CO2 Dissolution Efficiency during Geological Carbon Sequestration (GCS) in Randomly Stratified formations

yufei wang¹, Daniel Fernandez Garcia², and Maarten W. Saaltink³

¹Universitat Politècnica de Catalunya

²Technical University of Catalonia

³Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC)

November 21, 2022

Abstract

Geological Carbon Sequestration mitigates climate change by capturing and storing carbon emissions in deep geologic formations. Dissolution trapping is one mechanism by which CO2 can be trapped in a deep formation. However, heterogeneity can significantly influenced dissolution efficiency. This work addresses the injection of CO2 in perfectly stratified saline formations under uncertainty. Monte Carlo two-phase flow compositional simulations involving the dissolution of CO2 into brine and evaporation of water into the CO2-rich phase are presented. We systematically analyzed the interplay between heterogeneity and buoyant forces, which is shown to control the migration of the CO2 plume as well as the temporal evolution of dissolution efficiency. Results show that when buoyant forces are important, vertical segregation controls the overall behavior of CO2, diminishing the influence of small-scale heterogeneity on dissolution. However, when buoyant forces are relatively small compared to the degree of heterogeneity, CO2 migrates preferentially through high permeability layers and dissolution efficiency increases with heterogeneity due to the stretching of the CO2 plume that enhances mixing. As a result, in this situation, the upscaling of permeability leads to an underestimation of the dissolution efficiency. A review of field sites shows that dissolution is heterogeneity-controlled in most real systems. Knowing that most numerical models cannot afford to represent heterogeneity at an adequate scale, results indicate that dissolution efficiency can be typically underestimated by a factor close to 1.5.

*CO*₂ Dissolution Efficiency during Geological Carbon Sequestration (GCS) in Randomly Stratified formations

2

3

4

6

Yufei Wang^{1,2} Daniel Fernàndez-Garcia^{1,2} Maarten W. Saaltink^{1,2}

¹Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain ²Associated Unit: Hydrogeology Group (UPC-CSIC)

Key Points: 7 • Mont Carlo simulations of Geological CO2 Sequestration (GCS) in randomly strati-8 fied porous media; q • Dissolution trapping plays an important role in GCS, representing around 20% of the 10 injected CO_2 ; 11 • The interplay between heterogeneity and buoyant forces controls the behavior of CO_2 12 migration and dissolution efficiency; 13 • In heterogeneity-controlled systems, permeability stratification enhances CO2 dissolu-14 tion efficiency by stretching the interface between gas and brine phases; 15 · The upscaling of permeability can lead to an underestimation of the dissolution effi-16 ciency. 17

Corresponding author: Yufei Wang, yufei.wang@upc.edu

18 Abstract

Geological Carbon Sequestration mitigates climate change by capturing and storing 19 carbon emissions in deep geologic formations. Dissolution trapping is one mechanism by 20 which CO_2 can be trapped in a deep formation. However, heterogeneity can significantly 21 influenced dissolution efficiency. This work addresses the injection of CO_2 in perfectly strat-22 ified saline formations under uncertainty. Monte Carlo two-phase flow compositional simula-23 tions involving the dissolution of CO_2 into brine and evaporation of water into the CO_2 -rich 24 phase are presented. We systematically analyzed the interplay between heterogeneity and 25 buoyant forces, which is shown to control the migration of the CO_2 plume as well as the tem-26 poral evolution of dissolution efficiency. Results show that when buoyant forces are impor-27 tant, vertical segregation controls the overall behavior of CO_2 , diminishing the influence of 28 small-scale heterogeneity on dissolution. However, when buoyant forces are relatively small 29 compared to the degree of heterogeneity, CO_2 migrates preferentially through high perme-30 ability layers and dissolution efficiency increases with heterogeneity due to the stretching of 31 the CO_2 plume that enhances mixing. As a result, in this situation, the upscaling of perme-32 ability leads to an underestimation of the dissolution efficiency. A review of field sites shows 33 that dissolution is heterogeneity-controlled in most real systems. Knowing that most numeri-34 cal models cannot afford to represent heterogeneity at an adequate scale, results indicate that 35 dissolution efficiency can be typically underestimated by a factor close to 1.5. 36

37 **1 Introduction**

Geological Carbon Sequestration (GCS), which reduces carbon emissions to the atmo-38 sphere by storing the captured CO_2 in deep geologic formations, is a promising technique to 39 mitigate climate change [IPCC, 2005, 2008; Szulczewski et al., 2012]. Four trapping mech-40 anisms, taking place at different time-scales, are typically distinguished to confine the CO_2 in the subsurface [Kumar et al., 2005; Riaz et al., 2006; Bachu et al., 2007; Vilarrasa et al., 42 2010; Gasda et al., 2012]. Structural trapping, which consists of sealing the $CO_2(g)$ with 43 a low permeable caprock, is the most rapid but unstable mechanism because $CO_2(g)$ can 44 potentially escape the formation through faults or failed wellbore casings during seismic ac-45 tivities. Mineral trapping, which considers that CO_2 can dissolve in brine and react with the 46 rock-forming minerals, is the most stable but typically slow. At intermediate time-scales, 47 the safety of GCS is attributed to capillary trapping (residual $CO_2(g)$) and dissolution trap-48 ping (dissolved aqueous $CO_2(aq)$ in brine). These two trapping mechanisms do not directly 49 depend on the integrity of the formation [Van der Meer, 1995; Flett et al., 2004; Nordbot-50 ten and Celia, 2006; Bryant et al., 2008; Strandli and Benson, 2013]. Capillary trapping 51 has been well studied in the literature [Juanes et al., 2006; Ide et al., 2007], but fewer stud-52 ies address dissolution trapping even though a substantial amount of CO_2 can potentially 53 dissolve in the formation due to the existence of large amounts of brine solvent [e.g., *Flett* 54 et al., 2004; Lee et al., 2010]. Numerical results reported by Flett et al. [2004] have shown 55 that dissolution can trap up to 33% of the injected CO_2 , which is quite close to the capillary 56 trapping efficiency reported in the same field setting. Lee et al. [2010] have shown that disso-57 lution trapping is more important than capillary trapping. 58

In homogeneous formations, the injected CO_2 is known to generate a smooth CO_2 59 plume, rising to the top of the formation by buoyant forces, and spreading laterally under-60 neath the low permeability cap rock due to advection and dispersion; in the meanwhile, CO_2 61 dissolves into the brine over a long time [Lenormand et al., 1988; Bryant et al., 2008; Cottin 62 et al., 2010; Green and Ennis-King, 2010; Mouche et al., 2010; Michael et al., 2010; Ban-63 dara et al., 2011; Oldenburg and Rinaldi, 2011; Strandli and Benson, 2013; Plampin et al., 64 2014; Trevisan et al., 2014; Mori et al., 2015; Trevisan et al., 2015]. However, natural for-65 mations are ubiquitously heterogeneous, affecting dissolution estimates in realistic settings. 66 The literature in stochastic contaminant transport in saturated porous media has extensively 67 demonstrated that heterogeneity can strongly deform solute plumes [e.g., Zinn and Harvey,

2003; Knudby and Carrera, 2005; Fernàndez-Garcia et al., 2008; Dentz et al., 2011; Henri 69 et al., 2015]. This deformation leads to the stretching and folding of the solute plume, which 70 can increase the surface contact between the solute plume and the ambient groundwater. 71 During the injection of CO_2 , similar effects are expected, potentially enhancing the capac-72 ity for CO_2 dissolution. Yet, results obtained in solute transport through saturated porous 73 media cannot be directly extrapolated to CO_2 migration during geological carbon sequestra-74 tion for two major reasons: the problem involves two fluid phases controlled by viscous and 75 gravity forces with strong nonlinear constitutive equations, and the $CO_2(g)$ plume is affected 76 by dissolution and evaporation. 77

The effect of permeability stratification during the injection of $CO_2(g)$ in GCS has 78 been observed in several works, which have demonstrated that, after injection, a major pro-79 portion of CO_2 -rich phase can enter and move preferentially through relatively high perme-80 ability conduits or channels, creating erratic patterns [Stalkup and Crane, 1994; McGuire 81 et al., 1995; Chadwick and Noy, 2010a,b; Oh et al., 2015; Rasmusson et al., 2015; Tsang 82 et al., 2001; Obi and Blunt, 2006]. Data from Sleipner field site [Gregersen, 1998] in the 83 North Sea, which is a reservoir formed by interbedded sandstones and mudstones, indicated that the injected $CO_2(g)$ was mostly present in several disconnected layers of relatively high 85 permeability with a thickness of about 10 meters [Chadwick et al., 2004, 2005]. This illus-86 trates that the stratification of permeability at the meter scale (in the vertical direction) can 87 significantly affect the fate and transport of the $CO_2(g)$ plume. Little is known about the ef-88 fect that these features have on CO_2 dissolution. Although a host of literature has assessed 89 the fate and transport of the $CO_2(g)$ plume in GCS [e.g., Gunter et al., 2004; Humez et al., 90 2011; Kabera and Li, 2011; Oh et al., 2015], systematic high-resolution stochastic simula-91 tions of dissolution trapping in heterogeneous porous media remains lacking. The works of 92 Ide et al. [2007], Hayek et al. [2009] and Oh et al. [2015] studied the effect of heterogene-93 ity on capillary trapping, ignoring dissolution. Other authors [Doughty et al., 2001; Doughty 94 and Pruess, 2004; Gershenzon et al., 2015a] have only analyzed dissolution trapping in a few 95 idealized depositional settings. In numerical modeling studies, the small-scale variability of 96 permeability is often not explicitly represented [Birkholzer et al., 2009; Hayek et al., 2009; 97 Lee et al., 2010; Pruess and Nordbotten, 2011; Rasmusson et al., 2015; Onoja et al., 2019]. 98 Qualitative or quantitative analysis of the impact of discounting the small-scale variability in qq modeling prediction estimates of geological carbon sequestration has not been reported. 100

In this paper, we present high-resolution two-phase flow numerical simulations of in-101 jected $CO_2(g)$ moving though a deep saline formation during geological carbon sequestra-102 tion with the objective to: (i) study the effect of heterogeneity on CO_2 dissolution; and (ii) 103 evaluate the impact of upscaling permeability on dissolution predictions. For this, we con-104 sider one of the simplest conceptual models of heterogeneity, that is, a perfectly stratified 105 formation system in which the permeability varies only along the vertical direction. From a 106 practical standpoint, we note that even though perfect stratification of permeability in natural 107 field settings is seldom observed over large horizontal distances, this model can properly rep-108 resent processes over relatively short distances compared to the horizontal integral scale of 109 permeability, which can vary from few meters to thousands of meters [e.g., Schwartz, 2014]. 110 Moreover, well-connected geological formations have been shown to behave similar to a per-111 fectly stratified system, as both exhibit continuous paths of relatively high velocity [Zinn and 112 Harvey, 2003]. This type of heterogeneity has been also used in a number of investigations 113 that explore solute transport behavior in subsurface systems [Fernàndez-Garcia et al., 2008; 114 Mouche et al., 2010]. The numerical simulations we present consider a stochastic framework 115 with multiple realizations of the permeability field, which are represented by a random space 116 function and different degrees of heterogeneity. Dissolution efficiency is then characterized 117 by the first two statistical moments to represent the mean behavior and its uncertainty. We 118 show that heterogeneity and gravity forces control dissolution efficiency, and that for typical 119 gravity forces, heterogeneity may substantially enhance dissolution efficiency. We also show 120 that upscaling permeability can strongly compromise CO_2 dissolution predictions in highly 121 heterogeneous systems. 122

The paper is organized as follows. We first present the problem and the mathematical description in Sections 2 and 3, respectively. We then introduce the computational approach adopted during simulations in Section 4. After this, in Section 5, we present the results. Section 5.1 shows how buoyant forces and heterogeneity affect CO_2 dissolution efficiency, and Section 5.2 illustrates how upscaling the permeability impacts on CO_2 dissolution efficiency. Finally, conclusions are summarized in Section 6.

129 **2 Problem Statement**

We consider the injection of supercritical CO_2 through a fully-penetrating well in a 130 deep confined saline formation. The formation is conceptualized as a perfectly stratified for-131 mation. Heterogeneity is represented by the spatial variability of the intrinsic permeability, 132 which is assumed to vary in space only as a function of the z-coordinate. We consider the 133 existence of two immiscible fluid phases, the brine phase (l) and the CO_2 -rich phase (g), 134 which are separated by a distinct interface, characterized by a spatially varying retention 135 curve. Brine is represented by a high-concentration solution of Sodium Chloride (NaCl) 136 in water (H_2O) . Initially, the formation is considered to be fully saturated with brine. Once 137 injected, the CO_2 enters into the formation, displacing the brine and rising towards the top of 138 the formation by bouyant forces. During the migration of CO_2 , dissolution of CO_2 into brine 139 and evaporation of water into the CO2-rich phase takes place. The time scale for dissolution 140 and evaporation is smaller than the time scale for transport, and therefore, we consider that reactions are always in local equilibrium [Xu et al., 2004, 2011; Leal et al., 2013]. Other re-142 actions are not considered and the temperature is assumed constant. For brevity, the injected 143 supercritical CO_2 is called gas. 144

3 Mathematical Description

3.1 Chemical System

146

161

The chemical system is composed of three chemical components $\{CO_2, H_2O, NaCl\}$. 147 The first two chemical components $\{CO_2, H_2O\}$ can exist in both liquid and gas phases ac-148 cording to the equilibrium constants of dissolution and evaporation. Thus, mutual solubility 149 between brine and CO_2 -rich phases is taken into account. NaCl remains only in the brine 150 phase. The changes in salinity due to dissolution/evaporation is assumed to be negligible and 151 thereby the molality of NaCl is assumed constant. In total, we have five chemical species: 152 $CO_2(g)$, $CO_2(aq)$, $H_2O(g)$, $H_2O(l)$ and NaCl(aq). The partition of the chemical species 153 between phases is determined by the following equilibrium chemical reactions, 154

$$H_2O(l) \Leftrightarrow H_2O(g), \qquad K^H = f_g^H / a_l^H,$$
 (1)

$$CO_2(aq) \Leftrightarrow CO_2(g), \qquad K^C = f_g^C / a_I^C,$$
 (2)

where the subscripts l, g and aq denote the liquid, the gas and the aqueous state, respectively, and the superscript C and H denote the CO_2 and H_2O components, respectively. K^H and K^C are the equilibrium constants, and f_g^β and a_l^β respectively denote the fugacity and the activity of the β chemical component. We follow the partitioning model for CO_2 -brine mixtures presented by *Spycher and Pruess* [2005] to estimate mass compositions in liquid and gas phases.

3.2 Mass Balance equations

The migration of CO_2 in the saline formation is simulated using a compositional approach. Given that the salinity is constant, we only need two mass balance equations. The

macroscopic mass balance equations for the two chemical components of interest $\{CO_2, H_2O\}$

165 can be written as

$$0 = \mathcal{F}_1 = \sum_{\alpha = l,g} \left[\frac{\partial (\phi S_\alpha \rho_\alpha X^H_\alpha)}{\partial t} + \nabla \cdot (\rho_\alpha X^H_\alpha \boldsymbol{q}_\alpha) - \nabla \cdot (\phi S_\alpha \boldsymbol{D}_\alpha \rho_\alpha \nabla X^H_\alpha) \right] - Q_g^H, \quad (3)$$

$$0 = \mathcal{F}_2 = \sum_{\alpha = l,g} \left[\frac{\partial (\phi S_\alpha \rho_\alpha X_\alpha^C)}{\partial t} + \nabla \cdot (\rho_\alpha X_\alpha^C \boldsymbol{q}_\alpha) - \nabla \cdot (\phi S_\alpha \boldsymbol{D}_\alpha \rho_\alpha \nabla X_\alpha^C) \right] - Q_g^C, \tag{4}$$

¹⁶⁶ where ϕ [-] is the formation porosity, S_{α} [-] is the saturation of the α -phase, ρ_{α} [kg·m⁻³] is ¹⁶⁷ the density of the α -phase, X_{α}^{β} [-] represents the mass fraction of component β in phase α , *D* ¹⁶⁸ [m² · s⁻¹] is the hydrodynamic dispersion tensor, Q_g^H and Q_g^C [kg· s⁻¹] are the source terms, ¹⁶⁹ and q_{α} is the fluid flux associated with the α phase given by Darcy's law,

$$\boldsymbol{q}_{\alpha} = -\frac{\kappa \kappa_{r\alpha}}{\mu_{\alpha}} \left(\nabla p_{\alpha} + \rho_{\alpha} g \nabla z \right), \tag{5}$$

where
$$\kappa$$
 [m²] is the intrinsic permeability, $\kappa_{r\alpha}$ [-] is the relative permeability of phase α ,
 μ_{α} [pa·s] is the viscosity, p_{α} [pa] is the fluid pressure, and g [m·s⁻²] is the gravitational

acceleration. Mass balance equations are subject to the following constraints,

$$\omega X_l^H + X_l^C = 1, \tag{6}$$

$$X_g^H + X_g^C = 1, (7)$$

$$S_l + S_g = 1, ag{8}$$

where $\omega = 1 + 0.05844m_l^S$. Here, we have assumed that the salt only comprises *NaCl*, and the molality of *NaCl* (m_l^S) is fixed.

3.3 Constitutive Equations

173

174

The saturation of the liquid phase is assumed to be known from the capillary pressure through the $CO_2 - H_2O$ retention curve. In this work, we used the *van Genuchten* [1980] model for the retention curve, which determines that

$$S_{le}(p_c) = \begin{cases} 1, & p_c < 0\\ [1 + (\sqrt{\frac{\kappa}{\kappa_g}} \alpha_p p_c)^{n_p}]^{-m_p}, & p_c \ge 0, \end{cases}$$
(9)

where p_c is the capillary pressure between the two immiscible fluids, defined as $p_c = p_g - p_l$, $\kappa_g \text{ [m^2]}$ is the geometric mean of the intrinsic permeability, $m_p = 1 - 1/n_p$, $\alpha_p \text{ [bar}^{-1]}$ is the scaling parameter of the retention curve, and S_{le} is the effective liquid saturation, defined as

$$S_{le} = \begin{cases} 1, & S_l > 1 - S_{gr} \\ \frac{S_l - S_{lr}}{1 - S_{lr} - S_{gr}}, & S_{lr} \le S_l \le 1 - S_{gr} \\ 0, & S_l < S_{lr}, \end{cases}$$
(10)

where S_{lr} [-] and S_{gr} [-] are the residual saturations of brine and CO_2 -rich phases, respec-

 $_{185}$ tively. The Leverett *J*-function has been used to describe the relationship between the entry

- pressure and the permeability of the porous medium [Juanes et al., 2006; Plug and Bruining,
- ¹⁸⁷ 2007; *Krevor et al.*, 2011, 2015]. The porosity is assumed constant. The relative permeabili-
- ties for the two phases are respectively given as

$$\kappa_{rl} = \kappa_{rlm} \cdot (S_{le})^{\epsilon_p} [1 - (1 - S_{le}^{1/m_p})^{m_p}]^2, \tag{11}$$

$$\kappa_{rg} = \kappa_{rgm} \cdot (1 - S_{le})^{\gamma_p} (1 - S_{le}^{1/m_p})^{2m_p}, \tag{12}$$

where κ_{rlm} , κ_{rgm} , ϵ_p and γ_p are the scaling parameters. Hysteresis of the retention curve and the relative permeability curve is not considered. The dispersion tensor is given as

$$\boldsymbol{D}_{\alpha} = \boldsymbol{D}_{m}\boldsymbol{I} + \alpha_{L}|\boldsymbol{v}_{\alpha}| + (\alpha_{L} - \alpha_{T})\frac{\boldsymbol{v}_{\alpha}\boldsymbol{v}_{\alpha}^{t}}{|\boldsymbol{v}_{\alpha}|}, \tag{13}$$

where I is identity matrix, D_m is molecular diffusion coefficient, α_L and α_T are respectively the longitudinal and transverse dispersivities, and $v_{\alpha} = q_{\alpha}/(\phi S_{\alpha})$ [Saaltink et al., 2013]. The density and viscosity of the two fluids is affected by the fluid pressures and their mass compositions according to *Garcia* [2003] and *Wang* [2022].

195 **3.4 Numerical Solution**

We developed a MATLAB-based fully-coupled integrated finite difference code to 196 solve the system of transport equations given by (3) and (4) using a fully implicit method 197 based on the Newton-Raphson algorithm. Details can be found in Appendix C. The liquid 198 brine pressure p_l and the CO_2 -rich phase pressure p_g are selected as independent variables. 199 The rest of variables can be explicitly expressed as functions of p_l and p_g through the con-200 stitutive equations and the equations of state. This selection of independent variables is con-201 venient in dealing with phase appearance and disappearance [Bourgeat et al., 2010; Angelini 202 et al., 2011; Ern and Mozolevski, 2012; Neumann et al., 2013; Saaltink et al., 2013]. The 203 time step is chosen to satisfy the Courant-Friedrichs-Lewy (CFL) condition, i.e., for any 204 grid cell of the domain and flow direction we impose that, 205

$$\frac{qS\Delta t}{\phi V_c} = Cu, \quad q = \max\left(q_l, q_g\right), \tag{14}$$

where q is the maximum flux of the two phases, Cu is the courant number fixed to 0.2, S206 is the cross-sectional area transverse to the flux, V_c is the grid cell volume, and Δt the time 207 step. The time step is very sensitive to phase appearance and disappearance. When the sim-208 ulation experiences phase appearance/disappearance at a given point, Δt is automatically 209 reduced to a very small value (e.g., 0.1 second), and then gradually increased following a ge-210 ometric progression with a common ratio of 3 until the CFL condition is again satisfied. The 211 code is capable to simulate injection wells penetrating through different layers. For this, the 212 mass flux that is transferred to the *n*th node of the well is given by the pressure difference 213 between the node and the well as, 214

$$Q_{g,n}^C = X_g^C \rho_g \frac{2\pi\kappa_n b_n}{\ln(r_e/r_w)} \frac{\kappa_{rg}}{\mu_g} \left(p_{wg,n} - p_{g,n} \right), \tag{15}$$

$$Q_{g,n}^{H} = X_{g}^{H} \rho_{g} \frac{2\pi\kappa_{n} b_{n}}{\ln(r_{e}/r_{w})} \frac{\kappa_{rg}}{\mu_{g}} \left(p_{wg,n} - p_{g,n} \right).$$
(16)

- where b_n is the saturated thickness of the cell, r_w and r_e are respectively the well radius
- and effective well radius, and $p_{g,n}$ and $p_{wg,n}$ are the gas phase pressure and well pressure

at node n, respectively. The well pressure is calculated based on the bottom hole pressure

(p_{bh}) at reference location (z_{bh}) through $p_{wg,n} = p_{bh} + \rho_g g(z_{bh} - z_n)$. Mass balance at the injection well is written as,

$$Q_{well} = \sum_{n \in N_{well}} Q_{g,n}^{C} + Q_{g,n}^{H},$$
(17)

where Q_{well} is the total mass injection rate of the CO_2 gas phase, and N_{well} is the number of grid-cells pierced by the injection well.

4 Computational Approach

4.1 Model Setup

We consider a confined saline formation with an isolated fully-penetrating well cen-224 tered in the middle. The system is represented by an axisymmetric model defined by cylin-225 drical coordinates (r,φ,z) . The z-axis coincides with the center of the fully-penetrating well. 226 Figure 1 shows a sketch diagram of the model setup. By symmetry, the solution does not de-227 pend on the angular coordinate φ . The top and bottom boundaries are impermeable bound-228 aries, and the outer boundary has constant liquid pressure and zero saturation gradient. The 229 system is initially saturated with brine, which is assumed to be at hydrostatic state, i.e., the 230 liquid pressure increases downward with a vertical gradient given by the specific gravity of 231 the liquid phase, $\rho_1 g$. The injected $CO_2(g)$ is saturated with water vapor. This is mostly the 232 case in real applications because dry CO_2 can trigger the dissolution of minerals, such as 233 halite, and reduce well injectivity. The radius of the injection well is 0.1 [m]. The initial liq-234 uid pressure is $p_{li} = 150$ [bar] on the top layer, and the initial gas pressure is $p_{gi} = 1$ [bar] 235 everywhere. CO_2 is injected at a constant mass injection rate Q_{well} . The parameters adopted 236 during the simulations are summarized in Table 1. With these parameters, $Q_{well} \approx Q_g^C$ and 237 Q_g^H is very small (~ 0.2%). The simulation is terminated when the total injected mass of 238 CO_2 reaches a value of $M_{inj} = 2.5$ [Mt]. The concentration of NaCl (m_1^S) is fixed to 0.5 239 [molal] and the temperature (T_c) is 60 [°C]. The axisymmetric model grid discretization con-240 sists of N_z layers and N_r coaxial rings around the z-axis. The discretization is uniform in the 241 vertical direction but increases linearly with r. 242

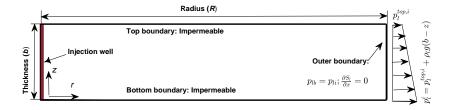


Figure 1: Sketch of the simulation setup.

4.2 Model Validation

The numerical code is tested against the semi-analytical solution developed by *Nordbotten and Celia* [2006], which provides the vertical location of the interface between the gaseous CO_2 and the brine phases. The model setup is also represented by Figure 1. However, in order to satisfy the analytical solution requirements, the permeability, fluid densities, and fluid viscosities are assumed constant, and the relative permeability is assumed to be linearly proportional to saturation. Table 2 provides a summary of the parameters adopted for

Parameters	Symbol	Units	Values
Domain size	(R,b)	[m]	(5000, 100)
Grid discretization	(N_r, N_z)	[-]	(100, 100)
Porosity	ϕ	[-]	0.1
Initial liquid pressure	p_{li}	[bar]	150
Initial gas pressure	p_{gi}	[bar]	1
Well radius	r_w	[m]	0.1
Total injection mass	M_{inj}	[Mt]	2.5
Parameter for Eq. (9)	α_p	$[bar^{-1}]$	5
Parameter for Eq. (9)	m_p	[-]	0.8
Parameters for Eqs. (11)-(12)	$(\kappa_{rlm},\kappa_{rgm})$	[-]	(1,1)
Parameters for Eqs. (11)-(12)	(ϵ_p, γ_p)	[-]	(0.5,0.5)
Residual saturations	(S_{lr}, S_{gr})	[-]	(0.2,0)
Hydrodynamic dispersivities	(α_L, α_T)	[m]	(5,1)
Molecular diffusion coefficient	D_m	$[m^2 \cdot s^{-1}]$	10^{-9}
Salinity	m_1^S	[molal]	0.5
Temperature	T_c	[°C]	60

Table 1: Summary of the parameters adopted during Monte Carlo simulations.

model validation. The table only shows the parameters that have changed from the model

setup listed in Table 1. For comparison purposes, we estimated the location of the interface

by balancing the area of the saturation distribution above and below the interface to preserve mass balance,

$$z(r) = b - \int_0^b S_g(r, z) dz.$$
 (18)

The comparison between the analytical and numerical solution is shown in Figure 2, from which we can see that, the numerical result agree well with the theoretical solution. The size of the $CO_2(g)$ plume given by the numerical solution is slightly smaller than the analytical solution because the numerical simulation still considers the dissolution of CO_2 into brine.

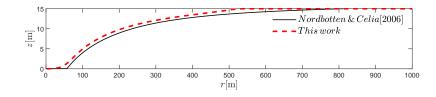


Figure 2: Comparison of the numerical result with the theoretical solution by *Nordbotten and Celia* [2006].

Parameters	Symbol	Units	Values
Domain size	(R,b)	[m×m]	(2000,15)
Grid discretization	(N_r, N_z)	[-]	(100,20)
Intrinsic permeability	К	[m ²]	2×10^{-14}
Porosity	ϕ	[-]	0.15
Initial pressures	$\left(p_l^{top,i}, p_g^i\right)$	[bar]	(150,10)
Well radius	r _w	[m]	0.1
Injection rate	Q_{well}	[Mt/year]	0.028
Simulation time	T_s	[day]	5194
Viscosities	(μ_l,μ_g)	[mpa·s]	(0.511,0.06)
Densities	(ρ_l, ρ_g)	$[kg \cdot m^{-3}]$	(1099,733)

Table 2: Parameter settings adopted for the model validation.

4.3 Performance Metric

The analysis of the simulation results is based on the quantification of the total amount of CO_2 dissolved into brine with respect to the total amount of CO_2 injected per unit of time. We therefore define the following performance metric for measuring dissolution efficiency,

$$E(t) = \frac{\mathcal{M}_d(t + \Delta t) - \mathcal{M}_d(t)}{\mathcal{M}_{inj}(t + \Delta t) - \mathcal{M}_{inj}(t)},$$
(19)

where $\mathcal{M}_{inj}(t)$ is the total injected mass of CO_2 at time t, $\mathcal{M}_d(t)$ is the total dissolved mass of CO_2 at time t, and Δt is the time step. Numerically, the mass of dissolved CO_2 into brine is indirectly calculated from the mass of undissolved CO_2 as

$$E(t) = \frac{Q_g^C \Delta t - \sum_i [X_g^C S_g \phi V_c \rho_g]_i^{t+\Delta t} + \sum_i [X_g^C S_g \phi V_c \rho_g]_i^t}{Q_g^C \Delta t},$$
(20)

where V_c is grid cell volume, *i* denotes the *i*th grid cells, and Q_g^C is the mass injection rate of CO_2 .

268

4.4 Stochastic Framework

The simulation approach considers a stochastic description of the natural log of the 269 intrinsic permeability $Y(\mathbf{x}) = \ln \kappa(\mathbf{x})$. The $Y(\mathbf{x})$ random field follows a correlated random 270 space function, characterized by an anisotropic exponential covariance function with mean 271 \overline{Y} , variance σ_Y^2 , vertical correlation length I_v , and a very large horizontal integral scale I_h . 272 We consider that I_h is much larger than the domain size and therefore, for practical purposes, 273 $I_h \rightarrow \infty$. The geometric mean of the permeability is $\kappa_g = 1 \cdot 10^{-13} \text{ [m^2]}$. The integral scale in 274 the vertical direction l_v is fixed to 5 [m]. We used three different variances σ_v^2 and six differ-275 ent mass injection rates Q_{well} to analyze the effect of heterogeneity and buoyant forces under 276 different degrees of heterogeneity. Buoyant forces are characterized by the gravity factor G, 277 which is defined as the ratio of gravity forces resulting from fluid density differences to the 278 viscous forces [Nordbotten and Celia, 2006], that is, 279

$$G = \frac{2\pi\Delta\rho\rho_g g\kappa_h b^2}{Q_{well}\mu_l},\tag{21}$$

where $\Delta \rho = \rho_l - \rho_g$, *b* is the thickness of the formation, and k_h is the effective vertical permeability, which is the harmonic mean in this case. The density of the fluids and the viscosity slightly change with time during the simulations. Based on this, to estimate the gravity factor, we chose to use the spatial mean of these properties obtained at the end of the injection. Synthetic test cases are summarized in Table 3. Larger values of *G* indicate larger density differences between the two fluids and therefore a higher potential for vertical segregation of CO_2 .

Random fields are simulated with the following procedure. We first generate 50 equally 287 likely realizations of a standardized multiGaussian random field $Y_{std}(\mathbf{x})$, characterized by a zero mean and unit variance, with the Sequential Gaussian Simulation method implemented 289 in the SGSIM code [Journel and Huijbregts, 1976]. For each test case, these 50 standardized 290 realizations are rescaled by $Y(\mathbf{x}) = \overline{Y} + \sigma_Y Y_{std}(\mathbf{x})$ to satisfy the target statistical properties. We 291 then simulate the injection of CO_2 in each realization. The dissolution trapping efficiency 292 E(t) is then characterized by their statistical moments (mean behavior and coefficient of vari-293 ation). A review of typical statistical properties, mass injection rates and inherent gravity 294 forces from real GCS field applications is shown in Table 4. The parameters adopted in our 295 simulations in terms of mass injection rates and gravity forces are representative of real field 296 applications. 297

lated cases. Case Q_{well} [Mt/y] κ_{e} [m²] σ_{v}^{2} [-] I_{v} [m] $\langle G \rangle$ [-]

Table 3: Statistical properties of the random fields and mass injection rates in the different simu-

Case	Q_{well} [Mt/y]	$\kappa_g [\mathrm{m}^2]$	σ_Y^2 [-]	I_{v} [m]	$\langle G \rangle$ [-]
1	6.92	10 ⁻¹³	0.1	5.0	0.13
2	2.50	10^{-13}	1.0	5.0	0.13
3	1.80	10^{-13}	4.0	5.0	0.13
4	0.69	10^{-13}	0.1	5.0	1.3
5	0.25	10^{-13}	1.0	5.0	1.3
6	0.18	10^{-13}	4.0	5.0	1.3

4.5 Upscaling of Permeability

Since the scale of heterogeneity is typically smaller than the size of the numerical dis-299 cretization used in most groundwater models, numerous authors have investigated whether 300 one can simplify the flow system by substituting the heterogeneous distribution of κ by a rep-301 resentative value. Results in this matter are well established in the literature and reviewed in 302 several papers and books [e.g., Wen and Gómez-Hernández, 1996; Renard and de Marsily, 303 1997; Sanchez-Vila et al., 2006]. In particular, it is well-known that the equivalent perme-304 ability of a perfectly stratified medium is the arithmetic mean κ_a of the point permeabili-305 ties when the flow is parallel to the stratification and the harmonic mean κ_h when the flow is 306 perpendicular to the strata. In our system, that is to say that the equivalent permeability is a 307 second-order symmetric tensor exactly given by 308

$$\mathbf{K}^{e} = \begin{bmatrix} \kappa_{a} & 0\\ 0 & \kappa_{h} \end{bmatrix}.$$
 (22)

In this context, this work also evaluates the effect of upscaling permeability on CO_2 dissolution. To achieve this, for each realization of the $Y(\mathbf{x})$ field and test case, we also simulate the injection of CO_2 assuming that the system is homogeneous and characterized by an

Reservoir	Changhua Coastal Industrial Park ¹	Buzzard's Bench ²	Ordos Basin ³	Sleipner ⁴	Tubåen ⁵	In Salah ⁶
Location	Taiwan	US	China	Norway	Norway	Algeria
Depth [m]	~2220	~2025	~1845	~950	~2470	~1860
Thickness [m]	~1000	~150	~290	~300	~60	~20
$\kappa_g [\mathrm{m}^2]$	9.8×10^{-15}	2.6×10^{-14}	2.7×10^{-16}	1×10^{-12}	5×10^{-13}	1×10^{-14}
$\sigma_{Y}^{2}[-]$	6.9 ^{<i>a</i>}	5.5^{b}	2.9 ^a	10.6 ^a	5.5^{b}	-
ϕ [-]	0.16	0.16	0.11	0.35	0.13	0.15
m_1^S [molal]	0.5	0.3	0.3	0.6	2.4	-
Q_{well} [Mt/year]	1.0	1.87	0.1	0.84	0.77	1.0
<i>G</i> [-]	0.07	0.03	0.04	$< 10^{-3}$	1.12	0.002

Table 4: Review of formation statistical properties, mass injection rates and gravity forces from real geological carbon sequestration field sites.

Reference: ¹Sung et al. [2014],²Xiao et al. [2019],³Wang et al. [2016], Jing et al. [2019], ⁴Arts et al. [2008] and Michael et al. [2010], ⁵Maldal and Tappel [2004] and Grude et al. [2013], and ⁶Mathieson et al. [2009, 2011]. ^a calculated from log data. ^b calculated from $\sigma_Y^2 \approx R^2/3$, where $R = \log(\kappa_{max}/\kappa_{min})$, as given by Fogg and Zhang [2016].

equivalent anisotropic permeability tensor given by \mathbf{K}^{e} . The rest of the parameters are kept the same.

314 5 Results

323

To facilitate the interpretation, results are presented using dimensionless variables, defined according to *Nordbotten and Celia* [2006], *Silin et al.* [2009] and *Zhao et al.* [2014] as

$$t^* = \frac{t}{t_c}, \quad \zeta = \frac{z}{b}, \quad \xi = \frac{r}{\ell}, \quad S_{ge} = \frac{S_g - S_{gr}}{1 - S_{lr} - S_{gr}},$$
 (23)

where *b* is the thickness of the geological formation, S_{ge} is the effective gas saturation, and t_c and ℓ are the characteristic time and length scales, respectively defined as

$$t_c = \frac{\phi \mu_l b}{\Delta \rho_g \kappa_g}, \quad \ell^2 = \frac{M_{inj}}{2\pi \phi \rho_g b}.$$
 (24)

In accordance with *Zhao et al.* [2014], t_c is an approximate estimate of the time needed for the CO_2 to migrate from the bottom of the formation to the top due to buoyant forces. ℓ is a measure of the radial penetration of CO_2 due to advection only.

5.1 Effect of Heterogeneity and Buoyant Forces

In this section, we present the effect of heterogeneity and buoyant forces, and their interplay, on CO_2 dissolution. Figures 3 and 4 show the temporal evolution of the ensemble average of dissolution efficiency and its uncertainty (expressed by the coefficient of variation) for a relatively small and large gravity factor, respectively. In all cases, the temporal evolution exhibits two clear dissolution regimes, characterized by the characteristic time of gravity segregation t_c . At early times ($t < t_c$), gravity segregation controls CO_2 migration, and dissolution efficiency strongly declines with time. After this, for $t > t_c$, when grav-

ity segregation has already developed, the less dense $CO_2(g)$ is overriding the brine, and 331 $CO_2(g)$ plume is mostly spreading laterally. At this point, dissolution efficiency reaches a 332 quasi steady-state behavior with a clear asymptotic value. The decline of dissolution effi-333 ciency is attributed to the following. At the very beginning, all the injected CO_2 dissolves into the brine (dissolution efficiency is 100%) until brine becomes saturated and the gas 335 phase appears. After this, the rising of $CO_2(g)$ due to buoyant forces enhances the contact 336 between the brine and gas phases, favoring the mixing between them and therefore dissolu-337 tion. This process decays with the segregation of $CO_2(g)$ at the top of the formation. After 338 this, $CO_2(g)$ is forced to move laterally by viscous forces, which leads to a steady growth of 339 the interface and thus dissolution efficiency. 340

Results show that dissolution efficiency generally increases with σ_v^2 . This effect is 341 more pronounced when the gravity factor is relatively small ($\langle G \rangle = 0.13$). In order to visually 342 understand this effect, in the left panels of Figures 5 and 6, we present the spatial distribution 343 of $CO_2(g)$ saturation obtained at the end of the injection in a representative realization of the 344 permeability field for different σ_V^2 and mean gravity factors. Note that, by construction, the 345 underlying heterogeneous structure of the permeability field is the same. Results corrobo-346 rate the hypothesis that heterogeneity tends to stretch the interface between the gas and liquid 347 phases through preferential channels, increasing the contact between them, and therefore, 348 effectively increasing the mutual solubility between the two phases. 349

Importantly, results also show that heterogeneity and buoyant forces constitute two 350 important competing factors that control dissolution efficiency. When buoyant forces are 351 relatively low compared to the degree of heterogeneity ($G < \sigma_Y^2$), heterogeneity is the domi-352 nant factor and CO2 migration mostly takes place laterally through high permeability layers, 353 regardless of the buoyant forces. In contrast, when the gravity factor is relatively large com-354 pared to the degree of heterogeneity ($G > \sigma_V^2$), gravity segregation is the dominant process. 355 In this case, vertical segregation is overwhelming and the CO_2 gas plume floats to the top of 356 the formation regardless of the permeability stratification. These features can also be seen in 357 Figures 5 and 6 by contrasting, for instance, the results obtained with $\langle G \rangle = 0.13$ against those with $\langle G \rangle = 1.3$ for $\sigma_Y^2 = 1$. In this case, the CO_2 gas plume tends to segregate on top of the 359 formation for $\langle G \rangle$ =1.3, while preferentially moving through a high permeability layer when 360 $\langle G \rangle = 0.13$. In all cases, when $\sigma_V^2 = 4$, the CO_2 gas plume preferentially concentrates in the 361 most permeable layer. 362

Our simulated dissolution efficiency values are consistent with those reported in the 363 literature. When $\langle G \rangle = 1.3$ and $\sigma_Y^2 = 1$, we obtain that the dissolution efficiency is around 364 20%, which is similar to those reported by Li et al. [2017] and Li et al. [2018] for a synthetic 365 test case with $G \approx 10^3$ and $\sigma_Y^2 = 1.5$. Al-Khdheeawi et al. [2017] also reported an average 366 solubility trapping of approximately 20% in several synthetic homogeneous aquifers with 367 $G \approx 68$. Numerical simulations of the Changhua Coastal Industrial Park field site [Sung 368 et al., 2014] reported a dissolution efficiency of 15.6%. Smaller values are also reported in 369 the literature. Zhou et al. [2008] and Zhou et al. [2010] obtained that approximately 7% of the injected CO_2 dissolves into brine when the gravity factor ranges between 0.7 and 2.2. 371 We attribute this to the high brine salinity used (around 4 [molal]), which reduces the mass 372 fraction of $CO_2(aq)$ in brine to only around 2.5%. Finally, we notice that in agreement with 373 our results, Zhang et al. [2017] also concluded that the dissolution efficiency was insensitive 374 to heterogeneity for $G \approx 19$ and σ_Y^2 smaller than 4.5. 375

The uncertainty associated with dissolution efficiency is shown in the bottom panels 376 of Figures 3 and 4. The temporal evolution of CV_E also exhibits two differentiated regimes 377 characterized by t_c . In general, CV_E increases with time as the dissolution efficiency de-378 379 creases. At large times, when $t > t_c$, CV_E approaches a relatively constant value. As expected, CV_E is larger when dissolution is controlled by the heterogeneity, i.e., when $\sigma_V^2 > G$. 380 In this case, we can see that the uncertainty increases with σ_y^2 . When the process is con-381 trolled by the gravity segregation, i.e., $G > \sigma_V^2$, the uncertainty due to σ_V^2 is reduced. The 382 reason is that when the system is controlled by buoyant forces, the CO2 tends to float and 383

- segregate on the top of the formation, following more or less the same pattern regardless of
- the distribution of permeability. As a result, the variability in permeability is not strongly
- transferred to the spatial distribution of CO_2 . This is clearly seen in Figure 6, which shows
- that the distribution of gas saturation for $\sigma_Y^2 = 0.1$ and $\sigma_Y^2 = 1.0$ still shared very similar
- sea features.

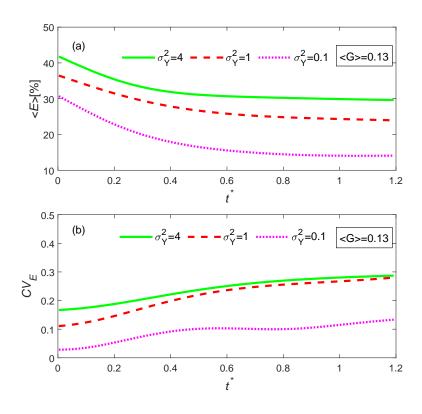


Figure 3: (a) Temporal evolution of the ensemble average dissolution efficiency $\langle E \rangle$ as a function of the degree of heterogeneity for a mean gravity factor of 0.13 (normal injection rate); (b) Temporal evolution of the corresponding coefficient of variation of the dissolution efficiency.

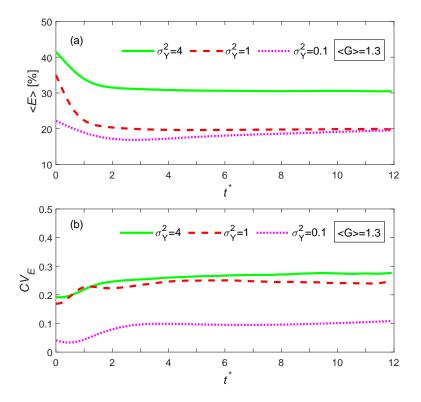


Figure 4: (a) Temporal evolution of the ensemble average dissolution efficiency $\langle E \rangle$ as a function of the degree of heterogeneity for a mean gravity factor of 1.3 (relatively slow injection rate); (b) Temporal evolution of the corresponding coefficient of variation of the dissolution efficiency.

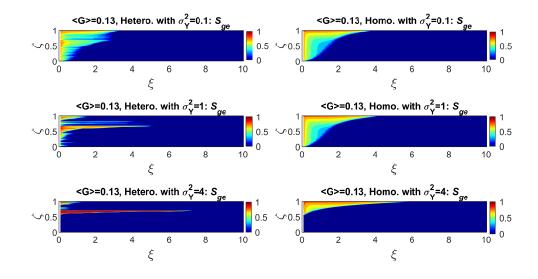


Figure 5: Spatial distribution of $CO_2(g)$ saturation obtained with a large gravity factor at the end of the injection $(t=1.2t_c)$: (left column) in a representative heterogeneous realization with different rescaled σ_Y^2 ; and (right column) in the corresponding equivalent homogeneous medium.

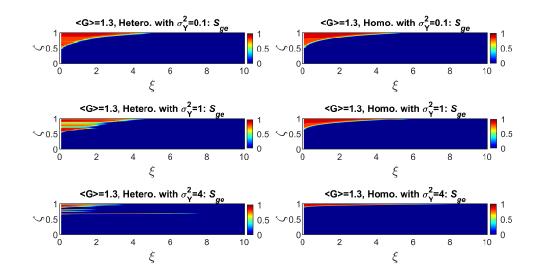


Figure 6: Spatial distribution of $CO_2(g)$ saturation obtained with a small gravity factor at the end of the injection $(t=12t_c)$: (left column) in a representative heterogeneous realization with different rescaled σ_Y^2 ; and (right column) in the corresponding equivalent homogeneous medium.

5.2 Impact of Upscaling the Permeability

In this section, we present the impact that upscaling the permeability has on dissolu-390 tion efficiency. To achieve this, for each realization, we substitute the heterogeneous dis-391 tribution of permeability by an equivalent homogeneous porous medium, characterized by 392 an anisotropic permeability tensor defined by equation (22). The dissolution efficiency ob-393 tained in the equivalent homogeneous medium is denoted as E_0 . The loss of dissolution ef-394 ficiency during the upscaling process is expressed by the reduction factor E/E_0 . Figures 7 395 and 8 show the temporal evolution of the ensemble average of E/E_0 as a function of σ_V^2 for the two different gravity factors. Results indicate that upscaling can lead to a significant un-397 derestimation of dissolution efficiency in heterogeneity-controlled problems, i.e., $G < \sigma_v^2$. 398 In these cases, the homogenization of the permeability field does not properly preserve the 399 interplay between the small-scale spatial variability of permeability and dissolution, which 400 is characterized by abrupt changes in permeability that enhance the contact between the gas 401 and brine phases. This is emphasized by the nonlinear nature of the CO_2 -Brine system; the 402 less viscous $CO_2(g)$ preferentially enters into high permeable layers, increasing the mobil-403 ity of $CO_2(g)$ and thus further enhancing the $CO_2(g)$ flux [Rasmusson et al., 2015]. This nonuniform displacement is also partially attributed to the low capillary entry pressure in the 405 high permeable layers. For G = 0.13 and $\sigma_Y^2 = 4$, we found that dissolution efficiency is re-406 duced by a factor close to 1.5 due to upscaling. This reduction factor increases with σ_Y^2 and 407 decreases with G. When $G > \sigma_V^2$, the problem is gravity-controlled and the upscaling of 408 permeability does not introduce an obvious discrepancy in the estimation of the dissolution 409 efficiency. 410

In order to visually understand the effect of upscaling on dissolution, Figures 5 and 6 411 compare the spatial distribution of CO2 gas saturation obtained in heterogeneous field (left 412 panels) with their corresponding equivalent homogeneous simulations (right panels). Sup-413 port information provides additional data on mass fractions. When $G > \sigma_V^2$, the effect of 414 gravity segregation controls CO_2 plume migration and the injected $CO_2(g)$ floats to the top 415 of the formation regardless of stratification. In this case, buoyant forces destroy the action of heterogeneity, causing an apparent homogenization of the porous media. As a result, the sim-417 ulated CO_2 plumes obtained in heterogeneous porous media resembles those of the equiva-418 lent homogeneous porous medium. This explains why the reduction factor E/E_0 is close to 419 1 in this case. When $G < \sigma_V^2$, gravity segregation is overwhelmed by the stratification of 420 permeability. In this case, the injected CO_2 mostly enters into high-permeable layers and dis-421 solves therein, and the $CO_2(g)$ plume distribution departs from the equivalent homogeneous 422 medium. In this case, the CO_2 plume fringe looks erratic with CO_2 preferentially flowing 423 through several highly conductive layers without apparently floating to the top of the forma-424 tion. Therefore, small-scale inclusions of high permeable layers fundamentally control the 425 shape, dynamics and hence the dissolution of CO₂ [Gershenzon et al., 2015b,c,a]. In this 426 case, the reduction factor of dissolution efficiency increases with σ_V^2 . 427

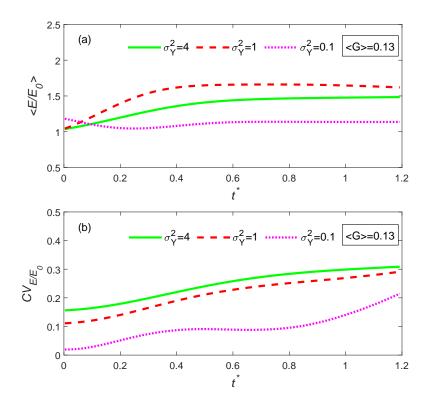


Figure 7: (a) Temporal evolution of the reduction factor $\langle E/E_0 \rangle$ in dissolution efficiency for a mean gravity factor of 0.13 due to the upscaling of permeability; (b) Temporal evolution of the corresponding coefficient of variation of the reduction factor in dissolution efficiency.

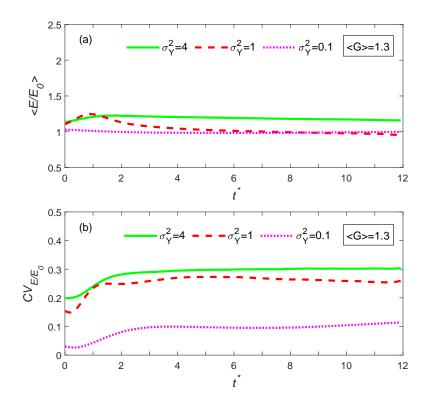


Figure 8: (a) Temporal evolution of the reduction factor $\langle E/E_0 \rangle$ in dissolution efficiency for a mean gravity factor of 1.3 due to the upscaling of permeability; (b) Temporal evolution of the corresponding coefficient of variation of the reduction factor in dissolution efficiency.

5.3 Implications

428

From a practical point of view, our results indicate that dissolution efficiency can be 429 quite important in complex heterogeneous systems when $G \ll \sigma_V^2$. Under these conditions, 430 we find that dissolution efficiency can reach values over 30%. At this stage, it is important to 431 highlight that, in most geological formations, the permeability varies in space over 3 orders 432 of magnitude, which means that σ_Y^2 can easily exceed a value of 3 [Fogg and Zhang, 2016]. 433 Consequently, the enhancement of dissolution efficiency observed in our simulations due to 434 small-scale heterogeneity might be the rule rather than the exception in real field settings. 435 To illustrate this, we map the properties associated with the GCS field sites reviewed in Ta-436 ble 4 in a behavior diagram, shown in Figure 9. The $\sigma_Y^2 - G$ diagram has been qualitatively 437 drawn from a limited number of simulations and therefore uncertainties associated with tran-438 sition lines are expected. Nevertheless, the diagram clearly shows that most field sites are 439 heterogeneity-controlled, meaning that dissolution efficiency might be larger than expected. 440 This is consistent with Goodman et al. [2013] and Gershenzon et al. [2015a], who suggest 441 that incorporating the small-scale heterogeneity is critical to reproduce GCS processes. 442

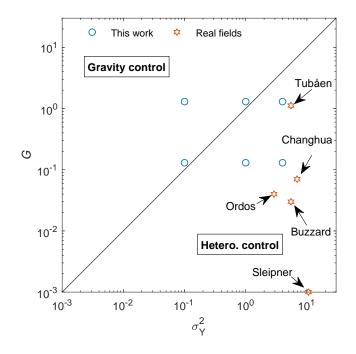


Figure 9: $\sigma_Y^2 - G$ diagram with the simulated test cases, summarized in Table 3, and the GCS field sites reviewed in Table 4.

6 Conclusions

460

461

462

463

We have investigated dissolution trapping efficiency and its uncertainty during Geological Carbon Sequestration (GCS) in randomly stratified saline formations through a set of Monte Carlo two-phase flow compositional simulations involving the dissolution of CO_2 into brine and evaporation of water into the CO_2 -rich phase under different degrees of heterogeneity and gravity factors. Simulation results have provided a statistical description of dissolution efficiency as well as an examination of the impact of upscaling the permeability in numerical models. The following main findings are highlighted:

- 1. The interplay between heterogeneity and buoyant forces are shown to control the be-451 havior of CO_2 migration and therefore dissolution efficiency. When buoyant forces G 452 are relatively small compared to the degree of heterogeneity σ_Y^2 , lateral CO_2 migra-453 tion through high permeability layers dominates the overall behavior and dissolution 454 efficiency increases with σ_V^2 due to the stretching of the CO_2 plume that enhances 455 mixing. In contrast, when buoyant forces dominate, CO2 vertical segregation controls 456 the behavior, diminishing the influence of heterogeneity on dissolution. A tentative 457 behavior diagram is proposed with a transition line approximately given by $G = \sigma_V^2$. 459
 - 2. The temporal evolution of dissolution efficiency is shown to exhibit two clear regimes characterized by the characteristic segregation time t_c . Dissolution efficiency declines with time until the CO_2 gas phase rises to the top of the formation and segregates from the brine phase. After this, when $t \gg t_c$, CO_2 is forced to move laterally (viscosity forces dominate) and dissolution efficiency reaches an almost asymptotic value.
- 464 3. We have shown that the upscaling of permeability leads to an underestimation of the 465 dissolution efficiency. This effect is more pronounced in highly heterogeneous sys-466 tems with small gravity effects ($G < \sigma_Y^2$) due to the fact that lateral finger-like CO_2 467 plume is generated in this case following the stratification. On the contrary, when

G > σ_Y², a single compact CO₂(g) plume floats to the upper portion of the formation regardless of heterogeneity, and upscaling is not significantly affected.
4. We have shown that most GCS field sites operate under G ≪ σ_Y², meaning that het-

erogeneity typically controls dissolution efficiency in real field settings. Knowing that most numerical models that simulate CO_2 dissolution cannot properly represent the small-scale heterogeneity due to an unfeasible discretization of the domain, our results suggest that dissolution efficiency can be underestimated by a factor close to 1.5.

475 Acknowledgments

468

469

470

We acknowledge the help from Oriol Bertran-Oller and Rodrigo Perez in accessing 476 the TITANI- high performance green computing cluster of the civil engineering school. We 477 also acknowledge the help from Jan M. Nordbotten for sharing the code for the theoretical 478 solution. This work was partially supported by the European Commission, through project 479 MARSOLUT (grant H2020-MSCA-ITN-2018); by the Spanish Ministry of Economy and 480 Competitiveness, through project MONOPOLIOS (RTI 2018-101990-B-100, MINECO/ 481 FEDER); and by the Catalan Agency for Management of University and Research Grants 482 through FI 2017 (EMC/2199/2017). 483

A Equilibrium Constants, Fugacity and Activity

The equilibrium constants of the two reaction equations are calculated as

$$K^{\beta} = K^{\beta_0} \exp \frac{\left(p_l - p^0\right) \overline{V}_{\beta}}{RT_c},\tag{A.1}$$

486 with

485

491

$$K^{\beta_0} = 10^{a_\beta + b_\beta T_c + c_\beta T_c^2 + d_\beta T_c^3}.$$
(A.2)

where,
$$p^0$$
 is the reference pressure (equal to 1 bar), T_c is temperature in °C, V_β [$cm^3 \cdot mol^{-1}$]

denotes the mean molar volume of pure condensed species β when pressure change from p^0

et al. [2003], are listed in Table A.1.

Table A.1: Parameters for equilibrium constants.

β	a_{β}	b_{eta}	c _β	d_{eta}	$\overline{V}_{\beta} [\mathrm{cm}^3 \cdot \mathrm{mol}^{-1}]$
			-1.098×10^{-4} -5.446×10^{-5}		18.1 32.6

The fugacity and activity are calculated as

$$f_g^\beta = F^\beta x_g^\beta \frac{p_g}{p^0},\tag{A.3}$$

$$a_l^H = x_l^H = 1 - x_l^S - x_l^C, \tag{A.4}$$

to p_l . Here, we assume V_β is a constant. The parameters for Equation A.2, given in *Spycher*

$$a_l^C = \gamma_C' m_l^C, \tag{A.5}$$

- where F^{β} is the fugacity coefficient, x^{β}_{α} is the molar fraction of the β chemical component 492
- in the α phase, γ'_C is the activity coefficient of $CO_2(aq)$ in the liquid phase, and m_l^C is the 493
- molality of $CO_2(aq)$ in the liquid phase. Here, the simplified model for water activity, given 494 in Equation (A.4), yields very similar results as the sophisticated Helgeson-Kirkham-Flowers
- 495 (HKF) model (comparison is not shown). In order to solve Equations (A.3) to (A.5), we need 496
- to know the fugacity coefficients $F^{H,C}$ and activity coefficient γ'_{C} . According to Spycher 497
- et al. [2003], the fugacity coefficients of the gaseous species are calculated as
- 498

$$\ln F^{\beta} = \ln \frac{V}{V - b^{mix}} + \frac{b^{\beta}}{V - b^{mix}} - \ln \frac{V + b^{mix}}{V} \frac{2}{RT_{k}^{1.5} b^{mix}} \sum_{\beta' = C, H} \left(x_{\beta}^{\beta} a^{\beta' - \beta} \right) + \frac{a^{mix} - b^{\beta}}{RT_{k}^{1.5} (b^{mix})^{2}} \left(\ln \frac{V + b^{mix}}{V} - \frac{b^{mix}}{V + b^{mix}} \right) - \ln \frac{p_{g}V}{RT_{k}},$$
(A.6)

where $\beta = (C, H, mix)$ represents the species CO_2, H_2O and $CO_2 - H_2O$ mixture, re-499 spectively, V is obtained from Equation (A.7). Assuming infinity dilution, $a^{mix} = a^{C}$ and 500 $b^{mix} = b^C$. a^C and b^C are defined by (A.8) and (A.9), respectively. $b^H = 1.818 \times 10^{-5}$ [m³·mol⁻¹] and $a^{H-C} = 7.89$ [Pa·m⁶·K^{0.5}·mol⁻²]. We assume infinite dilution of water vapor, i.e., $x_g^H = 0$. So, we do not need a^H . The molar volume of CO_2 phase (V [m³·mol⁻¹]) is 501 502 503 obtained by solving the cubic form of Redlich-Kwong equation [Redlich and Kwong, 1949], 504

$$V^{3} - V^{2} \left(\frac{RT_{k}}{p_{g}}\right) - V \left(\frac{RT_{k}b}{p_{g}} - \frac{a}{p_{g}T_{k}^{0.5}} + b^{2}\right) - \left(\frac{ab}{p_{g}T_{k}^{0.5}}\right) = 0,$$
(A.7)

where a $[bar \cdot cm^6 \cdot K^{0.5} \cdot mol^{-2}]$ and b $[cm^3 \cdot mol^{-1}]$ are, respectively, the intermolecular at-505 traction and repulsion of the CO2-rich phase. For simplification, assuming infinite dilution 506 of water vapor, we use the intermolecular attraction and repulsion of pure CO_2 , a^C and b^C , 507 to represent a and b. This is reasonable because the fraction of water vapor in the CO_2 rich 508 phase is usually less than 1%. Therefore, according to Spycher et al. [2003], we have 509

$$\mathbf{a} = \mathbf{a}^C = 7.54 \times 10^7 - 4.13 \times 10^4 T_k, \tag{A.8}$$

and 510

$$b = b^C = 27.8.$$
 (A.9)

Here, we note that Equation (A.7) may have more than one real solutions. The selec-511 tion of the value depends on which phase –gas or liquid-is more stable. If the more stable 512 phase is gas then we choose the maximum value. Otherwise, we choose the minimum value. 513 To determine which phase is more stable, we need to calculate two works $(w_1 \text{ and } w_2)$ for 514 phase transition, 515

$$w_1 = p_g \left(V_{max} - V_{min} \right), \tag{A.10}$$

and 516

$$w_2 = RT \ln \frac{V_{max} - b}{V_{min} - b} + \frac{a}{T^{0.5}b} \ln \frac{(V_{max} + b) V_{min}}{(V_{min} + b) V_{max}},$$
(A.11)

⁵¹⁷ If $w_2 \ge w_1$, then gaseous state is more stable and we choose V_{max} . Otherwise, we ⁵¹⁸ take V_{min} . The activity coefficient of aqueous $CO_2(\gamma'_C)$, given by *Duan and Sun* [2003], is ⁵¹⁹ estimated as

$$\gamma_{C}' = 2\lambda \left(m_{l}^{Na} + m_{l}^{K} + 2m_{l}^{Mg} \right) + \xi m_{Cl} \left(m_{l}^{Na} + m_{l}^{K} + m_{l}^{Ca} + m_{l}^{Mg} \right) - 0.07 m_{l}^{SO_{4}},$$
(A.12)

where

$$\lambda = -0.411370585 + 6.07632013^{-4}T_k + \frac{97.5347708}{T_k} - \frac{0.0237622469 \ p_l}{T_k} \times 10^{-5} + \frac{0.0170656236 \ p_l}{630 - T_k} \times 10^{-5} + 1.41335834 \times 10^{-5}T_k \ln\left(p_l \times 10^{-5}\right)$$
(A.13)

and

$$\xi = 3.36389723 \times 10^{-4} - 1.98298980 \times 10^{-5} T_k + \frac{2.12220830 \times 10^{-3} p_l}{T_k} \times 10^{-5} - \frac{5.24873303 \times 10^{-3} p_l}{630 - T_k} \times 10^{-5}.$$
(A.14)

Here, p_l is in Pa and T_k is in K. We note that this activity coefficient is not a *true* coefficient

⁵²¹ but a coefficient defined as the ratio of molality of $CO_2(aq)$ in pure water $(m_l^{C_0})$ to molality ⁵²² of CO_2 in brine (m_l^C) at same temperature and pressure,

$$\gamma_{CO_2}' = m_l^{C_0} / m_l^C. \tag{A.15}$$

B Spycher and Pruess [2005] Model for Mutual Solubility

524	The chemical reactions (1) and (2) are solved with the Spycher and Pruess [2005]
525	model, which can calculate the mutual solubility between gas and high-salinity brine at high
526	pressures and reservoir temperatures. Spycher and Pruess [2005] model is given as follows.

⁵²⁷ When reaction is at equilibrium we have

$$x_g^H = \frac{K^H a_l^H}{F^H p_g} \tag{B.1}$$

528 and

$$x_l^C = \frac{F^C \left(1 - x_g^H\right) p_g}{55.508\gamma'_{CO_2}K^C}.$$
 (B.2)

529 Setting

$$A = \frac{K^H}{F^H p_g} \tag{B.3}$$

530 and

$$B = \frac{K^C p_g}{55.508\gamma'_{CO_2}K^C},$$
(B.4)

the mutual solubilities are then explicitly given as

$$x_g^H = \frac{1 - B - x_l^S}{\frac{1}{A} - B}$$
(B.5)

532 and

$$x_l^C = B\left(1 - x_g^H\right). \tag{B.6}$$

It is better to use salt molality instead of mole fraction because salt morality is independent of CO_2 solubility. Therefore, we change Equation (B.5) by

$$x_g^H = \frac{55.508(1-B)}{\left(\frac{1}{A} - B\right) \left(\nu m_l^S + 55.508\right) + B\nu m_l^S},\tag{B.7}$$

where ν is the stoichiometric number of ions in the salt (e.g., 2 for *NaCl* and 3 for *MgCl*₂). The detailed derivation of Equation (B.7) can be found in *Spycher and Pruess* [2005]. With

⁵³⁶ The detailed derivation of Equation (B.7) can be found in *Spycher and Pruess* [2005]. With ⁵³⁷ Equations (B.7) and (B.6), we can explicitly update the mole fractions in both liquid brine

and gaseous CO_2 -rich phases. Note that in the transport equations the concentrations are

given as mass fractions, while mole fractions are used to solve the mutual solubility. We can

given as mass fractions, while mole fractions are used to solve the mutual solubility
 change the mole fractions into mass fractions with

$$X_g^H = \frac{18.015x_g^H}{18.015x_g^H + 44.01\left(1 - x_g^H\right)}$$
(B.8)

541 and

$$X_l^C = \frac{44.01x_l^C}{18.015\left(1 - x_l^C\right)\left(1 + 0.05844m_l^S\right) + 44.01x_l^C}.$$
(B.9)

Herein, because we use the activity coefficient of $CO_2(aq)$ given by *Duan and Sun* [2003], which is not 'true' activity coefficient, we need to slightly change the aforementioned steps [*Hassanzadeh et al.*, 2008].

⁵⁴⁵ C Numerical Discretization and Newton-Raphson Iteration

The governing equations (3) and (4) are discretized in space with the finite difference method. Time is discretized with fully implicit method. The discretization form is given as

$$\mathcal{F}_{1,2} = V_{c} \cdot \sum_{\alpha = l,g} \left[\frac{(\phi S_{\alpha} \rho_{\alpha} X_{\alpha}^{H,C})^{t+\Delta t} - (\phi S_{\alpha} \rho_{\alpha} X_{\alpha}^{H,C})^{t}}{\Delta t} \right] \\ + \left[\sum_{i} \left(S_{i} \cdot \sum_{\alpha = l,g} (\rho_{\alpha} X_{\alpha}^{H,C} \boldsymbol{q}_{\alpha})^{t+\Delta t} \right) - \sum_{i} \left(S_{i} \cdot \sum_{\alpha = l,g} (\phi S_{\alpha} \boldsymbol{D}_{\alpha} \rho_{\alpha} \nabla X_{\alpha}^{H,C})^{t+\Delta t} \right) \right]$$
(C.1)
$$- \left(Q_{g}^{H,C} \right)^{t+\Delta t},$$

where V_c is the volume the grid, S_i is the *i*th surface of the grid, and Δt is the time step.

The flux q_{α} is calculated with the two-point approximation of Darcy's law, and the upwind

method is used to calculate fluid property [*Lie*, 2019]. We then write the governing equations

⁵⁵¹ in compact form,

$$\mathcal{F}(\mathbf{x}) = \mathbf{0},\tag{C.2}$$

552 where

$$[\mathcal{F}] = \begin{bmatrix} \mathcal{F}_1 \\ \mathcal{F}_2 \\ \mathcal{F}_W \end{bmatrix}, \ [\mathbf{x}] = \begin{bmatrix} \mathbf{p}_l \\ \mathbf{p}_g \\ \mathbf{p}_{bh} \end{bmatrix}.$$
(C.3)

Here, \mathcal{F}_W expresses the mass balance at the injection well, which is written as

$$0 = \mathcal{F}_W = \left(\sum_{n \in N_{well}} Q_{g,n}^C + Q_{g,n}^H\right) - Q_{well}.$$
(C.4)

⁵⁵⁴ From this, the Newton-Raphson algorithm is written as

$$\frac{\partial [\mathcal{F}]^{t+\Delta t,k}}{\partial \mathbf{x}} [\delta \mathbf{x}]^{t+\Delta t,k} = -[\mathcal{F}]^{t+\Delta t,k}, \tag{C.5}$$

where the superscript k denotes the iteration step, and the Jacobian matrix is

$$\begin{bmatrix} \frac{\partial \mathcal{F}}{\partial x} \end{bmatrix}^{t+\Delta t,k} = \begin{bmatrix} \frac{\partial \mathcal{F}_1}{\partial p_l} & \frac{\partial \mathcal{F}_1}{\partial p_g} & \frac{\partial \mathcal{F}_1}{\partial p_{bh}} \\ \frac{\partial \mathcal{F}_2}{\partial p_l} & \frac{\partial \mathcal{F}_2}{\partial p_g} & \frac{\partial \mathcal{F}_2}{\partial p_{bh}} \\ \frac{\partial \mathcal{F}_W}{\partial p_l} & \frac{\partial \mathcal{F}_W}{\partial p_g} & \frac{\partial \mathcal{F}_W}{\partial p_{bh}} \end{bmatrix}^{t+\Delta t,k} = \begin{bmatrix} M_{11} & M_{12} & M_{1W} \\ M_{21} & M_{22} & M_{2W} \\ M_{W1} & M_{W2} & M_{WW} \end{bmatrix}^{t+\Delta t,k} = M^{t+\Delta t,k}.$$
(C.6)

5	6	6
9	J	U

Having obtained $[\delta x]^{t+\Delta t,k}$ with Equation (C.5), we can update $[x]^{t+\Delta t,k}$ according to

$$[\mathbf{x}]^{t+\Delta t,k+1} = [\mathbf{x}]^{t+\Delta t,k} + [\delta \mathbf{x}]^{t+\Delta t,k}.$$
(C.7)

⁵⁵⁷ The Newton-Raphson iteration is terminated if the maximum change of the gas and ⁵⁵⁸ liquid pressures is smaller than the tolerance value ϵ_p (~ 10⁻⁵ pa), or if the maximum error ⁵⁵⁹ is smaller than the tolerance value ϵ_{err} (~ 10⁻¹²). The time step is reduced to a very small ⁵⁶⁰ value (e.g., 0.1 second) if the Newton-Raphson iteration does not converge at maximum al-⁵⁶¹ lowed number of iteration N_{kmax} .

562 References

- Al-Khdheeawi, E. A., S. Vialle, A. Barifcani, M. Sarmadivaleh, and S. Iglauer (2017), In fluence of co2-wettability on co2 migration and trapping capacity in deep saline aquifers,
 Greenhouse Gases: Science and Technology, 7(2), 328–338.
- Angelini, O., C. Chavant, E. Chénier, R. Eymard, and S. Granet (2011), Finite volume approximation of a diffusion-dissolution model and application to nuclear waste storage, in
 Mathematics and Computers in Simulation, doi:10.1016/j.matcom.2010.12.016.
- Arts, R., A. Chadwick, O. Eiken, S. Thibeau, and S. Nooner (2008), Ten years' experience of monitoring co2 injection in the utsira sand at sleipner, offshore norway, *First break*, 26(1).
- Bachu, S., D. Bonijoly, J. Bradshaw, R. Burruss, S. Holloway, N. P. Christensen, and O. M.
 Mathiassen (2007), Co2 storage capacity estimation: Methodology and gaps, *Interna*-
- ⁵⁷² Mathiassen (2007), Co2 storage capacity estimation: Methodology and gaps, *Interna-*⁵⁷³ *tional Journal of Greenhouse Gas Control*, 1(4), 430 – 443, doi:https://doi.org/10.1016/
- ⁵⁷⁴ \$1750-5836(07)00086-2.

575	Bandara, U. C., A. M. Tartakovsky, and B. J. Palmer (2011), Pore-scale study of capillary
576	trapping mechanism during CO2 injection in geological formations, International Journal
577	of Greenhouse Gas Control, doi:10.1016/j.ijggc.2011.08.014.
578	Birkholzer, J. T., Q. Zhou, and C. F. Tsang (2009), Large-scale impact of CO2 storage in
579	deep saline aquifers: A sensitivity study on pressure response in stratified systems, In-
580	ternational Journal of Greenhouse Gas Control, doi:10.1016/j.ijggc.2008.08.002.
581	Bourgeat, A., M. Jurak, and F. Smai (2010), Modelling and numerical simulation of gas mi-
582	gration in a nuclear waste repository.
583	Bryant, S. L., S. Lakshminarasimhan, and G. A. Pope (2008), Buoyancy-dominated multi-
584	phase flow and its effect on geological sequestration of CO2, SPE Journal, doi:10.2118/
585	99938-PA.
586	Chadwick, R., and D. Noy (2010a), History-matching flow simulations and time-lapse seis-
587	mic data from the sleipner co2 plume, in Geological Society, London, petroleum geology
588	conference series, vol. 7, pp. 1171–1182, Geological Society of London.
589	Chadwick, R. A., and D. J. Noy (2010b), History-matching flow simulations and time-lapse
590	seismic data from the Sleipner CO2 plume, in <i>Petroleum Geology Conference Proceed</i> -
591	ings, doi:10.1144/0071171.
592	Chadwick, R. A., R. Arts, O. Eiken, G. A. Kirby, E. Lindeberg, and P. Zweigel (2004), 4D
593	Seismic Imaging of an Injected C02 Plume at the Sleipner Field, Central North Sea, <i>Geo</i> -
594	logical Society Memoir, doi:10.1144/GSL.MEM.2004.029.01.29.
	Chadwick, R. A., R. Arts, and O. Eiken (2005), 4D seismic quantification of a growing
595	CO2 plume at Sleipner, North Sea, in <i>Petroleum Geology Conference Proceedings</i> , doi:
596	10.1144/0061385.
597	Cottin, C., H. Bodiguel, and A. Colin (2010), Drainage in two-dimensional porous media:
598	From capillary fingering to viscous flow, <i>Physical Review E - Statistical, Nonlinear, and</i>
599	Soft Matter Physics, doi:10.1103/PhysRevE.82.046315.
600	Dentz, M., T. Le Borgne, A. Englert, and B. Bijeljic (2011), Mixing, spreading and reaction
601	in heterogeneous media: A brief review, doi:10.1016/j.jconhyd.2010.05.002.
602	
603	Doughty, C., and K. Pruess (2004), Modeling Supercritical Carbon Dioxide Injection in Het- arganeous Porous Madia, Vadase Zong Journal, doi:10.2113/2.3.837
604	erogeneous Porous Media, <i>Vadose Zone Journal</i> , doi:10.2113/3.3.837.
605	Doughty, C., K. Pruess, S. M. Benson, S. D. Hovorka, P. R. Knox, and C. T. Green (2001),
606	Capacity investigation of brine-bearing sands of the frio formation for geologic sequestra-
607	tion of co2, GCCC Texts and Reports.
608	Duan, Z., and R. Sun (2003), An improved model calculating CO 2 solubility in pure water
609	and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, <i>Chemical Geol</i>
610	<i>ogy</i> , doi:10.1016/S0009-2541(02)00263-2.
611	Ern, A., and I. Mozolevski (2012), Discontinuous Galerkin method for two-component
612	liquid-gas porous media flows, <i>Computational Geosciences</i> , doi:10.1007/
613	s10596-012-9277-3.
614	Fernàndez-Garcia, D., X. Sánchez-Vila, and A. Guadagnini (2008), Reaction rates and ef-
615	fective parameters in stratified aquifers, <i>Advances in Water Resources</i> , doi:10.1016/j.
616	advwatres.2008.07.001.
617	Flett, M., R. Gurton, and I. Taggart (2004), The function of gas-water relative permeability
618	hysteresis in the sequestration of carbon dioxide in saline formations, in SPE Asia Pacific
619	Oil and Gas Conference and Exhibition, APOGCE, doi:10.2118/88485-ms.
620	Fogg, G. E., and Y. Zhang (2016), Debates-stochastic subsurface hydrology from theory to
621	practice: A geologic perspective, <i>Water Resources Research</i> , 52(12), 9235–9245, doi:
622	https://doi.org/10.1002/2016WR019699.
623	Garcia, J. E. (2003), Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers, TH:
624	Thesis (Ph.D.); Submitted to the University of California, Berkeley, CA (US); PBD: 18
625	<i>Dec</i> 2003.
626	Gasda, S. E., J. M. Nordbotten, and M. A. Celia (2012), Application of simplified models
627	to CO 2 migration and immobilization in large-scale geological systems, International
628	Journal of Greenhouse Gas Control, doi:10.1016/j.ijggc.2012.03.001.

629 630	Gershenzon, N. I., R. W. Ritzi, D. F. Dominic, M. Soltanian, E. Mehnert, and R. T. Okwen (2015a), Influence of small-scale fluvial architecture on CO2 trapping processes in deep
631	brine reservoirs, <i>Water Resources Research</i> , doi:10.1002/2015WR017638.
	Gershenzon, N. I., M. Soltanian, R. W. Ritzi Jr, and D. F. Dominic (2015b), Understanding
632	the impact of open-framework conglomerates on water-oil displacements: the victor inter-
633	val of the ivishak reservoir, prudhoe bay field, alaska.
634	Gershenzon, N. I., M. R. Soltanian, R. W. Ritzi Jr, D. F. Dominic, D. Keefer, E. Shaffer, and
635	
636	B. Storsved (2015c), How does the connectivity of open-framework conglomerates within multi-scale hierarchical fluvial architecture affect oil-sweep efficiency in waterflooding?,
637	Geosphere, 11(6), 2049–2066.
638	
639	Goodman, A., G. Bromhal, B. Strazisar, T. Rodosta, W. F. Guthrie, D. Allen, and G. Guthrie
640	(2013), Comparison of methods for geologic storage of carbon dioxide in saline forma-
641	tions, International Journal of Greenhouse Gas Control, 18, 329–342.
642	Green, C. P., and J. Ennis-King (2010), Effect of vertical heterogeneity on long-term
643	migration of CO2 in saline formations, <i>Transport in Porous Media</i> , doi:10.1007/
644	s11242-009-9498-7.
645	Gregersen, U. (1998), Upper Cenozoic channels and fans on 3D seismic data in the northern
646	Norwegian North Sea, <i>Petroleum Geoscience</i> , doi:10.1144/petgeo.4.1.67.
647	Grude, S., M. Landrø, and B. Osdal (2013), Time-lapse pressure-saturation discrimination
648	for co2 storage at the snøhvit field, International Journal of Greenhouse Gas Control, 19,
649	369–378.
650	Gunter, W. D., S. Bachu, and S. Benson (2004), The role of hydrogeological and geochem-
651	ical trapping in sedimentary basins for secure geological storage of carbon dioxide, Geo-
652	logical Society, London, Special Publications, 233(1), 129–145.
653	Hassanzadeh, H., M. Pooladi-Darvish, A. M. Elsharkawy, D. W. Keith, and Y. Leonenko
654	(2008), Predicting PVT data for CO2-brine mixtures for black-oil simulation of CO2
655	geological storage, International Journal of Greenhouse Gas Control, doi:10.1016/
656	\$1750-5836(07)00010-2.
657	Hayek, M., E. Mouche, and C. Mügler (2009), Modeling vertical stratification of CO2 in-
658	jected into a deep layered aquifer, Advances in Water Resources, doi:10.1016/j.advwatres.
659	2008.12.009.
660	Henri, C. V., D. Fernàndez-Garcia, and F. P. J. de Barros (2015), Probabilistic human health
661	risk assessment of degradation-related chemical mixtures in heterogeneous aquifers: Risk
662	statistics, hot spots, and preferential channels, Water Resources Research, 51(6), 4086-
663	4108, doi:10.1002/2014WR016717.
664	Humez, P., P. Audigane, J. Lions, C. Chiaberge, and G. Bellenfant (2011), Modeling of CO2
665	Leakage up Through an Abandoned Well from Deep Saline Aquifer to Shallow Fresh
666	Groundwaters, Transport in Porous Media, doi:10.1007/s11242-011-9801-2.
667	Ide, S. T., K. Jessen, and F. M. Orr Jr (2007), Storage of co2 in saline aquifers: Effects of
668	gravity, viscous, and capillary forces on amount and timing of trapping, International
669	Journal of Greenhouse Gas Control, 1(4), 481–491.
670	IPCC (2005), Underground Geologic Storage (Chapter 5), in IPCC Special Report on Car-
671	bon Dioxide Capture and Storage.
672	IPCC (2008), Climate change 2007: mitigation of climate change: contribution of Working
673	Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate
674	Change, Choice Reviews Online, doi:10.5860/choice.45-5006.
675	Jing, J., Z. Tang, Y. Yang, and L. Ma (2019), Impact of formation slope and fault on co2
676	storage efficiency and containment at the shenhua co2 geological storage site in the ordos
677	basin, china, International Journal of Greenhouse Gas Control, 88, 209-225.
678	Journel, A., and C. Huijbregts (1976), Mining geostatistics.
679	Juanes, R., E. J. Spiteri, F. M. Orr, and M. J. Blunt (2006), Impact of relative perme-
680	ability hysteresis on geological CO2 storage, Water Resources Research, doi:10.1029/
681	2005WR004806.

682 683	Kabera, T., and Y. Li (2011), Impact of co2 injection in deep saline aquifers: A study on pressure evolution in stratified formation of qianjiang sag, china, <i>International Journal</i>
684	of Chemical Engineering and Applications, 2(2), 121.
685	Knudby, C., and J. Carrera (2005), On the relationship between indicators of geostatistical,
686	flow and transport connectivity, Advances in Water Resources, 28(4), 405 – 421, doi:https:
687	//doi.org/10.1016/j.advwatres.2004.09.001.
688	Krevor, S., M. J. Blunt, S. M. Benson, C. H. Pentland, C. Reynolds, A. Al-Menhali, and
689	B. Niu (2015), Capillary trapping for geologic carbon dioxide storage - From pore scale
690	physics to field scale implications, International Journal of Greenhouse Gas Control, doi:
691	10.1016/j.ijggc.2015.04.006.
692	Krevor, S. C., R. Pini, B. Li, and S. M. Benson (2011), Capillary heterogeneity trapping of
693	CO2 in a sandstone rock at reservoir conditions, Geophysical Research Letters, doi:10.
694	1029/2011GL048239.
695	Kumar, A., R. Ozah, M. Noh, G. A. Pope, S. Bryant, K. Sepehmoori, and L. W. Lake (2005),
696	Reservoir simulation of CO2 storage in deep saline aquifers, SPE Journal, doi:10.2118/
697	89343-pa.
698	Leal, A. M., M. J. Blunt, and T. C. LaForce (2013), A robust and efficient numerical
699	method for multiphase equilibrium calculations: Application to CO2-brine-rock sys-
700	tems at high temperatures, pressures and salinities, Advances in Water Resources, doi:
701	10.1016/j.advwatres.2013.02.006.
702	Lee, Y., K. Kim, W. Sung, and I. Yoo (2010), Analysis of the leakage possibility of injected
703	CO2 in a saline aquifer, Energy and Fuels, doi:10.1021/ef100073m.
704	Lenormand, R., E. Touboul, and C. Zarcone (1988), Numerical models and experiments on
705	immiscible displacements in porous media, Journal of Fluid Mechanics, doi:10.1017/
706	S0022112088000953.
707	Li, D., Y. He, H. Zhang, W. Xu, and X. Jiang (2017), A numerical study of the impurity ef-
708	fects on co2 geological storage in layered formation, Applied energy, 199, 107–120.
709	Li, D., H. Zhang, Y. Li, W. Xu, and X. Jiang (2018), Effects of n2 and h2s binary impurities
710	on co2 geological storage in stratified formation-a sensitivity study, Applied energy, 229,
711	482–492.
712	Lie, KA. (2019), An introduction to reservoir simulation using MATLAB/GNU Octave:
713	User guide for the MATLAB Reservoir Simulation Toolbox (MRST), Cambridge University
714	Press.
715	Maldal, T., and I. Tappel (2004), Co2 underground storage for snøhvit gas field development,
716	<i>Energy</i> , <i>29</i> (9-10), 1403–1411.
717	Mathieson, A., I. Wright, D. Roberts, and P. Ringrose (2009), Satellite imaging to monitor
718	co2 movement at krechba, algeria, <i>Energy Procedia</i> , <i>1</i> (1), 2201–2209.
719	Mathieson, A., J. Midgely, I. Wright, N. Saoula, and P. Ringrose (2011), In salah co2 stor-
720	age jip: Co2 sequestration monitoring and verification technologies applied at krechba,
721	algeria, <i>Energy Procedia</i> , 4, 3596–3603.
722	McGuire, P., A. Spence, F. Stalkup, M. Cooley, et al. (1995), Core acquisition and analy-
723	sis for optimization of the prudhoe bay miscible-gas project, <i>SPE reservoir engineering</i> ,
724	10(02), 94-100.
725	Michael, K., A. Golab, V. Shulakova, J. Ennis-King, G. Allinson, S. Sharma, and T. Aiken
726	(2010), Geological storage of co2 in saline aquifers—a review of the experience from ex- isting storage operations. International journal of graph and a source $4(4)$ 650, 667
727	isting storage operations, <i>International journal of greenhouse gas control</i> , 4(4), 659–667.
728	Mori, H., T. Sakaki, and T. H. Illangasekare (2015), Laboratory study of geological carbon
729	sequestration using surrogate fluids: Dielectric measurement and scaling of capillary
730	pressure-saturation relationships, <i>International Journal of Greenhouse Gas Control</i> , doi: 10.1016/j.ijggc.2015.01.023.
731	
732 733	Mouche, E., M. Hayek, and C. Mügler (2010), Upscaling of CO2 vertical migration through a periodic layered porous medium: The capillary-free and capillary-dominant cases, <i>Ad</i> -

vances in Water Resources, doi:10.1016/j.advwatres.2010.07.005.

735 736	Neumann, R., P. Bastian, and O. Ippisch (2013), Modeling and simulation of two-phase two- component flow with disappearing nonwetting phase, <i>Computational Geosciences</i> , <i>17</i> (1), 139–149, doi:10.1007/s10596-012-9321-3.
737	Nordbotten, J. M., and M. A. Celia (2006), Similarity solutions for fluid injection into con-
738 739	fined aquifers, <i>Journal of Fluid Mechanics</i> , doi:10.1017/S0022112006000802.
	Obi, EO. I., and M. J. Blunt (2006), Streamline-based simulation of carbon dioxide storage
740	in a north sea aquifer, <i>Water Resources Research</i> , 42(3).
742	Oh, J., K. Y. Kim, W. S. Han, E. Park, and J. C. Kim (2015), Migration behavior of supercrit-
743	ical and liquid CO2 in a stratified system: Experiments and numerical simulations, <i>Water</i>
744	Resources Research, doi:10.1002/2015WR017022.
745	Oldenburg, C. M., and A. P. Rinaldi (2011), Buoyancy Effects on Upward Brine Dis-
746	placement Caused by CO2 Injection, Transport in Porous Media, doi:10.1007/
747	s11242-010-9699-0.
748	Onoja, M. U., J. D. Williams, H. Vosper, and S. M. Shariatipour (2019), Effect of sedimen-
749	tary heterogeneities in the sealing formation on predictive analysis of geological co2 stor-
750	age, International Journal of Greenhouse Gas Control, 82, 229–243.
751	Plampin, M. R., R. N. Lassen, T. Sakaki, M. L. Porter, R. J. Pawar, K. H. Jensen, and T. H.
752	Illangasekare (2014), Heterogeneity-enhanced gas phase formation in shallow aquifers
753	during leakage of CO2-saturated water from geologic sequestration sites, Water Resources
754	Research, doi:10.1002/2014WR015715.
755	Plug, W. J., and J. Bruining (2007), Capillary pressure for the sand-CO2-water system under
756	various pressure conditions. Application to CO2 sequestration, Advances in Water Re-
757	sources, doi:10.1016/j.advwatres.2007.05.010.
758	Pruess, K., and J. Nordbotten (2011), Numerical Simulation Studies of the Long-term Evo-
759	lution of a CO2 Plume in a Saline Aquifer with a Sloping Caprock, <i>Transport in Porous Media</i> , doi:10.1007/s11242-011-9729-6.
760	Rasmusson, K., CF. Tsang, Y. Tsang, M. Rasmusson, L. Pan, F. Fagerlund, J. Bensabat, and
761 762	A. Niemi (2015), Distribution of injected co2 in a stratified saline reservoir accounting for
763	coupled wellbore-reservoir flow, <i>Greenhouse Gases: Science and Technology</i> , 5(4), 419–
764	436.
765	Redlich, O., and J. N. Kwong (1949), On the thermodynamics of solutions. V. An equation of
766	state. Fugacities of gaseous solutions, Chemical Reviews, doi:10.1021/cr60137a013.
767	Renard, P., and G. de Marsily (1997), Calculating equivalent permeability: a review, Ad-
768 769	vances in Water Resources, 20(5), 253–278, doi:https://doi.org/10.1016/S0309-1708(96) 00050-4.
770	Riaz, A., M. HESSE, H. A. TCHELEPI, and F. M. ORR (2006), Onset of convection in a
771	gravitationally unstable diffusive boundary layer in porous media, Journal of Fluid Me-
772	chanics, 548, 87-111, doi:10.1017/S0022112005007494.
773	Saaltink, M. W., V. Vilarrasa, F. De Gaspari, O. Silva, J. Carrera, and T. S. Rötting (2013),
774	A method for incorporating equilibrium chemical reactions into multiphase flow models
775	for co2 storage, Advances in Water Resources, 62, 431 – 441, doi:https://doi.org/10.1016/j.
776	advwatres.2013.09.013, computational Methods in Geologic CO2 Sequestration.
777	Sanchez-Vila, X., A. Guadagnini, and J. Carrera (2006), Representative hydraulic conductiv-
778	ities in saturated groundwater flow, <i>Reviews of Geophysics</i> , 44(3), doi:https://doi.org/10. 1029/2005RG000169.
779	
780	Schwartz, M. O. (2014), Modelling leakage and groundwater pollution in a hypothetical co2 sequestration project, <i>International Journal of Greenhouse Gas Control</i> , <i>23</i> , 72–85.
781	Silin, D., T. Patzek, and S. M. Benson (2009), A model of buoyancy-driven two-phase cour-
782	tercurrent fluid flow, <i>Transport in Porous Media</i> , 76(3), 449–469.
783	Spycher, N., and K. Pruess (2005), CO2-H2O mixtures in the geological sequestration of
784 785	CO2. II. Partitioning in chloride brines at 12-100°C and up to 600 bar, <i>Geochimica et Cos</i> -
786	<i>mochimica Acta</i> , doi:10.1016/j.gca.2005.01.015.
787	Spycher, N., K. Pruess, and J. Ennis-King (2003), CO2-H2O mixtures in the geological se-
788	questration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C

789 790	and up to 600 bar, <i>Geochimica et Cosmochimica Acta</i> , doi:10.1016/S0016-7037(03) 00273-4.
791	Stalkup, F., and S. Crane (1994), Reservoir description detail required to predict solvent and
792	water saturations at an observation well, SPE Reservoir Engineering, 9(01), 35–43.
793	Strandli, C. W., and S. M. Benson (2013), Identifying diagnostics for reservoir structure and
794 795	CO2 plume migration from multilevel pressure measurements, <i>Water Resources Research</i> , doi:10.1002/wrcr.20285.
796	Sung, RT., MH. Li, JJ. Dong, A. TS. Lin, SK. Hsu, CY. Wang, and CN. Yang
797	(2014), Numerical assessment of co2 geological sequestration in sloping and layered het-
798 799	erogeneous formations: A case study from taiwan, <i>International Journal of Greenhouse Gas Control</i> , 20, 168–179.
800	Szulczewski, M. L., C. W. MacMinn, H. J. Herzog, and R. Juanes (2012), Lifetime of car-
801	bon capture and storage as a climate-change mitigation technology, <i>Proceedings of the National Academy of Sciences</i> , 109(14), 5185–5189.
802	
803 804	Trevisan, L., A. Cihan, F. Fagerlund, E. Agartan, H. Mori, J. T. Birkholzer, Q. Zhou, and T. H. Illangasekare (2014), Investigation of mechanisms of supercritical CO2 trapping in
805	deep saline reservoirs using surrogate fluids at ambient laboratory conditions, Interna-
806	tional Journal of Greenhouse Gas Control, doi:10.1016/j.ijggc.2014.07.012.
807	Trevisan, L., R. Pini, A. Cihan, J. T. Birkholzer, Q. Zhou, and T. H. Illangasekare (2015),
808	Experimental analysis of spatial correlation effects on capillary trapping of supercritical
809	CO2 at the intermediate laboratory scale in heterogeneous porous media, Water Resources
810	Research, doi:10.1002/2015WR017440.
811	Tsang, CF., Y. W. Tsang, J. Birkholzer, and L. Moreno (2001), Dynamic channeling of
812 813	flow and transport in saturated and unsaturated heterogeneous media, <i>GEOPHYSICAL</i> MONOGRAPH-AMERICAN GEOPHYSICAL UNION, 42, 33–44.
814	Van der Meer, L. (1995), The co2 storage efficiency of aquifers, <i>Energy conversion and man-</i>
815	agement, 36(6-9), 513–518.
816	van Genuchten, M. T. (1980), A Closed-form Equation for Predicting the Hydraulic Con-
817 818	ductivity of Unsaturated Soils1, <i>Soil Science Society of America Journal</i> , doi:10.2136/ sssaj1980.03615995004400050002x.
819	Vilarrasa, V., D. Bolster, M. Dentz, S. Olivella, and J. Carrera (2010), Effects of CO2 Com-
820	pressibility on CO2 Storage in Deep Saline Aquifers, Transport in Porous Media, doi:
821	10.1007/s11242-010-9582-z.
822	Wang, K., T. Xu, H. Tian, and F. Wang (2016), Impacts of mineralogical compositions on
823	different trapping mechanisms during long-term co2 storage in deep saline aquifers, Acta
824	<i>Geotechnica</i> , 11(5), 1167–1188.
825	Wang, Y. (2022), Numerical modeling of geological carbon sequestration: Enhanced dissolu-
826	tion in randomly heterogeneous media, Ph.D. thesis, Technical University of Catalonia.
827	Wen, XH., and J. Gómez-Hernández (1996), Upscaling hydraulic conductivities in het-
828	erogeneous media: An overview, Journal of Hydrology, 183(1), ix-xxxii, doi:https:
829	//doi.org/10.1016/S0022-1694(96)80030-8.
830	Xiao, T., B. McPherson, R. Esser, W. Jia, N. Moodie, S. Chu, and SY. Lee (2019), Fore-
831	casting commercial-scale co2 storage capacity in deep saline reservoirs: Case study of
832	buzzard's bench, central utah, Computers & Geosciences, 126, 41-51.
833	Xu, T., E. Sonnenthal, N. Spycher, and K. Pruess (2004), Toughreact user's guide: A simu-
834	lation program for non-isothermal multiphase reactive geochemical transport in variable
835	saturated geologic media, Tech. rep., Lawrence Berkeley National Lab.(LBNL), Berkeley,
836	CA (United States).
837	Xu, T., N. Spycher, E. Sonnenthal, G. Zhang, L. Zheng, and K. Pruess (2011), Toughreact
838	version 2.0: A simulator for subsurface reactive transport under non-isothermal multi-
839	phase flow conditions, Computers & Geosciences, 37(6), 763-774.
840	Zhang, M., Y. Zhang, and P. Lichtner (2017), Evaluating model complexity in simulating su-
841	percritical co2 dissolution, leakage, footprint, and reservoir pressure for three-dimensional

hierarchical aquifer, *International Journal of Greenhouse Gas Control*, 64, 284–299.

- Zhao, B., C. W. MacMinn, and R. Juanes (2014), Residual trapping, solubility trapping and
 capillary pinning complement each other to limit co2 migration in deep saline aquifers,
 Energy Procedia, 63, 3833–3839.
- Zhou, Q., J. T. Birkholzer, C.-F. Tsang, and J. Rutqvist (2008), A method for quick assessment of co2 storage capacity in closed and semi-closed saline formations, *International Journal of Greenhouse gas control*, 2(4), 626–639.
- Zhou, Q., J. T. Birkholzer, E. Mehnert, Y.-F. Lin, and K. Zhang (2010), Modeling basin-and
 plume-scale processes of co2 storage for full-scale deployment, *Groundwater*, 48(4), 494–514.
- Zinn, B., and C. F. Harvey (2003), When good statistical models of aquifer heterogeneity go
 bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate
- gaussian hydraulic conductivity fields, *Water Resources Research*, *39*(3), doi:10.1029/ 2001WR001146
- ⁸⁵⁵ 2001WR001146.

Support Information for: CO₂ Dissolution Efficiency during Geological Carbon Sequestration (GCS) in Perfectly Stratified Aquifers

Yufei Wang^{1,2} Daniel Fernàndez-Garcia^{1,2} Maarten W. Saaltink^{1,2}

¹Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain ²Associated Unit: Hydrogeology Group (UPC-CSIC)

Corresponding author: Yufei Wang, yufei.wang@upc.edu

Abstract

This support information offers the saturation and concentration distributions for different cases.

Figures

Figure 1 shows the distributions of $CO_2(g)$ plumes and $CO_2(aq)$ concentrations for the real heterogeneous field when normal injection rate is employed.

Figure 2 shows the distributions of $CO_2(g)$ plumes and $CO_2(aq)$ concentrations for the real heterogeneous field when slow injection rate is employed.

Figure 3 illustrates distributions of $CO_2(g)$ saturation and $CO_2(aq)$ concentration for the representative formations with upscaled permeability when normal injection rate is employed.

Figure 4 illustrates distributions of $CO_2(g)$ saturation and $CO_2(aq)$ concentration for the representative formations with upscaled permeability when slow injection rate is employed.

Figure 5 shows the distributions of ensemble average saturation and ensemble average concentration for heterogeneous cases when normal injection rate is employed.

Remark

The distribution of dissolved $CO_2(aq)$ concentration in brine is closely related to that of $CO_2(g)$ saturation. Therefore, in the paper we only show the distribution of $CO_2(g)$ saturation.

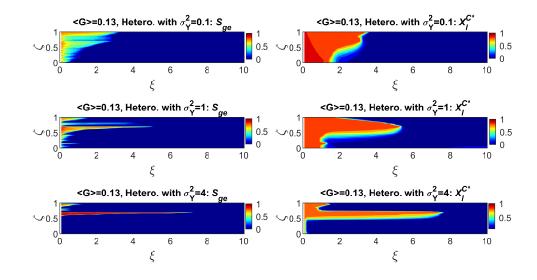


Figure 1: $CO_2(g)$ plumes (left column) and $CO_2(aq)$ concentrations in brine phase (right column) for the representative realization of the layered formations with $\sigma_Y^2=0.1$, 1, 4, respectively; normal injection rate $Q_r=2.5$ [Mt/year] is employed.

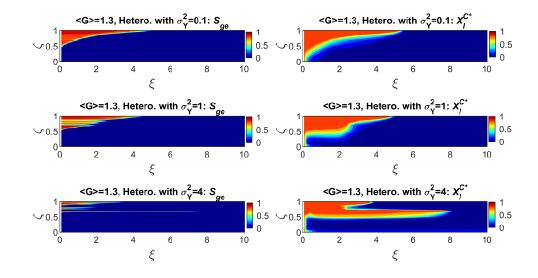


Figure 2: $CO_2(g)$ plumes (left column) and $CO_2(aq)$ concentrations in brine phase (right column) for the representative realization of the layered formations with $\sigma_Y^2=0.1$, 1, 4, respectively; slow injection rate $Q_r=0.25$ [Mt/year] is employed.

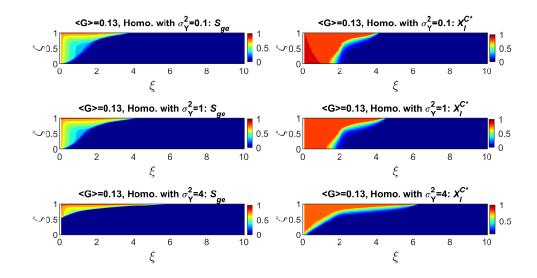


Figure 3: $CO_2(g)$ plumes (left column) and $CO_2(aq)$ concentrations in brine phase (right column) for representative formations with upscaled permeability corresponding to $\sigma_Y^2=0.1$, 1, 4, respectively; normal injection rate $Q_r=2.5$ [Mt/year] is employed.

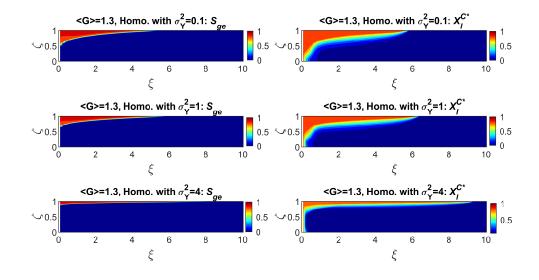


Figure 4: $CO_2(g)$ plumes (left column) and $CO_2(aq)$ concentrations in brine phase (right column) for representative formations with upscaled permeability corresponding $\sigma_Y^2=0.1$, 1, 4, respectively; slow injection rate $Q_r=0.25$ [Mt/year] is employed.

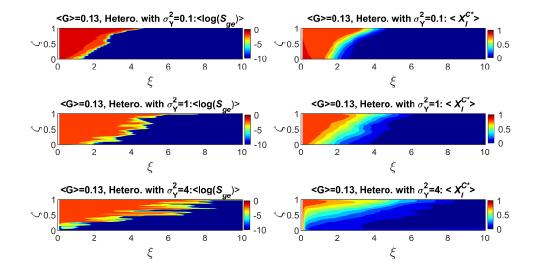


Figure 5: Ensemble averages of $CO_2(g)$ plumes (left column) and $CO_2(aq)$ concentrations in brine phase (right column) for the layered formations with σ_Y^2 =0.1, 1, 4, respectively; normal injection rate Q_{well} =2.5 [Mt/year] is employed.