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Abstract

Seismograms always result from mixing many sources and medium changes that are complex to disentangle, witnessing many

physical phenomena within the Earth. With artificial intelligence (AI), we isolate the signature of surface freezing and thawing

in continuous seismograms recorded in a noisy urban environment. We perform a hierarchical clustering of the seismograms and

identify a pattern that correlates with ground frost periods. We further investigate the fingerprint of this pattern and use it to

track the continuous medium change with high accuracy and resolution in time. Our method isolates the effect of the ground

frost and describes how it affects the horizontal wavefield. Our findings show how AI-based strategies can help to identify and

understand hidden patterns within seismic data caused either by medium or source changes.
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Key Points:8

• With methods of unsupervised learning, we identify source and medium processes9
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medium change.14
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Abstract15

Seismograms always result from mixing many sources and medium changes that are com-16

plex to disentangle, witnessing many physical phenomena within the Earth. With ar-17

tificial intelligence (AI), we isolate the signature of surface freezing and thawing in con-18

tinuous seismograms recorded in a noisy urban environment. We perform a hierarchi-19

cal clustering of the seismograms and identify a pattern that correlates with ground frost20

periods. We further investigate the fingerprint of this pattern and use it to track the con-21

tinuous medium change with high accuracy and resolution in time. Our method isolates22

the effect of the ground frost and describes how it affects the horizontal wavefield. Our23

findings show how AI-based strategies can help to identify and understand hidden pat-24

terns within seismic data caused either by medium or source changes.25

Plain Language Summary26

Seismic waves, emitted by a seismic source and then travelling through the Earth,27

contain crucial information about the sources and the medium. However, often multi-28

ple sources emit simultaneously, while the elastic properties of the medium can change29

over time. Unmixing and identifying the different processes in the seismograms is a com-30

plex task, which we try to solve with methods of artificial intelligence (AI). In a com-31

pletely data-driven fashion, we are able to mute the variation in the seismograms due32

to anthropogenic seismic sources and reveal a continuous medium change due to freez-33

ing and thawing. This approach could reveal hidden information in complex environments34

such as volcanoes, where many different source and medium processes occur.35

1 Introduction36

Continuous seismograms are time series of the ground motion recorded at a single37

location and provide a vast amount of information about processes occurring at the Earth’s38

surface and interior. The recorded ground motion at a given location results from the39

convolution of the medium’s impulse response — expressed as the Green’s function —40

and the seismic waves emitted by various sources, often simultaneously. Thus, continuous41

seismograms are goldmines to study the medium’s properties or sources in time. However,42

unmixing source or medium changes is often not easy, especially if source and medium43

changes coincide. For instance, seismic recordings in the vicinity of volcanoes, where many44

different source and medium effects occur, are challenging and complex datasets to analyze.45

To better explore continuous seismic data, seismologists developed many data process-46

ing tools to extract valuable information for the task at hand. For example, the Short-47

Term-Average to Long-Term-Average energy ratio (STA/LTA) scans the continuous record-48

ings for impulsive signals (Allen, 1978). On the other hand, passive image interferometry49

can interrogate the medium regularly by exploiting the ambient seismic signals of a dataset50

(Sens-Schönfelder & Wegler, 2006). Undoubtedly, these tools delivered many new insights51

into the processes happening at and inside the Earth. However, it is important to note that52

the design of the tools and the related preprocessing favors certain processes in the seismic53

data. This can be a problem if the source or medium processes encoded in the seismic data54

are poorly understood. For example, non-volcanic tremors were detected about twenty years55

ago (Obara, 2002), and still today, the physical mechanism and signal properties of such56

events are not well apprehended. Therefore, it remains unclear if these signals do not exist57

in specific environments or if the detection tools are not adapted to the task (Pfohl et al.,58

2015; Bocchini et al., 2021).59

Artificial intelligence (AI) can help overcome those blind spots and discover new signals60

or hidden patterns within the data. Recently, clustering gained attention as a method to61

identify families of signals in the continuous seismograms (Köhler et al., 2010; Holtzman et62

al., 2018; Mousavi et al., 2019; Seydoux et al., 2020; C. W. Johnson et al., 2020; Snover et63

–2–
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Figure 1. Temperature and seismic stations used in the study. (a) Map of the measuring

site in Hamburg, Germany, with the three broadband and three-component seismic sensors WM01,

WM02, and WM03. (b) Temperature time series measured at the surface, 5 cm and 10 cm depth

close to station WM02 with a sampling period of 10min.

al., 2020; Jenkins et al., 2021; Steinmann et al., 2022). In the most common approach, char-64

acteristics — often called features — are calculated for a sliding window. Then, clustering65

algorithms perform a similarity measurement within the set of characteristics and assign a66

cluster to each window. Until now, the applications showed that this approach mainly iden-67

tifies families of signals related to source processes such as geothermal activity (Holtzman et68

al., 2018), different types of anthropogenic activity (Snover et al., 2020), seismic background69

activity (C. W. Johnson et al., 2020) or precursory signals of a landslide (Seydoux et al.,70

2020). To our knowledge, medium changes have been disregarded so far in this task.71

In the present study, we make the first attempts towards inferring not only source72

processes but also medium changes from continuous single station seismograms in a data-73

driven fashion.74

2 A thin ground frost layer visible in temperature data and seismic ve-75

locity variations76

The study site is located in the city of Hamburg, Germany (Figure 1a). Besides the77

three broadband sensors WM01, WM02, and WM03, the site includes various meteorological78

sensors near station WM02. At 5 cm, 10 cm, 80 cm, and 120 cm depth and at the surface,79

temperature sensors deliver a measurement every 10min. Figure 1b depicts the temperature80

time series at the surface, 5 cm, and 10 cm depth from January 4 to April 30 in 2018.81

Until the end of March, the air temperature ranges between −20 °C and 20 °C indicating a82

continuous freezing and thawing of the near-surface. In particular, the end of February is a83

cold period with freezing air temperature during daytime and nighttime. However, at 5 cm84

and 10 cm depth, the sensors do not reach below 0 °C and do not follow the air temperature85

as they do later in March. This is known as the zero-curtain effect: the phase change from86

water to ice in the soil releases latent heat, which causes the freezing process to slow down87

(Outcalt et al., 1990). This implies that the ground frost is not deeper than 5 cm during88

the coldest period.89

–3–
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The freezing and thawing process on a centimeter scale was well tracked with seismic90

velocity variations retrieved from passive image interferometry applied to the data from91

the three broadband stations WM01, WM02 and WM03 (Steinmann et al., 2021). Freez-92

ing periods caused a velocity increase and thawing periods caused a velocity decrease. The93

local seismic wavefield comprises many non-stationary seismic sources related to the anthro-94

pogenic activity, such as commuter and freight trains in the south, a highway passing in the95

southeast (labeled A1 on Figure 1a), a close gravel pit (marked by the two nearby lakes on96

Figure 1a) and an industrial neighborhood in the northwest. The combination of the contin-97

uously changing medium due to the freezing and thawing and many non-stationary seismic98

sources makes it an interesting study case for our approach to disentangle the medium from99

the source effects blindly.100

3 Seismic pattern detection with hierarchical waveform clustering101

We search for the imprint of the ground frost within the continuous three-component102

seismograms recorded by a single station with the hierarchical waveform clustering approach103

introduced in (Steinmann et al., 2022). Hierarchical clustering observes how a dataset104

merges into clusters based on some similarity criterion (Estivill-Castro, 2002). In our case,105

we calculate the similarity between waveforms from a set of features derived from a deep106

scattering spectrogram, as depicted in Figure 2. Firstly, we calculate the deep scattering107

spectrogram of the continuous three-component seismograms with a deep scattering net-108

work, as introduced in Andén and Mallat (2014) and adapted to seismology in Seydoux et109

al. (2020). A deep scattering network is a deep convolutional neural network, where the110

convolutional filters are restricted to wavelets and the activations to modulus operation.111

The output of such a network at each layer allows building the deep scattering spectrogram112

representation of a continuous multichannel seismogram. This representation of time series113

is relevant for classification purposes since it preserves signal phenomena such as attack114

and amplitude modulation. Moreover, a deep scattering spectrogram is locally translation115

invariant and stable towards small-amplitude time warping deformations (Andén & Mal-116

lat, 2014). We depict a two-layer scattering network in Figure 2, where we apply a sliding117

window on a single-component seismogram and calculate the first-order scalogram with118

the wavelet transform. A second wavelet transform is applied to the first-order scalogram119

creating the second-order scalogram. A pooling operation collapses the time axis of the120

scalograms and recovers the first- and second-order scattering coefficients. For each compo-121

nent of the ground motion record, we calculate the scattering coefficients and concatenate122

them. We repeat this for each window and retrieve the deep scattering spectrogram. The123

design of the scattering network (number of wavelets, type of pooling, et.c) can be adapted124

to the task at hand and is explained more in detail in Text S1 of the supplementary material.125

Deep scattering spectrograms are redundant and high-dimensional representations, not126

directly suited for clustering due to the curse of dimensionality (Bellman, 1966). Therefore,127

we extract the most relevant characteristics — or features — and reduce the number of di-128

mensions with an ICA, a linear operator for feature extraction, and blind source separation129

(Comon, 1994). Before applying the ICA, we whiten the deep scattering spectrogram by130

equalizing its covariance matrix eigenvalues, allowing us to disregard patterns’ relative am-131

plitudes as much as possible. Finally, the number of most relevant features (or independent132

components) is often unknown and should be inferred, which is explained more in detail in133

Text S2 of the supplementary material.134

Lastly, we perform hierarchical clustering in the low-dimensional feature space built by135

the unmixed sources. Clustering aims at grouping objects — here defined as data points136

in a given feature space — based on a similarity or dissimilarity measurement. With a137

bottom-up approach of hierarchical clustering, also called agglomerative clustering, all ob-138

jects start in a singleton cluster and merge to larger clusters until all objects unify in a139

single cluster (S. C. Johnson, 1967). A dendrogram depicts this process, representing the140

inter-cluster similarity in a cluster-distance diagram. The similarity measurement, which141

–4–
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Figure 2. Sketch of the hierarchical waveform clustering approach. A two-layer scatter-

ing network with wavelet transforms, modulus and pooling operations calculates the deep scattering

spectrogram. An independent component analysis (ICA) extracts the most relevant features, which

are used for hierarchical clustering.

drives the cluster merging, is often a distance in the feature space between the objects.142

Thus, the type of distance is the only choice to be made here and determines the structure143

of the dendrogram. We use Ward’s method as a criterion to merge clusters in hierarchical144

clustering and produce the dendrogram. Clusters are merged with the objective to keep the145

increase of the total within-cluster variance minimal (Ward Jr, 1963). This allows to find146

cluster of various size, which fits the nature of seismic data, where ambient seismic activity147

often outweighs transient signals. Finally, depending on the truncation distance explored in148

the dendrogram, one can obtain a different number of clusters. This allows exploring the149

dataset’s structure and searching for a cluster of seismic signals related to the ground frost.150

4 Cluster of signals occurs during ground frost151

We show a truncated dendrogram of the continuous three-component seismogram recorded152

at station WM01 from January to April 2018 in Figure 3a, using a truncation distance to153

end up with 16 clusters in this case. A data point in the feature space represents 10min154

of continuous waveform data without overlap. Moreover, the feature space contains 16 un-155

mixed sources, as a trade-off between keeping enough information and low dimensionality156

(see Text S2 and Figure S1 in the supplementary material). Note that finding a cluster157

related to ground frost effects is an exploratory task where we do not know where such a158

cluster would appear in the dendrogram nor if it even exists. As suggested in Steinmann159

et al. (2022), we extract a few large clusters at a high distance threshold to overview the160

whole dataset. We can then focus on certain branches in the dendrogram and extract sub-161

clusters hierarchically to get a more detailed cluster analysis if needed. In our case, we162

extract five clusters (hereafter denoted A, B, C, D, and E) at a distance threshold of 0.9163

(Figure 3a). In the following lines, we will interpret the clusters and assign meaningful la-164

bels with certain inherent clusters properties such as the normalized cumulative detections165

in time (Figure 3b–f), the number of detections per hour during the day (Figure 3g–k), the166

number of detections per weekday (Figure 3l–p), and the first-order scattering coefficients167

–5–
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averaged for each input channel (Figure 3q–u). In particular, the normalized cumulative168

detections in time can help identify a cluster related to the presence of ground frost since169

the temperature time series indicate the periods of freezing air temperature.170

Cluster A seems to detect in a linear-piecewise way, with no relation to the temperature171

time series or occurrence of ground frost (Figure 3b). This cluster detects only between 05:00172

and 18:00 local time from Monday to Friday (Figure 3g and i). Note that around 09:00 and173

12:00, the detections reach a minimum, coinciding with the typical breakfast and lunch174

break during workdays. Compared to the other clusters, the averaged first-order scattering175

coefficients show larger values for frequencies above 1Hz with a local maximum around 8Hz176

on the vertical component (Figure 3q). The analysis of these parameters indicates that177

this cluster contains seismic signals related to anthropogenic sources, mainly active during178

classical labor hours. The gravel pit with trucks in the direct neighborhood of this measuring179

site could be a possible source (Figure 1a).180

Cluster B seems to detect more continuously than cluster A (Figure 3c). It is active181

during the daytime, with a few detections during the nighttime (Figure 3h). Interestingly,182

this cluster peaks at 09:00 and 12:00 when cluster A reaches a minimum of detections.183

The weekdays show clearly more detections than the weekends, with a peak of detection184

on Fridays when cluster A shows a minimum of detection during the week (Figure 3l and185

m). The averaged first-order scattering coefficients show similar frequency characteristics186

as cluster A. However, cluster B indicates no bumps around 8Hz (Figure 3r). The analysis187

of cluster B suggests that this cluster also relates to anthropogenic activity. Since it shows188

elevated activity when cluster A reduces its activity (Fridays and 09:00 and 12:00 local189

time), it is probably related to a different anthropogenic seismic source. Because cluster190

B also contains some detections during the nighttime and weekends, it possibly contains191

seismic signals related to nearby road traffic.192

Cluster C is the second-largest cluster of the whole dataset (Figure 3a). It detects193

irregularly at all hours and all days (Figure 3d, i and n). During the morning and afternoon194

its detection rate decreases (Figure 3i). Moreover, the averaged first-order scattering coef-195

ficients show no particular pattern (Figure 3s). It is unclear what type of seismic signals196

cluster C contains. We can only note that it is not related to ground frost since its detections197

rate does not correlate with freezing temperatures.198

Cluster D activates mainly during two periods (Figure 3e). At the beginning of Febru-199

ary, it accumulates 25% of its size followed by a slight pause. Then, at the end of February200

and beginning of March it detects the remaining 75% of its total size. The detection periods201

occur during the coldest temperatures recorded at 5 cm depth. Therefore, cluster D most202

likely groups seismic signals related to ground frost. Cluster D detects during all hours203

and all days. However, slightly more detections appear during the weekend and nighttime204

(Figure 3j and i). There are probably two effects that explain this behavior. Firstly, due to205

colder temperatures, ground frost occurs predominantly at night and so do the associated206

seismic signals (Figure 1b). Secondly, due to anthropogenic activity, the seismic wavefield in207

an urban environment changes significantly between day and night and weekdays and week-208

ends. Thus, the changing wavefield modulates the signature of the ground frost recorded209

by continuous seismograms. For instance, a seismogram containing seismic signals gener-210

ated by road traffic during ground frost could be found in cluster B or D. Indeed, inside211

cluster B, we can identify subcluster B.1 as anthropogenic seismic signals effected by the212

ground frost (see Figure 3a and Figure S2 in the supplementary materials). This points out213

a limitation of clustering: a seismogram containing multiple types of signals is assigned to214

a single cluster, which oversimplifies the nature of the data and has been already noted by215

Steinmann et al. (2022). The averaged first-order scattering coefficients show no clear and216

distinct pattern (Figure 3t). Cluster D seems different from Cluster A and B due to lower217

scattering coefficients for higher frequencies. However, it is unclear how cluster D differs218

from clusters C and E. We can note that the averaged first-order scattering coefficients do219

not deliver a unique signature related to these signals.220

–6–
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Cluster E is the largest cluster of the whole dataset (Figure 3a). It detects continuously221

with a decreased detection rate during February when ground frost occurs, with more de-222

tections during night and weekends (Figure 3f, k, and p). Moreover, the cluster shows lower223

averaged first-order scattering coefficients at higher frequencies (Figure 3u), distinguishing224

them from clusters A and B but D. The analysis of cluster E indicates that it groups ambient225

seismic noise without particular transients and ground frost. In fact, it appears that cluster226

D and E summarize the stationary ambient wave field separated only due to the occurrence227

of ground frost. Indeed, the combined clusters seems to detect almost continuously during228

weekends and nights (see Figure S2 in the supplementary materials).229

Summarized, the dendrogram delivers a data-driven overview about the content of the230

data containing both source and medium effects. We can clearly identify cluster A and B231

with anthropogenic seismic sources. Inside cluster B we identified a small subcluster con-232

taining anthropogenic signals effected by the ground frost. We have reasons to assume that233

a more detailed cluster solution would reveal a similar subcluster in A. We can not find234

a meaningful label for cluster C. The largest part of the data is located within cluster E:235

ambient seismic noise, which is not effected by ground frost. Cluster D seems to be the236

only cluster related to the freezing of the surface without particular transient signals from237

anthropogenic activity. The hierarchical clustering approach, together with an interpreta-238

tion of a cluster solution at a high distance threshold, allowed us to give a detailed analysis239

of the content of the seismic data. In particular, the cumulative detection curve identifies240

cluster D as of interest in our study because it relates purely to ground frost. Hence, we do241

not need to extract a more detailed cluster solution. In the following lines, we analyze how242

the freezing and thawing process is encoded in the data.243

5 Disentagling the ground-frost from the urban imprint244

Hierarchical clustering built the dendrogram within the feature space extracted by an245

ICA from the deep scattering spectrogram (Figure 2). The features likely reveal insights246

about the signature of cluster D and, thus, about the ground frost signature. Steinmann247

et al. (2022) already showed that single features retrieved from the scattering coefficients248

with an ICA could reveal interesting patterns in the seismogram. Therefore, we can likely249

identify a single feature in our dataset that encodes the seismic signature of the ground250

frost. We calculate the absolute centroid of cluster D and observe its coordinates in the251

16-dimensional feature space (Figure 4a). We note that if all features are equally important252

in defining a cluster, they should contribute equally to the centroid coordinates. If a few253

or single features are more important than others, the centroid should have a stronger254

contribution from them. We observe that the centroid of cluster D shows a substantial255

value for feature 15 (Figure 4a) regarding the other features. This suggests that cluster D256

is active when large absolute values on feature 15 occur.257

We can also observe how feature 15 evolves in time (Figure 4b). Feature 15 shows a258

significant amplitude decrease at the end of February and the beginning of March. During259

that time, it seems to mimic the low-frequent trend of the air temperature with a slight offset260

in time. The beginning of February and mid-March show smaller amplitude decreases after a261

few consecutive nights of freezing air temperature. Unfortunately, we have no ground truth262

about the occurrence of ground frost. However, we know that the occurrence of ground frost263

depends on the amount of time and the amplitude of freezing air temperature. Moreover,264

thawing air temperatures during the day counteract the nightly built-up of ground frost. A265

more extended and continuous period of freezing air temperature (like the one at the end266

of February) results in a thicker layer of ground frost. A colder air temperature can also267

decrease the temperature inside the layer of ground frost and, thus, increase its stiffness268

and shear wave velocity (Miao et al., 2019). These facts, combined with the observation of269

feature 15 and the air temperature, suggest that this feature tracks the freezing and thawing270

process of the surface at a high-resolution timescale of 10min. We emphasize that feature271

15 is an entirely data-driven product from a three-component seismogram with minimal272

–7–
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Figure 3. Results of seismic data clustering from the three-component broadband

station WM01 between 1 January to 1 April 2018. (a) dendrogram with a truncation

distance set to obtain 16 clusters. (b–f) normalized cumulative detection. (g–k) daily occurrence.

(l–p) weekly occurrence. (q–u) averaged first-order scattering coefficients.
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processing. In comparison, Steinmann et al. (2021) tracked the same freezing and thawing273

process with data from two seismic stations, heavier preprocessing, and a time resolution of274

2 days.275

Since ICA is a linear operator, we can use only feature 15 to reconstruct the scatter-276

ing coefficients out of the mixing matrix, defined as the pseudo-inverse of the unmixing277

matrix (Comon, 1994). This procedure acts as a filter process since we zero all features278

except feature 15. Due to the large size of first- and second-order scattering coefficients,279

Figure 4c–h show only the first-order original and reconstructed scattering coefficients for280

all three components. The original coefficients show clearly the urban imprint in the seismic281

data: fringes appear during daytime and pause at the weekends (Figure 4c, e and g). No282

clear pattern appears during ground frost building periods, such as at the end of February283

(Figure 4b). The reconstructed coefficients do not contain the fringes due to urban activity284

since these signals were probably encoded in one of the muted features (Figure 4d, f and285

h). The filtering effect reveals a slight amplitude decrease for the horizontal components286

at frequencies above 1Hz during the end of February, coinciding with the coldest period287

of the dataset. During that time, a faint amplitude decrease can also be observed at the288

vertical component. At times with consecutive cold nights such as at the beginning of289

February or mid-March, these decreases are also faintly visible. These observations confirm290

that the wavefield experiences an energy decrease during ground frost with a discrepancy291

between horizontal and vertical components. Indeed, the ratio of horizontal and vertical292

scattering coefficients show a clear broadband high-frequent decrease at the beginning and293

end of February for both original and reconstructed data (Figure 4i and j). It appears that294

the broadband decrease in the ratio becomes stronger with increasing time or amplitude295

of the freezing air temperature. The ratio of horizontal and vertical scattering coefficients296

resembles the classical Horizontal-to-Vertical-Spectral-Ratio (HVSR) based on the Fourier297

transform. Indeed, models based on the diffusive field assumption confirm an HVSR de-298

crease due to a thin layer of ground frost (see Text S3 and S4, and Figure S3 and S4) in the299

supplementary materials).300

6 Conclusion301

In this study, we made the first attempts towards inferring blindly medium changes302

from the wavefield recorded by a single station. For our case study, the medium continu-303

ously changes due to surface freezing and thawing, while anthropogenic activity creates a304

complex and non-stationary seismic wavefield. An AI-based approach, based on the deep305

scattering network, an ICA and hierarchical clustering, helped us explore the seismic data306

and search for possible patterns induced by the ground frost without assuming how the307

seismic data could be affected. One of the main outcomes of this study is that the AI-308

based approach blindly extracts a feature that isolates the seismic response to the medium309

change and mutes other non-stationary processes. This opens new possibilities to utilize sin-310

gle station data for monitoring purposes, especially in environments with many source and311

medium processes such as permafrost (e.g. Köhler & Weidle, 2019) or volcanoes. AI-based312

strategies could complement other passive seismic methods used for permafrost monitoring313

(e.g. James et al., 2019; Lindner et al., 2021). This could give new insight into the response314

of permafrost to climate change given the decade-long availability of single seismic stations315

near permafrost areas. Future research could also investigate if other types of medium316

changes (e.g., groundwater fluctuations) could be directly extracted from the seismograms317

in a data-driven fashion.318

Moreover, the revealed signature combined with the HVSR model indicates that su-319

perficial freezing might impact the modal energy distribution. To our knowledge, this effect320

has not yet been considered in permafrost studies using passive seismic methods. On the321

one hand, it could corrupt velocity variation measurements retrieved from surface waves in322

cross-correlograms. On the other hand, it would also be an opportunity since more modes323

increase the amount of information about the subsurface. Future research is needed to324
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Figure 4. The signature of freezing (a) coordinates of the centroid of cluster D in the

eight-dimensional feature space. (b) feature 15 as a smoothed time-series (black) compared to

the temperature time-series recorded above ground (red). The orignal feature without smoothing is

represented in grey. (c,e,g) Original first-order scattering coefficients for the east, north and vertical

component, respectively. (d,f,h) Reconstructed first-order scattering coefficients based solely on

feature 5 for the east, north and vertical component, respectively. (i) Ratio between horizontal

and vertical components based on the original first order scattering coefficients. (j) Ratio between

horizontal and vertical components based on the reconstructed first order scattering coefficients.
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understand better the interaction between different surface wave modes in the presence of325

frozen surface layers.326

7 Open Research327
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Holtzman, B. K., Paté, A., Paisley, J., Waldhauser, F., & Repetto, D. (2018). Machine356

learning reveals cyclic changes in seismic source spectra in geysers geothermal field.357

Science advances, 4 (5), eaao2929.358

James, S., Knox, H., Abbott, R., Panning, M., & Screaton, E. (2019). Insights into per-359

mafrost and seasonal active-layer dynamics from ambient seismic noise monitoring.360

Journal of Geophysical Research: Earth Surface, 124 (7), 1798–1816.361

Jenkins, W. F., Gerstoft, P., Bianco, M. J., & Bromirski, P. D. (2021). Unsupervised362

deep clustering of seismic data: Monitoring the ross ice shelf, antarctica. Journal of363

Geophysical Research: Solid Earth, e2021JB021716.364

Johnson, C. W., Ben-Zion, Y., Meng, H., & Vernon, F. (2020). Identifying different classes365

of seismic noise signals using unsupervised learning. Geophysical Research Letters,366

47 (15), e2020GL088353.367

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32 (3), 241–254.368
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Introduction

The seismic data is sampled with 200Hz. Because the data was retrieved manually

from the field, three data gaps of ca. 3 h occur in the dataset. Before applying the

hierarchical waveform clustering, the data was demeaned and high-pass filtered with a

corner frequency of 0.1Hz. The data gaps were filled with zeroes. However, the scattering

coefficients of the data gaps were removed before the feature selection. The supporting

information provides details about:

1. the design of the deep scattering network (Text S1)

2. the number of releveant features retrieved with an ICA (Text S2 and Figure S1)

3. the cumulative detections for subcluster B.1, B.2 and the combination of cluster D

and E (Figure S2)

4. the HVSR models with and without a thin layer of ground frost (Text S3 and S4,

Table S1, and Figure S3 and S4)
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Text S1: Design of deep scattering network

We design a deep scattering network with 36 complex-valued Gabor wavelets in the first

layer and 9 Gabor wavelets in the second layer. A modulus operation retrieves real-valued

scalograms. The first layer creates 36 scattering coefficients and the second layer creates

324 (as from 36×9) scattering coefficients per sliding window and component. The center

frequencies of the first-layer wavelets range from 0.2 to 89Hz and the center frequencies

of the second layer wavelets range from 0.2 to 50Hz. The number of wavelets was chosen

specifically to cover a wide range of frequencies above the oceanic microseism. The upper

frequency of the first layer is bounded by the sampling frequency of 200Hz. The center

frequencies are spaced logarithmically with four wavelets per octave in the first layer and

one wavelet per octave in the second layer. The sliding window is set to 10min to mimic

the time resolution of the temperature data. In contrast to Steinmann, Seydoux, Beaucé,

and Campillo (2022), we apply average pooling instead of maximum pooling to the first

and second layer scalograms since we are not searching for transient signals but changes

in the ambient seismic wavefield.

Text S2: Extracting the most relevant features

After calculating the deep scattering spectrogram, we apply an ICA to retrieve the most

relevant features. The ICA model can be written as:

x = sA, (1)

where x ∈ RN×F are the N observations of dimension F , A ∈ RF×C is the mixing matrix,

and s ∈ RC×N are the unmixed sources. Equation 1 considers the observations x as a

linear combination of the independent sources s, with the mixing weights gathered in A.

In our case, x are the whitened scattering coefficients. Setting the number of features is
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an exploratory task that can be seen as a trade-off between keeping the dimensionality low

for clustering and retaining the most crucial data information. We use the reconstruction

loss ϵ(C) between the original data x and the reconstructed data x̂(C), based on the C

independent components, as a guideline for choosing an optimal number for C. The

reconstruction loss is defined as following:

ϵ(C) =

∑N
i=0 |xi − x̂

(C)
i |

N
. (2)

Figure S1 depicts the reconstruction loss ϵ(C) for an increasing number of independent

components C. The reconstruction loss decreases rapidly with the first 14 components.

With more than 14 components, the rate of error decrease becomes smaller and almost

linear. However, a small jump occurs from 14 to 16 components. Therefore, 16 inde-

pendent components, marking a kink in the reconstruction error curve, seem like a good

choice to us and are the basis for building the linkage matrix for the dendrogram.

Text S3: Inverting for a 1D velocity model

To forward model the effect of ground frost on the HVSR, we need a 1D velocity model

with the shear wave velocity vs, the compressional wave velocity vp, the thickness of the

layer h and the density ρ. Steinmann, Hadziioannou, and Larose (2021) provides a 1D

velocity model to a depth of less than 30m based on a shear wave refraction profile.

The forward modelled HVSR based on this velocity model together with the observed

HVSR at the three stations at 15 April 2018 are shown in Figure S3. We chose this

day for an HVSR measurement for two reasons. Firstly, the time of the year and the

temperature data suggest that we do not have any ground frost (Figure 1a). Secondly, it

is a Sunday and, thus, we have better conditions for an equipartitionned wavefield without
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anthropogenic activity (Figure 3). It is clear that the modelled HVSR does not fit the

observations. Since the two resonance peaks below 1Hz do not appear in the modelled

HVSR, it appears that the velocity model is not deep enough. To update the velocity

model, we invert the HVSR measurements based on the diffusive field assumption (Piña-

Flores et al., 2016). We invert for a three-layer model with the observed HVSR between 0.1

and 1Hz to fit the two resonance peaks. The higher frequency content seems unreliable,

since the variations between the stations are too large given the fact that they are only

100m apart (see map in Figure 1b). These variations at higher frequencies can be the

result of different installation types. WM01 and WM02 are placed on a concrete slab

while WM03 is inside a shed. We constrain the range of possible shear wave velocity of

the first layer with the values given in Steinmann et al. (2021). The updated and deeper

velocity model fits better the observations and, thus, is utilized for modelling the effect

of the ground frost. The values of the updated model are presented in Table S1.

Text S4: Modelling the effect of a frozen surface on the HVSR

We model the effect of ground frost on the HVSR based on a 1D velocity model and

diffuse wavefield assumption (Garćıa-Jerez et al., 2016). Firstly, we derive a 1D velocity

model from the inversion of H/V measurements (Piña-Flores et al., 2016) and constraints

from a shear wave refraction profile (Steinmann et al., 2021). To evaluate the effect of

ground frost, we insert a centimeter thick high-velocity layer at the surface of the 1D

model. Different thicknesses and shear wave velocities account for different scenarios of

the ground frost. The shear wave velocity of the ground frost depends strongly on the

temperature and composition of the soil. A silt-clay mixture with a high water content

as in our case can reach the eight-fold of its shear wave velocity with temperatures below
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−8 °C (Miao et al., 2019). Through the shear wave velocity and a constant Poisson’s

ratio of 0.33 (Zimmerman & King, 1986), we define the compressional wave velocity. We

neglect changes in the density and set it to 2000 kgm−3 for all layers.

Figure S4 shows the HVSR for different scenarios of ground frost and different number

of considered surface waves modes. All models confirm the qualitative observation that

the HVSR experiences a broadband decrease above 1Hz due to a layer of ground frost

with a certain thickness and increased shear wave velocity. Apart from the broadband

decrease at higher frequencies, the two resonance peaks below 1Hz do not seem to be ef-

fected. With increasing thickness and shear wave velocity the decrease is more pronounced

and the maximum decrease moves to lower frequencies. Note that both parameters show

a similar effect on the HVSR. Thus, it is difficult to disentangle the two effects in ac-

tual observations. We observe this scenario at the end of February and beginning of

March marking the coldest and also the longest period of freezing air temperature (Figure

1b). During that time, the horizontal component and the HVSR experience the strongest

decrease. However, we cannot say if an increasing thickness or decreasing temperature

dominates the process. The number of surface modes considered in the wavefield has

also an effect on the pattern of decrease. It has already been shown that large stiffness

contrasts or reversal of velocity layers – that is high-velocity layer over low-velocity layer

– can cause modal energy pertubation and dominant higher modes (O’Neill & Matsuoka,

2005). Freezing the soil from the surface downwards causes a reversal of velocity layers

and might lead to modal energy pertubation. The broadband high-frequent HVSR de-

crease and its dependence on the number of modes suggest that this effect occurs. This

would be important to consider when passive image interferometry is used for monitoring
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permafrosts. Dominant higher modes could appear on cross-correlograms during times of

refreezing in autumn and corrupt measurements of velocity variations. A proper wavefield

analysis would be needed to understand this process better, however, it is out of the scope

of this work and, thus, subject to future research.

Overall, the model brings interesting insights to our observations retrieved from the seis-

mic data. The observations and model agree qualitatively on a broadband high-frequent

HVSR decrease due to grounfrost. The decrease is more pronounced for deeper and colder

ground frost. Moreover, the model shows that it is difficult to entangle the interaction be-

tween the thickness and temperature of the ground frost and surface wave modes present

in the wavefield. It is also clear that the HVSR ratio of the seismic data contains many

different source and medium effects (Figure 4i) and, thus, the diffusive wavefield assump-

tion is not valid for the data. This highlights the strength of our data-driven approach,

which isolated a pattern in the continuous seismograms related to the freezing and thawing

process despite all the other source and medium effects affecting the data.
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Figure S1. Reconstruction error for ICA-models with different number of independent

components. The red dot marks the model we choose for further analysis. The dashed

line fits a linear function based on the last seven points.
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Figure S2. Normalized cumulative detections for other cluster solutions.

Normalized cumulative detections for subcluster B.1 and B.2 and the cluster-combination

of D and E. Note that each tick at the x-axis marks a Monday.

h [m] vs [m/s] vp [m/s] ρ [g/cm3]

172.82 394.54 1255.93 2000

611.60 520.96 2075.66 2000

∞ 947.09 4250.25 2000

Table S1. 1D model of the subsurface at the measuring site based on the inversion of

the HVSR with the diffusive field assumption
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Figure S3. The observed HVSR at all three stations, the modelled HVSR based on the

velocity model given in Steinmann et al. (2021) as the dashed red line and the modelled

HVSR based on the inversion of the HVSR as the red solid line.
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Figure S4. (a,c,e) The HVSR in the presence of a 3 cm thick frozen surface layer

with varying shear wave velocities and varying number of Rayleigh and Love wave modes.

The shear wave velocity of the frozen layer ranges between two-fold and eight-fold of the

shear wave velocity of the first layer in the 1D model. The model without a frozen layer

is depicted as a black dashed line. (b,d,f) The HVSR in the presence of a frozen surface

layer with a thickness ranging from 1 to 4 cm and varying number of Rayleigh and Love

wave modes. The shear wave velocity is fixed to the three-fold shear wave velocity of the

first layer. The model without a frozen layer is depicted as a black dashed line.
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