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Abstract

Observations and cloud-resolving simulations suggest that a convective updraft structure drawing mass from a deep lower-

tropospheric layer occurs over a wide range of conditions. This occurs for both mesoscale convective systems (MCSs) and

less-organized convection, raising the question: Is there a simple, universal characteristic governing the deep inflow? Here

we argue that nonlocal dynamics of the response to buoyancy are key. For precipitating deep-convective features including

horizontal scales comparable to a substantial fraction of the troposphere depth, the response to buoyancy tends to yield deep

inflow into the updraft mass flux. Precipitation features in this range of scales are found to dominate contributions to observed

convective precipitation for both MCS and less-organized convection. The importance of such nonlocal dynamics implies

thinking beyond parcel models with small-scale turbulence for representation of convection in climate models. Solutions here

lend support to investment in parameterizations at a complexity between conventional and superparameterization.
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Key Points:4

• Observations and simulations point to a common structure of convective mass flux5

drawing air from a deep layer in the lower troposphere6

• Most deep-convective precipitation comes from features with horizontal size com-7

parable to or exceeding the lower tropospheric depth8

• For these, the nonlocal response of convective updrafts to buoyancy provides a sim-9

ple explanation for the observed deep-inflow structure10
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Abstract11

Observations and cloud-resolving simulations suggest that a convective updraft struc-12

ture drawing mass from a deep lower-tropospheric layer occurs over a wide range of con-13

ditions. This occurs for both mesoscale convective systems (MCSs) and less-organized14

convection, raising the question: Is there a simple, universal characteristic governing the15

deep inflow? Here we argue that nonlocal dynamics of the response to buoyancy are key.16

For precipitating deep-convective features including horizontal scales comparable to a17

substantial fraction of the troposphere depth, the response to buoyancy tends to yield18

deep inflow into the updraft mass flux. Precipitation features in this range of scales are19

found to dominate contributions to observed convective precipitation for both MCS and20

less-organized convection. The importance of such nonlocal dynamics implies thinking21

beyond parcel models with small-scale turbulence for representation of convection in cli-22

mate models. Solutions here lend support to investment in parameterizations at a com-23

plexity between conventional and superparameterization.24

Plain Language Summary25

Deep convection, whether in isolated thunderstorms or organized mesoscale con-26

vective systems, is a leading effect in climate dynamics and climate change, yet it remains27

subject to large uncertainties in climate models. The way that air enters convective clouds28

plays a substantial role in this uncertainty, and recently the importance of inflow through29

a deep layer in the lower troposphere has been noted, although why this should apply30

for both isolated and organized convection has been unclear. Here we show that an as-31

pect of dynamics omitted from conventional climate model representations provides a32

simple explanation for this for large clouds that account for most convective precipita-33

tion. This suggests physical effects requiring substantial revisions in climate models.34

1 Introduction35

Accurate simulation and forecasting of weather and climate depends on adequate36

representations of deep convection in general circulation models (GCMs). This remains37

a challenging subject (Randall et al., 2003; Kuo et al., 2020; Leung et al., 2022) even with38

the advances in cloud-resolving models (CRMs) and machine learning (Wing et al., 2020;39

Bretherton et al., 2021). Challenges arise especially in regards to (i) organized convec-40

tion, such as mesoscale convective systems (MCSs) (Moncrieff et al., 2012; Yano & Mon-41

crieff, 2016) that account for a significant fraction of precipitation (Nesbitt et al., 2006);42

and (ii) the entrainment process of environmental air entering in-cloud updrafts (Plant,43

2010; Sherwood et al., 2014). The traditional view of entrainment assumes a plume/parcel44

rising from near the surface that is modified by its immediate surroundings via localized,45

small-scale turbulent mixing (Arakawa & Schubert, 1974). This motivated efforts to quan-46

tify a postulated local entrainment rate (Siebesma et al., 2003; Del Genio & Wu, 2010;47

Masunaga & Luo, 2016)—primarily by indirect means—from which mass flux can be de-48

rived for plume models in parameterization schemes (de Rooy & Siebesma, 2010; Mor-49

rison, 2017). At odds with the above conceptual model, a range of turbulent scales con-50

tributes to the mixing within actual convective entities, and features of larger scales are51

instrumental for nonlocal transport by convection (Siebesma et al., 2007).52

Field measurements of convective updrafts during aircraft campaigns (LeMone &53

Zipser, 1980; Lucas et al., 1994) and by radar wind profilers (Schiro et al., 2018; Savazzi54

et al., 2021), in accordance with CRM simulations (Robe & Emanuel, 1996; Li et al., 2008),55

identify a common mass flux structure that gradually increases throughout the lower tro-56

posphere. Contributions to this can occur through coherent inflow (Moncrieff, 1992)—57

termed dynamic entrainment (Houghton & Cramer, 1951; Ferrier & Houze, 1989)—in58

contrast with the conventional paradigm of small-scale mixing. Deep-inflow profiles, with59

environmental air entering the updraft through a deep lower-tropospheric layer, can also60
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be inferred from the dependence of precipitation on the temperature-moisture environ-61

ment as a function of lower-tropospheric layer (Ahmed & Neelin, 2018). The deep-inflow62

profile is in general agnostic as to whether inflow occurs by spatially coherent flow, small-63

scale turbulence, or both.64

Given the importance of mass flux in convective parameterizations, the occurrence65

of simple vertical structures demands explanation, particularly since any potential for66

directly constraining such structures could aid in bypassing the elusive task of determin-67

ing vertical dependence of entrainment rate (Kuang & Bretherton, 2006; Romps, 2010).68

The apparent widespread occurrence of deep-inflow structures, together with the sur-69

prising observation that such structures occur similarly for both MCS and less-organized70

deep convection (Schiro et al., 2018), raises the question of whether there is some uni-71

versal characteristic governing the dynamics of deep inflow.72

Here we adapt elements from the anelastic modeling literature to show how they73

may provide an explanation for this specific physical phenomenon. As prelude, section74

2 reviews evidence for deep inflow, previews the potential role of nonlocal solutions, and75

provides an observational analysis that indicates the range of horizontal scales in con-76

vective precipitation features. We then recap anelastic equations for the response to buoy-77

ancy, cast in a form suitable for vertical acceleration (section 3), and show the implica-78

tions for vertically nonlocal response for a given wavelength. In section 4, we examine79

response to horizontally localized buoyancy features while demonstrating robustness to80

smaller scale variations. Finally we discuss the conditions under which the nonlocal so-81

lution provides a simple explanation for deep inflow and implications for convective pa-82

rameterizations based on parcel models that neglect these effects.83

2 Convective precipitation feature scales and inflow84

Fig. 1 provides an overview of key ingredients of the deep-inflow problem and of85

the proposed solution. First, Fig. 1a summarizes the observed deep-convective updrafts86

in the lower troposphere. The gradual increase of mass flux with height implies horizon-87

tal convergence of environmental air into the updraft through much of the lower tropo-88

sphere. Such mass flux profiles are characteristic of both MCS and less-organized con-89

vection.90

Second, Fig. 1b provides a thumbnail of key results from the nonlocal response to91

buoyancy elaborated in subsequent sections. For localized net-positive buoyancy struc-92

tures of horizontal diameter D and vertical extent 4 ≤ z ≤ 8 km, the nonlocal response93

of mass flux ∂t(ρ0w̄) averaged within the diameter yields a deep-inflow profile through94

the lower troposphere. This tends to converge to a roughly linear increase for a broad95

range of reasonable conditions when D is comparable to the depth of the tropospheric96

layer under consideration.97

Third, in Fig. 1c we quantify the claim that much of the deep-convective precip-98

itation comes from features that include such horizontal scales (Appendix A). Contigu-99

ous features of convective precipitation are identified from satellite precipitation radar100

(PR) retrievals. The contribution to total convective precipitation is shown as a func-101

tion of feature size estimated two different ways: by cord length of the feature and by102

square root of the area of the feature. The contribution to convective precipitation is fur-103

ther separated by features that meet common criteria for MCS, and less-organized fea-104

tures that do not. Note that stratiform precipitation is not included, since we wish to105

focus on the scales of features of the deep-convective precipitation. For both MCS and106

less-organized convection, the precipitation contribution peaks around 15 km, and > 70%107

of the total convective rain is from events of this scale or greater for both feature size108

measures. That is, convective rain is mostly from deep-convective features whose hor-109

izontal extent is comparable to the depth of the troposphere. MCS features tend to have110
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Figure 1. (a) Mean deep-convective updraft mass flux profiles in the lower troposphere for

mesoscale, less-organized, and all precipitating convective events estimated from radar wind pro-

filer during the GOAmazon campaign adapted from Schiro et al. (2018). (b) Theoretical response

of convective mass flux to buoyancy tartares of vertical extent 4 ≤ z ≤ 8 km and varying hori-

zontal diameter D. The tartares consist of randomly-generated small cylindrical bubbles with a

7:3 warm-to-cold bubble ratio (see Fig. 4a). The response profiles are the mean within the diam-

eter D and averaged over an ensemble of 10 tartare realizations, then normalized using values at

z = 3 km. (c) Convective precipitation contribution (curves) and precipitation rate (markers),

for MCS and non-MCS features, conditioned on convective feature size measured by chord length

(blue) and square root of area (red). The areas under the MCS and non-MCS precipitation con-

tribution curves sum to unity. Feature size is solely based on contiguous convective precipitation

pixels.

greater contribution to convective rain at large sizes than do less-organized features. While111

the conditionally averaged convective precipitation rate for less-organized features (squares)112

levels off as size exceeds ∼25 km, the MCS precipitation rate (circles) continues to in-113

crease asymptotically as roughly the 1/4-th power of size.114

The convective precipitation region is not necessarily identical to that of the buoy-115

ancy, but provides a rough measure of the existence of strong updrafts and downdrafts116

indicative of buoyancy anomalies. The spatiotemporal coverage of the satellite PR pro-117

vides regions and periods extensive enough to identify typical characteristics of convec-118

tion. We also note that the PR resolution ∼5 km coarse-grains smaller scale variations,119

but suffices to support that localized features containing substantial convective rain oc-120

cur over a broad range of scales. The nonlocal effects discussed below also help justify121

such coarse-graining.122

We thus have 1) observational evidence that much of the convective rain in both123

MCS and less-organized systems comes from features with characteristic sizes of the con-124

vection exceeding ∼10 km; and 2) a theoretical basis for how the nonlocal nature of the125

response to buoyancy tends to yield deep inflow on such scales.126

3 Nonlocal response to buoyancy127

We follow the anelastic framework (Ogura & Phillips, 1962) to derive the diagnos-128

tic equation for the response to buoyancy. The anelastic approximation assumes a hor-129

izontally homogeneous, time-invariant atmospheric density ρ0(z), allowing the govern-130

ing system to filter acoustic waves and retain nonhydrostatic solutions relevant for deep131

convection with O(1) aspect ratio (Markowski & Richardson, 2011). Thus the anelas-132
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Figure 2. Cross section of vertical mass flux response (color shading; kg/m2s2) to idealized

buoyancy forcing with constant B = 0.01 m/s2 in cylindrical bubbles of 8-km diameter (magenta

contours). The case on the right also includes a negatively buoyant region immediately above

(B = −0.06 m/s2) to illustrate the tendency of the “convective cold top” to cancel vertical mo-

tion above the main updraft. The white contours indicate zero response. The colorbar range is

chosen to highlight details below and above the bubbles. See section S3 for numerical details.

tic approximation has been widely adopted by CRMs (Bryan & Fritsch, 2002; Khairout-133

dinov & Randall, 2003; Jung & Arakawa, 2008).134

3.1 Anelastic response to buoyancy field135

With vorticity and anelastic continuity equations, one can derive (see SI section
S1 )

∇2
ha+

∂

∂z

[
1

ρ0

∂

∂z
(ρ0a)

]
= ∇2

hB +D, (1)

where a ≡ ∂tw is the vertical acceleration, B the buoyancy, and D a quadratic func-136

tion of spatial derivatives of velocity u (i.e., associated with flow kinematics) that van-137

ishes when u ≡ 0. The influences of buoyancy and kinematics on a can thus be sepa-138

rately diagnosed. Here we focus on the response to buoyancy, which allows a direct con-139

trast to conventional parameterizations.140

In Eq. (1), the operator acting on a is elliptic, one thus expects a global response141

even for localized forcing (Houze, 1993). The response is accompanied by adjustment to142

horizontal convergence driven by locally hydrostatic pressure gradients (Jeevanjee & Romps,143

2016) to ensure mass conservation. Note that buoyancy drives acceleration via ∇2
hB—144

flow evolves following horizontal variation of buoyancy.145

To give a concrete sense of the nonlocal dynamics, Fig. 2 demonstrates two exam-146

ples of the mass flux response ρ0a (color shading) to idealized cylindrical buoyancy bub-147

bles of 8-km diameter (magenta contours). Here a is from solving Eq. (1) (with D ≡ 0)148
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for the two cases separately. The localized buoyancy generates strong upward acceler-149

ation within its diameter, accompanied by weak, broad downward acceleration in the sur-150

roundings. The extensive response reaches well below and above the bubble, driving a151

layer of flow into the convective region in the lower troposphere, as a consequence of grad-152

ually increasing ρ0a with height, and outflow aloft from decreasing ρ0a. Other things equal,153

deeper bubbles generally result in greater response.154

The nonlocal responses in Fig. 2 result from the elliptic operator in Eq. (1), and155

are well-known in principle (Cotton et al., 2010; Trapp, 2013). If the vertical velocity156

extends above the region where condensational heating can balance work against strat-157

ification (roughly the parcel-theory level of neutral buoyancy), a negative buoyancy ten-158

dency will occur. This results in the convective cold-top phenomenon (Holloway & Neelin,159

2007), with a region of negative buoyancy tending to cancel the response above, as il-160

lustrated on the right in Fig. 2. Here we focus on the properties of the nonlocal solution161

within and below the positively buoyant region. If this part of the updraft is saturated162

(above an unstratified boundary layer), latent heating tends to cancel negative buoyancy163

tendencies. Building on previous work, we can then ask under what conditions the non-164

local solutions might provide an explanation for the deep inflow, and what physics this165

suggests might be missing from parcel models.166

3.2 Analytic vertical structures167

For a more detailed characterization of the nonlocal dynamics, we apply a Fourier
transform to Eq. (1)

−4π2

L2
â+

∂

∂z

[
1

ρ0

∂

∂z
(ρ0â)

]
= −4π2

L2
B̂, (2)

where a ∼ â(z; k, `)e2πi(kx+`y), B ∼ B̂(z; k, `)e2πi(kx+`y), and L ≡ (k2 + `2)−1/2 is the168

horizontal wavelength.169

Consider a simple buoyancy structure with B̂(z) ≡ constant within a layer and
vanishing elsewhere—general profiles can be approximated by superposition. We can an-
alytically solve Eq. (2) (section S2 ) for the homogeneous solutions

â±(z; k, `) ∼ e±2πz/L, (3)

and for the particular solution within the buoyant layer

âp(z; k, `) ≈ B̂(z; k, `). (4)

The monochromatic (single-wavelength) solutions can then be constructed as a piece-170

wise linear combination of â± and âp by matching across layer boundaries, yielding so-171

lutions similar to Jeevanjee (2017). Each horizontal wavelength gives rise to a vertical172

e-folding scale Hs ≡ L/2π—longer wavelength results in a greater range of nonlocal in-173

fluence.174

Fig. 3a shows examples of â (lines) given a buoyant layer of depth HB = 1 km175

and B̂ = 0.01 m/s2 (shadings) at various heights with L = 5 km. Above the buoy-176

ancy, the vanishing condition requires that â ∼ e−2πz/L. Below the buoyancy for lay-177

ers away from the surface (compared with Hs), â ∼ e+2πz/L, and the overall profiles178

appear to be symmetric in z with maximum occurring in the middle of the layers. But179

for a layer at low altitude, the surface boundary condition results in â ≈ c1e
+2πz/L −180

c2e
−2πz/L—adding âp if the layer reaches the surface—causing an approximately linear181

dependence on height below the maximum as well as an overall weaker response mag-182

nitude. This surface control is generally important for sufficiently long wavelength (see183

also Fig. 3b, blue line).184

To further illustrate how the layer depth and horizontal wavelength affect the so-185

lutions, Fig. 3b includes additional examples for a deeper layer of buoyancy (HB = 6186

–6–
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Figure 3. (a) Monochromatic solutions of vertical velocity response (lines) to individual buoy-

ant layers located at different heights (shadings) with horizontal wavelength L = 5 km. (b) As in

(a), for a deeper layer (red) and varying L. (c) As in (b), with additional thin layers of negative

buoyancy, for vertical mass flux response. See section S2 for numerical details.

km; red) and varying L. Short wavelength (L/HB � 1) leads to limited nonlocal in-187

fluence, mostly confined in the vicinity of the layer boundaries (brown line). Conversely,188

long wavelength and/or relatively shallow layer (L/HB � 1) would yield solutions ex-189

tending well outside the buoyant layer with reduced magnitude (blue line; also contrast190

with Fig. 3a). The aspect-ratio dependence is consistent with prior studies (Jeevanjee191

& Romps, 2016; Morrison, 2016), but for deep-inflow applications, L relative to a typ-192

ical distance from the surface is important. Note also that the inflow can also continue193

for a characteristic vertical scale ∼ Hs within the buoyant layer. The mass flux responses194

corresponding to the accelerations in Figs. 3a,b are similar but bottom-heavier since ρ0195

decreases with height.196

For a more sophisticated case, Fig. 3c shows the mass flux responses ρ0â (lines) to197

an idealized deep-convective structure with the addition of (i) a near-surface convective198

inhibition (CIN) layer; (ii) a thin negatively-buoyant layer representing, e.g., effects of199

melting near freezing level; and (iii) a layer resembling the convective cold-top. For short200

wavelength, the response tracks the variation of buoyancy. But for sufficient horizontal201

scales, the solution due to net-positive buoyancy has no difficulty tunneling through ver-202

tically restricted layers of negative buoyancy or near-surface CIN layer. The cold-top used203

here is sufficient to limit the vertical extent of the updraft for the shortest wavelength,204

but would need to be more intense for the longer wavelengths.205

This last observation—based on a monochromatic argument but also supported by206

the solutions in section 4—has practical implications. First, this helps understand why207

a nighttime CIN layer may not prevent pre-existing storms from moving into a region,208

e.g., over the Mississippi basin or the Amazon (Burleyson et al., 2016): the layer depth209

plus surface interactions limit the effect of CIN. This may also be relevant to elevated210

MCSs (Marsham et al., 2011). Second, it addresses a common issue in parcel computa-211

tions of convective available potential energy (CAPE) that have to contend with small212

layers in which parcel buoyancy goes negative (e.g., similar to the buoyancy in Fig. 3c)—213

–7–
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this can give rise to an underestimate of the energy actually available to convective storms;214

the results here indicate why updrafts in large storms easily penetrate such layers.215

To briefly summarize the monochromatic dependence on scales: 1) the dependence216

is non-monotonic; the horizontal wavelength L determines the range of nonlocal verti-217

cal influence; small L yields the familiar limit of vertically localized response, while buoy-218

ancy layers that are thin compared to L/2π yield response of limited magnitude. 2) L219

comparable to or exceeding a substantial fraction of the troposphere depth or of the height220

of the buoyant layer above the surface yields deep-inflow structure in the lower tropo-221

sphere.222

4 Buoyancy Tartare—robustness to fine structures223

Two important modifications occur as one moves from considering a single wave-224

length to more realistic cases. First, the buoyancy associated with convective updrafts225

tends to be localized. Features of a finite horizontal size D and net-positive buoyancy226

consist of Fourier component contributions from a broad range of wavelength, primar-227

ily L & D (section S4 ). This includes nonlocal effects beyond what one would antici-228

pate from the monochromatic considerations above, and is in contrast with prior stud-229

ies that emphasized the contribution from L ≈ D (Jeevanjee, 2017). Second, robust-230

ness to complex buoyancy structures associated with imperfectly mixed turbulent flow231

must be assessed.232

To address this, we build net-positive buoyancy patches from an ensemble of smaller233

elements, using the shorthand “tartare” to describe these constructions of larger scale234

D from “minced” ingredients of size d� D. Figs. 4a,c display two such tartares of di-235

ameter D ≈ 10 km consisting of warm (red) and cold (blue) bubbles of d = 1 km and236

depth 0.5 km. In the first set of examples (as in Fig. 4a) the tartares are constructed to237

illustrate the nonlocal influence below the buoyancy by placing them at a distance from238

the surface. The mean mass flux responses to 10 randomly generated tartares for each239

D are demonstrated in Fig. 4b (depth indicated by gray shading). Through interference,240

the integral of individual d-bubbles leads to primary Fourier contributions from L & D241

for each D-tartare (Fig. S1 ). Thus for larger D or further below the buoyancy forcing,242

the responses converge towards linear dependence on height; see also Fig. 1b. For smaller243

D (e.g., D ≈ 5 km) and closer to the forcing, the vertically localized behaviors—more244

rapid increase with height near the tartare base—from the smaller-scale 1 . L . 5245

km Fourier components can be distinguished from the nonlocal, roughly-linear solutions246

at lower height (z < 2.5 km) that are dominated by contributions from L & 5 km.247

Figs. 4c,d offer additional examples for tilted tartares—to mimic storms under windshear—248

with a greater depth and lower base. The tilt does not greatly alter the nonlocal behav-249

ior for D exceeding a substantial fraction of the tropospheric depth. Since the tartare250

base is at z = 2 km, the responses appear roughly linear even for D ≈ 5 km. In a more251

comprehensive setup where the evolution of buoyancy is included, the tilt impacts the252

location of rain, hence cooling by evaporation of raindrops relative to latent heating. Here,253

the point is simply that tilted convective systems are subject to the same nonlocal dy-254

namics.255

Compared with idealized bubbles of the same dimensions and constant buoyancy256

(not shown), the tartare responses are weaker by a small fraction but otherwise exhibit257

similar profiles. This is consistent with the nonlocal dynamics being robust to small-scale258

variations and depending primarily on large-scale integral measures for the features of259

interest. The fine structures within the buoyant region give rise to localized intense ac-260

celerations. The effects of this on the horizontal average in Figs. 4b,d, may be seen in261

variations among instances of the tartare. Below the buoyant region, however, the non-262

local effects create relatively smooth structure even for individual instances. Furthermore,263
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Figure 4. (a) A realization of a net-positive buoyancy tartare—an aggregate of stochastically-

generated smaller positive (red) and negative (blue) buoyancy elements—of horizontal diameter

D ≈ 10 km and vertical extent 4 ≤ z ≤ 8 km. Buoyancy value within individual element is

approximately constant, and of equal strength for warm and cold elements. The ratio of numbers

of warm to cold elements is set to 7:3. A ∼12 km region of a 64-km domain is shown. (b) The-

oretical response of convective mass flux to an ensemble of 10 tartare realizations as in (a), for

varying D. The average buoyancy over each tartare is rescaled to +0.01 m/s2. Each curve repre-

sents the mean profile within the tartare diameter. (c) As in (a), with vertical extent 2 ≤ z ≤ 10

km and tilt ≈ 27◦ (∆z/∆x ≡ 2). (d) As in (b), but for vertically tilted tartares as in (c). See

section S3 for numerical details.
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this horizontal-average mass flux is equivalent to the horizontal convergence of air en-264

tering the feature, bringing in unmodified air from the far field and thus tending to dom-265

inate the effect of the environment on the feature.266

5 Discussion267

Aspects of nonhydrostatic nonlocal solutions have been studied in recent years with268

different focuses. For instance, the rate of entrainment of individual updrafts as a func-269

tion of updraft size has been examined for dry plumes (Lecoanet & Jeevanjee, 2019). Re-270

lationships of entrainment and plume scale have been incorporated into recent convec-271

tive parameterizations for preliminary testing (Peters et al., 2021). Such approaches are272

similar to modifying the idealized monochromatic response as in Fig. 3 as building blocks273

for constraining mass flux profiles. Although results here are aimed at explaining a fea-274

ture of observations, they have implications for such parameterization efforts. In par-275

ticular, they underline that the leading-order flow response to a buoyant region of a fi-276

nite size includes contributions from a range of wavelengths. This is key to the robust-277

ness of nonlocal dynamics at the larger scales involved in convection—those less amenable278

to treatment by moment closures or traditional turbulent assumptions—especially when279

one has in mind the formulation for organized ensembles of smaller structures (Moncrieff280

et al., 2017). Superparameterizations include representations of all these effects by par-281

tially resolving them with CRMs embedded into GCM grid-boxes (Chern et al., 2016;282

Jansson et al., 2019; Jones et al., 2019). The nonlocal effects whose importance is em-283

phasized here are thus likely captured, even if small-scale turbulence is not resolved—284

but superparameterization remains computationally expensive. Approaches such as Morrison285

(2017) and Lecoanet and Jeevanjee (2019) may be promising if generalized to include286

the nonlocal effects underlined here both vertically and horizontally. Overall, leverag-287

ing anelastic solutions such as those here can help move parameterizations away from288

the idealization of entrainment as determined purely locally by a single parameter.289

In light of these results, what can be considered universal regarding the convective290

mass flux profile? Not so much a specific profile shape, but the inherent vertically and291

horizontally nonlocal effects tending to yield a deep contribution to the mass flux. The292

nonlocal dynamics is effective at integrating over heterogeneous buoyancy (as in the tartare293

solutions), and can generate deep inflow robustly under a wide range of conditions. Vari-294

ations in the distribution of buoyancy can create departures from this. In particular, a295

layer of negative buoyancy can yield reductions in the vertical increase of mass flux, or296

even a low-level layer of negative vertical velocity at small scales. Yet because the non-297

local dynamics operates persistently, deep-inflow profiles tend to appear in averages of298

mass flux over many convective instances.299

The observationally motivated hypothesis that there is a common explanation for300

the deep inflow into heavily precipitating unorganized convection and mesoscale-organized301

convection indeed has a simple explanation: the nonlocal dynamics entailing interaction302

between the buoyant layer and the surface. The robustness of this effect, especially at303

scales relevant for both large cumulonimbus and MCSs, supports the potential for pa-304

rameterizing aspects of these systems. Although it implies the need to include nonlocal,305

anelastic dynamics in convective parameterizations, the overall effect is to simplify key306

aspects of the interaction with the thermodynamic environment for large convective en-307

tities.308

Appendix A Convective precipitation feature scales and MCS iden-309

tification310

For convective precipitation features, we use the TRMM 2A25 data (TRMM, 2011)311

for the period of June 2002 through May 2014 that include PR retrievals of surface rain312

rate (rain) and type (rainType) at 5 km × 5 km resolution covering 40◦S-40◦N. The313
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values of rainType consist of three numerical digits, and here we consider 2X0 (X = 0,314

2, 3, 4) convective. Note that these are different from shallow-convective and have rain ≥315

0.11 mm/h—the minimum detectable by the PR. For each 2A25 file (i.e., one orbit) we316

identify all contiguous areas and/or along-track chords consisting of convective raining317

pixels for the two measures of convective feature size. We further associate each area/chord318

with MCS or non-MCS depending on whether the feature overlaps with an MCS iden-319

tified following Mohr and Zipser (1996) for simple criteria not directly dependent on pre-320

cipitation: With the 10.8 µm brightness temperature (TB11) from the Merged IR prod-321

uct (Janowiak et al., 2017), for each IR snapshot, we identify MCS as an area with TB11 <322

250 K of at least 2,000 km2 and an enclosed minimum < 225 K.323
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Supporting Information Text

S1. Governing equation for response

In the main text, the nonlocal dynamics is studied via diagnosing the vertical acceleration in response to buoyancy using
Eq. (1). Here we demonstrate how the equation can be derived from the vorticity and anelastic continuity equations.

Notations and constants. The 3D velocity and vorticity are denoted by u = (uh, w) = (u, v, w) and ω ≡ ∇ × u = (ξ, η, ζ),
respectively (subscript h for horizontal components). We use ρ and θ for atmospheric density and potential temperature, and
subscript 0 for hydrostatic reference states that are time-invariant and horizontally homogeneous. Relevant constants for dry
air used here include the gas constant Rd = 287 J/kg/K, specific heat at constant pressure cpd = 1, 005 J/kg/K and at constant
volume cvd = 718 J/kg/K (Houze, 1993). Also, g = 9.81 m/s2.

Derivation. Following Jung and Arakawa (2008), from the definition of ω,

∂yξ − ∂xη ≡ ∇2
hw − ∂z(∇h · uh)

= ∇2
hw + ∂z

[
1
ρ0
∂z(ρ0w)

]
.

(S1)

The last equality follows the anelastic continuity equation

∇h · (ρ0uh) + ∂z (ρ0w) = 0.

Applying ∂t to both sides of Eq. (S1) and substituting ∂tξ, ∂tη using the vorticity equation, it is straightforward to derive
Eq. (1) with

B ≡ g
(
θ′

θ0
+ 0.61qv − qc

)
,

D ≡ − ∂

∂z
∇ · [u× (ω + f)] +∇2(uη − vξ),

where B is the buoyancy, θ′ the potential temperature deviation from θ0, qv and qc the mixing ratios of water vapor and
condensate, f the Coriolis parameter pointing along the z-direction. Note that (uη− vξ) is the z-component of u×ω. It should
also be noted that Eq. (1) is similar to the decomposition adopted by Jeevanjee and Romps (2016) in that both capture the
nonlocal nature and have the identical response to buoyancy. D can become a significant modifier in strong flow regimes, but
spatial filtering by the nonlocal solutions to Eq. (1) would in principle apply to forcing by D as well.

Atmospheric density. In practice, ρ0(z) is often determined by a prescribed reference potential temperature θ0(z) assuming
hydrostatic balance. For the current study, to facilitate our analytic approach, we assume

ρ0(z) ≡ P0

RdΘ0

(
1− z

H

)β
,

with the reference pressure P0 and potential temperature Θ0 at z = 0 (values set to 1,000 hPa and 292.8 K so that
H ≡ cpdΘ0/g ≡ 30 km throughout this study), and β = cvd/Rd ≈ 2.5 for an isentropic atmosphere (i.e., θ0 ≡ Θ0). Note that
the atmospheric stability can be adjusted by slightly varying β, which will not alter our key findings, and neither will a more
general ρ0.

S2. Analytic solutions

In section 3.2 of the main text, it was stated that the monochromatic (i.e., single horizontal wavelength) vertical structure of
the response can be solved analytically for individual Fourier modes. To do so, we introduce the changes of variables

s ≡ 1− z

H
, A(s) ≡ √ρ0 â, (S2)

with which Eq. (2) becomes
A′′ − λ(s)2A = −F (s). (S3)

Here (·)′ denotes d/ds, and

F (s) ≡ λ2
0
√
ρ0B̂,

λ(s) ≡ λ0

(
1 + γ

λ2
0s

2

)1/2

,

λ0 ≡ 2πH/L,

γ ≡ β

2

(
β

2 + 1
)
.
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A WKB approach gives approximate homogeneous solutions to Eq. (S3)

A±(s) = e∓λ(s)s
(
λ(s)s−√γ
λ(s)s+√γ

)∓√γ/2

λ(s)−1/2, (S4)

leading to â±(z) in Eq. (3). When B̂ is slowly-varying, such that O(F ′′/λ2) � O(F ), this condition allows an asymptotic
approximation to the particular solution

Ap(s) = 1
λ(s)2

[
F (s) + F ′′(s)

λ(s)2

]
, (S5)

leading to âp(z) in Eq. (4).
The monochromatic solutions in Fig. 3 are evaluated using Eqs. (S4) and (S5). The value and first derivative of the solutions

are matched across the jumps of buoyancy in the vertical. This requires inverting regular yet ill-conditioned (because of the
exponentials) linear systems for which symbolic computations are employed.

The monochromatic responses to a single layer of buoyancy at various height and for different horizontal wavelength L form
a basis that is used for building responses to more general buoyancy configurations in Fig. 4. The solutions built this way are
consistent with those obtained by numerically solving Eq. (1).

For general ρ0, Eqs. (S2) and (S3) still apply though with different λ(s) and approximate solutions.

S3. Numerical evaluations of responses

This section provides additional details for the computations of the solutions presented in Figs. 1b, 2 and 4 in the main text.
To construct the idealized buoyancy bubbles, we use the normal cumulative distribution function denoted by

N (τ, τ0, σ) ≡ 1
2erfc(−τ − τ0√

2σ
).

In Fig. 2, the cylindrical bubbles of positive buoyancy (units: m/s2) are given by

B+(r, z) ≡ 10−2 × [1−N (r, 4, 0.2)]N (z, 4, 0.1)[1−N (z, 8, 0.1)],

where r ≡
√
x2 + y2. Both r and z are in km. The bubbles have a horizontal diameter of 8 km, and extend vertically from 4

to 8 km (magenta contours). The negatively buoyant bubble (blue contour) resembling convective cold-top is given by

B−(r, z) ≡ −6 · 10−2 × [1−N (r, 4, 1.2)]N (z, 8.2, 0.1)[1−N (z, 8.5, 0.1)].

The cold-top has the same diameter (but a more moderate transition) in the horizontal, a narrower vertical extent from 8.2 to
8.5 km, and a greater magnitude of buoyancy. For the two cases displayed in Fig. 2, instead of directly solving Eq. (1), we
consider a domain doubly periodic in the horizontal −16 ≤ x, y ≤ 16 km, and separately solve Eq. (2) for â(z; k, `) numerically
with vanishing conditions at z = 0, 20 km for all admissible (k, `), then reconstruct a via inverse Fourier transform. The
horizontal and vertical grid spacings used are 125 and 6 m.

The tartares in Fig. 4 consist of raw elements having buoyancy of the form

b± ≡ ±
1
2erfc

(
r − 0.5

0.02

)
H(z − zB)H(zB + 0.5− z),

with r, z, zB in km, and H denoting the Heaviside function. When building a tartare of diameter ≈ D, the ± signs are randomly
assigned with 7 : 3 probabilities. Then the integral buoyancy of each tartare is rescaled to that of 10−2 × 1

2 erfc
(
r−D/2

0.2

)
×

H(z − zB)H(zT − z) (≈ 0.01 m/s2 on average within the tartare of diameter D and depth zT − zB). The overall responses to
buoyancy tartares are computed utilizing the monochromatic basis in a 64 km × 64 km doubly-periodic horizontal domain
with grid spacing 62.5 m. Using the analytic expressions for vertical structures (as described in section S2), the accuracy of
solutions is not affected by vertical grid spacing. For tilted tartares, the tartare cross section for 5.5 ≤ z ≤ 6 km is centered at
x = y = 0. The profiles in Figs. 4b,d represent the mass flux responses averaged over x2 + y2 ≤ D/2 for individual tartare
realizations. The mean profiles averaged over an ensemble of 10 tartare realizations (as shown in Fig. 4b) for varying diameter
D are summarized in Fig. 1b for the lower troposphere.

S4. Horizontal features of finite size and their Fourier spectrum

In section 4 of the main text, we noted the importance of the fact that net-positive buoyancy features of a finite horizontal size
D consist of Fourier component contributions primarily from wavelength L & D. Here we provide an analytic illustration of
this and numerical examples for more realistic instances.
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Analytic illustration. Consider an idealized feature of size D in a large 1D domain

BH(x) ≡
{

1, |x| ≤ D/2,
0, elsewhere,

and its Fourier coefficient (omitting the normalization factor that varies with domain size)

B̂H(k) ≡
∫
BH(x)e−2πikxdx.

When L ≡ 1/|k| is comparable to or smaller than D, the sign of the integrand changes. The positive and negative contributions
to the integral tend to cancel, resulting in B̂H(k) of small magnitude. In contrast, when L exceeds D (or 2D to be conservative),
the integrand tends to be of the same sign, leading to a substantial B̂H(k).

For this idealized case, the integral can be readily evaluated

B̂H(k) =
{

D
kπD

sin(kπD), k 6= 0,
D, k = 0.

Normalize B̂H by its value at k = 0. The magnitude of B̂H is bounded by the envelope 1/|k|πD ≡ L/πD, i.e., there are
important contributions from all Fourier components of wavelength on the order of or larger than D. Assuming a single
dominant wavelength at D can thus be highly misleading, especially for aspects where dynamics favors the longer wavelengths
in the response.

More realistic illustration. In 2D, consider the idealized pattern

bH(x, y) ≡ 1
2erfc

(
r − 0.5

0.02

)
,

where r ≡
√
x2 + y2 (units: km). bH ≈ 1 for r < 0.5 km and vanishes elsewhere with a smooth transition over a width ∼0.06

km. In Fig. S1, the pattern of bh and its Fourier coefficient

b̂H(k, `) ≡
∫∫

bH(x, y)e−2πi(kx+`y)dxdy

are represented by gray lines. bh has its primary Fourier contribution from K ≡
√
k2 + `2 . 1 (km−1), or L ≡ 1/K & 1 km.

Using bh, we construct more complicated net-positive patterns as

BH(x, y) ≡
1,000∑
n=1

snmnbH(x− xn, y − yn),

where sn = ±1 with 7:3 positive-to-negative ratio, mn the magnitude uniformly distributed in [0, 1], and (xn, yn) the center
of bh uniformly spread within a circle of diameter 10 km. Figure S1a shows one such realization, which seems plausible for
convection. Its Fourier coefficient for k ≥ 0, ` = 0 is included in Fig. S1b (magenta thick) together with the results for nine
more realizations. These examples demonstrate that when an ensemble of 1-km patterns form net-positive features of larger
scale (here diameter 10 km), the primary Fourier contributions are from K . 1/10 (km−1), or L & 10 km.
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Fig. S1. (a) An idealized buoyancy pattern bh of diameter 1 km (gray contour) and a realization of a stochastically-generated net-positive pattern of diameter ≈ 10 km (color
shading) shown on a 10 km×10 km zoom of a 32 km×32 km doubly-periodic domain. The pattern is constructed using 1,000 copies of bh, with their centers randomly spread
within a circle of diameter 10 km, magnitudes uniformly distributed in [0, 1], and 7:3 positive-to-negative sign ratio. (b) The Fourier coefficients of bh (gray thick) and 10
realizations of the stochastically-generated net-positive patterns (colors) for wavenumbers k ≥ 0, ` = 0. The Fourier coefficient of the pattern in (a) is indicated by the thick
magenta line. The Fourier coefficients are normalized by their values at k = ` = 0.
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