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Abstract

The characterization of changes over the full distribution of precipitation intensities remains an overlooked and underexplored

subject, despite their critical importance to hazard assessments and water resource management. Here, we aggregate daily in

situ Global Historical Climatology Network precipitation observations within seventeen internally consistent domains in the

United States for two time periods (1951-1980 and 1991-2020). We find statistically significant changes in wet day precipitation

distributions in all domains – changes primarily driven by a shift from lower to higher wet day intensities. Patterns of robust

change are geographically consistent, with increases in the mean (4.5-5.7%) and standard deviation (4.4-8.7%) of wet day

intensity in the eastern U.S., but mixed signals in the western U.S. Beyond their critical importance to the aforementioned

impact assessments, these observational results can also inform climate model performance evaluations.
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Key Points 15 

● We find consistent shifts from lower to higher daily precipitation intensities, particularly 16 

in the central and eastern United States 17 

● All contiguous United States domains show significant changes in their distributions of 18 

precipitation intensity from 1951-1980 to 1991-2020 19 

● Mean and standard deviation of wet day precipitation intensities increase for nearly all 20 

domains in the central and eastern United States 21 

  22 



Abstract 23 

  24 

The characterization of changes over the full distribution of precipitation intensities remains an 25 

overlooked and underexplored subject, despite their critical importance to hazard assessments 26 

and water resource management. Here, we aggregate daily in situ Global Historical Climatology 27 

Network precipitation observations within seventeen internally consistent domains in the 28 

United States for two time periods (1951-1980 and 1991-2020). We find statistically significant 29 

changes in wet day precipitation distributions in all domains – changes primarily driven by a 30 

shift from lower to higher wet day intensities. Patterns of robust change are geographically 31 

consistent, with increases in the mean (4.5-5.7%) and standard deviation (4.4-8.7%) of wet day 32 

intensity in the eastern U.S., but mixed signals in the western U.S. Beyond their critical 33 

importance to the aforementioned impact assessments, these observational results can also 34 

inform climate model performance evaluations. 35 

 36 

 37 

Plain Language Summary 38 

  39 

Lots of research has been done to see how precipitation event totals are affected by climate 40 

change. Instead of yearly totals or extreme precipitation, we look at how daily precipitation is 41 

changing at all intensities, which has effects on natural hazards and related risks. We group 42 

daily rain gauge measurements within seventeen climate regions in the United States for two 43 

thirty-year time periods: 1951-1980 and 1991-2020. We find changes in daily precipitation 44 



intensity in all regions, changes that are mostly caused by a shift from lower to higher intensity 45 

events. We also identify a broad area within the central and eastern U.S. with consistent 46 

increases in average precipitation and its variability. Changes are mixed in the western U.S. In 47 

addition to the impacts mentioned above, our results can also be used to see how well climate 48 

models perform. 49 

 50 
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1. Introduction 58 

 59 

Anthropogenic climate change is driving shifts in global precipitation patterns (Douville et al., 60 

2021). Recent studies have characterized these shifts across a diversity of metrics and scales, 61 

including annual totals, frequencies of occurrence, and zonal distributions. At the daily scale, 62 

recent efforts have demonstrated robust changes in extreme precipitation intensities (i.e., the 63 

95th percentile and above; Seneviratne et al., 2021). However, characterization of changes in the 64 

full distribution of precipitation intensities – events which are, by definition, much more 65 

common – are often overlooked. While extreme precipitation events can produce outsized 66 



damages given their exceptional nature, changes in non-extreme precipitation have critical 67 

impacts on many Earth systems, including agriculture (Shortridge, 2019), infrastructure (Cook 68 

et al., 2019), and natural hazards (Dinis et al., 2021; Cannon et al., 2008). For example, including 69 

increasing daily precipitation variability in projections of future crop yields resulted in a 2-6% 70 

reduction in relative yields compared to projections excluding this factor (Shortridge, 2019). 71 

Here, to more comprehensively characterize daily precipitation shifts, we explore changes in the 72 

full distribution of wet day precipitation intensities over seventeen climatically-distinct regions 73 

across the United States. 74 

 75 

1.1. Why is precipitation changing? 76 

Globally, mean annual precipitation is expected to increase ~2%/K with warming (Trenberth, 77 

2003; Held and Soden, 2006; Wentz et al., 2007; Wood et al., 2021), though considerable 78 

observed and projected spatiotemporal variability underlie this estimate (e.g., Polade et al. 79 

(2014) globally; Caloiero et al. (2018) in Europe). Anthropogenic climate change is expected to 80 

alter precipitation patterns via both thermodynamic and dynamic processes. Thermodynamic 81 

changes are driven by an increase in atmospheric moisture content with warming, which occurs 82 

at a rate of ~6-7%/K as described by the Clausius-Clapeyron relationship. An increase in 83 

atmospheric moisture content leads to an increase in globally averaged rainfall, though 84 

magnitude estimates of the corresponding increase depend on spatial and temporal scales 85 

(Westra et al., 2014; Cannon and Innocenti, 2019; Sun et al., 2021; Wood and Ludwig, 2020; 86 

Wood et al., 2021; Bador et al., 2018, Giorgi et al., 2019). Globally averaged precipitation 87 

increases are also constrained by Earth’s energy budget, which leads to a discrepancy between 88 



increased moisture availability and precipitation change (Pendergrass and Hartmann, 2014a). 89 

Dynamically-driven precipitation changes are mostly associated with shifts in atmospheric 90 

circulation (e.g., Swain et al, 2016; Endo and Kitoh, 2014). Examples of these mechanisms 91 

include climatological shifts in cyclone and anticyclone tracks, baroclinic zones, and jets – which 92 

are driven by the reduction in the equator-pole temperature gradient – a poleward expansion of 93 

the descending branch of Hadley cells, and increases in land-sea temperature gradients (Polade 94 

et al., 2014). Altered precipitation totals can also be caused by more subtle changes, such as 95 

reductions in storm speeds (Kahraman et al., 2021). The relative importance of these factors 96 

varies widely depending on location. 97 

Locally, the rate of increase of precipitation for smaller-scale and heavy precipitation 98 

events parallels and can even exceed Clausius-Clapeyron scaling, particularly during 99 

convective precipitation (Lenderink and van Meijgaard, 2008; Guerreiro et al., 2018; Risser and 100 

Wehner, 2017) or where local conditions shift from favoring stratiform to convective 101 

precipitation (Berg and Haerter, 2013; Berg et al., 2013; Ivancic and Shaw, 2016). Prein et al. 102 

(2017) project increases in extreme precipitation frequency and intensity with rising 103 

temperatures in moist, energy-limited environments, along with abrupt decreases in dry, 104 

moisture-limited environments. However, the precise scaling of extreme precipitation to rising 105 

temperatures and moisture availability is dependent on a multitude of factors, including 106 

characteristics of local convection, topography, and synoptic-scale dynamics (Moustakis et al., 107 

2020). 108 

 109 

1.2 How is daily precipitation variability changing? 110 



Increases in the frequency and intensity of extreme daily precipitation have been widely 111 

observed (Westra et al., 2014; Donat et al., 2016; Asadieh and Krakauer, 2015; Sun et al., 2021; 112 

Wood et al., 2021; Alexander et al., 2006; Myhre et al., 2019) and generally agree with increases 113 

projected by climate model simulations (Moustakis et al., 2021; Toreti et al., 2013; Groisman et 114 

al., 2005; Fischer and Knutti, 2014; Fischer and Knutti, 2016; Myrhe et al., 2019; Min et al., 2011; 115 

O’Gorman, 2015). For example, Lehmann et al. (2015) found that record-breaking rainfall events 116 

occurred 12% more often than expected globally from 1981-2010 with an estimated 26% chance 117 

that a record-setting rainfall event is due to long-term climate change. Min et al. (2011) 118 

examined observed and modeled changes and found that climate change has contributed to the 119 

observed intensification of heavy precipitation events over two-thirds of the Northern 120 

Hemisphere. Sub-daily extreme precipitation is both observed and projected to increase at an 121 

even faster rate than daily extremes at regional and global scales (e.g., U.S., Prein et al., 2017; 122 

Netherlands, Lenderink and van Meijgaard, 2008; global, Westra et al., 2014).  123 

Despite widespread research into precipitation extremes, changes over the full 124 

distribution of precipitation intensities are less well-characterized. For instance, Chou et al. 125 

(2012) find an increase in heavy precipitation events relative to light in the global tropics in 126 

model simulations. Giorgi et al. (2019) find similar results over extratropical land, including an 127 

overall reduction in lower intensity event frequency and increase in higher intensity event 128 

frequency. Hennessy et al. (1997) modeled changes in daily precipitation and found distribution 129 

shifts from low to high intensity at high latitudes along with increased heavier precipitation 130 

events coincident with a reduction of moderate events in the mid-latitudes. Despite the 131 



identification of changes in distributions of precipitation intensity at broad global or zonal 132 

scales, studies at regional and local scales are sparse. 133 

In the United States, increases in mean annual precipitation and extreme precipitation 134 

have been noted, though changes are non-uniform and have seasonal dependencies (Easterling 135 

et al., 2017; Goble et al., 2020). Here, we focus on observed changes in daily precipitation. 136 

Increases in heavy to extreme precipitation are well established in the central and eastern U.S. 137 

(Groisman et al., 2012; Sun et al., 2021; Kunkel et al., 2013; Guilbert et al., 2015; Karl and Knight, 138 

1998; Pryor et al., 2008; Groisman et al., 2001; Villarini et al., 2013; Contractor et al., 2021; 139 

Groisman et al., 2005). In addition, increases in light-to-moderate precipitation frequency are 140 

driving a general increase in precipitation frequency in the U.S. (Pal et al., 2013; Goodwell and 141 

Kumar, 2019; Karl and Knight, 1998; Roque-Malo and Kumar, 2017). However, the evolution of 142 

the proportion of lower vs higher intensity wet days is less resolved with contradictory findings 143 

reported. For example, Groisman et al. (2012) found more frequent higher intensity events over 144 

the central U.S. despite no change in moderate intensity events. In contrast, Karl and Knight 145 

(1998) identified an increasing frequency of events across most percentiles and U.S. regions, 146 

including an increase in moderate intensity events. While findings focused on the eastern and 147 

central U.S. are generally consistent, studies focused on the western U.S. disagree. For example, 148 

Contractor et al. (2021) and Higgins and Kousky (2013) find generally increasing frequency and 149 

intensity of wet day events over the majority of the U.S. but decreasing moderate to heavy 150 

intensity events along the Pacific coast. Their findings are inconsistent with findings of 151 

increasing or insignificant extreme precipitation change on the U.S. west coast by Kunkel et al. 152 

(2013). Many previous analyses used gridded precipitation products (e.g., Contractor et al., 153 



2021) that possess known inconsistencies across products (Alexander et al., 2020) and center on 154 

heavy-to-extreme precipitation or arbitrary light or moderate thresholds (e.g., 50th percentile or 155 

10mm; Higgins and Kousky, 2013; Kunkel et al., 2013). To overcome these methodological 156 

limitations and reconcile disparate findings, here we examine changes over the complete 157 

distribution of precipitation intensities by spatially aggregating a large number of in-situ station 158 

observations across a high number of empirically determined, distinct U.S. climate regions. 159 

 160 

 161 

2. Methods 162 

 163 

To partition the U.S. into climatologically-distinct regions, we adopt the National Ecological 164 

Observatory Network (NEON) domains. These twenty domains were designed to be 165 

climatically homogeneous within-domains but distinct across-domains and were created using 166 

a multivariate geographic clustering analysis incorporating nine different temperature and 167 

precipitation variables (National Ecological Observatory Network, n.d.; Schimel, 2011; Keller et 168 

al., 2008). We center our analysis on the seventeen domains that compose the contiguous United 169 

States (Figure 1). Rather than analyze station records individually, we employ spatial 170 

aggregation to provide a larger sample size and better view of change over time given the 171 

inherent limitations of individual station statistics and internal climate variability. Spatial 172 

aggregation has frequently been employed in precipitation analyses (e.g., Fischer et al., 2013; 173 

Groisman et al., 2005; Kunkel et al., 2013). In addition to the seventeen domains within the 174 

contiguous U.S., we include findings for the remaining three domains, as well as replicate our 175 



analysis for the U.S. National Climate Assessment regions (NCA; Easterling et al., 2017), in the 176 

Supporting Information. 177 

Our analysis uses daily in-situ observations of precipitation from the Global Historical 178 

Climatology Network Daily (GHCN-D). The GHCN-D database is compiled by NOAA’s 179 

National Centers for Environmental Information and consists of records from over 80,000 180 

stations and 180 countries and territories, including the most complete collection of daily U.S. 181 

data available (Menne et al., 2012). Observations in GHCN-D have a sensitivity of 0.1 mm and 182 

undergo a series of nineteen quality control tests to flag duplicate data, climatological outliers, 183 

and other inconsistencies, as detailed in Durre et al. (2010).  184 

To examine changes in the distribution of wet day precipitation intensities, we aggregate 185 

all wet day precipitation observations for all qualifying stations within each domain, where a 186 

wet day is defined as a station-day observing 1 mm or more of precipitation. This is done for 187 

two thirty-year periods: 1951-1980 and 1991-2020. We choose the early time period (1951-1980) 188 

due to the proliferation of GHCN-D stations that peaked in this interval (see Fig. 3b; Menne et 189 

al., 2012); we selected the late time period (1991-2020) as the most recent 30-year interval with 190 

available data. The distributions are built around 30-year periods of reference to overcome 191 

known impacts of interannual modes of climate variability (e.g., Groisman et al., 2012) and align 192 

with World Meteorological Organization guidelines (World Meteorological Organization, 2017). 193 

To ensure quality of record and consistency in stations across periods, we include data from a 194 

station if 90% of the station-years in both periods are complete, where a complete year is 195 

defined as containing 90% or more of all available daily records after removal of any flagged 196 

entries. Applying this filter reduces available records from an initial 63,571 to 1,742 that are 197 



suitable for our analysis. Figure 1 depicts station locations and stations per domain. Finally, we 198 

manually check extreme outliers against historical records (e.g.., state records, U.S. National 199 

Weather Service records), to corroborate their validity. This final check identified 32 200 

unverifiable records that we remove from our analysis (Table S1).  201 

 202 

Figure 1: Station Locations and Domain Station Counts. (a) Map of qualifying GHCN-D stations (blue 203 

dots) overlaid on the United States with NEON domain boundaries in thick black and state borders in 204 

thin grey. (b) Histogram of the number of qualifying stations within each NEON domain.  205 

 206 

Qualifying wet day observations are aggregated into early or late period daily 207 

precipitation intensity probability distributions via block bootstrapping. Raw observations from 208 

qualifying stations are parsed into two-year station-segments, resampled with replacement, and 209 

combined. The resultant two-year aggregations are then stacked to produce a single 30-year 210 

precipitation intensity distribution sample for each domain; this process is replicated 1,000 211 

times for each period in each domain. We then calculate differences between early and late 212 

period distributions across four statistical moments (mean, standard deviation, skew, kurtosis). 213 

a

Northeast

Mid 
Atlantic

Southeast

Atlantic Neotropical

Great Lakes

Prairie 
Peninsula

Appalachians and 
Cumberland 

Plateau
Ozarks 

Complex

Northern Plains

Central 
Plains

Southern 
Plains

Northern 
Rockies

Great 
Basin

Southern 
Rockies and 

Colorado 
Plateau

Pacific 
Northwest

Pacific 
Southwest

Desert 
Southwest

Northeast
Mid Atlantic

Southeast
Atlantic Neotropical

Great Lakes
Prairie Peninsula

Appalachians and CP
Ozarks Complex
Northern Plains

Southern Plains
Northern Rockies

Southern Rockies and CP
Desert Southwest

Great Basin
Pacific Northwest
Pacific Southwest

Central Plains

b



This process is replicated for each bootstrap resample to determine statistical confidence 214 

intervals for changes in statistical moments. In addition, we characterize changes in the full 215 

precipitation intensity distributions by quantifying changes in the number of wet day events 216 

within each five percentile increment bin (e.g., 50th-55th percentile), where percentile bin 217 

ranges are determined by values in the early period distribution sample. 218 

 Finally, the initial early and late precipitation intensity distributions are directly 219 

compared through two-sample Kolmogorov-Smirnov and Anderson-Darling tests, both of 220 

which are suitable for nonparametric analysis and are insensitive to the number of events in the 221 

distributions (Chakravarti et al., 1967; Stephens, 1974). These tests were performed on all 222 

available station data within a domain (i.e., not bootstrapped). We employed the Anderson-223 

Darling test in addition to the more common Kolmogorov-Smirnov due to its higher sensitivity 224 

to extreme values, though results proved largely consistent. While both tests can determine if 225 

distributions are distinct, they do not provide descriptive information as to how the 226 

distributions differ. We thus characterize early and late period distribution differences by 227 

computing differences in wet day intensity distributions and their statistical moments. 228 

However, it should be noted that statistical moments do not comprehensively characterize a 229 

distribution. As such, statistically significant changes identified by the Kolmogorov-Smirnov 230 

and Anderson-Darling two-sample tests, may not be discernible via the moment difference 231 

analysis. 232 

 233 

3. Results 234 

 235 



Early and late period distributions of wet day precipitation intensity are statistically 236 

significantly different (p < 0.05) for all NEON domains in the contiguous U.S. (Table S2), with 237 

broadly consistent changes observed across central and eastern domains. Specifically, mean wet 238 

day precipitation increases in all domains east of the Rocky Mountains (Figure 2a-b) except for 239 

one (Atlantic Neotropical), with an intensification in mean wet day precipitation between 4.5-240 

5.7% for the majority of these eastern domains (Figure 2b). Similarly, the standard deviation of 241 

wet day precipitation intensity increased between 4.4-8.7% for each eastern domain (Figure 2c) 242 

outside of the Atlantic Neotropical. Changes in mean and standard deviation for western 243 

domains are mixed in sign and not statistically significant. Table S2 shows the differences in 244 

mean, standard deviation, skew, and kurtosis across all NEON domains (results for NCA 245 

regions are reported in Figure S2 and Table S3). 246 

 247 



 248 

Figure 2: Changes in Wet Day Precipitation Intensity Between Early and Late Periods. (a) Map of 249 

changes in mean wet day precipitation intensity for NEON domains. Red-blue fill indicates change in 250 

precipitation intensity (mm/day) within domains (dark grey borders) on top of state boundaries (light 251 
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grey borders). Hatching denotes domains without statistically significant changes. (b) Percentage 252 

changes in mean wet day precipitation for NEON domains. Blue bars show percentage change of mean 253 

and horizontal black line shows 95% confidence interval. (c) Same as (b) but for standard deviation of wet 254 

day precipitation and with red bars. 255 

 256 

In addition to changes in mean and standard deviation, we also quantify shifts in the 257 

underlying distributions across all precipitation intensities, allowing for a more nuanced 258 

characterization of observed distribution changes. Figure 3 illustrates smoothed observed shifts 259 

as determined by block bootstrapping. There is a broadly consistent shift from lower- to higher-260 

intensity wet days across the central and eastern U.S. (blue filled regions, Figure 3). These 261 

changes are determined for five percentile increments and a demonstration of the calculations 262 

for two bootstrap iterations is available in supporting information (Figure S3). We characterize 263 

absolute differences in wet day intensities in Figures S3c-d, along with relative differences in 264 

Figures S3e-f. For example, in Figure S3c, we demonstrate that in this iteration, the Great Lakes 265 

domain has experienced a robust shift from lower to higher precipitation intensities across the 266 

full distribution of intensities, which becomes clearer when relativized against the initial early 267 

period frequencies in the early period (Figure S3e). To illustrate, the likelihood of a 95-100th 268 

percentile event has increased by roughly 15% in the Great Lakes in the later period of 269 

observation (Figure S3e-f).  270 

 271 

 272 



273 

Figure 3: Smoothed Relativized Frequency Change for Each Domain. (map) The United States with 274 

NEON domain boundaries (thick dark grey) and state borders (thin light grey). Blue fill denotes the 275 

cluster of central and eastern domains with a predominantly consistent significant change in frequency 276 

across intensities. Conversely, grey fill denotes the cluster of western domains with inconsistent or non-277 

significant changes in frequency across intensities. (domain subplots) Smoothed change in relative 278 

frequency of wet day intensity for each domain. Relative frequency change is determined at five percentile 279 

increments before smoothing is performed across three increments; a fifth-order polynomial is fit to the 280 

subsequent smoothed data. This is shown for the median (thick black) and 90% confidence bounds (thin 281 

black line and light blue shading) as determined by block bootstrapping. See Figure S3 for demonstration 282 

of underlying calculations and Figure S4 for raw (non-smoothed) results. 283 
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The shift from lower- to higher-intensity events is largely consistent in the central and 284 

eastern U.S., with lower-intensity events decreasing in relative frequency for all but one domain 285 

(Atlantic Neotropical; blue filled regions, Figure 3) and a broadly consistent increase of ~15% in 286 

the relative frequency of highest intensity events. However, while higher-intensity events 287 

generally increase for all central and eastern domains and intensities, this change is not 288 

uniform. For example, we observe no increase in the Atlantic Neotropical domain and a 289 

decrease in moderate intensity events in the Mid Atlantic domain. Similar to the mixed 290 

responses in mean wet day precipitation changes, changes across distribution frequencies vary 291 

between domains in the western U.S. (see grey filled regions, Figure 3), though they are 292 

generally not statistically significant. For example, shifts within the Southern Rockies and 293 

Colorado Plateau, Desert Southwest, and Great Basin domains show similar, but muted, low- to 294 

high-intensity shifts like the eastern U.S. This change is juxtaposed against nearby regions such 295 

as the Pacific Northwest, where a decrease in the highest-intensity events is observed. We also 296 

find similar spatial patterns in intensity shift for extreme events (99-100th percentile), though 297 

the increase in relative frequency of events in the eastern U.S. are higher (~20%). Additionally, 298 

we include findings for NCA regions and 99th-plus percentile events in Supporting Information 299 

(Figures S5-S10). 300 

 301 

 302 

4. Discussion 303 

 304 



Here, we examine the full extent of wet day precipitation intensity distributions and reveal 305 

statistically robust changes throughout the United States. Broadly, our analysis reveals an 306 

increase in mean wet day precipitation in the central and eastern U.S. from 1951-1980 to 1991-307 

2020 driven by a shift from lower- to higher-intensity wet day events. Changes in the mean and 308 

standard deviation of wet day precipitation and underlying wet day intensity distribution shifts 309 

are mixed and do not reach statistical significance in the western U.S. Despite these western U.S. 310 

results, there is a statistically significant change in underlying wet day precipitation intensity 311 

distributions for all seventeen domains analyzed.  312 

Though existing observation-based literature largely focuses on heavy-to-extreme 313 

precipitation or arbitrary light or moderate thresholds, our findings largely complement earlier 314 

findings, such as an east-west division of changes in extreme precipitation (Easterling et al., 315 

2017). The relative increases in moderate and heavy precipitation we observe in the eastern U.S. 316 

mirror well-established increases in precipitation extremes, as well as annual precipitation, 317 

previously found over central and northeastern portions of the country (e.g., Groisman et al., 318 

2012). We highlight the strong consistency in the shift in precipitation intensities across the 319 

distributions in this area (Figure 2) as well as the rising mean (~4.5-5.7%) and standard 320 

deviation (~4.4-8.7%) of wet day precipitation. While not a perfect parallel, the consistent shift 321 

from lower to higher intensity events in the central and eastern U.S. generally agrees with 322 

model-based findings from Dai et al. (2017), who examined U.S. precipitation intensities using 323 

historical and end-of-the-21st century RCP8.5 projections as boundary conditions in convection-324 

permitting simulations (Liu et al., 2017). Dai et al. found robust increases in precipitation 325 

intensity across the U.S., a pattern we observe only in the central and eastern U.S. The mixed 326 



pattern of results we find for the western U.S. mirrors earlier observation-based results 327 

(Contractor et al., 2021; Higgins and Kousky, 2013; Rosenberg et al., 2010). Our analysis furthers 328 

this earlier work by using a large number of in situ measurements instead of limited stations or 329 

gridded products. In addition, we note that Dai et al., along with other modeling studies we 330 

reference hereafter, use the RCP8.5 high emissions scenario, a pathway viewed as unlikely 331 

given societal trends (Hausfather and Peters, 2020). Despite its unlikelihood, we find it notable 332 

that the patterns of observed precipitation change presented here parallel RCP8.5-forced 333 

projections. 334 

While our work does not assess the drivers of observed precipitation changes, we 335 

compare our findings with modeling studies to provide mechanistic context, though analogs to 336 

our retrospective, observation-based methodology and time periods of analysis are indirect. 337 

Pfahl et al. (2017) combine historical (1950-2005) CMIP5 output with RCP8.5 emissions scenario 338 

(2006-2100) simulations to project a positive scaling of moisture content (thermodynamic factor) 339 

with temperature throughout the U.S., with enhanced vertical motion (dynamic factor) over the 340 

western and far eastern U.S. (see Figure S5 in Pfahl et al., 2017). Similarly, Zhang et al. (2021) 341 

compare historical HadGEM3 output (1900-1959) to end-of-century RCP8.5 emissions scenario 342 

projections (2040-2099) to find that increases in synoptic-scale precipitation variability over the 343 

U.S. are driven by thermodynamic and non-linear mechanisms but dampened by dynamic 344 

drivers (see Figure 6 in Zhang et al., 2021). Broadly, these findings demonstrate a consistent 345 

increase in precipitation and synoptic-scale precipitation variability over the U.S. driven by 346 

thermodynamic influences and a mixture of dynamical influences. While some of the scaling 347 

unveiled in these previously published model analyses mirror our findings, such as an overlap 348 



between thermodynamic drivers and the increases in precipitation intensity we observe across 349 

the eastern half of the U.S., further work is necessary to explain the mechanisms driving the 350 

changes in observed wet day precipitation intensity that we find. However, the overall pattern 351 

we identify – of a transition from lower- to higher-intensity events – mirrors findings from 352 

Pendergrass and Hartmann (2014b) for a modeled doubled-CO2 world. 353 

 Although we examine precipitation trends during a time of increasing greenhouse gas 354 

concentrations, and find similarities with greenhouse gas-forced model projections, our analysis 355 

is insufficient to directly attribute observed changes to ongoing anthropogenic climate change. 356 

Such an analysis would require use of a robust attribution methodology (e.g., Hegerl et al., 357 

1996). In addition, while considering our results, it is important to bear in mind that our 358 

analysis focuses on changes in wet day precipitation intensity, and therefore does not consider 359 

underlying changes in precipitation frequency. This distinction is important for considering the 360 

impacts of these findings in the scope of total annual precipitation, for example. In regions 361 

where precipitation intensity has increased but precipitation frequency has decreased by an 362 

offsetting or greater amount, changes to total annual precipitation may appear to run counter to 363 

the changes we describe here (e.g., Markonis et al., 2019). It is also important to consider 364 

potential limitations of this study, beginning with the underlying assumption that NEON 365 

domains are internally consistent. While NEON domains are empirically designed to possess 366 

internally homogeneous climates, there exists some measure of variability within domains, 367 

particularly within the varied topography of mountainous domains (e.g., Southern Rockies and 368 

Colorado Plateau). Additionally, inconsistent station availability may impact domain-level 369 

findings and variable station density may inadvertently weight domain-level results.  370 



 371 

5. Conclusion 372 

 373 

We use curated daily in situ precipitation measurements from the GHCN to examine regional 374 

trends in wet day precipitation distributions from 1951-1980 to 1991-2020. We reveal significant 375 

changes in wet day intensity distributions for all seventeen NEON domains in the contiguous 376 

United States. These nearly ubiquitous changes are driven by a general shift from lower to 377 

higher intensity wet day precipitation totals particularly within the central and eastern U.S. and 378 

are largely manifested as increases in the mean and standard deviation of wet day precipitation 379 

intensity, though findings are mixed in the western U.S. Our findings can help inform an 380 

understanding of how natural hazards and associated risks have changed over time. 381 

Additionally, these results can be compared with climate model output to examine the ability of 382 

climate models to accurately reproduce observed patterns of precipitation change. 383 

 384 
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20 

Figure S1: Station Locations and NCA Region Station Counts. (a) Map of qualifying GHCN-D stations 21 

(blue dots) overlaid on the United States with U.S. National Climate Assessment (NCA) region 22 

boundaries in thick black and state borders in thin grey. (b) Histogram of the number of qualifying 23 

stations within each NCA region. 24 
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Station ID NEON Domain NCA Region Station-Block 
Years Removed 

Outlier Values 
(mm) 

USC00164700 Southeast Southeast 1955-1956 764.5, 527.3, 791.5 

USC00253185 Central Plains Northern Great 
Plains 1963-1964 

1524.5, 1778.8, 
762.5, 1526.5, 

2286, 1524.3, 1778, 
2286, 1016, 1016, 
2286, 508.5, 762, 

763.8, 2286 

USC00210287 Northern Plains Midwest 1951-1952 290.8 

USC00353604 Great Basin Northwest 1951-1952 261.6 

USW00003904 Southern Plains Southern Great 
Plains 1971-1972 1016 

USW00024284 Pacific Northwest Northwest 1957-1958 283.7 

USC00177479 Northeast Northeast 1999-2000 584.2, 2006.6 

USC00303346 Northeast Northeast 1951-1952 1796.5 

USC00200230 Great Lakes Midwest 1953-1954 1286.3 

USC00204090 Great Lakes Midwest 1959-1960 2032.3 

USC00335718 Appalachians and 
Cumberland Plateau Midwest 1963-1964 457.2 

USC00335747 Appalachians and 
Cumberland Plateau Midwest 1965-1966 1017.3 

USC00034562 Ozarks Complex Southeast 1951-1952 1524.3 

USC00422057 
Southern Rockies 

and Colorado 
Plateau 

Southwest 1973-1974 1524 

USW00024057 Great Basin Northern Great 
Plains 1967-1968 254.3 

Table S1: List of Manually Identified Unverifiable Outliers. Outlying observations were compared 36 

against appropriate verified state and station records, etc. to determine validity; unverifiable records are 37 

listed here. Two-year station-blocks containing unverifiable records are removed from our analysis. 38 

 39 

 40 



 

 Mean 

Standard 

Deviation Median Skew Kurtosis 

Northeast* 5.4 7.0 5.7 -0.3 -2.6 

Mid Atlantic* 2.5 6.3 0.0 17.6 11.1 

Southeast* 5.2 8.8 3.7 11.3 8.6 

Atlantic Neotropical# 2.3 -0.4 7.0 -17.7 -20.2 

Great Lakes* 5.3 6.4 6.3 -0.3 -0.4 

Prairie Peninsula* 5.6 6.7 5.2 -0.2 0.5 

Appalachians and Cumberland 

Plateau* 5.1 5.2 4.5 -5.1 -2.5 

Ozarks Complex* 4.9 6.0 3.5 2.5 1.3 

Northern Plains* 5.8 7.1 7.9 2.6 1.6 

Central Plains* 4.6 4.4 5.7 -2.9 -1.1 

Southern Plains* 8.0 7.1 7.0 -3.7 -1.2 

Northern Rockies* 0.8 -1.3 0.0 -4.2 -1.2 

Southern Rockies and Colorado 

Plateau* 1.7 1.2 0.0 4.9 7.5 

Desert Southwest* 3.6 3.8 4.2 9.0 10.8 

Great Basin* 2.5 3.4 0.0 12.6 13.4 

Pacific Northwest* -0.9 1.4 0.0 10.4 3.3 

Pacific Southwest* -0.6 -3.3 0.0 -8.4 -5.3 

Tundra* 4.7 -1.4 7.1 -14.0 -4.8 



 

Taiga -0.2 -0.6 0.0 1.1 0.6 

Pacific Tropical* 0.6 -3.3 0.0 -4.0 -1.2 

 41 

Table S2: Percent Change in Wet Day Precipitation Intensity Distribution Moments. Bolded values 42 

denote statistical significance at the p < 0.05 level. Domains denoted with * observed statistically 43 

significant (p < 0.05) differences in early and late distributions from both the Kolmogorov-Smirnov and 44 

Anderson-Darling two-sample tests (# denotes statistically significant differences in Anderson-Darling 45 

two-sample test only). 46 

 47 



 

48 

Figure S2: Changes in Wet Day Precipitation Intensity Between Early (1951-1980) and Late (1991-49 

2020) Periods for NCA Regions. (a) Map of changes in mean wet day precipitation for NCA regions. 50 

Red-blue fill indicates change in precipitation intensity (mm/day) within domains (dark grey borders) on 51 

top of state boundaries (light grey borders). Hatching denotes domains without a statistically significant 52 

change in mean wet day precipitation intensity. (b) Percentage changes in mean wet day precipitation for 53 

NCA domains. Blue bars show percentage change of mean and horizontal black line shows 95% 54 

confidence interval. (c) Same as (b) but for standard deviation of wet day precipitation and with red bars. 55 
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Southeast

Southern Great Plains
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b



 

 Mean 

Standard 

Deviation Median Skew Kurtosis 

Alaska -0.1 -0.1 0.0 5.3 14.7 

U.S. Caribbean - - - - - 

Hawaii and Pacific Islands# -4.9 -7.9 0.0 2.5 11.4 

Midwest* 6.1 7.6 0.0 0.9 4.5 

Northeast* 5.2 6.5 3.6 1.3 0.3 

Northern Great Plains* 4.7 5.7 4.9 2.2 7.4 

Northwest* -0.5 1.8 0.0 10.3 18.9 

Southeast* 3.8 6.1 2.5 6.8 18.9 

Southern Great Plains* 6.9 6.9 7.6 1.6 16.9 

Southwest* 0.7 -1.7 4.3 -5.8 -16.8 

Table S3: Percent Change in Wet Day Precipitation Intensity Distribution Moments for NCA regions. 57 

Bolded values denote statistical significance at the p < 0.05 level. Domains denoted with * observed 58 

statistically significant (p < 0.05) differences in early and late distributions from both the Kolmogorov-59 

Smirnov and Anderson-Darling two-sample tests (# denotes statistically significant differences in 60 

Anderson-Darling two-sample test only). Note that the U.S. Caribbean region does not contain any 61 

qualifying stations. 62 
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 65 

Figure S3: Bootstrapped Change in Precipitation Intensity between Early and Late Periods. (a) 66 

Histograms of wet day precipitation intensity in the Great Lakes domain for the early (light green; 1951-67 

1980) and late (dark blue; 1991-2020) period. Histogram values represent the percentage of all wet-day 68 

events within the binned intensity. (b) Absolute difference in wet day precipitation intensity frequency 69 

between the late and early periods for the Great Lakes NEON domain over five percentile increments. (c) 70 

Same as (b) but the change is normalized by the early period frequency. Thick black line represents a fifth-71 

Early Period

Late Period

Ea
rly

 a
nd

 L
at

e 
H

is
to

gr
am

s

Shift from lower- to 
higher-intensity events

a

c

e

In
te

ns
ity

 C
ha

ng
es

R
el

at
iv

e 
In

te
ns

ity
 C

ha
ng

es
b

f

Great Lakes Bootstrap Iteration 1 Great Lakes Bootstrap Iteration 2

d



 

degree polynomial fit over a three bin smoothing. (d-f) Same as (a-c) but for a second iteration of the block 72 

bootstrapping methodology. 73 
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76 

Figure S4: Raw Relativized Frequency Change for Each Domain. (map) The United States with NEON 77 

domain boundaries (thick dark grey) and state borders (thin light grey). Blue fill denotes the cluster of 78 

central and eastern domains with a predominantly consistent significant change in frequency across 79 

intensities. Conversely, grey fill denotes the cluster of western domains with inconsistent or non-80 

significant changes in frequency across intensities. (domain subplots) Raw change in frequency of 81 

intensity for each domain across the 0th-100th percentile of wet day intensities at five percentile 82 

increments. This is illustrated for both the median (thick black) and 90% confidence bounds as 83 

determined by block bootstrapping (thin black line and light blue shading). 84 
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86 

Figure S5: Smoothed Relativized Frequency Change for Each Domain for Extreme Precipitation. Same as 87 

Figure 3 but for 99th-100th percentile precipitation and 0.05 percentile increments. 88 
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Figure S6: Raw Relativized Frequency Change for Each Domain for Extreme Precipitation. Same as 90 

Figure S4 but for 99th-100th percentile precipitation and 0.05 percentile increments. 91 
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 92 

Figure S7: Smoothed Relativized Frequency Change for Each NCA Region. Same as Figure 2 but for 93 

NCA regions and without underlying map. 94 
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 95 

Figure S8: Raw Relativized Frequency Change for Each NCA Region. Same as Figure S4 but for NCA 96 

regions and without underlying map. 97 
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Figure S9: Smoothed Relativized Frequency Change for Each NCA Region for Extreme Precipitation. 99 

Same as Figure S5 but for NCA regions and without underlying map. 100 
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Figure S10: Raw Relativized Frequency Change for Each NCA Region for Extreme Precipitation. Same 102 

as Figure S6 but for NCA regions and without underlying map. 103 
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