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Abstract

This study develops a long short-term memory mode (LSTM) neural network algorithm for the prediction of tropical cyclone

intensity (maximum wind speed). This is achieved by combing the statistical tools of machine learning and the dynamical earth

system model of Typhoon Mangkhut (2018). The Navy’s Coupled Ocean/Atmosphere Mesoscale Prediction System is used to

produce an ensemble of runs of Mangkhut to train the LSTM. Being able to predict the behavior of tropical cyclones allows

for a way to analyze the complex dynamical inputs to investigate the driving forces behind periods of rapid intensification,

stagnation, and weakening. The controlling parameters that produced the best prediction are the mean inner surface heat

flux, amplitude of the first order asymmetry in the inner heat flux, the angle difference between the first order asymmetries of

vorticity output at 850mb and 500mb, and the amplitude of first order asymmetry in the geopotential height at 850mb.

Introduction:

Traditional neural networks only use a single time as the input for prediction, which can be a shortcoming for
complex dynamical systems like the atmosphere. Thus, we used a specific recurrent neural network (RNN)
called a Long Short Term Memory1,2 (LSTM) network, where the ability to retain trends and past behavior
is inherent in the structure of the memory module. The simplest way to understand the LSTM process is
to walk the data through a single LSTM cell. The first operation is a forget gate shown in figure S1 as
theσ neural operator in the lower left of the LSTM cell. The forget gate uses a sigmoid operator to assess
how much of the cell state is forgotten. The second stage of the LSTM is a combination ofσ and tanh
neural operators where the new data at timet , Xt , is evaluated with the output of the previos cell, ht-1 ,
for updating the cell state. The combination of both neural operators allow for the updating of memory for
new conditions, such as a change in the symmetry of the eyewall or crossing into a cooler ocean, without a
complete loss of information about the prior storm state. The forgetting gate and update are then combined
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in order to produce a new candidate state, shown in the top row of figure S1. The final σ gate then decides
whether the candidate state is accepted over the previous cell state, which allows for enough wiggle in the
LSTM to minimize the chance of sticking in a local minima.

Figure S1: An LSTM cell in chain, whereht’ is maximum wind speed from COAMPS model at timestep
(t’) and is the input at the bottom of each new cell, t’ is time at prediction, and Xt is vector of “features”
or variables of interest that we hope to predict the behavior of ht . Inside the LSTM gate is the process of
updating the predictive values (the top through arrow) based on the neural layers, sigmoid (σ) and tanh for
forget and cell-state memory respectively.

LSTM model was developed using the python module Tensorflow3 and Keras4. The open source nature of
the python toolkit provides for building a functional statistical model with relative ease. For our build the
time that was used in the memory was 6 hours and the forecast prediction (ht’ ) of maximum winds was
24 hours in the future. In the language of tensorflow and with hourly data output, this translated to a
“lookback” of 6 and a “delay” of 24 hours in code.

Constant radius

Hosted file

image2.png available at https://authorea.com/users/546157/articles/602292-combining-lstm-

statistical-analysis-with-dynamical-models-to-investigate-typhoon-mangkhut-2018

Testing the idea of eye-following inner radius, we tried a constant inner core of 30 to 60km. The variability
of radius of maximum winds was generally within this range, but has both storm-length trends and diurnal
variation within that range. For our 13 runs of Typhoon Mangkhut, the standard deviation of the eye-radius
ranged from 8 to 24 km.

Figure S2: predicted maximum wind speed compared to COAMPS using model developed from constant
radius near-eye region, showing the high wind speed bias in the model predictions. The black plusses show
the actual observed COAMPS max wind speed from Mangkhut, the red line shows the three hour smoothing
used for the LSTM validation, and the blue line shows the LSTM prediction of maximum winds.

And while the trends captured in the mean behavior of the fixed radius and eye-following radius were largely
similar, the first order deviations from the mean were meaningfully different. In figures S3 and S4, the
surface heat flux is shown. The data from COAMPS was separated in the ring into the mean value, first,
and second order sine series residuals, where each order is based on a curve fitting of a sine function around
the circle with an output of angle of offset and an amplitude. As the LSTM model we developed used both
the first order asymmetry heatflux and the angle of first order for vorticity at 500 and 850mb, which both
depend on the inner core region dynamics, the model output went from a prediction with a 2.75 kts mean
absolute error (MAE) with eye-following inner region to 8.2 kts MAE with the constant inner region.
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Figure S3 : Surface heatflux from the region of constant radius 30-60 km from the eye broken into compo-
nents based on the order of the sine series expansion around the eye.

Figure S4: surface heatflux from the region of variable, eye-following radius broken into components based
on the order of the sine series expansion around the eye.

Further investigation of constant-radius inner regions revealed similar results, intimating that the asymmetry
in the eyewall region is an important characteristic of the storm to capture. The choice of scale for the eyewall-
following inner region, set at 0.8 to 1.2 times the radius of maximum winds, was then set by the requirements
of curve fitting the sine series around the radius, balancing the requirements for narrower spacing to capture
higher order asymmetry and narrower band around the eyewall to minimize the influence of inner eye and
rain band contamination of the eye signal.
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Abstract

The study develops a long short-term memory mode (LSTM) neural network al-
gorithm for the prediction of tropical cyclone intensity (maximum wind speed).
This is achieved by combing the statistical tools of machine learning and the
dynamical earth system model of Typhoon Mangkhut (2018), The Navy’s Cou-
pled Ocean/Atmosphere Mesoscale Prediction System is used to produce a high
dimensional dataset from an ensemble of runs of Mangkhut to train the LSTM.
Being able to predict the behavior of tropical cyclones allows for both an early
warning of behavior and as a way to analyze the complex dynamical inputs to
investigate the driving forces behind periods of rapid intensification, stagnation,
and weakening. For Mangkhut case, we found that the controlling dynamic for
rapid intensification was the balance between asymmetry near the eyewall and
the available thermal energy as measured by heat flux to the atmosphere. The
input parameters to LSTM that produced the best prediction are the mean in-
ner surface heat flux, amplitude of the first order asymmetry in the inner heat
flux, the angle difference between the first order asymmetries of vorticity out-
put at 850mb and 500mb, and the amplitude of first order asymmetry in the
geopotential height at 850mb.

1 Introduction:

Forecasting the intensity of tropical cyclones (TCs) remains a complicated prob-
lem due to a combination of multiscale dynamics 1,2 and dependence on en-
vironmental factors such as ocean temperature3,4, steering forces5, and shear
conditions6. The forecast of TC track has increased in accuracy over the pre-
ceding decades, however progress on TC rapid intensification (RI) forecast has
lagged behind7. As such intensification rates of major (cat 3-5), open-ocean TCs
remain a key and potentially deadly error1,8. Another mechanism observed in
the co-evolution of ocean and atmosphere is the rotation of the momentum
fluxes associated with eye-passage that alters the turbulent mechanisms of en-
trainment into inertial and internal waves in the ocean surface boundary layer to
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lead to prolonged deepening of the atmosphere and ocean mixed layer associated
with the cold wake and cold wake interaction9.

The Northwest Pacific Basin (NWPB) represents a special case, where the
conditions commonly focused on for intensification in the North Atlantic
basin such as ocean heat content and background shear10,11 are more
readily available in the NWPB12,13. Specifically, the Western North Pa-
cific warm pool dipole is a deep and persistent oceanic reservoir of high
temperature waters to fuel TC development14,15. This ready energy for
strengthening intimates that the timing of intensification and the max-
imum sustained strength reached depend on predicting the evolution of
storm-scale features as the TC. progresses through the NWPB (e.g. 6,16,17).

Figure 1 shows the best track for Typhoon Mangkhut (2018) located in the
NWPB and strength with circular markers and the tracks and strengths from
the COAMPS ensemble.

Typhoon Mangkhut represents a good test-bed for predictive studies in the
WNPB causing damage in Guam, the Philippines, and Southern China in
September 201818. After a period of almost a week in conditions of low shear
and high ocean heat content transiting from the Marianas Islands, Mangkhut
made landfall in North of the Philippines at 1800 UTC on the 14th of September
as a category 5 equivalent super typhoon. Understanding and predicting the
intensity of such dangerous storms is imperative and we seek to narrow the gap
in rapid intensification forecast by leveraging machine learning techniques.

Recent studies have shown that under strong TC forcing the ocean evolves
at time-scales as to influence TC intensity predictions9. And where it is
commonly known that sea surface temperature raises the potential for rapid
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intensification3,19, the co-evolution of the ocean under a rapidly-intensifying TC
represents a key pillar of not only the initial phase of rapid intensification, but
the ability of the ocean-atmospheric system to sustain the newly-strengthened
storm. Utilizing the machine learning technique of a long short-term memory
mode (LSTM) neural network model20 in conjunction with coupled dynamical
model output for TCs in the NWPB allows for the analysis of large amounts of
physically relevant data to illuminate processes that modulate TC intensity.

2 Data and Methods:

By utilizing the Navy’s Coupled Ocean/Atmosphere Mesoscale Prediction Sys-
tem (COAMPS) model21,22, we generated an ensemble of COAMPS simulated
Mangkhut TC events, starting from 0600 UTC September 10th, 2018 to 1800
on the 12th every 6 hours. The capacity for COAMPS to accurately predict
TC intensity in the NWPB is competitive with other dynamical models22. By
setting ensemble members start at different times, the TC was able to have
multiple different starting locations, intensities, and sizes, thus increasing the
range variables. The initial ocean state variables are taken from the GOFS 3.5:
41-layer HYCOM23 and the initial and lateral boundary atmospheric conditions
are from Global Forecast System (GFS). The atmospheric model is coupled with
the Navy Coastal Ocean Model (NCOM24,25) with 45 vertical layers. The hor-
izontal resolution of the atmospheric and ocean models is 4 km with 10 min
coupling frequency. Mangkhut’s ocean evolution was captured by the Scripps
Institute of Oceanography float array26 observation during the 2018 Propaga-
tion of Intra-Seasonal Tropical Oscillations (PISTON) Office of Naval Research
filed campaign27 but is not assimilated into the Navy Coupled Ocean Data
Assimilation system28 (NCODA).

The COAMPS run initialized on 2018/9/10 at 0000 is used as the ground truth
against the LSTM, once trained on the other 11 members of the ensemble, is
evaluated. Figure 1 illustrates the consistent grouping of TC tracks from the
COAMPS ensemble sweeping North over Luzon, differing in a key manner from
the best track where the TC went over land in the Philippines29. The land inter-
action caused both extreme damage and lowered the intensity of the observed
storm30. Despite the model track and intensity biases, the model ensemble was
self-consistent in track and intensity biases due to consistent boundary condi-
tions and land-interactions in all the runs. Thus the storms from the ensemble
represented good training for the validation run without having to account for
differential atmosphere and ocean pre-storm environment encountered due to
variability of track forecasts. Moreover, COAMPS permits for a much more
dense data output than contemporary machine learning models of TC behav-
ior from the Statistical Hurricane Intensity Prediction Scheme2,7 (SHIPS) and
coarser-resolution reanalysis data11,31,32. Hence by increasing the density of
training data, we can evaluate whether our model can parse more of the phys-
ical forces and interactions underpinning the development of TCs use one TC
ensemble.
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Figure 2 shows the TC-centered maps of COAMPS fields used in the final LSTM:
a) latent and sensible surface heat flux (W m-2), b) the difference in vorticity
between the mid and low levels as output at 500mb and 850mb respectively
(S-1), c) the wind field (kt), and d) the geopotential heights (m). In all plots the
inner two circles encompass the region near the eyewall set between 0.8 and 1.2
times the radius of maximum winds and the further two concentric rings bound
the far field set at 160-200km from the eye regions are shown, with the goal of
finding asymmetry in eye structure and environmental boundaries respectively.

The LSTM neural network is suitable to assess the state conditions with a TC
intensity predictor as presented by Li et al. (2017) and Yang et al. (2020).
Additionally, we can fully assess the influence of the ocean that has both ahead-
of and after eye passage as well as on the right and left side of the TC because
COAMPS atmosphere is two-way coupled with a 3D NCOM ocean model that
evolves and interacts with the TC33,34. The variables at the ocean surface, which
include sea surface temperature, salinity, and heat flux, are input as potential
variables for the LSTM as well as the reciprocal fluxes in the atmospheric data.

3 LSTM Setup and Variables:

The LSTM we developed uses the hourly output of COAMPS variables as se-
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quential inputs. Rather than requiring the machine learning model to deal with
the evolution of 4D fields output from the numerical models over time, the data
is compressed to regions of interest as shown in recent research of the inner core
ocean interaction and structure16,35,36 and the outer region TC response to the
regional-scale conditions 12,18. Thus, the variables used in the LSTM are gar-
nered by taking the radial averages and first order perturbation at the regions
around the radius of maximum winds (0.8 – 1.2 times rmax) and farther afield
(160-200 km) from the center of the storm determined by minimum atmospheric
pressure at sea level. By using the variable eye-radius as the inner metric, we
were able to minimize the effect of diurnal cycles, eye-wall replacement cycles,
and other higher frequency perturbations of eyewall radius that added non-
predictive signals to averaging across any predesignated radius. Then in order
to ascertain the first order perturbations of the variable fields, the circumference
of the storm was segmented into 15 wedges. A sine function was then fitted to
the residuals of the variable after the mean was taken out, outputting an ampli-
tude and phase of the perturbation. This permits the known spatial variability
of physically meaningful processes5,9,19 to be assessed and used in lieu of over-
sampling the RI events as proposed in Yang et al. (2020). In order to aid the
LSTM model in dealing with large difference in magnitude of the variables, we
normalized each to range of zero to one across all simulation runs of Mangkhut.

The advantage of the LSTM methodology follows from the ability to gener-
ate state-functions, which act like wave functions that can be superimposed to
maximize the probability of predicting intensity, while the forgetting gates can
minimize overfitting31,32. The sequential nature of the data yields a data struc-
ture that looks at time t and each hour’s data from the 5 hours previous to
forecast the maximum winds at time t’.

4 Variable selection and Results:

Using a mean absolute error (MAE) as the metric to evolve the LSTM param-
eters and allowing the data to be processed over the ensemble for 30 epochs,
the LSTM performed the fitting. We ran the model with every selection of 3, 4
and 5 variables as predictive for maximum wind speed. The resultant predictive
models were compared using Akaike information criterion, which seeks to weigh
the advantages of including more variables against the predictive accuracy37.
Thus, the best model for Mangkhut was developed from including the follow-
ing variable inputs: mean inner surface heat flux, amplitude of the first order
asymmetry in the inner heat flux, the angle difference between the first order
asymmetries of vorticity output at 850mb and 500mb, and the amplitude of
first order asymmetry in the geopotential height at 850mb. The resultant MAE
across the evolution of the storm is 2.75 kts. Figure 3 shows the resultant pre-
dictions developed from the LSTM, illustrating the models ability to capture
both periods of rapid intensification and arresting of intensification into a steady
state storm. Allowing us to grasp that the physical constraints most controlling
the intensity of Mangkhut represent a balance of the symmetry of the storm and
the total heat flux, which dropped precipitously as the TC crossed the warm
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pool dipole into the South China Sea. Despite this drop in available energy, the
TC was able to maintain strength due to the symmetry of core processes.

Figure 3 shows the predictive power of the LSTM. The red line is the smoothed
maximum wind speed from the COAMPS run and the blue line represents the
value as predicted 24 hours in advance based on the time and five hours previous
from the LSTM inputs.

5 Conclusion and Discussion:

An LSTM model for forecasting the intensity of tropical cyclones within the
model realm of COAMPS has been developed with a high resolution coupled
ensemble of Typhoon Mangkhut (2018). By utilizing the information from high
resolution dynamical models, our predictive model of TC intensity captures
physical dynamics in a way that previous work31,32, which used single storm
values in SHIPS could not. Thus our LSTM, while similar in statistical tech-
nique and only single storm, could intimate more of the processes behind the
TC intensity trends. In the case of Mangkhut, this led to an illumination of the
role of eyewall asymmetry balancing the total heat flux in the inner core region.
The model variables offer physical insights into the development and sustained
intensity of Mangkhut. The mean inner surface heat flux reflects the available
energy for the TC determined mainly by the air-sea surface temperature differ-
ence and wind speeds. The first order asymmetry of the inner heat flux, the
correlated deviation of the eyewall winds with the available ocean energy, was
dominated by the asymmetry in the wind field for the majority of Mangkhut
but also included the variance due to ocean conditions. Similarly to the asym-
metry in the heat flux, the difference between the angle of vorticity asymmetry
between 850mb and 500mb in the inner region illuminates a portion of lower and
middle atmosphere vortex alignment and inertial stability. Asymmetry of the
geopotential height at 850mb, the last of the input variables, effectively shows
the variance in the boundary layer static stability around the TC38. And by
using the asymmetries in heat flux, vortex angle, and boundary layer height, the
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underlying influence of the atmosphere-ocean boundary is included along with
the rotational stability of the TC, allowing for the model to perceive both atmo-
spheric and ocean influence in TC development16,17,39,40, which in combination
led to a better fitness of model than any asymmetry individually. In all, we see
the intensification of Mangkhut is limited by the lower heat fluxes once the TC
is over the South China Sea, but the intensity sustains as the storm becomes
more symmetrical in slightly different ways in each COAMPS ensemble run.

Additionally, the model was developed using a framework that is repeatable and
can be extend in the scope of many storms and multiple basins. Being able to
rapidly predict the behavior of TC intensity, even with model environments,
will allow for more rapid accurate warnings to be developed . Additionally, the
use of physical variables and intuitive structure allowed for a deeper understand-
ing of the dynamics controlling the TC. Specifically, Mangkhut illustrates the
importance of inner core dynamics in the stability and growth of developed TCs.
By combining the developments in machine learning with dynamical models, we
can garner more insight than either alone.
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Figure Captions.

1. Figure 1 shows the best track for Typhoon Mangkhut (2018) located in the
NWPB and strength with circular markers and the tracks and strengths
from the COAMPS ensemble.

2. Figure 2 shows the TC-centered maps of COAMPS fields used in the final
LSTM: A) latent and sensible surface heat flux (W m-2), B) the difference
in vorticity between the mid and low levels as output at 500mb and 850mb
respectively (S-1), C) the wind field (kt), and D) the geopotential heights
(m). In all plots the inner two circles encompass the region near the
eyewall set between 0.8 and 1.2 times the radius of maximum winds and
the further two concentric rings bound the far field set at 160-200km from
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the eye regions are shown, with the goal of finding asymmetry in eye
structure and environmental boundaries respectively.

3. Figure 3 shows the predictive power of the LSTM. The red line is the
smoothed maximum wind speed from the COAMPS run and the blue line
represents the value as predicted 24 hours in advance based on the time
and five hours previous from the LSTM inputs.
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