the483

data that is explained by the model. (Note that the R2 is mathematically equivalent to484

the prediction efficiency used by some other authors when applied to a training dataset.)485

The R2 can be calculated for other models, including simple correlation, where the R2
486

of r, the correlation coefficient, is merely r2. The highest simple correlations (e.g. AE487

and V of Figure 1) around r = 0.5 would therefore have an R2 of 25%, explaining 25%488

of the variation in the data. Thus, the multiple regression ARMAX models which use489

both ARMA terms and more than one predictor variable, explain more of the variation490

than any of the simple correlations. Much of the increase in R2 is due to the introduc-491

tion of the ARMA terms, but the ARMAX models do also tell us which independent vari-492

ables are most important and how they compare in influence with each other. This ad-493

dition of predictor variables would also allow the ARMAX model to be used for predic-494

tion. If there are no exogenous (independent) variables in the model, predictions would495

quickly revert to the mean value of zero, the constant of the ARMAX equation.496

The predictor coefficients can be represented with an empirical prediction equa-497

tion (Equation 1). For the 40 keV electrons:498

Fluxt = −0.057 +
0.632Vt−1

1− 0.270Vt−2
+

1.087Nt−1

1− 0.126Nt−2
499

+
0.265Bzt−1

1− 0.283Bzt−2
+

0.0170Kpt−1

1− 0.563Kpt−2
500

+
−0.028SymHt−1

1− 0.726SymHt−2
+

0.170AEt−1

1− 0.379AEt−2
501

+
0.021ULFt−1

1− 0.959ULFt−2
+

−0.992Pt−1

1− 0.177Pt−2
502

+
0.257Eyt−1 − 0.131Eyt−2

1− 0.046Eyt−2
503

+0.836× Ŷt−1 + 0.999× Ŷt−24504

+0.204× εt−1 + 0.302× εt−2 + 0.986× εt−24

(1)505

Flux at time t is predicted by the other variables at previous times steps (t− 1,506

etc), the model predicted value of flux at t− 1 and t− 24 (”daily”), and the error be-507

tween model and observation (ε) at t−1, t−2, and t−24. For clarity, we do not label508

the variables that have been logged (flux, V , N , Kp, AE, ULF , and P ) in the empir-509

ical prediction equation, however, due to this transformation, this is effectively a non lin-510

ear model in the terms for which we have taken logs. Each influence term is represented511

in a numerator, with decay terms in the denominator.512

The influence (numerator) and decay (denominator) terms of Equation 1 give us513

the tools to calculate the cumulative effects of each input variable. An influence that ap-514

pears at t-1 dissipates at a rate given by the decay term. Thus, although there may only515

be one hour in which a variable input appears, the exponential decay over time means516

influence may spread from previous time periods. The influence at a given forward time517
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Table 1. ARMAX standardized regression coefficients of the full models (one for each electron

energy) including all variables except Bs (*: statistically significant, p-value < 0.05; †: p-value <

0.10; n.s.: not statistically significant, p-value > 0.10)

40 keV 75 keV 150 keV

Intercept -0.057n.s -0.054n.s. -0.036n.s.

AR1 0.836* 0.845* 0.855*

MA1 0.204* 0.207* 0.069*

MA2 0.302* 0.217* 0.202*

DailyAR1 0.999* 1.000* 1.000*

DailyMA1 0.986* 0.993* 0.994*

V lag 1 h 0.632† 0.888* -0.196*

Decay 0.270 0.822 -0.147

N lag 1 h 1.087* 1.358* -0.087*

Decay 0.126 0.811 0.854

Bz lag 1 h 0.265* 0.386* 0.306*

Decay 0.283 0.429 0.673

Kp lag 1 h 0.017n.s. 0.041* 0.023*

Decay -0.563 0.937 0.967

SymH lag 1 h -0.028* -0.004* 0.056*

Decay 0.726 0.975 -0.447

AE lag 1 h 0.170* 0.131* 0.019*

lag 2 h – 0.050* 0.062*

Decay 0.379* -0.055 0.551

ULF lag 1 h 0.021* 0.001n.s. 0.003n.s.

Decay 0.959 -0.988 0.984

P lag 1 h -0.992* -1.274* 0.035n.s.

Decay 0.177 0.813 0.849

Ey lag 1 h 0.257* 0.352* 0.263*

lag 2 h -0.131 -0.040* –

Decay -0.046 0.414 0.731

R2 67.4 % 69.2 % 78.1 %
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step from some time step (t) in the past will be that influence ×(1−decayfactor)t. Graph-518

ically, this results in a time delay of influence that appears similar to a cross correlation,519

however, the transfer function gives regression coefficients (i.e., slopes), not correlations.520

While a correlation can be interpreted as the strength of a relationship between two vari-521

ables, a regression coefficient can be interpreted as the magnitude of the impact of one522

variable on another. We use the predictor coefficients of Table 1 to create the cumula-523

tive influence bar charts of Figure 2. It should be remembered that these regression co-524

efficients represent the influence of each variable with the others held constant, unlike525

the simple correlations of Figure 1. Each panel of this figure shows the response of an526

electron energy (40, 75, and 150 keV) to the influence of each of the 9 exogenous vari-527

ables when the other 8 predictor variables are held constant. The influence of each be-528

gins from the hour previous to the flux measurement. The decay term describes the fall529

off in influence over time.530

These ARMAX models incorporating all 9 possible predictors show little influence531

of Kp and SymH. AE has the highest influence of the geomagnetic indices, but it is weaker532

than the strong and lasting effects of V , N , and P , particularly at 75 keV. The V , N ,533

and P influences are superficially similar to those seen in the simple cross correlations534

(Figure 1) but the sign of influence of N and P have switched. Bz and Ey also super-535

ficially show the same influence as in the cross correlations, but, again, the sign of in-536

fluence of Bz is switched.537

What are we to make of these losses of influence (particularly Kp and SymH) and538

the changes in sign? First, it becomes obvious that simple correlations are highly un-539

reliable. They should not be used, individually, to determine what drives electron flux.540

Each parameter is highly correlated with all the other parameters of interest, and on top541

of that any one of them may show a spurious correlation with electron flux due to com-542

mon cycling behavior. While any of the highly correlated parameters, or a set of them,543

might usefully be employed in a predictive model, we should not make the mistake of544

believing that a model that predicts well has identified the actual drivers of the system.545

Second, geomagnetic indices (particularly Kp and SymH) do not even appear to546

influence electron flux when other variables are present. In this full model, Kp and SymH547

have little influence. However, even if they were the most ”influential” parameters in these548

models, for the reasons mentioned above would we be justified in calling them drivers?549

Or are they merely correlated proxies? Is SymH a predictor variable at all? Or just an-550

other measure of our response variable, the electron flux? These questions can only be551

answered from a consideration of what information these indices actually contain. As552

we have discussed above, while Kp and SymH may roughly represent disturbance in the553

magnetosphere, we don’t know exactly which processes and how much of each process554

they might represent. AE is a different case. First, AE does show more influence than555

the other two indices, and second, we know that this index measures substorm activity556

which can lead to electron injection. For this latter reason, we will retain AE in further557

models.558

Both P and N act more as a pointed shock to the system with less long term in-559

fluence, however, the opposite sign of these two predictors, at similar magnitudes, sug-560

gests that there is some degree of multicollinearity occurring between these two. This561

is not surprising, as P , partially calculated from N , is highly correlated with N and the562

amount of information about the influence of each on flux is almost wholly contained in563

the other. Unfortunately, this can result in a pattern of presumed ”influence” (as seen564

here) that reflects a competition for explanatory power rather than actual opposing ef-565

fects on flux, and the inclusion of both in the model is misleading. Bz and Ey have more566

modest influences on flux. Despite the high ULF -flux correlation seen in the simple cor-567

relations, the ULF influence on flux is very low. This is likely due to two factors. First,568

when other variables are included in the model any proxy correlation ULF may have rep-569

resented is removed from the ULF influence. Second, the high simple correlation may570
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be simply due to this ULF index and satellite-measured flux both showing a diurnal cy-571

cle. When this cycling is removed (via the AR and MA terms) the correlation between572

these variables disappears (Simms et al., 2022). (The occasional oscillating pattern of573

influence in several of the variables is the result of a negative decay term found by the574

regression. It is often unclear whether this has any real physical meaning.)575

As these are standardized regression coefficients, we can calculate the impact of a576

predictor on flux. For example, as we are using standardized coefficients, a 1 standard577

deviation increase in log10(AE) 1 h previous would result in 0.17 standard deviation in-578

crease in log10(40keV flux), holding all the other predictors constant.579

3.5 Choice of variables580

Pressure (P ) and number density (N) are difficult to incorporate into a model si-581

multaneously. As pressure is the product of the V 2 and N , the strong correlation be-582

tween pressure and N can lead to unexpected and puzzling behavior. In the models of583

Figure 2 and Table 1, there is a strong initial influence of P , and an opposing strong in-584

fluence of N in the same time period. As we know that P and N are highly correlated585

with each other, it is difficult to interpret this as each having a strong, opposing, and,586

most importantly, independent influence. It is more likely that these opposing effects are587

merely the result of the two terms acting counter to each other in an effort to explain588

the same small bit of variation. The same is true of Ey with V and IMF Bz, as Ey is589

the product of V and Bz. A more plausible model could be achieved by dropping one590

of either P and N , and one of Ey and IMF Bz. For example, dropping the two derived591

parameters (Ey and P ) would allow us to more accurately see the effects of V , N , and592

Bz.593

However, we may be able to do better by separating out just those parameters we594

believe could be influencing flux directly. These direct parameters would be AE (as a595

measure of substorms which inject electrons), ULF (waves in this frequency are thought596

to drive electrons to higher energies), Ey (with the solar wind electric field plausibly hav-597

ing some influence on electron behavior), and pressure (which could influence flux lev-598

els through acceleration, through magnetopause shadowing, and by compression of the599

magnetosphere at the altitude of the satellite, bringing the satellite into higher drift shells600

with lower electron density). The coefficients of this reduced model are presented in Ta-601

ble 2.602

From the coefficients of this table, we once again calculate the cumulative effects603

of each variable on flux (Figure 3). At 40 keV (3a), this simpler model of the presumed604

direct effects alone shows a strong effect of AE, peaking at 2 hours before the flux and605

with influence over many hours. Pressure, Ey, and ULF , while still statistically signif-606

icant effects, are much lower in magnitude. The effect of pressure is negative, presum-607

ably as most of its effect is due to the compression of the magnetosphere which positions608

the satellite into a less populated drift shell and to magnetopause shadowing. The small609

Ey association cycles between positive and negative. A similar pattern is seen for the610

75 keV electrons (3b), although the AE influence is slightly lower and the P and ULF611

effects somewhat stronger. The 150 keV electrons (3c) show a much lower response to612

AE, and, again, a somewhat stronger response to P and ULF .613

But what of the strong influence of V we saw in the full model of Figure 2? Although614

our direct effects model (of Figure 3) may make more physical sense, we still would like615

to understand the correlation of V with flux. We can do this by using the other, indi-616

rect parameters to predict our set of more physically interpretable variables, decompos-617

ing each correlation into components. In other words, we can use N , V , and IMF Bz to618

predict AE, ULF , P , and Ey, which we subsequently use to predict flux.619
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Figure 2. Cumulative effects of all possible drivers of electron flux. For each flux energy, vari-

ables are entered simultaneously into an ARMAX regression model as a predictor at a delay of

1 and 2 hours. Only statistically significant time steps are retained, along with a decay factor.

Standardized regression coefficients may be compared within each model (a. 40 keV, b. 75 keV,

c. 150 keV) to determine the relative influence of each variable on flux. Note that each row has

the same scale, but scales vary between rows, in order to compare more effectively between the

strongest associations (V , N , and P ) and between the indices (AE, Kp, and SymH) and other

variables with lower influence (ULF , Bz, and Ey).
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Table 2. ARMAX standardized regression coefficients of the three reduced models using AE,

ULF , P , and Ey as predictors (*: statistically significant, p-value < 0.05; n.s.: not statistically

significant)

Log 40 keV flux Log 75 keV flux Log 150 keV flux

Constant -0.090n.s. -0.093n.s. -0.056n.s.

AR1 0.825* 0.843* 0.86*

MA1 0.197* 0.195* 0.055*

MA2 0.293* 0.212* 0.201*

Daily AR1 0.998* 0.998* 0.999*

Daily MA1 0.981* 0.987* 0.993*

Log(AE) 1h lag 0.216* 0.130* 0.004n.s.

2h lag 0.154* 0.091*

Decay 1h 0.882 0.542 0.053

Decay 2 h 0.349

Log(ULF) 1h lag 0.017* 0.021* 0.03*

Decay 1h 0.965 0.969 0.97

Log(P) 1h lag -0.025* -0.039* -0.055*

Decay 1h 0.717 0.728 0.801

Ey 1h lag -0.018* -0.014* -0.03*

2h lag — -0.022 —

Decay 1h -0.763 -0.381 0.412

R2 67.10% 68.50% 76.90%
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Figure 3. Cumulative effects of the possible direct drivers of electron flux. For each flux

energy, AE, P , Ey, and ULF are simultaneously entered into an ARMAX regression model as

predictors at 1 and 2 hours, but only significant time steps are retained, along with a decay fac-

tor. Standardized partial regression coefficients may be compared within each model to determine

the relative influence of each variable on flux: a. 40 keV, b. 75 keV, c. 150 keV.
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To accomplish this, we presume a causal model (Figure 4) and run a series of re-620

gressions to determine the coefficients of the paths. In this figure, we present the stan-621

dardized regression coefficients obtained by predicting 40 keV flux from AE, ULF , P ,622

and Ey. We then predict both AE and ULF using P , Ey, N , V , and IMF Bz from one623

hour previous. (These models are not shown explicitly as the input parameter coefficients624

are all that we need here, but these are simply the exogenous coefficients from an AR-625

MAX model also incorporating AR and MA terms. For this particular model, we use only626

a lag 1 h influence term and no decay term to simplify the effects of each input variable.)627

Similarly, we show the exogenous variable coefficients for predicting P from N and V ,628

and Ey from V and Bz, using N , V , and Bz, but from the same hour as P and Ey. (There629

are not paths from V to either ULF or AE because it was not a statistically significant630

direct influence on either.) In this figure, green arrows run to and from AE, gold arrows631

to and from ULF , and blue arrows to and from P and Ey.632

These standardized regression coefficients from this series of regression models are633

known as path coefficients (Wright, 1934). The path coefficients can be multiplied (through634

connecting arrows, or paths), then summed to show the full cumulative effect of each of635

the indirect drivers (V , N , and Bz) on the direct drivers (AE, ULF , P , and Ey) and,636

subsequently, on flux.637

The maximum direct effect of each variable is shown by arrows leading directly to638

flux. Simple correlations between the exogenous, or indirect, variables (N , V , and Bz)639

are shown (in black curved arrows). This decomposition allows the correlation between640

a pair of variables to be broken down into direct effects, indirect effects, and spurious641

correlation due to associations between the exogenous variables. We are interested in the642

direct and indirect effects and will ignore spurious correlations due to the associations643

between N , V and Bz. For example, the direct effect of pressure on flux is represented644

by the arrow from pressure to flux (-0.04 coefficient). This is rather low, but to this we645

can add the indirect effect of pressure: the path from P through AE to flux (coefficients646

0.52 and 0.25). This indirect effect of P via its influence on AE (which subsequently in-647

fluences flux) is the product of the steps in the path: 0.52 × 0.25 = 0.13. The contri-648

bution of several indirect paths can be calculated by summing these products (Table 3).649

In the first column of this table, we show the direct effect of AE, ULF , P , and Ey on650

flux (coefficients on the arrows leading directly to flux of Figure 4). In the second col-651

umn we show the results of the calculations for the indirect effects of each variable through652

AE, in the third column, these indirect effects through ULF , in the fourth, indirect ef-653

fects through P , and in the fifth column, these indirect effects through Ey. (Details of654

example calculations are given in the footnote.) The last column is the sum of the first655

5 columns, showing the total influence of each variable, both through its direct influence656

(if any) and its indirect influence via other parameters.657

The result of these calculations are that we can now see a clearer picture of which658

variables are most influential on flux and through which processes that influence is me-659

diated (given this particular, hypothesized, causal structure). Predictors not postulated660

to directly influence flux, such as V , still show an overall moderate degree of influence661

when paths connecting it indirectly to flux are considered (mainly, in this case, via P ).662

However, N , which has a moderate (if negative) simple correlation with 40 keV flux, has663

less influence than V when all influences are added. N appears to drive several compet-664

ing processes: reducing AE and ULF while simultaneously (through P ) increasing flux.665

Thus, the lower correlation of N with flux is not an indication that it does not influence666

flux, but that it does so through several opposing processes that cancel out each other’s667

effects in an overall correlation.668

Certain parameters, such as ULF , which show a strong simple correlation with flux669

(Figure 1), are not influential. So why does the simple correlation appear so high in com-670

parison? This is due to several factors which we have now accounted for: inflated cor-671

relations due to common cycles and trends (accounted for by the AR and MA terms of672
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40 keV Flux
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P Ey

VN Bz

.731.1
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-.53
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.25 -.01-.04

-.38 .19

.23
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.02

.88
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Figure 4. Postulated direct drivers of 40 keV GOES electron flux (green arrows to and from

AE, gold arrows to and from ULF , blue arrows to and from P and Ey) may be influenced by

solar wind and IMF parameters (V , N , and Bz). Standardized coefficients of the influence of AE,

ULF , P , and Ey on flux (from an the ARMAX model with predictors measured 1 h before flux)

are given. ULF and AE are postulated to be driven by P , Ey, V , N , and Bz (coefficients from

ARMAX models with predictors measured 1 h before). P and Ey, being mathematically depen-

dent on N , V , and Bz, are predicted from ARMAX models with all variables measured at the

same hour. Influences of V , N , and Bz on P and Ey are from the same hour. These paths break

down the overall correlations into components, attributable to the various associations between

variables. Only statistically significant links between variables are retained. As a consequence,

there is no direct link from V to either ULF or AE.
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Table 3. Calculating the sum of direct and indirect influences on 40 keV flux.

Direct via AE via ULF Via P Via Ey Sum
Direct + Indirect Influence

AE 0.25 0.25
ULF 0.02 0.02
P -0.04 0.131 0.018 0.11
Ey -0.01 -0.055 -0.005 -0.070
N -0.12 -0.015 0.122 -0.014
V 0 0 0.137 -0.0007 -0.024
Bz -0.13 -0.0088 0.070 -0.071

1As an example, the indirect path of P influence through AE = (effect of P on AE) ×
(effect of AE on flux) = 0.52 × 0.25 = 0.13, using coefficients from the paths in Figure 4.
2The more complicated paths of N through P are summed: (N on P ) × (P on flux) +
(N on P ) × (P on AE) × (AE on flux) + (N on P ) × (P on ULF ) × (ULF on flux) =
1.1 × (-0.04) + 1.1 × 0.52 × 0.25 + 1.1 × 0.88 × 0.02 = 0.12.

Table 4. Summed direct and indirect influences on 40, 75, and 150 kev flux.

a. AE b. ULF c. P d. Ey e. N f. V g. Bz

40 keV 0.25 0.020 0.11 -0.070 -0.014 -0.024 -0.071
75 keV 0.15 0.005 0.021 -0.052 -0.051 -0.049 -0.029
150 keV -0.001 -0.008 -0.090 -0.023 -0.092 -0.065 0.027

the ARMAX regression), correlations with confounding variables (now accounted for by673

the use of multivariate regression instead of single correlations), and the possibility that674

ULF over the short term (hourly, in this case) has little influence.675

For parameters such as V and N , influence has been diminished by their relega-676

tion to indirect driver status in the path analysis. This is a choice made based on the677

hypothesis that neither is postulated to have the physical ability to directly drive elec-678

tron flux. If there were reason to believe they did, these could be moved up the hierar-679

chy in the path analysis, allowing them to have more influence in that correlational struc-680

ture.681

We can do these calculations for each of the electron energies, giving the summed682

influence of each parameter on flux (Table 4). AE appears only as a direct effect, and683

is thus comparable directly between electron energies, with the strongest effect at 40 keV684

(0.25) but a lower effect above this range (-0.001 - 0.15). The summed influence of P is685

generally larger and positive compared to its weak negative direct effect, particularly at686

40 keV. The summed Ey effect is similar in magnitude to P . The summed effects of V ,687

N , and Bz are all somewhat equal to each other, with somewhat more effect of V at 40688

keV and a higher influence of N at 150 keV. For the most part, these three indirect drivers689

are negative in influence overall.690

3.6 MLT dependence of 40-150 keV electron flux response to AE, ULF ,691

P , and Ey692

Electrons at geostationary orbit show different flux levels at different magnetic lo-693

cal times (MLT) (Boynton et al., 2019). With geostationary satellites, which orbit syn-694

chronously with MLT, it is unclear whether these are spatial or temporal variations, how-695

ever, electron injection has been observed in the hours around local midnight (M. F. Thom-696

sen et al., 2001; Birn et al., 1997). Using ARMAX models, we investigate not only whether697
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flux differs at varying MLT, but also whether the identified drivers show different influ-698

ences (i.e., a different coefficient slope) at each MLT. We do not subset the data into MLT699

bins and analyze them separately, but identify each MLT in the dataset and calculate700

a different slope coefficient for each. This is done by creating a set of 23 indicator vari-701

ables spanning the MLT hours: each is set to 1 for a different, particular MLT and 0 at702

all other times. The interaction term between each of these indicator variables and each703

predictor variable (obtained by multiplying each indicator variable by each predictor)704

gives the slope of the relationship between flux and predictor at each MLT ((Neter et705

al., 1990). By not splitting the dataset by MLT (i.e., by identifying MLT by indicator706

variables instead), we are able to analyse the dataset as a continual ARMA process. We707

report these slopes (standardized regression coefficients) for each MLT (Figure 5).708

At 40 and 75 keV, AE is the most influential parameter, but it is most effective709

over 3-11 MLT (40 keV) and 6-17 MLT (75 keV). Not only is the flux higher at these710

times (Boynton et al., 2019), but the effect of the strongest driver (AE) is also at its high-711

est level.712

The other direct drivers (ULF , P , and Ey) are, as demonstrated above, less influ-713

ential, but there are MLT differences in their effects. ULF has somewhat more effect at714

19-0 MLT on the 40 keV electrons. P shows a stronger negative effect over 16-4 MLT,715

with the most effect being seen at 150 keV. Ey, at 40 and 75 keV, shows a positive ef-716

fect over 23-8 MLT, with a negative effect over 9-22 MLT. The Ey switch in influence717

from positive to negative likely accounts for its overall lack of effect in the analyses above718

that are not broken down by MLT. Although less dramatic, the switch in ULF from pos-719

itive to slightly negative or near zero also results in an overall lack of influence when MLT720

is not considered, even though ULF does show a modest positive influence at some times.721

3.7 Disturbed vs. quiet response722

To produce an ARMAX model, a continuous time series is needed. This means that723

disturbed and quiet periods must be combined in the same analysis. However, it may724

be that the flux response to each predictor varies depending on conditions. A simpler725

multiple regression model could be used to explore the response between quiet and dis-726

turbed periods, however, this can result in spurious correlations if variables are cycling727

together (for example, a diurnal cycle) or show a common trend (Simms et al., 2022).728

A regression model that accounts for these co-occuring cycles and trends can be produced729

by differencing the data: subtracting the previous value from each observation (yt−yt−1).730

This results in regression coefficients that describe the change in flux as predicted by the731

change in the independent variables, rather than in the original units, but tests of sig-732

nificant influence and comparisons of relative influence can still be made.733

We assemble a subset of ”disturbed” data by taking those periods a day before and734

a week following each Dst dip to -100 nT. We create a ”quiet” set by finding periods >735

2 weeks after a Dst dip below -30 nT. A third subset (”recovery”) are the disturbed pe-736

riods with the Dst drop removed (i.e., with the main phase of the storm removed). By737

doing this, we hope to pinpoint those periods when these predictors may have different738

influence on electron flux due to geomagnetic conditions. We first perform a multiple re-739

gression on the differenced data with AE, ULF , P , and Ey as predictors in order to com-740

pare their relative effects via the standardized regression coefficients (Figure 6). We then741

compare this to the same analyses performed on undifferenced data to show the effect742

of removing spurious correlations that are the result of common cycles and trends.743

With differenced data (Figure 6.1), the AE effect is consistent over these three pe-744

riods (strongest effect on the 40 keV flux, least effect on 150 keV flux). No matter the745

geomagnetic conditions, substorms (as measured by AE) show a statistically significant746

positive influence on flux, with the most effect at the lower electron energies. P does not747

contribute significantly at most periods or energy levels (the exception being at 150 keV748
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Figure 5. Varying effects of AE, ULF , P , and Ey over magnetic local time. Each variable

is entered into an ARMAX regression model as a predictor at 1 h. a. 40 keV, b. 75 keV, c. 150

keV.
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during disturbed periods). Ey shows a negative effect in the quiet periods but a posi-749

tive effect in recovery. ULF has little or a negative influence, even when periods are se-750

lected that would be expected to show a strong effect such as recovery following storms.751

We present an analysis of undifferenced data in this figure (6.2) to show the dan-752

ger of correlating variables with common diurnal cycles. In the undifferenced data, we753

do find the ”expected” strong ULF effect (Figure 6.2; note the larger scale compared754

to the differenced data), but this is only a demonstration of the spurious nature of this755

high correlation. High correlations between ULF wave activity and electron flux in hourly756

data are likely only describing a common diurnal cycle and say little about physical driv-757

ing mechanisms (Simms et al., 2022). ULF waves may be a more long term driver of flux,758

with positive influences only appearing after 24 h (Simms et al., 2021). The other pre-759

dictors also show stronger effects when not differenced (Figure 6.2), likely also due to760

common diurnal cycles in the data.761

4 Discussion and Conclusions762

A number of variables show high simple (single variable) correlations with keV elec-763

tron flux, but by using an ARMAX analysis which removes the confounding effect of di-764

urnal cyclicity and allows assessment of each parameter independently, we show more765

definitively that substorms (measured by AE) are the most influential process at 40 and766

75 keV. This accords with previous work that found substorms to be an important cor-767

relate with both keV (Ganushkina et al., 2021) and MeV electrons (Simms et al., 2018a).768

There is a somewhat lesser effect of Ey (calculated as -VSWBz) in contrast to pre-769

vious single-variable studies (Denton et al., 2016)). P is more influential at 150 keV, act-770

ing to decrease electron flux. The contrast to previous findings, where pressure increased771

flux (Shi et al., 2009), is due to our present study incorporating more predictors at one772

time. Pressure, as shown in Figure 1, does correlate positively with flux when it is the773

only tested predictor at the lower electron flux energies, but appears negative in influ-774

ence when other variables are included. ULF shows little influence on keV electrons in775

these hourly, fuller variable models, despite its influence on MeV electrons (Simms et al.,776

2021, 2018a, 2018b) and its strong positive correlation when it is the only predictor (Fig-777

ure 1).778

In addition to these variables that we label direct, physical drivers of flux, we con-779

sider several other parameters as possible indirect drivers (solar wind N and V and IMF780

Bz) which show fairly equivalent influences on flux via their effects on the direct drivers.781

This supports previous findings concerning these three solar wind and IMF influences782

(Sillanpää et al., 2017; Li et al., 2005; Kellerman & Shprits, 2012; Ganushkina et al., 2019;783

Hartley et al., 2014). Stepanov et al. (2021) when controlling for other variables, also784

found solar wind velocity and a magnetospheric convection variable (the dayside merg-785

ing electric field, somewhat similar to the Ey we use) to be the strongest influences on786

keV flux near the plasmasheet midplane. A similar multiplicative variable, the IMF fac-787

tor (Balikhin et al., 2010; Boynton et al., 2011) and solar wind velocity appear to con-788

trol hourly averaged 40 keV electrons. However, these last studies did not include a test789

of AE influence.790

As electron flux is log-transformed in our analyses, all the relationships we find here791

are nonlinear even though they are tested with the linear model method of ARMAX re-792

gression. As Bz and Ey are not log-transformed, they show an exponential relationship793

with electron flux. All other predictors, which are log-transformed, are described by a794

power function relationship.795

Although all three geomagnetic indices (Kp, SymH, and AE) show high simple796

(single variable) correlations with electron flux, the influences of Kp and SymH disap-797

pear in a full regression model where other variables are included. It is likely that these798
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Figure 6. Standardized regression coefficients (AE, ULF , P , and Ey) from multiple regres-

sion (not ARMAX) models. 1. All data differenced by subtracting the previous hour’s observa-

tion: during disturbed periods (a,d,g), quiet periods (b,e,h), and storm recovery periods (c,f,i). 2.

The same for undifferenced data. Note the difference in scale between 1. and 2. Significant effects

(p-value < 0.05) are shown in blue.
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two indices mostly measure generalized disturbance in the magnetosphere which is bet-799

ter described using solar wind and IMF variables. The AE index, as it is better posi-800

tioned to measure substorms and subsequent electron injections, is more representative801

of the physical processes that drive flux.802

The response of electron flux to our identified possible direct drivers (AE, ULF ,803

P , and Ey) varies only somewhat between disturbed, quiet, and storm recovery periods.804

AE is a stronger influence during recovery, for example, than during quiet or disturbed805

periods.806

While there are sizable simple correlations of some parameters with electron flux,807

single variable correlations can misrepresent the actual relationships. If neither common808

cycles and trends, nor confounding variables are accounted for, simple correlational anal-809

ysis may show large associations between variables that have no physical relationship.810

This has been demonstrated before, where removal of common cycles results in either811

a complete elimination of a correlation between some space weather parameters (e.g.,812

the commonly observed ULF wave correlation with solar wind velocity or with electron813

flux (Simms et al., 2022)) or a reduction in correlation (Simms et al., 2021). An ARMAX814

model, used in this study, can account for common cycles in time series data (and trends,815

if necessary) by the use of AR and MA terms (and differencing, if needed). Entering sev-816

eral predictor variables into the same analysis then allows each variable’s influence to817

be calculated while the others are held constant.818

However, adding all possible explanatory variables to a model may not correctly819

identify the most important physical parameters but only those that correlate best, for820

whatever reason. While a reasonable predictive model may be achieved by throwing all821

available variables into a regression or neural network, leaving an algorithm to choose822

the model with the highest validation correlation, this is unlikely to identify actual drivers823

in the system. This approach, instead, can lead to several problems: 1. ”opposing” vari-824

ables may appear extremely influential as they compete to explain the same small bit825

of variation, 2. theoretical considerations of physical influence tend to be ignored in fa-826

vor of factors that happen to correlate well, 3. coefficient estimates may be biased if ex-827

traneous variables are included or if important variables are excluded (Smith, 2018; Whit-828

tingham et al., 2006). In the worst case, a model may report that factors that cannot829

physically influence the dependent variable are the only factors that have any effect at830

all. For this reason, to determine whether a factor has an actual driving influence, care831

must be taken to choose only those for which a likely physical effect can be postulated832

and not just all that are available. This is why we have chosen to do further analyses833

on a set of presumed direct drivers (substorms, ULF waves, pressure, and electric field),834

as well analyses that show the relative correlations of all possible variables.835

Using the ARMAX method on such a reduced model, we find that the influence836

of substorms (AE) on hourly electron flux remains substantial over the 40-75 keV range837

at geostationary orbit (approximately L6) although of less importance at 150 keV. This838

influence is strongest after midnight into the mid-morning hours MLT. The AE influ-839

ence is slightly higher during storm recovery periods than during either disturbed or quiet840

periods. Substorms, therefore, are the dominant driver within our postulated ”direct driver”841

set (substorms, ULF waves, solar wind pressure, and electric field) and presumably show842

the influx of electrons injected from the magnetotail.843

The hourly Ey parameter (electric field of the solar wind) shows little influence when844

MLT is ignored. However, introducing MLT into the model results in a positive effect845

of Ey over 20-8 MLT, with a mostly negative effect at other times of day. These oppos-846

ing influences cancel each other out in a model that does not account for variations over847

MLT. The Ey influence also varies by geomagnetic conditions, with no influence during848

disturbed periods, a negative influence during quiet periods, and a positive influence dur-849

ing recovery after storms.850
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Overall, P shows a moderately negative direct effect on flux. When the analysis851

accounts for MLT, this negative influence is strongest over 20-12 MLT.852

ULF waves, thought to accelerate electrons to higher energies, show little imme-853

diate (hourly) influence. A strong correlation of ULF waves with high energy electron854

flux (> 1.5 MeV) found in previous studies may be a consequence of correlating two vari-855

ables with a common diurnal cycle, or a reflection of only long term (at least day long)856

physical driving (with no short term influence), or both. We find here that any signif-857

icant short term driving of 40-75 keV electrons by ULF appears to be negative and only858

during quiet or recovery periods, while there is little short term effect at 150 keV.859

At 150 keV, there is the least response of hourly averaged flux to the presumed phys-860

ical drivers. This may represent the longer time frame of action required from these pro-861

cesses to bring electrons to higher energies. Even the cross correlations (Figure 1) show862

higher effects from 24-48 hours previous, with ULF and AE showing their least influ-863

ence in the 12 h preceding a flux measurement and the Ey influence peaking at 12 h.864

We are able to compare effects of the other correlates by summing their indirect865

influence through the presumed physical drivers. We are able to calculate that at 40 keV,866

P shows a summed influence (both direct and indirect) nearly half that of the most in-867

fluential parameter, AE, with Ey having about a fourth the influence of AE. Of the pos-868

tulated indirect drivers, N , Bz, and V show nearly equal effects. The N and V influ-869

ences are negative, while the Bz influence switches sign above 75 keV.870

We compare our approach to finding the physical drivers of electron flux (using the871

ARMAX model framework) to that of some other empirical models that seek instead to872

predict flux. If the purpose of a model is accurate prediction, then a simple validation873

correlation of observation with prediction on a withheld test set is the statistic of inter-874

est. In this case, predictor variables can be chosen simply on the basis of availability and875

ability to correlate well with the response. Alternatively, the ARMAX-regression mod-876

els we present here address the question of what parameters drive flux changes. We use877

hypothesis testing within the ARMAX-regression framework to determine whether cer-878

tain parameters show an association with electron flux. As our questions concern the sci-879

ence of the system (i.e., which variables are drivers), we consider, first, which variables880

most justifiably have a physical association with flux and which are only highly corre-881

lated because they are proxies. A model such as this, developed for determining the ac-882

tual relationships, should test the slope of association with flux for each identified vari-883

able. The validation correlation, of predictions with test set observations, is of much less884

importance.885
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lanpäa, I. (2018). Spacecraft surface charging induced by severe environments1057

at geosynchronous orbit. Space Weather , 16 . doi: 10.1002/2017SW0016891058

Neter, J., Kutner, M. H., & Wassermann, W. (1990). Applied linear statistical mod-1059

els, 3rd ed. Homewood, Illinois, USA: Irwin.1060

Osthus, D., Caragea, P. C., Higdon, D., Morley, S. K., Reeves, G. D., & Weaver,1061

B. P. (2014). Dynamic linear models for forecasting of radiation belt electrons1062

and limitations on physical interpretation of predictive models. Space Weather ,1063

–30–



manuscript submitted to JGR: Space Physics

12 (6), 426-446. doi: https://doi.org/10.1002/2014SW0010571064

O’Brien, T. P., & McPherron, R. L. (2003). An empirical dynamic equation for1065

energetic electrons at geosynchronous orbit. Journal of Geophysical Research,1066

108 (A3), 1137. doi: 10.1029/2002JA0093241067

Pankratz, A. (1991). Forecasting with dynamic regression models. New York, USA:1068

John Wiley and Sons, Inc.1069

Paulikas, G., & Blake, J. (1979). Effects of the solar wind on magnetospheric1070

dynamics: Energetic electrons at the synchronous orbit. In Quantitative mod-1071

eling of magnetospheric processes (p. 180-202). American Geophysical Union1072

(AGU). doi: https://doi.org/10.1029/GM021p01801073

Pilipenko, V. A., Kozyreva, O., Engebretson, M., & Soloviev, A. (2017). Ulf wave1074

power index for space weather and geophysical applications: A review. Russian1075

Journal of Earth Sciences, 17 (ES1004). doi: doi:10.2205/2017ES0005971076

Reeves, G. D., Morley, S. K., Friedel, R. H. W., Henderson, M. G., Cayton, T. E.,1077

Cunningham, G., . . . Thomsen, D. (2011). On the relationship between1078

relativistic electron flux and solar wind velocity: Paulikas and blake re-1079

visited. Journal of Geophysical Research: Space Physics, 116 (A2). doi:1080

https://doi.org/10.1029/2010JA0157351081

Rigler, E. J., Baker, D. N., Weigel, R. S., Vassiliadis, D., & Klimas, A. J. (2004).1082

Adaptive linear prediction of radiation belt electrons using the kalman filter.1083

Space Weather , 2 (3). doi: https://doi.org/10.1029/2003SW0000361084

Roeder, J. L., Chen, M. W., Fennell, J. F., & Friedel, R. (2005). Empirical models of1085

the low-energy plasma in the inner magnetosphere. Space Weather , 3 (12). doi:1086

https://doi.org/10.1029/2005SW0001611087

Rowland, W., & Weigel, R. S. (2012). Intracalibration of particle detectors on a1088

three-axis stabilized geostationary platform. Space Weather , 10 (11). doi: 101089

.1029/2012SW0008161090

Sakaguchi, K., Miyoshi, Y., Saito, S., Nagatsuma, T., Seki, K., & Murata, K. T.1091

(2013). Relativistic electron flux forecast at geostationary orbit using kalman1092

filter based on multivariate autoregressive model. Space Weather , 11 (2), 79-89.1093

doi: https://doi.org/10.1002/swe.200201094

Shi, Y., Zesta, E., & Lyons, L. R. (2009). Features of energetic particle ra-1095

dial profiles inferred from geosynchronous responses to solar wind dy-1096

namic pressure enhancements. Annales Geophysicae, 27 (2), 851–859. doi:1097

10.5194/angeo-27-851-20091098

Sicard-Piet, A., Bourdarie, S., Boscher, D., Friedel, R. H. W., Thomsen, M.,1099

Goka, T., . . . Koshiishi, H. (2008). A new international geostationary elec-1100

tron model: Ige-2006, from 1 kev to 5.2 mev. Space Weather , 6 (7). doi:1101

https://doi.org/10.1029/2007SW0003681102

Sillanpää, I., Ganushkina, N. Y., Dubyagin, S., & Rodriguez, J. V. (2017). Electron1103

fluxes at geostationary orbit from goes maged data. Space Weather , 15 (12),1104

1602-1614. doi: 10.1002/2017SW0016981105

Simms, L. E., & Engebretson, M. (2020). Classifier neural network models predict1106

relativistic electron events at geosynchronous orbit better than multiple re-1107

gression or armax models. Journal of Geophysical Research: Space Physics,1108

125 (5), e2019JA027357. doi: https://doi.org/10.1029/2019JA0273571109

Simms, L. E., Engebretson, M., Clilverd, M., Rodger, C., Lessard, M., Gjerloev, J.,1110

& Reeves, G. (2018a). A distributed lag autoregressive model of geostationary1111

relativistic electron fluxes: Comparing the influences of waves, seed and source1112

electrons, and solar wind inputs. Journal of Geophysical Research: Space1113

Physics, 123 , 3646–3671. doi: https://doi.org/10.1029/2017JA0250021114

Simms, L. E., Engebretson, M., & Reeves, G. (2022). Removing diurnal signals1115

and longer term trends from electron flux and ulf correlations: a comparison1116

of spectral subtraction, simple differencing, and arimax models. Journal of1117

Geophysical Research.1118

–31–



manuscript submitted to JGR: Space Physics

Simms, L. E., Engebretson, M. J., Clilverd, M. A., Rodger, C. J., & Reeves,1119

G. D. (2018b). Nonlinear and synergistic effects of ulf pc5, vlf cho-1120

rus, and emic waves on relativistic electron flux at geosynchronous orbit.1121

Journal of Geophysical Research: Space Physics, 123 (6), 4755-4766. doi:1122

https://doi.org/10.1029/2017JA0250031123

Simms, L. E., Engebretson, M. J., Pilipenko, V., Reeves, G. D., & Clilverd, M.1124

(2016). Empirical predictive models of daily relativistic electron flux at1125

geostationary orbit: Multiple regression analysis. Journal of Geophysical1126

Research: Space Physics, 121 (4), 3181-3197. doi: https://doi.org/10.1002/1127

2016JA0224141128

Simms, L. E., Engebretson, M. J., Rodger, C. J., Dimitrakoudis, S., Mann, I. R.,1129

& Chi, P. J. (2021). The combined influence of lower band chorus and1130

ulf waves on radiation belt electron fluxes at individual l-shells. Jour-1131

nal of Geophysical Research: Space Physics, 126 (e2020JA028755). doi:1132

https://doi.org/10.1029/2020JA0287551133

Simms, L. E., Pilipenko, V., Engebretson, M. J., Reeves, G. D., Smith, A. J., &1134

Clilverd, M. (2014). Prediction of relativistic electron flux at geostationary1135

orbit following storms: Multiple regression analysis. Journal of Geophysical1136

Research: Space Physics, 119 (9), 7297-7318. doi: https://doi.org/10.1002/1137

2014JA0199551138

Smith, G. (2018). Step away from stepwise. Journal of Big Data, 5 (32). doi:1139

https://doi.org/10.1186/s40537-018-0143-61140

Stepanov, N. A., Sergeev, V. A., Sormakov, D. A., Andreeva, V. A., Dubyagin,1141

S. V., Ganushkina, N., & et al. (2021). Superthermal proton and electron1142

fluxes in the plasma sheet transition region and their dependence on solar1143

wind parameters), journal = Journal of Geophysical Research: Space Physics,1144

volume = 126, e2020JA028580, doi = 10.1029/2020JA028580.1145

Thomsen, M. (2004). Why kp is such a good measure of magnetospheric convection.1146

Space Weather , 2 , S11004. doi: 10.1029/2004SW0000891147

Thomsen, M. F., Birn, J., Borovsky, J. E., Morzinski, K., McComas, D. J., &1148

Reeves, G. D. (2001). Two-satellite observations of substorm injections at1149

geosynchronous orbit. Journal of Geophysical Research, 106(A5), 8405– 8416.1150

doi: 101151

Thomsen, M. F., Henderson, M. G., & Jordanova, V. K. (2013). Statistical prop-1152

erties of the surface-charging environment at geosynchronous orbit. Space1153

Weather , 11 (5), 237–244. doi: 10.1002/swe.200491154

Vette, J. (1991). The AE-8 trapped electron model environment (Tech. Rep.). Na-1155

tional Aeronautics and Space Administration, Goddard Space Flight Center,1156

Greenbelt, MD: National Space Science Data Center, World Data Center A for1157

Rockets and Satellites.1158

Whittingham, M., Stephens, P., Bradbury, R., & Freckleton, R. (2006). Why do we1159

still use stepwise modelling in ecology and behaviour? Journal of Animal Ecol-1160

ogy , 75 (5), 1182–9. doi: 10.1111/j.1365-2656.2006.01141.x.1161

Wing, S., Johnson, J. R., Turner, D. L., Ukhorskiy, A. Y., & Boyd, A. J. (2022).1162

Untangling the solar wind and magnetospheric drivers of the radiation1163

belt electrons. Journal of Geophysical Research: Space Physics. doi:1164

10.1029/2021JA0302461165

Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statis-1166

tics, 5 (3). doi: 10.1214/aoms/11777326761167

–32–


