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Abstract

Over much of Africa, radiosonde data are lacking; consequently, the African UTLS is understudied, and potential proxies such as

climate models and reanalyses fail to capture the behaviour of the UTLS fully. This study pioneers the use of Global Navigation

Satellite System Radio Occultation (GNSS-RO) data from 2001 to 2020 to address the radiosonde data gaps over Africa and

contributes to a better understanding of the tropopause (TP) characteristics under the influence of multiple climate drivers.

The analyses show that GNSS-RO data from CHAMP, GRACE, MetOp, COSMIC, and COSMIC-2 agree with radiosonde

measurements with differences being smaller than 1 K in the UTLS; thereby enabling in-filling of 80% of the missing radiosonde

data in Africa during 2001-2020. By contrast, the smoothed vertical temperature profiles of reanalysis products lead to a warm

bias of +0.8K in ERA5 and +1.2K in MERRA-2, and these biases alter some vertical and temporal structure details, with

possible implications on climate change detection and attribution. Furthermore, the analysis of GNSS-RO data over Africa

revealed: 1) influences of global climate drivers on TP temperature, with QBO > ENSO > IOD > NAO > SAM > MJO, and on

TP height with ENSO > QBO > NAO > MJO > IOD > SAM; 2) multiple coupled global climate drivers such as ENSO-MJO,

ENSO-NAO etc.; 3) coupled global and regional climate drivers that influence the TP variability, e.g., ENSO-ITCZ; and 4), the

deep convection associated with the Asian Summer Monsoon and Tropical/African Easterly Jet locally influence TP height.
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Abstract

Over much of Africa, radiosonde data are lacking; consequently, the African UTLS is un-

derstudied, and potential proxies such as climate models and reanalyses fail to capture

the behaviour of the UTLS fully. This study pioneers the use of Global Navigation Satel-

lite System Radio Occultation (GNSS-RO) data from 2001 to 2020 to address the ra-

diosonde data gaps over Africa and contributes to a better understanding of the tropopause

(TP) characteristics under the influence of multiple climate drivers. The analyses show

that GNSS-RO data from CHAMP, GRACE, MetOp, COSMIC, and COSMIC-2 agree

with radiosonde measurements with differences being smaller than 1 K in the UTLS; thereby

enabling in-filling of 80% of the missing radiosonde data in Africa during 2001-2020. By

contrast, the smoothed vertical temperature profiles of reanalysis products lead to a warm

bias of +0.8K in ERA5 and +1.2K in MERRA-2, and these biases alter some vertical

and temporal structure details, with possible implications on climate change detection

and attribution. Furthermore, the analysis of GNSS-RO data over Africa revealed: 1)

influences of global climate drivers on TP temperature, with QBO > ENSO > IOD >

NAO > SAM > MJO, and on TP height with ENSO > QBO > NAO > MJO > IOD

> SAM; 2) multiple coupled global climate drivers such as ENSO-MJO, ENSO-NAO etc.;

3) coupled global and regional climate drivers that influence the TP variability, e.g., ENSO-

ITCZ; and 4), the deep convection associated with the Asian Summer Monsoon and Trop-

ical/African Easterly Jet locally influence TP height.

1 Introduction

In Africa, which has high vulnerability to impacts of extreme weather events and

climate change (IPCC, 2014), there is paucity of surface- and upper-air observations. The

alarming state of the issue has been highlighted recently by the Wold Meteorological Or-

ganisation (WMO, 2020), which states that there is “a dramatic decrease of almost 50%

from 2015 to 2020 in the number of radiosonde flights and/or observations, the most im-

portant type of surface-based observations for weather prediction and climate analysis”

and furthermore “now has poorer geographical coverage”. Over the last two decades, some

82% of the countries in Africa have experienced severe (57%) and moderate (25%) ra-

diosonde data gap. For Africa, in particular, where many studies have indicated a pos-

sible increase in the frequency and severity of climate extremes (droughts and floods)

(Agutu et al., 2017; J. Awange, 2021), increased water stress (Terink et al., 2013), and
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food security risks (Gregory et al., 2005), the situation is dire, prompting a call by Peuch

(2020) for urgent need to fill the data gap in Africa and globally.

Radiosondes from weather balloons have conventionally been used as means of mea-

suring atmospheric profiles of humidity, temperature, pressure, wind speed and direc-

tion. High quality, spatially and temporally “continuous” data from upper-air monitor-

ing along with surface observations are critical bases for understanding weather condi-

tions and climate trends, and providing weather and climate information for the welfare

of societies. Reliable and timely information underpin society’s preparedness to extreme

weather conditions, and to changing climate patterns. Africa, however, suffers from in-

sufficient, non-consistent in-situ data, and poor data quality (Thomson et al. 2011). More-

over, the weather balloons rely heavily on the amount of gas fuel used and are usually

launched at specific time intervals (e.g., every 6 to 12 hours) from airports or other ap-

proved locations. Additionally, the commonly used hydrogen generator is an expensive

instrument that requires consistent maintenance and technical expertise, which is out

of reach for most African countries. Other challenges pertaining to the African radiosonde

data include systematic error in data and misaligned time series (see, e.g., J. Wang &

Zhang 2008; Ramella Pralungo et al. 2014). These have led to the requirement of a re-

evaluation of African radiosonde observation reliability (Lanzante et al., 2003).

Despite the establishment of the African Monsoon Multidisciplinary Analysis (AMMA)

radiosonde program to address data quality of radiosonde stations over West Africa, 30%

of the data are still lost due to persistent technical failures (Fink et al. 2011). Moreover,

Thorne & Vose (2010) reported heterogeneity of the in-situ radiosonde record and its po-

tential impact on long-term reanalyses, particularly over Africa (Lanzante et al., 2003).

Further issues include temporal and spatial difficulties for long-term modeling (Seidel

et al. 2004), limited data coverage in the southern hemisphere (J. Awange, 2018), chal-

lenges of operating over the ocean (J. L. Awange, 2012), and high operational costs (Parker

et al., 2008). The vast data gap in such a large part the global landmass, home to some

of the most vulnerable societies, the aforementioned call has galvanised a global effort

(Taalas et al., 2021) to “plug the data gap” in the decade ahead and halt a further de-

terioration in the observation networks.

The use of global reanalysis products could alleviate these challenges. However, dif-

ferent reanalysis products exhibit considerable discrepancies in regional studies (Chen
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et al., 2014). Additionally, differences in the responses of global temperature to volcanic

eruptions (Fujiwara et al., 2015) and biases associated with the reanalyses’ low vertical

resolution (Meng et al., 2021) lead to different UTLS structures among reanalysis prod-

ucts and therefore to different tropopause characteristics (Homeyer et al., 2010). Recently,

the fifth-generation Reanalysis (ERA5) of the European Centre for Medium-Range Weather

Forecasts (ECMWF) has been added to the plethora of tropopause monitoring products

offering higher vertical resolution than previous reanalysis data sets. However, its per-

formance against in-situ observations over Africa’s upper-air region has not been inves-

tigated yet.

In light of these shortcomings over Africa, Isioye et al. (2015) proposed the explo-

ration of space-based techniques such as Global Navigation Satellite System (GNSS) -

Radio Occultation (GNSS-RO) for addressing the radiosonde data gap. The inception

of the GNSS-RO technique that utilizes GNSS signals onboard of LEO satellites to re-

motely sense the Earth’s atmosphere has emerged as a state-of-the-art data set over the

last two decades, providing high vertical resolution atmospheric profiles around the tropopause

region (see, e.g., Scherllin-Pirscher et al. 2021 and reference therein). Examples include;

the CHAllenging Mini-satellite Payload (CHAMP), the Gravity Recovery And Climate

Experiment (GRACE), GRACE Follow-On (GRACE-FO), the Meteorological Opera-

tional (MetOp) satellites, and the Constellation Observing System for Meteorology, Iono-

sphere, and Climate (COSMIC). They have operated continuously around the globe un-

der all-weather conditions, and offer millions of consistent measurements (Angerer et al.,

2017) that are successfully assimilated in to global reanalyses to improve global weather

predictions and climate modeling (Ho et al. 2020). J. Awange (2018) showed that GNSS-

RO can improve the deficiency of high-quality data in remote areas, which cannot be achieved

by radiosondes alone. The recently launched COSMIC-2 mission (Anthes & Schreiner,

2019; Schreiner et al., 2020) increased sampling density at low- and mid-latitudes and

provides reams of near-real-time data for weather research (Lien et al., 2021). The in-

novation of COSMIC-2 has enormously extended the data coverage and thereby signif-

icantly filled the data gap over Africa. Nevertheless, the COSMIC-2 products have nei-

ther been tested nor explored over the African continent yet.

Clearly, infilling of the African continent’s upper tropopause-lower stratosphere (UTLS)

will benefit the understanding of its climate, which is influenced by numerous global, re-

gional, and local climate variability modes, e.g., the Indian Ocean Dipole (IOD; Saji et
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al. 1999), El Niño–Southern Oscillation (ENSO; Scherllin-Pirscher et al. 2012), North

Atlantic Oscillation (NAO; Hurrell et al. 2003), Southern Annular Mode (SAM; Fogt et

al. 2011), Madden–Julian Oscillation (MJO; Zhang 2005), Quasi-Biennial Oscillation (QBO;

Baldwin et al. 2001), the Inter Tropical Convergence Zone (ITCZ; Basha et al. 2015),

the Tropical Easterly Jet (TEJ; Nicholson & Klotter 2021), West African Monsoon (WAM;

Sultan & Janicot 2003), growing ozone pollution in the Southern Africa (Thompson et

al., 2014), and changing climate in the mountainous region (Kubokawa et al., 2016). Even

though these climate drivers are known to trigger multi-effect severe weather and climate

conditions (e.g., J. L. Awange et al. 2013), there are only a few studies that attempt to

understand the African tropopause variability in relation to these climate drivers.

Indeed, that the tropopause, a transitional region (i.e., 9 km to 17 km) between

the stratosphere and the troposphere could offer the possibility to quantitatively ana-

lyze upper level atmospheric characteristics in relation to regional climate variability and

change over Africa is supported by regional studies that have been conducted, e.g., in

Australia (Khandu et al., 2011), Ganges-Brahmaputra-Meghna basin (Khandu et al., 2016),

South America (Nascimento et al., 2020), and the tropical and subtropical tropopause

regions (Tegtmeier et al. 2020). These studies were motivated by Santer, Sausen, et al.

(2003); Santer, Wehner, et al. (2003) who reported that the warming of the upper tro-

posphere (UT, e.g., due to increased greenhouse gas emissions) and cooling of the lower

stratosphere (LS, e.g., due to stratospheric ozone depletion) lead to a rise in tropopause

height, indicating that climate change impacts can be quantified through UTLS mon-

itoring. Subsequently, many studies on monitoring the global tropopause have explored

various data sets ranging from in-situ radiosonde to high vertical resolution data acquired

from Low Earth Orbit (LEO) satellites, i.e., satellite-based data (e.g., Shangguan et al.

2019), radiosonde data (e.g., Feng et al. 2012), and reanalysis products (e.g., Xian & Home-

yer 2019). Nonetheless, such global tropopause assessments have limited physical impli-

cations and spatial importance at regional scales such as Africa (Franzke et al. 2020).

For example, recent studies on global tropopause by Xian & Homeyer (2019) and trop-

ical tropopause characterization by Tegtmeier et al. (2020) revealed large spatial incon-

sistencies between reanalyses and observations over equatorial Africa. A comprehensive

and in-depth analysis of tropopause characteristics over Africa is, thus, still missing.

Despite almost two decades of advancement in the application of GNSS-RO glob-

ally and regionally, its use in Africa’s climate-related studies has not been explored. This
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study, therefore, takes advantage of the 20 years (2001–2020) of GNSS-RO data over Africa

from multiple mission GNSS and LEO satellites to (i) statistically compare and validate

GNSS-RO (including the latest COSMIC-2) profiles against radiosonde and reanalysis

products (including the state-of-the-art ERA5), (ii) address the missing radiosonde data

and assess reanalysis products of Modern-Era Retrospective analysis for Research and

Applications (MERRA-2) and ERA5, and finally (iii), use the GNSS-RO and reanaly-

sis products to assess the tropopause variability over Africa in relation to global (e.g.,

ENSO, IOD, NAO, SAM, MJO, and QBO), regional (e.g., ITCZ, TEJ, WAM, and re-

gional ozone variability), and local climate drivers (e.g., impacts of local air-ocean in-

teraction on tropopause).

2 Data and methods

2.1 Data

2.1.1 Radiosonde

Radiosonde data used in this study is obtained from Integrated Global Radiosonde

Archive version 2 (IGRA v2), an improvement of IGRA version 1 (Durre et al. 2018; https://

www1.ncdc.noaa.gov/pub/data/igra/). The IGRA data provides primary atmospheric

variables (i.e., geopotential height, temperature, relative humidity, pressure, and wind

speed, etc.) at the mandatory, significant, tropopause, and surface pressure levels (Durre

et al. 2006) for each launch time. World Meteorological Organization (WMO) archives

radiosonde station information across the globe and provides each radiosonde station’s

historical and operational status, including location, latitude, longitude, declared report-

ing status, type of station, WMO identifier, and elevation (World Meteorological Organ-

ization 2020; https://www.wmo.int/datastat). In this study, WMO data are used to

reevaluate the African radiosonde network. Problematic radiosonde data are identified

if the radiosonde profile has less than five temperature readings. Furthermore, low-quality

data is identified if the balloon did not reach the desired pressure level (i.e., at least 30

to 70 hPa dependent on the region). Neither problematic nor low-quality radiosonde data

are used for comparison with GNSS-RO and reanalyis data in this study.
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2.1.2 GNSS-RO

GNSS-RO measurements used in this study are provided by the COSMIC Data Anal-

ysis and Archive Center (CDAAC; https://cdaac-www.cosmic.ucar.edu/cdaac/doc/

about.html). Multiple products, including raw measurements and retrieved atmospheric

profiles are made available. CDAAC is a processing and service center for data collected

from various RO missions such as CHAMP (2001–2008), GRACE (2007–2017), COS-

MIC (2006–2020), MetOp-A (2016–2019), and COSMIC-2 (2019–2020). CHAMP, launched

in July 2000 to succeed the first proof-of-concept occultation mission Global Position-

ing System / Meteorology (GPS/MET), collected approximately 650 vertical profiles over

Africa per month, summing up to 59,620 profiles from May 2001 - October 2008 (see Fig-

ure 1). Note that CHAMP did not collect observations from July 3, 2006, to August 8,

2006 due to technical issues (Foelsche et al., 2008).

GRACE, a US/German collaborative mission, was launched in March 2002 and pro-

vided the first occultation observation on July 28, 2004 (Wickert et al., 2005). Before

2007, its data were not made available from CDAAC. It has provided approximately 530

profiles over Africa per month, with a total of 68,537 profiles from February 2007 to Novem-

ber 2017 (see Figure 1). The GRACE satellite mission ended in 2017 and was succeeded

by the GRACE-FO mission launched on May 22, 2018, whose products were not avail-

able at CDAAC at the time of this study. The number of GNSS-RO profiles has grown

considerably since the successful launch of the COSMIC constellation of six satellites in

2006 (see Figure 1). COSMIC is a joint project between the Taiwanese National Space

Program Office (NSPO) and University Corporation for Atmospheric Research (UCAR).

The constellation provided approximately 5,800 profiles over Africa per month, i.e., a

total of 991,691 vertical profiles between April 2006 and April 2020. Note that COSMIC

exhibits a data gap of RO profiles between April 1, 2019, and September 30, 2019, due

to decommissioning of the mission. Therefore, post-processed MetOp-A data are used,

which provided approximately 2,600 profiles per month and a total of 117,043 profiles

from January 2016 to September 2019.

Following the successful operation of the COSMIC mission, the next generation COSMIC-

2/FORMOSAT-7 was launched on June 25, 2019, providing approximately 30,000 high-

quality profiles over Africa per month. As shown in Figure 1, COSMIC-2 has an increased

number of profiles over Africa due to the low inclination of the six COSMIC-2 satellites,
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Figure 1: Temporal evolution of the number of GNSS-RO dry temperature profiles that

were used to study tropopause variability and fill the radiosonde data gap over Africa

from May 2001 to April 2020. The figure shows the number of monthly observations pro-

vided by CHAMP, GRACE, COSMIC, MetOp-A, and COSMIC-2.

which leads to a higher measurement density at low- and mid-latitudes (Schreiner et al.,

2020) compared to other RO missions. Daily COSMIC-2 data are published by CDAAC

at 02:00 UTC on the following day. The constellation has collected a total of 192,608 ver-

tical atmospheric profiles over Africa from October 2019 to April 2020 (see Figure 1).

In this study GNSS-RO profiles are excluded if the identified tropopause temperature

and height exceed the range of 150 K to 250 K and 5 km to 25 km, respectively.

2.1.3 Reanalyses

The reanalyses data sets used in this study are temperatures, pressures, and geopo-

tential heights provided by ERA5 and MERRA-2 for the period consistent with that of

GNSS-RO data sets (May 2001 to April 2020). ERA5 is the 5th generation ECMWF re-

analysis (Hersbach et al. 2020; https://apps.ecmwf.int/data-catalogues/era5/?class=

ea), replacing the ERA-Interim reanalysis. It provides hourly atmospheric profiles at 137

model pressures levels on a global 0.25◦ × 0.25◦ grid. ERA5 combines model data with

observations from across the world through data assimilation to produce the best esti-

mates of the state of the atmosphere, and has an improved spatial and temporal reso-

lution compared to MERRA-2 (see Table 1(I)). Note that the ERA 5.1 is employed in
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this study for the period of 2001 to 2006 to avoid the tropopause cold bias (Simmons et

al., 2020). ERA5 is used for the remaining period.

The MERRA-2 data have a spatial resolution of 0.5◦ × 0.625◦ and a consolidated

vertical grid at 72 model levels (Gelaro et al. 2017; https://disc.gsfc.nasa.gov/datasets).

Model level products of both ERA5 and MERRA-2 are used from 2001 to 2020 since they

offer higher vertical resolution profiles.

2.1.4 Climate variability indices

The global climate variability indices used in this study are ENSO (Trenberth &

Stepaniak 2001), NAO (Hurrell & Deser 2010), IOD (Saji et al. 1999), QBO (Baldwin

et al. 2001), MJO (Wheeler & Hendon 2004), and SAM (Marshall 2003). All climate in-

dices are obtained from May 2001 to April 2020. Table 1(II) provides a summary of the

indices used. MJO, SAM, and NAO are smoothed with a 3-month moving average to

reveal mid- and long-term variability, while ENSO, QBO, and IOD indices are provided

already having been smoothed. The smoothed indices are checked against the raw in-

dices to avoid over-smoothing that can lead to loss of climate variability patterns (see

e.g., Hansen et al. 1998). No over-smoothed indices are detected.

Indices of regional climate drivers are calculated from zonal wind at 150 hPa (TEJ).

ITCZ is represented by Outgoing Longwave Radiation (OLR) while the WAM is cap-

tured through rainfall data provided by Precipitation Estimation from Remotely Sensed

Information using Artificial Neural Networks (PERSIANN; Hsu et al. 1997). PERSIANN

contains the highest signal-to-noise ratio (SNR) and is thereby a suitable product to be

employed over Africa (J. L. Awange et al., 2016). The southern Africa total ozone in-

dex is based on monthly area-averaged ozone values derived from an assimilation prod-

uct that contains 15 different types of satellites observations. This type of ozone data

has very few data gaps, but is only available from May 2001 to Dec 2018 (Copernicus

Climate Change Service, 2018). Zonal wind and OLR are obtained from the NCEP re-

analysis provided by the NOAA Earth System Research Laboratories (ESRL; Kalnay

et al. 1996). In this study, the NCEP reanalysis serves as an independent data source.
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Table 1: Summary of data used in this study. (I) Radiosonde, GNSS-RO, and reanalysis

products. (II) Climate indices.

(I) Data used for this study

Source Temporal resolution Spatial resolution
Vertical resolution

at UTLS (m)
Period

Radiosonde
(IGRA V2)

6-hourly or 12-hourly 50 stations N/A May 2001 - April 2020

CHAMP 650 profiles/month

≈100-300
(Scherllin-Pirscher et al., 2021)

May 2001 - Oct 2008
GRACE 530 profiles/month Feb 2007 - Nov 2017
COSMIC 5,800 profiles/month April 2006 - April 2020
COSMIC-2 30,000 profiles/month Oct 2019 - April 2020
MetOp-A 2,600 profiles/month Jan 2016 - Sep 2019

ERA5 Hourly and monthly 0.25◦×0.25◦
≈350

(Hersbach et al., 2020)
May 2001 - April 2020

MERRA-2 3-hourly and monthly 0.5◦×0.625◦
≈500

(Gelaro et al., 2017)
May 2001 - April 2020

(II) Climate indices

Climate
driver

Region Variables url

NAO 20◦-80◦N; 90◦W-40◦E Sea Level Pressure (SLP) anomaly a

IOD (i) 50◦-70◦E; 10◦S-10◦N (ii) 90◦-110◦E; 10◦S-10◦N Sea Surface Temperature (SST) gradient b

ENSO 5◦N-5◦S; 170◦-120◦W SST anomaly (Niño 3.4) c

QBO 10◦N-10◦S zonal-mean winds at 50 hPa d

SAM 40◦-65◦S zonal-mean SLP e

MJO Equatorward of 30°N, 20°E 200-hPa velocity potential anomalies f

ITCZ 30◦-38◦E; 13◦-18◦N OLR g

TEJ 5◦W-15◦E; 5◦-15◦N zonal-mean wind at 150 hPa

Total
ozone

10◦ - 35◦E; 25◦ - 40◦S area-averaged total ozone h

WAM 5◦W - 5◦E; 6◦ - 8◦N Precipitation i

a https://climatedataguide.ucar.edu/sites/default/files/nao pc monthly.txt

b https://psl.noaa.gov/gcos wgsp/Timeseries/DMI

c https://psl.noaa.gov/data/correlation/nina34.data

d https://www.cpc.ncep.noaa.gov/data/indices/qbo.u50.index

e https://legacy.bas.ac.uk/met/gjma/sam.html

f https://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjo.shtml

g https://psl.noaa.gov/data/timeseries/

h doi.org/10.24381/cds.4ebfe4eb

i http://chrsdata.eng.uci.edu/

–10–



manuscript submitted to JGR: Atmospheres

Obtain GNSS –
RO data for 

Africa

Validation 
against 

radiosonde

Application of GNSS-
RO and reanalysis 

products to tropopause 
variability analysis

Local climate drivers
• Asian (Summer) 

Monsoon

Global climate drivers
• ENSO
• IOD
• NAO
• QBO
• SAM
• MJO

Regional climate drivers
• The African ITCZ
• Regional ozone variability
• WAM
• TEJ

Consistency check
• ERA5
• MERRA-2

Use GNSS-RO to in-fill 
radiosonde data gap

Compute WMO 
thermal tropopause

Remove sampling 
error

Gridding data on 
2◦ × 2◦

Interpolation uses 
spring metaphor

Identify
co-located 

profiles

Figure 2: Schematic workflow of using GNSS-RO to address the radiosonde data gap and

investigate tropopause variability over Africa in relation to climate drivers (global and

regional) as well as local drivers.

2.2 Method

This study follows the workflow presented in Figure 2. First, GNSS-RO data are

obtained from the various missions. Second, co-located (within 100 km and 3 h) GNSS-

RO profiles, radiosonde observations, and reanalysis products are identified to conduct

a thorough statistical validation and comparison. Then, tropopause temperature and height

are obtained from individual profiles and gridded into 2 ◦ × 2◦ monthly climatological

fields. The sampling error is estimated and subtracted from monthly-mean GNSS-RO

fields (Pirscher et al., 2007; Foelsche et al., 2011). GNSS-RO are then interpolated us-

ing the spring analogy (D’Errico, 2004). Subsequently, the incomplete and inconsistent

radiosonde record over Africa is filled with GNSS-RO data. Finally, GNSS-RO fields are

used to characterize the African tropopause and analyze tropopause variability in rela-

tion to global, regional, and local climate drivers. Consistency checks between GNSS-

RO and reanalysis products (i.e., ERA5 and MERRA-2) are carried out throughout.
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2.2.1 Definition of the tropopause used in this study

The WMO (1957) thermal tropopause definition (also known as the lapse rate tropopause

(LRT)) is applied to identify the tropopause from all data sets. WMO (1957) defines the

tropopause as “the lowest level at which the lapse rate decreases to 2 ◦C km−1 or less,

provided also the average lapse rate between this level and all higher levels within 2 km

does not exceed 2 ◦C km−1”.

2.2.2 Validation method

To compare GNSS-RO with in-situ radiosonde data from across Africa, the mean

temperature difference ∆T (l) and the corresponding standard deviation σ∆T (l) are cal-

culated at pressure levels l = 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, and

20 hPa and at tropopause level by:

∆T (l) =
1

M(l)

M(l)∑
i=1

TGNSS(i, l)− TRS(i, l), (1)

σ∆T (l) =

√√√√ 1

M(l)− 1

M(l)∑
i=1

(TGNSS-RS(i, l)−∆T (l))2, (2)

where M(l) is the number of data points at the level l, TGNSS and TRS are the temper-

ature from GNSS-RO and the radiosonde data, respectively (Wickert, 2004). TGNSS-RS

are the actual temperature differences between GNSS-RO and radiosonde data. Com-

parisons between radiosonde and GNSS-RO data are made only for profiles less than 100 km

and 3 hours apart from each other (Khandu et al., 2011). Data are discarded if they ex-

hibit a temperature difference of more than 15 K at above 9 km for quality control. Dif-

ferences caused by comparing GNSS-RO dry temperature and radiosonde physical tem-

perature are usually less than 5 K above 9 km (see Scherllin-Pirscher et al., 2011). For

all GNSS-RO and radiosonde profile pairs, their co-located ERA5 and MERRA-2 pro-

files are extracted as well and used for comparison. Kling-Gupta Efficiency (KGE; Gupta

et al. 2009) is used to measure the agreement of GNSS-RO and reanalysis products against

radiosonde.

KGE = 1−
√
(r − 1)2 + (α− 1)2 + (β − 1)2 (3)

where r represents the correlation between GNSS-RO and radiosonde data, α is the ra-

tio between the standard deviation of GNSS-RO and the standard deviation of radiosonde
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data, and β is the ratio between the mean of GNSS-RO and the mean of radiosonde data.

The same procedure applies to reanalysis products for comparison. The KGE value equal

to 1 indicates the model perfectly fits radiosonde data.

2.2.3 GNSS-RO climatological fields

All GNSS-RO data are monthly gridded at a spatial resolution of 2◦ × 2◦, as an

individual RO profile has on average a horizontal extension of 250 km along the ray (see,

e.g., Scherllin-Pirscher et al. 2021). Due to the high consistency of GNSS-RO measure-

ments (Angerer et al., 2017), high-quality profiles from several missions are merged for

tropopause variability analysis. Tropopause parameters are obtained from dry atmospheric

products, which accurately describe “real” physical conditions in regions where humid-

ity is small (see, e.g., Kursinski et al. 1997; Scherllin-Pirscher et al. 2011). GNSS-RO sam-

pling is inhomogeneous, and as such, it includes sampling errors due to unevenly distributed

observations in both time and space (Pirscher et al., 2007; Foelsche et al., 2011). These

sampling errors are estimated using co-located ERA5 reanalysis profiles (i.e., at four times

00:00, 06:00, 12:00, and 18:00 UTC) and monthly mean ERA5 fields. The climatolog-

ical difference (i.e., the sampling error) of the reanalysis products was subtracted from

the GNSS-RO climatology. More details on this method can be found in Pirscher et al.

(2007) and Foelsche et al. (2008). Empty grid boxes are filled by using a spring analogy

interpolation algorithm invented by D’Errico (2004). The sampling error-corrected spa-

tially interpolated GNSS-RO fields are used for tropopause variability analysis.

2.2.4 Correlation analysis

The instantaneous Pearson correlation coefficient is used to analyze the relation-

ship between global climate indices and tropopause variability, see, e.g., Scherllin-Pirscher

et al. 2012; Anyah et al. 2018. First, low pass filters (i.e., order = 4; cutoff period = 12

months) are applied to African tropopause temperature and height fields to filter noise.

Then, the spatial-temporal relationship between deseasonalized tropopause parameters

(temperature and height) and climate indices is established. Statistically insignificant

results (P > 0.05) are removed from the analysis.
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2.2.5 Principal Components Analysis

Principal Components Analysis (PCA; Preisendorfer & Mobley 1988) is applied to

extract the most dominant signals explaining the majority of variability in the two-dimensional

atmospheric data sets. The input data are first deseasonalized and then decomposed into

modes of variability (Dt,s). Each mode n is expressed by an Empirical Orthogonal Func-

tion (EOF) representing the