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Key Points:

• Open-access standardized ARIA InSAR products can be used to identify
and monitor landslides over large regions

• Slow-moving landslides occur in both dry and wet environments with mean
annual rainfall ranging from ~200 to ~2000 mm/yr

• Landslides are sensitive to seasonal, annual, and multi-year changes in
rainfall in both dry and wet environments.

Abstract

Slow-moving landslides are hydrologically driven. Yet, landslide sensitivity to
precipitation, and in particular, precipitation extremes, is difficult to constrain
because landslides occur under diverse hydroclimatological conditions. Here we
use standardized open-access satellite radar interferometry data to quantify the
sensitivity of 38 landslides to both a record drought and extreme rainfall that
occurred in California between 2015 and 2020. These landslides are hosted in
similar rock types, but span more than ~2 m/yr in mean annual rainfall. De-
spite the large differences in hydroclimate, we found these landslides exhibited
surprisingly similar behaviors and hydrologic sensitivity, which was character-
ized by faster (slower) than average velocities during wetter (drier) than average
years, once the impact of the drought diminished. Our findings may be represen-
tative of future landslide behaviors in California where precipitation extremes
are predicted to become more frequent with climate change.

Plain Language Summary

Landslides are often triggered by precipitation and as a result are sensitive to
local climate conditions. Climate change is impacting precipitation patterns
worldwide and therefore will likely have a profound influence on landslide ac-
tivity over the coming decades. Here we use standardized open-access satellite
radar data to assess landslide sensitivity to precipitation in California between
2015 and 2020. During this time period, California experienced some of the
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wettest and driest years on record, which is a precipitation pattern that is pre-
dicted to become the norm over the next century in California. We found that
landslides in both dry and wet regions of California were similarly sensitive to
seasonal and multi-year changes in precipitation. These landslides moved faster
than average during wet years and slower than average during dry years. Our
findings further confirm landslide sensitivity to climate change under diverse
hydroclimate conditions and highlight the need to establish a long time series of
landslide behaviors that can be used to better predict future landslide activity.

1 Introduction

A foundational paradigm in landslide science is that precipitation triggers land-
slides. Precipitation promotes slope instability as water flows through the
ground and raises the water table, or creates perched water tables, and as a
result, increases pore-water pressures, reduces the effective normal stress (nor-
mal stress minus pore-water pressure), and reduces the frictional strength of the
hillslope (Bogaard & Greco, 2016; Terzaghi, 1951). Once a hillslope fails as a
landslide it can accelerate rapidly and fail catastrophically (Iverson et al., 2015;
Jibson, 2006; Shugar et al., 2021), move downslope slowly for years to hundreds
of years (Mackey et al., 2009; Nereson & Finnegan, 2018; Rutter & Green, 2011),
or move slowly for a period of time before stabilizing or failing catastrophically
(Agliardi et al., 2020; Handwerger, Huang, et al., 2019; Iverson, 2005; Kilburn &
Petley, 2003). These different behavioral modes have important consequences
for hazard assessment because fast-moving landslides can move at rates up to
tens of meters per second and can easily claim lives (Iverson et al., 2015; Shugar
et al., 2021), while slow-moving landslides move at rates of meters per year or
less and can damage infrastructure (Lacroix, Handwerger, et al., 2020; Merriam,
1960).

Persistently active slow-moving landslides are well-suited for exploring hydro-
logic controls on landslide motion because they are relatively easy to monitor
(compared to landslides with catastrophic failures), occur in wet and dry envi-
ronments around the world where water is delivered by rainfall (Bayer et al.,
2018; Malet et al., 2002), snowmelt (Coe et al., 2003; Matsuura et al., 2008), or
irrigation (Lacroix, Dehecq, et al., 2020; Merriam, 1960), and their motion is
closely linked to local groundwater conditions (Corominas et al., 2005; Finnegan
et al., 2021; Iverson & Major, 1987). Furthermore, the hydrologic controls on
slow-moving landslides, via pore pressure changes, are akin to the hydrologic
controls on faults (Bhattacharya & Viesca, 2019; Cappa et al., 2019), glaciers
(Minchew & Meyer, 2020; Moon et al., 2014), and rock glaciers (Cicoira et al.,
2019; Kenner et al., 2017), and therefore investigating these landslides allows
us to better understand each system.

Previous investigations on the hydrologic controls on slow-moving landslides
have shown that precipitation causes slow-moving landslides to accelerate once
the pore-water pressures have increased to sufficient levels in the landslide body
and decelerate when the pore-water pressures drop (Finnegan et al., 2021; Iver-
son & Major, 1987; Malet et al., 2002). Thus, slow-moving landslides can slow
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down or stop moving during dry periods, and speed up, reactivate, or fail catas-
trophically during wet periods (Bennett, Roering, et al., 2016; Handwerger,
Fielding, et al., 2019; McSaveney & Griffiths, 1987; Nereson & Finnegan, 2018).
The hydrologic response of landslides can also be size-dependent where larger
and thicker landslides are somewhat less sensitive to daily to annual changes
in rainfall compared to smaller and thinner landslides that typically experience
greater swings in pore-water pressure (Bennett, Roering, et al., 2016; Handw-
erger, Fielding, et al., 2019). Indeed, this is an expected consequence of pore
water transmission in saturated ground (Iverson and Major, 1987). However,
recent work by Finnegan et al. (2021) shows nearly instantaneous pore pressure
transmission to depth once the vadose zone of the Oak Ridge landslide, Califor-
nia becomes saturated each year, which suggests vadose zone thickness, rather
than total landslide thickness, may be the relevant length scale controlling the
landslide response in settings where the surface of a landslide becomes unsatu-
rated, for example in locations with highly seasonal rainfall delivery. Nonethe-
less, both climate and landslide size may govern the hydrologic sensitivity of
landslides.

Satellite-based interferometric synthetic aperture radar (InSAR) data can be
analyzed alongside precipitation and groundwater data and used to inventory
and monitor landslides with the high spatial and temporal resolution necessary
to explore hydrologic controls on landslide motion (Bayer et al., 2018; Cohen-
Waeber et al., 2018; Handwerger et al., 2013). The open-access data collected
by Copernicus Sentinel-1 A/B satellites, in particular, has revolutionized InSAR
studies on landslides (Bayer et al., 2018; Carlà et al., 2019; Handwerger, Huang,
et al., 2019; Intrieri et al., 2017; Liu et al., 2021; Raspini et al., 2018), and
other ground surface deformation (Cigna & Tapete, 2021; Huang et al., 2017;
Lundgren et al., 2020; Strozzi et al., 2020), and has led to the development of
automated InSAR processing systems that produce derived standard products
that can be used for scientific research (Buzzanga et al., 2020; Dehls et al.,
2019; Jones et al., 2021; Lazecký et al., 2020). These derived standard products
will become especially important as the volume of InSAR data continues to
grow, making it increasingly challenging to process and download InSAR data
for large regions on a personal computer. Furthermore, the recent push to
provide open-access standardized InSAR products, along with a suite of tools
to analyze these data (e.g., Morishita et al., 2020; Yunjun et al., 2019), increases
data accessibility to the broader geoscience community, which will undoubtedly
lead to major scientific advances.

In this study we analyze open-access standardized Sentinel-1 interferograms au-
tomatically processed by the JPL-Caltech Advanced Rapid Imaging and Analy-
sis (ARIA) Center for Natural Hazards project (Bekaert et al., 2019) to identify
and monitor landslides in both wet and dry climates in California, USA. Califor-
nia has a large quantity of active slow-moving landslides and has been a major
focus area for landslide investigations for decades (Iverson & Major, 1987; Keefer
& Johnson, 1983; Kelsey, 1978; Merriam, 1960). Slow-moving landslides in Cal-
ifornia exhibit distinct seasonal kinematic patterns (Cohen-Waeber et al., 2018;

3



Finnegan et al., 2021; Handwerger et al., 2013; Iverson & Major, 1987) that
are a consequence of the regions Mediterranean climate with mild wet winters
and hot dry summers, and multi-year kinematic changes that result from pre-
cipitation deficits or surplus (Bennett, Roering, et al., 2016; Booth et al., 2020;
Mackey et al., 2009; Nereson & Finnegan, 2018). California also has a large
rainfall gradient from north to south and west to east, with parts of northern
California receiving > 3000 mm/yr of rainfall and parts of southern California
receiving < 200 mm/yr (Figure 1a). There are slow-moving landslides in both
wet and dry regions of California, which presents an opportunity to examine
how variability in hydroclimatology controls landslide behaviors.

Figure 1. Maps of precipitation, rock type, and landslide locations.
(a) 30-year mean water year precipitation (m/yr) with period WY1990-WY2019
calculated from PRISM data. (b) Simplified geologic map showing the areal
extent of the Franciscan mélange rock unit. (c) Location of active landslides
identified with our InSAR analyses. Well-studied landslide groups labeled Eel
= Eel River, BH = Berkeley Hills, CSAF = Central San Andreas Fault, PBL
= Portuguese Bend landslide. Inset shows oblique view of InSAR velocity map
for Portuguese Bend landslide (PBL) draped over a lidar hillshade. Black circle
shows the location of the reference point for the time series and black polygons
show active landslide boundaries.

4



(d-i) Precipitation Ratio (total WY precipitation / 30-year mean precipitation)
for WY2015-WY2020. Red colors correspond to drier than average years and
blue colors correspond to wetter than average years. Yellow circles in (d) show
landslides selected for detailed time series analyses.

We focus our study between the 2015 and 2020 water years (WY), during which
California experienced extreme changes in rainfall (Figure 1d-i and Figure S1).
WY2015 and WY2016 were the last two years of a historic drought, which
was one of the most severe for hundreds of years (Robeson, 2015; Swain et al.,
2014). The drought officially ended in WY2017, which was an extremely wet
year across most of California, and was the second wettest year on record in
places (Swain et al., 2018; Wang et al., 2017). There were many landslides
that were triggered or accelerated and reactivated in WY2017 (Finnegan et al.,
2021; Handwerger, Fielding, et al., 2019), including the catastrophic Mud Creek
landslide that destroyed State Highway 1 (Handwerger, Huang, et al., 2019;
Jacquemart & Tiampo, 2021; Warrick et al., 2019). Dry conditions returned in
WY2018 due to below average rainfall, followed by wet conditions in WY2019
due to above average rainfall, and finally a return to dry conditions in WY2020
due to below average rainfall. These back and forth changes from dry to wet
conditions are consistent with long-term climate predictions and therefore may
be representative of climate patterns in California over the next century (Polade
et al., 2017; Swain et al., 2018).

2 Data and Methods

2.1 Interferometric Synthetic Aperture Radar Processing and Analysis

Open-access SAR data from the C-band (~5.6 cm radar wavelength) Copernicus
Sentinel-1 A/B satellites were automatically processed to standardized interfer-
ograms by the ARIA project (Bekaert et al., 2019). ARIA uses the open-access
JPL InSAR Scientific Computing Environment (ISCE) software to process the
interferograms (Rosen et al., 2012). These standardized interferograms are cor-
rected for topographic contributions to phase and geocoded to a ~90 m (3 arc
second) pixel spacing using the Shuttle Radar Topography Mission (SRTM)
digital elevation model (DEM) (Farr et al., 2007). ARIA provides key data
needed for deformation analyses and time series inversions including geocoded
unwrapped interferograms, coherence, incidence and azimuth angles, and the
SRTM DEM and water mask.

We used the ARIA-tools open-source package in Python (Buzzanga et al., 2020)
to download and prepare 1689 interferograms covering California (Table S1).
We inverted the interferograms to deformation time series using the Miami In-
SAR Time-series software in PYthon (MintPy) (Yunjun et al., 2019). We set
the maximum number of connected neighbors = 2 to remove longer time span
interferograms that often have low coherence and are more likely to contain un-
wrapping errors for persistently moving features such as slow-moving landslides
(e.g., Handwerger, Huang, et al., 2019). We quantified InSAR uncertainty us-
ing a bootstrapping technique (Efron & Tibshirani, 1986; Bekaert et al., 2020)
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with 400 iterations for each time series. More information on the InSAR data
processing can be found in the Supporting Information.

2.2 Landslide Reconnaissance

We identified active landslides by examining the time-averaged InSAR velocity
maps. Active slow-moving landslides displayed localized deformation zones with
relatively high velocity (Figures 1c inset). We then confirmed true landslides
using DEMs, Google Earth imagery, and previously published landslide inven-
tories. We began our landslide identification by examining the InSAR velocity
in well-known landslide areas in northern California (Bennett, Miller, et al.,
2016; Handwerger, Fielding, et al., 2019), central California (Booth et al., 2020;
Cohen-Waeber et al., 2018; Finnegan et al., 2019; Scheingross et al., 2013; Wills
et al., 2001), and southern California (Calabro et al., 2010; Jibson, 2006; Mer-
riam, 1960; Swirad & Young, 2021; Young, 2015). We also examined landslide
areas documented in the California Geologic Survey statewide landslide inven-
tory (Wills et al., 2017). After examining these known landslide areas, we then
systematically expanded outward from these regions to identify active landslides
in all mountainous regions of California. We quantified landslide metrics such
as area, length, width, and slope angle using the SRTM ~30 m (1 arc second)
DEM. We classified the active landslide types as slumps, earthflows, and com-
plexes and estimated landslide volume and thickness using geometric scaling
relations for slow-moving landslides in California (see Supporting Information).

To further assess the kinematic behavior of the slow-moving landslides in wet
and dry environments during wet and dry years, we selected a subset of land-
slides to perform detailed time series investigation (Figure 1d). These landslides
were selected based on their relatively high velocity signal (i.e., strong InSAR
signal) and their location within California’s different hydroclimatic regimes.
We characterized the landslide motion by calculating the spatial mean of the
fastest moving kinematic zone and used a moving median temporal smoothing
filter to further reduce noise and highlight the seasonal and annual deformation
signals (Figures S2 and S3). We explored environmental controls on landslides
by examining the rock type and precipitation data in active landslide areas.
Rock type data are provided by the California Geologic Survey (Jennings et
al., 2010) and precipitation data are provided by the Parameter-elevation Re-
gressions on Independent Slopes Model (PRISM) (see Data Availability). We
then quantified landslide sensitivity to rainfall by exploring relative changes in
precipitation and landslide velocity. To explore relative changes in precipitation
and velocity, we defined the Precipitation Ratio as the total water year precip-
itation divided by the 30-year mean water year precipitation (calculated from
WY1990-WY2019) at each landslide (Figure 1d-i), and the Velocity Ratio as
the water year velocity divided by the average velocity from WY2016-WY2019.

3 Results

3.1 Landslide Inventory

We manually identified and mapped 247 active slow-moving landslides in Cal-
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ifornia (Figure 1c). Many, if not all of these landslides have been previously
identified by other studies (Bennett, Miller, et al., 2016; Cohen-Waeber et al.,
2018; Finnegan et al., 2019; Handwerger, Fielding, et al., 2019; Jibson, 2006;
Merriam, 1960; Scheingross et al., 2013; Swirad & Young, 2021; Wills et al.,
2001). These landslides consisted of different types including 71 slumps, 72
earthflows, and 104 landslide complexes (Table S2). As an expected conse-
quence of the relatively coarse resolution (90 m pixel spacing) of the ARIA
standardized InSAR product, we identified mostly larger landslides with areas
ranging from 0.018 to 11 km2 with a mean area of 0.5 km2 (Table S2). The
active landslides are distributed throughout the mountainous regions in west-
ern California, with the vast majority (230 of 247) in the Coast Ranges, and
they spanned nearly the entire latitudinal extent of the state. Regions with the
highest density of landslides include the well-known landslide hotspots such as
the Eel River catchment, Big Sur coast, and Central San Andreas Fault (Figure
1c). There are also landslides located in populated and highly traveled zones
such as Los Angeles and Berkeley, and along California State Highway 1 and
State Highway 101 and thus pose a threat to infrastructure and life. Although
we identified a large quantity of landslides, our inventory is an underestimate of
the true landslide activity in California for three main reasons; 1) we were un-
able to identify landslides in regions with high seasonal snow cover (e.g., Sierra
Nevada Mountains). To better explore regions with seasonal snow requires a
different InSAR processing strategy that only utilizes data from snow-free pe-
riods. 2) The coarse resolution prevents us from imaging many of the smaller
landslides that have been identified with higher resolution InSAR or field data
(e.g., Scheingross et al., 2013; Nereson and Finnegan, 2018; Schulz et al., 2018;
Handwerger, Fielding, et al., 2019). And 3) InSAR provides a 1D measurement
and cannot detect landslide motion in the direction of the satellite heading (i.e.,
observational bias).
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Figure 2. Landslide and precipitation time series for selected land-
slides in California. (a) Cumulative displacement time series projected onto
the downslope direction and separated by water year (WY). The time series
for each landslide are smoothed using a moving median temporal filter. Solid
lines correspond to landslides occurring within the Franciscan mélange rock unit.
Colors correspond to 30-year mean water year precipitation (WY1990-WY2019)
for each landslide. Inset shows the location of the selected landslides on the 30-
year mean precipitation map. (b) Cumulative precipitation time series for each
landslide separated by WY and colored by 30-year mean water year precipita-
tion.

Despite the large variability in rock type throughout California (Figure S4), we
found that 228 of 247 landslides occurred in host rocks broadly defined as marine
and nonmarine sedimentary or metasedimentary rock units (Figure S4 and Table
S2). Of these landslides, 176 (71% of total) landslides are hosted within the
Franciscan complex mélange (Figure 1b), which indicates a strong lithologic
control on the distribution of slow-moving landslides. Numerous recent studies
have made similar findings indicating that rock type exerts a primary control on
slow-moving landslides in California (Bennett, Miller, et al., 2016; Handwerger,
Fielding, et al., 2019; Scheingross et al., 2013; Xu et al., 2021) and throughout
the world (see refs. in Lacroix, Handwerger, et al., 2020).
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Estimates of precipitation from PRISM data showed that active landslides are
occurring in both wet and dry environments (Figure 1). We found more than an
order of magnitude precipitation variation between the wettest active landslide
in northern California (30-year mean = 2180 mm/yr) and driest landslide in
southern California (30-year mean = 216 mm/yr) (Figure 1a).

3.2 Seasonal and Annual Landslide Behavior

To assess the behavior of landslides occurring in wet and dry climates, we se-
lected a subset of 38 landslides spanning more than an order of magnitude in
30-year mean precipitation (Figure 2 and Table S3). The subset of landslides
consisted of different landslide types, rock types, and occurred in different envi-
ronments including coastal and inland regions, as well as developed and unde-
veloped areas.

Annual downslope velocities (± bootstrap uncertainty) averaged over the full
study period ranged from 0.85 ± 0.56 to 9.7 ± 1.2 cm/yr (Table S3). Landslides
occurring in both wet and dry regions of California exhibited seasonal kinematic
changes in response to seasonal precipitation each year (Figure 2). Each land-
slide accelerated in response to infiltrating rainfall during the wet season before
decelerating back to lower rates, or completely stopping, during the dry season.

The landslides also responded to changes in seasonal rainfall each year. We
found large changes in seasonal precipitation caused large changes in displace-
ment (Figures 2 and 3). There is no clear relationship between velocity, precip-
itation, and landslide size (Figures 3 and S5). We did find, however, that in
general, the landslides moved faster than average during the wetter WY2017 and
WY2019, and slower than average during the drier WY2016 and WY2018 (Fig-
ure 3). Interestingly, we observed the largest displacement at a single landslide
during the drier than average WY2018 (Figure 2). This landslide is located on
the coast and is thus likely subject to other driving forces such as debuttressing
from wave erosion at its toe (see location of landslide 22 in Table S3).

Landslide sensitivity to precipitation also appeared to change during the study
period. For instance, WY2016, which was the final year of the historic California
drought, had both wetter and drier than average conditions in certain places,
however all of the landslides were moving slower than average (velocity ratio
< 1). WY2018 was drier than WY2016 across California, but a few landslides
exhibited velocity ratios > 1. Our findings suggest that antecedent rainfall
from the previous wet seasons, particularly the lingering impact of long-term
droughts, likely play an important control on landslide behavior and sensitivity
to rainfall.
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Figure 3. Landslide response to changes in precipitation. (a-d) Maps of
velocity and precipitation ratio by water year. Brown to green colors correspond
to velocity ratio values for each landslide. Red to blue colors in background
correspond to precipitation ratio. Symbols correspond to landslide type. Rock
type is shown by black or gray symbol border color. (e-h) Velocity ratio as a
function of precipitation ratio for selected landslides. (i-l) Velocity ratio as a
function of estimated landslide thickness. Error bars show the uncertainty in
the velocity ratio. Red to blue colors correspond to the 30-year mean water
year precipitation (WY1990-WY2019) for each landslide. Symbols correspond
to landslide type. Rock type is shown by black or gray symbol border color. We
calculated the velocity ratio uncertainty using standard error propagation and
assumed nil uncertainty in the precipitation data.

4 Discussion and Conclusion

Our study documents the first application of open-access standardized InSAR
products from JPL ARIA to identify and monitor landslides across large re-
gions. Although the coarse resolution InSAR product limits our ability to de-
tect smaller landslides, it still provides valuable data that can be used to better
understand landslide processes. Due to the large volume of open-access InSAR
data that is currently available, and will continue to increase with time, es-
pecially with the upcoming launch of the NASA-ISRO SAR (NISAR) satellite,
standardized InSAR products will become one of the primary ways to deliver In-
SAR data to the broader scientific community. The JPL Observation Products
for End-Users from Remote Sensing Analysis (OPERA) project will soon be gen-
erating an operational high resolution displacement timeseries from Sentinel-1
and NISAR data over North America. With a spatial resolution of 30 m or better
this product will be well-suited for identifying and monitoring landslides. Thus,
it is important to continue to explore new approaches to analyze these InSAR
products for scientific research, including use of automated or semi-automated
detection and mapping techniques (e.g., Amatya et al., 2021; Milillo et al., 2021)
.

Active slow-moving landslides across California occur in both dry and wet envi-
ronments. Despite more than an order of magnitude difference in mean annual
rainfall, these landslides exhibit similar first order behaviors in that they display
seasonal and annual changes in displacement that correspond to local changes
in rainfall, and are sensitive to seasonal, annual, and multi-annual changes in
rainfall. Interestingly, we did not observe a strong climate- or size-dependent
control on the kinematic response of these landslides. While size-dependent
hydrologic sensitivity may be more obvious at the smaller regional scale (e.g.,
Bennett, Roering, et al., 2016; Handwerger, Fielding, et al., 2019), it appears
to be less significant for these 38 landslides (Figure 2 and 3), which may have
more variability in local conditions. Additionally, the landslides in dry and wet
climates appear similarly sensitive to year-to-year changes in rainfall. One ex-
planation for landslide sensitivity that is climate- and size-independent is that
these persistently active landslides all maintain sufficiently high groundwater
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levels that keep the landslides close to an acceleration threshold. Prior work
on active slow-moving landslides has shown that these types of landslides typi-
cally have high groundwater levels year round and become effectively saturated
during the wet season (Finnegan et al., 2021; Iverson & Major, 1987; Schulz
et al., 2018). The ability to maintain high groundwater levels is possibly a
consequence of rock type-controlled critical zone structure. Hahm et al. (2019)
showed that the critical zone of the Franciscan mélange rock type, which is the
predominant rock type of the landslides in our inventory, is characterized by
a thin (< 3 m) seasonally unsaturated zone that becomes effectively saturated
after a ~100 to 200 mm of seasonal rainfall at their field site in a wet region of
northern California (mean annual rainfall ~1800 mm/yr). Similarly, Finnegan
et al. (2021), showed that the Oak Ridge landslide, which occurs in an area
of moderate rainfall in central California (mean annual rainfall ~640 mm/yr),
becomes effectively saturated after about ~200 mm of seasonal rainfall. While
not all of the landslides in our study occur in the Franciscan mélange, the other
rock types are mostly marine and nonmarine sedimentary rocks that may bare
similarity to the Franciscan mélange, and therefore may have a similar critical
zone structure. Additionally, the landslides themselves may create an environ-
ment that allows them to retain water due to low permeability shear zones that
inhibit water flow out of the landslide (Baum & Reid, 2000; Nereson et al.,
2018). Thus, a thin seasonally unsaturated zone means that landslides in both
the wetter and drier parts of the state can reach saturation during years with
even modest rainfall. Once saturation occurs, excess precipitation should be
shed as overland flow (e.g., Hahm et al., 2019) which may explain why land-
slides exhibit a relatively muted response to large differences in rainfall across
the state.

Our study revealed that active slow-moving landslides moved seasonally during
both dry and wet years and in dry and wet climates, indicating that even during
dry periods and at dry landslides, there is still sufficient water input to maintain
downslope motion for many landslides. Climate models predict that rainfall
in California is likely to become more seasonal (i.e., a higher proportion of
rainfall delivered in December to March) and dry to wet year extremes will
become more common (Dong et al., 2019; Polade et al., 2017; Swain et al.,
2018). Therefore, our study period may be representative of future precipitation
and landslide behavioral patterns throughout California. While we currently
cannot reliably predict landslide motion due to complex nonlinear relationships
between precipitation, pore-water pressure, and velocity (e.g., Carey et al., 2019;
Finnegan et al., 2021; Malet et al., 2002), we may be able to predict relative
changes in landslide velocity in response to relative changes in precipitation.
Therefore, it is necessary to continue to document landslide behaviors during
‘normal’ years that may serve as baselines for comparison and prediction of
future landslide behaviors.
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Text S1. 

InSAR Processing and Analyses 

JPL-Caltech ARIA automatically processed standardized interferograms with Sentinel-1 
data between 2015 and 2021 for California. At the time this study was performed however the 
InSAR data were only processed up to early 2020 (Figures 2 and 3). ARIA produced 
interferograms with 3 nearest connected neighbors and year-long pairs. We used the ARIA-tools 
open-source package in Python (https://github.com/aria-tools) to download all of the 
interferograms covering California. We downloaded 13825 individual products which was 
equivalent to 1689 merged interferograms from ascending tracks 35, 64, and 137, and 
descending tracks 42, 71, 115, 144, 173 (the full list of the InSAR data used in this study are in 
Table S1). The ARIA-tools package combines adjacent products into merged interferograms. We 
found there were sometimes discontinuities in the merged interferograms that resulted during 
unwrapping between data frames. Interferograms containing discontinuities were manually 
identified and removed from our analyses for the landslide identification stage, but were included 
for the time series analyses of selected landslides because the individual landslides did not span 
these discontinuities.  

In order to search for landslides, it is important to use local reference points to help 
further reduce long wavelength noise that can obscure the landslide signal. We selected 32 
regional stable (i.e., no motion) reference points that were used to reset the InSAR data velocity 
values (Table S4) and facilitate landslide detection. Additionally, we removed noise by 
excluding pixels with coherence less than 0.4, and applied linear deramping, DEM error 
correction (Fattahi & Amelung, 2013), and tropospheric corrections (Jolivet et al., 2011) with the 
European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-5 reanalysis data set.  

Once we selected the 38 landslides for time series analyses, we subset both ascending and 
descending InSAR data for each landslide and reprocessed the time series using a new local 
stable reference point. We then selected either ascending or descending data, depending on 
which data showed the best quality landslide signal (Figure S2). Finally, we projected the line-
of-sight time series onto the mean downslope direction of each landslide, assuming surface-
parallel motion using:  

𝐷!"#$%&"'( =
𝐷)*+

𝑠𝑖𝑛(𝛼 − 𝛽)𝑠𝑖𝑛(𝜃,$-)𝑠𝑖𝑛(𝜃%&') + 𝑐𝑜𝑠(𝜃,$-)𝑠𝑖𝑛(𝜃%&')
 

where 𝛼	is the heading direction (in degrees, positive counterclockwise from north) of the radar 
platform in the horizontal plane, 𝜃,$- 	is the incidence angle, 𝛽 is the mean azimuth angle of the 
landslide (i.e., downslope direction heading) and 𝜃%&' is the mean hillslope angle of the landslide 
(Liu et al., 2013). This downslope projection can provide more accurate estimates of the true 
landslide displacement magnitude.  
 

 

 



© 2022. California Institute of Technology. Government sponsorship acknowledged. 
 

Landslide Classification and Geometric Scaling 
 
We classified landslide types as slumps, earthflows, and complexes. We used the 

classification from Handwerger et al. (2021) where “slumps are landslides with lower 
length/width aspect ratios and one primary kinematic zone. Earthflows are landslides with 
medium aspect ratios and one primary kinematic zone. And landslide complexes are landslides 
with higher aspect ratios that are composed of multiple kinematic zones or even multiple 
landslides that coalesce into a single landslide mass”. 

 
We estimated landslide thickness using geometric scaling relations developed for slow-

moving landslides in California (Handwerger et al., 2021). Landslide scaling relations take the 
form of a power function defined as  
 

𝑉	 = 	 𝑐.𝐴/ and ℎ	 = 	 𝑐0𝐴1  
 
where γ and ζ are  the scaling exponents and 𝑐. and 𝑐0 are fit intercepts. See parameters in Table 
(S5) 
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Supplementary Figures 

 
Figure S1. Water year precipitation maps. Colors show the total water year precipitation 
(m/yr). Data are from PRISM. 
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Figure S2. Displacement and precipitation time series for Portuguese Bend landslide. 
Orange circles show raw InSAR time series and black line shows smoothed time series. 
Displacement data are projected onto the downslope direction. Blue line shows cumulative 
precipitation time series. Inset shows oblique view of InSAR velocity map draped over a lidar 
hillshade. Black circle shows the location of the reference point for the time series and black 
polygons show active landslide boundaries. 
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Figure S3. Example ascending and descending deformation maps and time series for a 
single landslide. (a-b) InSAR velocity maps draped over a hillshade of topography. Red colors 
show relatively high velocities. Magenta polygon shows the extent of the geomorphic landslide. 
Black polygon shows the fastest moving zone used to calculate the mean displacement plotted in 
(c-d). Arrows show downslope direction of landslide, satellite line-of-sight (LOS), and satellite 
flight heading. (c-d) Mean downslope displacement time series for ascending and descending 
InSAR data. Blue circles show the raw InSAR data and the orange line shows moving median 
smoothed time series. 
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Figure S4. Geologic map of California. Black circles show location of active landslides 
identified with InSAR data. Data are provided by the California Geologic Survey. For detailed 
rock type descriptions see list at: 
https://maps.conservation.ca.gov/cgs/metadata/GDM_002_GMC_750k_v2_metadata.html.  
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Figure S5. Landslide kinematics in response to changes in precipitation. (a-d) Water year 
(WY) velocity as a function of WY precipitation for selected landslides. Error bars show the 
uncertainty in the velocity estimates. Red to blue colors correspond to the 30 year normal 
precipitation (1991-2020) for each landslide. Symbols correspond to landslide type. Rock type is 
shown by black or gray symbol border color.  
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Supplementary Tables 
 
Table S1.  List of all InSAR pairs used in study. Columns correspond to the reference 
acquisition dates, secondary acquisition dates, perpendicular baseline, the timespan between 
images, and the total number of interferograms used in the time series inversion. The file 
contains eight spreadsheets that correspond to different satellite track numbers.  
 
Table S2.  Landslide inventory data table. Table includes information for landslide type, host 
rock type, mean slope angle, landslide area, landslide length, landslide width, centroid location 
of each landslide, and 30-year mean water year precipitation for each landslide (WY1990-
WY2019). 
 
Table S3.  Landslide data table for the 38 selected landslides. Table includes information for 
landslide name, centroid location, landslide type, host rock type, landslide area, landslide length, 
landslide width, estimated landslide volume, estimated landslide thickness, mean slope angle, 
downslope aspect direction, InSAR data used for final time series analyses, stable reference 
point, and velocity and precipitation data. 
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reference point longitude 
(degrees) 

reference point latitude 
(degrees) 

-116.3914054 34.26675748 
-116.5356684 33.8258261 

-117.274774 32.844484 
-117.646708 34.288767 

-117.8200602 33.62590427 
-118.3619388 33.76003981 

-118.575646 34.042921 
-118.67185 34.55515674 

-119.632258 37.985456 
-120.0213188 39.4384228 

-120.021619 39.43817 
-120.87114 36.272458 

-121.0954394 36.74856042 
-121.190797 36.622521 
-121.445966 35.876472 
-121.536581 36.026733 
-121.585882 36.061785 
-121.675278 37.344674 

-121.7488595 37.46076441 
-121.809952 36.26085 

-121.8681335 37.15969 
-121.886534 36.426898 
-122.265977 37.31953 
-122.290836 37.926315 
-122.483311 37.699138 
-123.050031 38.885312 

-123.3293693 39.65829982 
-123.393747 39.806784 
-123.467188 40.106911 
-123.800918 40.558561 
-123.816244 40.987106 

 
 
 
Table S4.  Location of stable reference points used for landslide identification during the 
statewide mapping. 
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category cV, best fit 
intercept  

γ, best fit power 
function exponent 

ch, best fit 
intercept  

ζ, best fit power 
function exponent  

inventory 0.2074 (0.0746, 
0.5761) 

1.306 (1.213, 1.399) 0.2074 (0.0746, 
0.5761) 

0.3058 (0.2129, 
0.3987) 

slumps 0.0301 (0.0020, 
0.4569) 

1.493 (1.224, 1.762) 0.0301 (0.0020, 
0.4569) 

0.4926 (0.2236, 
0.7615) 

earthflows 0.0207 (0.0013, 
0.3389) 

1.535 (1.273, 1.796) 0.0207 (0.0013, 
0.3389) 

0.5348 (0.2734, 
0.7963) 

complexes 0.9542 (0.1029, 
1.2674) 

1.172 (0.9858, 1.357) 0.9542 (0.1029, 
1.2674) 

0.1716 (-0.0142, 
0.3573) 

 
Table S5.  Volume-area scaling fit values (with 95% confidence bounds). Table is modified 
from Handwerger et al., 2021. 
 


