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Abstract

A modeling framework is presented for hydrological modeling to more accurately describe the water, energy, and carbon cycles

and their interactions with participating processes. This framework extends the modeling strategy presented in Luo et al. (2013)

by simultaneously using multiple plausible expressions, derived from different perspectives, in representing the same processes,

and enforcing them together with an optimality rule and a semi-empirical expression for plant CO2 uptake. The objectives are

to reduce unconstrained free variables, mitigate parameter or variable equifinality, reduce result uncertainties, and ultimately

increase the model robustness and predictability. For demonstration, the least cost optimality theory from Prentice et al.

(2014), after extended to include water-limited conditions, is combined with the updated semi-empirical Ball-Berry-Leuning

formulation (Tuzet et al., 2003). These two expressions are combined with other multiple expressions adopted for hydrological

modeling. This framework is incorporated into both VIC+ and a modified DHSVM hydrological models with each applied to

two different sites. Numerical studies are performed that using three approaches which only differ in the stomatal conductance

modeling, namely, one uses the extended Prentice, one the semi-empirical, and the new framework that uses both. Results

show that although all three approaches give reasonable estimates of limited measured fluxes, the present modeling framework

gives much more reasonable estimates in the stomatal conductance and in other major model variables, and it also results in

giving a relationship between carboxylation and transpiration that is consistent with observations. This modeling framework

is general and can be adopted for other fields of study.
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Abstract  25 

A modeling framework is presented for hydrological modeling to more accurately describe the 26 

water, energy, and carbon cycles and their interactions with participating processes. This 27 

framework extends the modeling strategy presented in Luo et al. (2013) by simultaneously using 28 

multiple plausible expressions, derived from different perspectives,  in representing the same 29 

processes, and enforcing them together with an optimality rule and a semi-empirical expression 30 

for plant CO2 uptake. The objectives are to reduce unconstrained free variables, mitigate 31 

parameter or variable equifinality, reduce result uncertainties, and ultimately increase the model 32 

robustness and predictability.  For demonstration, the least cost optimality theory from Prentice 33 

et al. (2014), after extended to include water-limited conditions, is combined with the updated 34 

semi-empirical Ball-Berry-Leuning formulation (Tuzet et al., 2003). These two expressions are 35 

combined with other multiple expressions adopted for hydrological modeling. This framework is 36 

incorporated into both VIC+ and a modified DHSVM hydrological models with each applied to 37 

two different sites. Numerical studies are performed that using three approaches which only 38 

differ in the stomatal conductance modeling, namely, one uses the extended Prentice, one the 39 

semi-empirical, and the new framework that uses both. Results show that although all three 40 

approaches give reasonable estimates of limited measured fluxes, the present modeling 41 

framework gives much more reasonable estimates in the stomatal conductance and in other 42 

major model variables, and it also results in giving a relationship between carboxylation and 43 

transpiration that is consistent with observations. This modeling framework is general and can be 44 

adopted for other fields of study.  45 

 46 

 47 

  48 
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1. Introduction 49 

With the advance in our understanding of the soil-plant-atmosphere continuum, more and more 50 

important processes involved have been identified and introduced into various models. Naturally, 51 

efforts have been made to add these models to the land surface or hydrological modeling system 52 

to more completely and accurately describe the water, energy and carbon cycles and their 53 

interactions with the various processes. Many of these processes have been studied from 54 

different perspectives and the resulting models have their own merits and are considered equally 55 

plausible as the current understanding could not discount one against another. But as the 56 

processes involved are complex and our understanding is incomplete, these different models 57 

describing the same processes often give divergent results. It is clear that these models are not 58 

equivalent as Feynman (1967) remarked in his talk about the character of physical law that when 59 

theories are equivalent scientifically, they give exact the same consequences. How then do we 60 

use or choose among models that describe the same process but are not equivalent, especially 61 

when these models each works well under some circumstances and not all circumstances?  62 

Feynman further commented in the same talk, “But as long as physics is incomplete, and we are 63 

trying to understand the other laws then the different formulations may give clues about what 64 

might happen in other circumstances.” That is to say that different plausible models contain 65 

information that could be complementary to one another, and we believe that finding ways to put 66 

these incomplete pieces together is one key to answer the important question of how to reconcile 67 

divergent models into better insights and solutions. Additionally, another question arises because 68 

continuing bringing in new processes inevitably makes a model ever more complex and loads it 69 

with a large number of parameters, some of which may not be independent while some may be 70 

present as free or unconstrained variables. This may very well make a model unstable, 71 

inconsistent, and intractable.  72 

 73 

We propose to address these challenges by making use of information from available 74 

perspectives simultaneously. In cases there are many plausible models, the ones with least 75 

overlap in model construct are selected. That is, we will incorporate simultaneously different 76 

plausible formulations or models of the same processes in the form of mutual constraints. The 77 

immediate consequence of doing so will lead to reduction in the number of free variables. 78 
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Solutions of the processes will also become more robust, and the solutions will be less uncertain 79 

and more versatile. We will show how this is done. 80 

This philosophy has been successfully executed by Luo et al. (2016; 2013) into VIC+ in 81 

modeling the transpiration and carbon assimilation together with other hydrological processes 82 

such as hydraulic redistribution and its interactions with the groundwater table movement 83 

dynamics. In that work, transpiration is simultaneously considered by (1) the method of Ohm’s 84 

law analogy and (2) the method of Penman-Monteith equation. For the former, transpiration is 85 

estimated based on the soil water potentials in the root zone, in leaves, and of plant storage; the 86 

hydraulic resistance from the soil to leaves, and between plant storage and leaves. For the latter, 87 

the calculation of plant transpiration is not only driven by the meteorological factors but is also 88 

directly linked to the carbon assimilation through the stomatal conductance. The carbon 89 

assimilation process involved in the plant transpiration also incorporates simultaneously two 90 

perspectives: (1) a diffusion method, and (2) the modified Farquhar biochemical model. That is, 91 

the calculation of carbon assimilation is constrained as a consequence of the interplay of the 92 

stomatal and biochemical limitations simultaneously. 93 

In this study, we extend this modeling strategy to model leaf stomata. Plants play a 94 

pivotal role in the soil-plant-atmosphere system, in which leaf stomata is a key in balancing 95 

photosynthesis and transpiration (Bauerle & Bowden, 2011). Specifically, we simultaneously 96 

consider two drastic different modeling approaches: one is based on an optimality principle, 97 

while the other semi-empirical. The latter is used as an additional constraint to the former in the 98 

implementation. To illustrate versatility of this extended modeling strategy in improving 99 

robustness of the modeling results, we further implement them separately with two hydrological 100 

models that have very different modeling structures: the VIC+ land surface model (Luo et al., 101 

2016; 2013) for large scale system and a modified high resolution version of the Distributed 102 

Hydrological Soil Vegetation Model (DHSVM) (Wigmosta et al., 2002; 1994) for small scale 103 

system in conducting numerical studies.  104 

By controlling leaf stomata, plants exchange carbon dioxide and water with the 105 

atmosphere, which can regulate water loss and adapt to external CO2 concentration by taking 106 

advantage of the biochemical and hydrological processes (Berry et al., 2010). Stomatal 107 

conductance – governing plant behavior to water stress condition and photosynthesis – is one of 108 
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the essential components affecting water and carbon exchange process of plants.   109 

Current approaches in modeling stomatal conductance can be broadly classified into four 110 

categories (Damour et al., 2010; Miner et al., 2017). The first uses an empirical formulation, 111 

such as the Jarvis type (Jarvis, 1976), to relate the stomatal conductance in a multiplicative form 112 

to contributing factors such as solar radiation, air temperature, leaf water potential, vapor 113 

pressure, and CO2 concentration. The second uses a semi-empirical formulation to connect the 114 

stomatal conductance to carbon assimilation (Ball et al., 1987; Collatz et al., 1992; Leuning, 115 

1990, 1995; Tuzet et al., 2003). One widely adopted approach of this category is the simple 116 

semi-empirical model based on the Ball-Berry-Leuning (BBL) formulation. This model was first 117 

developed by Ball et al. (1987). Leuning et al. (1998) modified it to include the soil water 118 

content. Tuzet et al. (2003) further  proposed a variant form, denoted as BBL-update in this 119 

study, which accounts for the leaf water potential and thus connects the root-soil-atmospheric 120 

water transfer together. The third category employs a mechanistic-based water stress response 121 

model that combines hydraulic control and abscisic acid (ABA) (Gutschick & Simonneau, 2002; 122 

Tardieu & Davies, 1993). Models related to this third category are far more complex than the 123 

first two and are not widely adopted. The fourth category employs an optimality theory. Models 124 

so developed not only generally involve fewer parameters, but also better represent plants’ 125 

natural responses to the environment (Franklin et al., 2012). The optimality theory can provide 126 

certain internal correlations among different components within a complex system (Schymanski 127 

et al., 2009; Westhoff et al., 2014), and thereby reduces the number of parameters need to be 128 

estimated. Currently, the semi-empirical approach and the optimality approach are the most 129 

widely used methods for stomatal conductance modeling.  130 

We classify the current optimality approach into three main groups following Dewar et 131 

al. (2018), which is slightly different from the classifications by Wang et al. (2020) or by Sabot 132 

et al. (2020). These three groups are: (1) maximizing carbon gain while minimizing the total loss 133 

of water over a given time period; (2) maximizing net carbon gain at every instant in time; and 134 

(3) maximizing multiple benefits for photosynthesis while minimizing associated costs at the 135 

same time.  136 

The first group includes models applying the water use efficiency (WUE) hypothesis – 137 

the long-standing plant optimality rule by Cowan and Farquhar (Cowan, 1982; Cowan & 138 
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Farquhar, 1977) and its variants (e.g., (Lu et al., 2016; MÄKELÄ et al., 1996). Cowan and 139 

Farquhar (1977) showed that such an optimality rule leads to an optimization constraint, 140 

=∂An/∂Etr, with  representing a key rate of how carbon assimilation, An, responds to 141 

transpiration, Etr.  This  has been investigated for many years, yet there is still no consensus on 142 

how to determine it under different conditions (Buckley et al., 2017; Wolf et al., 2016).  Medlyn 143 

et al. (2011) followed Cowan and Farquhar optimality rule but optimized RuBP regeneration-144 

limited photosynthesis rather than Rubisco-limited photosynthesis. Their study showed that the 145 

stomatal expression by Cowan and Farquhar’s optimality was similar in the form to the BBL’s 146 

semi-empirical expression when the atmospheric CO2 concentration at leaf surface was much 147 

higher than the compensation point. Other efforts have been made to extend the Cowan and 148 

Farquhar’s optimality rule in determining  or by adding additional factors (e.g., (Katul et al., 149 

2010; 2009; Manzoni et al., 2013). A new way to solve  is presented later in this work. 150 

The second group maximizes net carbon gain and includes two subgroups. One subgroup 151 

applies a penalty function to plant hydraulic behavior (Anderegg et al., 2018; Eller et al., 2018; 152 

Sperry et al., 2017; Wolf et al., 2016), while the other applies a penalty function to nonstomatal 153 

limitation (NSL) behavior, such as the carboxylation capacity (CAP) and mesophyll conductance 154 

(MES) models by Dewar et al. (2018) and the model by Hölttä et al. (2017). Mathematically, 155 

these two subgroups are similar and both maximized the carbon gain function (Dewar et al., 156 

2018; Wang et al., 2020). Biologically, CAP and MES models would produce lower 157 

photosynthetic rate for the same leaf transpiration rate since more reduction factor is introduced 158 

into the conductance as noted in Wang et al. (2020).  159 

The third group can be viewed as a step toward a more ideal optimality rule which would 160 

optimize over a broader base since all sources of benefits for photosynthesis are maximized, 161 

including nitrogen, light, water, while all the associated costs are minimized at the same time 162 

over multiple temporal scales as pointed out by Buckley (2017). Models belong to this group 163 

include those by Manzoni et al. (2013), Prentice et al. (2014) and Buckley et al. (2017). In the 164 

following, Prentice et al. (2014) model, called Prentice-2014 hereafter, is adopted as 165 

representative of this third group. In Prentice-2014, the optimality rule balances the tradeoff 166 

between transpiration and carboxylation capacity by minimizing the summed costs of 167 

transpiration and carboxylation. Prentice-2014 employs the coordination hypothesis that under 168 
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typical daytime conditions,  when most photosynthesis takes place, its Rubisco-limited 169 

photosynthetic rate is equal to electron transport-limited photosynthetic rate. This model is 170 

realized by adjusting the ratio of CO2 within the leaf to that outside the leaf. Its limitations are 171 

that it ignores the role of leaf water potential and plant hydraulics in the stomatal opening 172 

(Buckley et al., 2017; Dewar et al., 2018), and thus it works best under wet conditions (Prentice 173 

et al., 2014).   174 

 Among these three main groups of optimality rules, one main difference between the 175 

WUE group (first group) and the second group is that in the former multiple factors affecting the 176 

reduction of transpiration are lumped together as a total water loss through the transpiration, 177 

while in the latter the reduction of transpiration is attributed specifically to either the hydraulic 178 

factors, such as xylem water potential and canopy xylem pressure, or to the hydraulic and NSL 179 

factors together. As a result the largest differences between them occur during the dry conditions 180 

(Anderegg et al., 2018). Anderegg et al. (2018) added the water stress to the WUE group but 181 

with mixed results: For 7 species among the 41 studied, the results from the WUE group using 182 

the original  rate provided comparable results with observations; while for the other 34 species, 183 

results of the WUE group with the rate  being modified by soil water potential matched 184 

observations better. For all of the 41 species compared, however, they showed that results from 185 

the Wolf-Anderegg-Pacala model – of the first subgroup in the second group – led to better 186 

results than the WUE group with higher R2 values compared to the observations. Wolf et al. 187 

(2016) showed that under some special conditions where a closed form for the stomatal 188 

conductance can be obtained, the optimal stomatal conductance using the optimality rule for the 189 

first subgroup of the second group is remarkably similar to the semi-empirical formulation of 190 

BBL, while Medlyn et al. (2011) have previously demonstrated that the stomatal conductance 191 

expression based on the optimality rule for the WUE group is the same as BBL’s when the 192 

atmospheric CO2 concentration at leaf surface was much higher than the compensation point. 193 

Dewar et al. (2018) compared models using each of the three different groups of the optimization 194 

rules and showed that the Prentice-2014 model (third group) produced similar results to those by 195 

the CAP and MES models (second subgroup of the second group), but results from the WUE 196 

group (first group) were different from the other two groups. 197 
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However, Dewar et al. (2018) also showed that CAP and Prentice-2014, as well as MES 198 

and WUE (Medlyn et al., 2011) at low and large atmospheric CO2 concentration, respectively, all 199 

lead to the same one-parameter relationship between the ratio related to leaf CO2 concentration 200 

and vapor pressure deficit. The key difference among these three groups of the optimality models 201 

is how each model estimates this one-parameter by its own optimization rule and the atmospheric 202 

CO2 concentration range considered. It is clear that considerable similarity exists among these 203 

three different groups in terms of the functional forms in their CO2 stomatal conductance 204 

expression, although each of them is derived by associating itself with a different optimality rule. 205 

Comparisons of the performance of these three different optimality modeling groups can be 206 

found in Dewar et al. (2018), Anderegg et al. (2018), and Wang et al. (2020). Basically, the main 207 

challenges of these approaches lie in how to define the penalty function associated with stomatal 208 

opening used to balance the carbon gain and loss of water for plants under drought conditions. 209 

There is yet no consensus on how this is best done.  210 

In this study, the semi-empirical approach and the optimality-based approach are 211 

considered equally plausible for stomatal conductance modeling because one cannot claim more 212 

merits over the other with our current understanding. The framework presented in this paper 213 

provides a rational way for stomatal conductance modeling by simultaneously incorporating both 214 

to represent the relevant processes where appropriate. There is no reason to assume that one 215 

optimization rule would work for all different processes under various conditions, as there is a 216 

plethora of natural processes involved and contribute to the complex behavior of plants. But 217 

because optimality-based formulations overlap and, under some scenarios, are identical as 218 

discussed, we thus use only one among them. Specifically, we employ Prentice-2014 for two 219 

main reasons. Firstly, it has been tested with measurements from various natural conditions and 220 

experimental settings, and shown to correctly predict a number of related physiological 221 

characteristics, such as the global pattern of  the maximum carboxylation rate, Vcmax, in relation 222 

to light, temperature and vapor pressure deficit (Smith et al., 2019), seasonal variations of Vcmax 223 

across diverse ecosystems (Jiang et al., 2020), elevational trends in photosynthetic traits and 224 

primary production (Peng et al., 2020), the trends in the ratio of leaf-internal to ambient CO2 225 

with respect to mean growth temperature, vapor pressure deficit, atmospheric CO2, and elevation 226 

(Wang et al., 2017). Secondly, compared with other optimality-based approaches, it has fewer 227 

parameters need to be estimated and its parameters are more robust.  228 
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 It is important to emphasize that optimization approaches should be implemented with 229 

consideration of boundary conditions (Buckley et al., 2017). This is to account for factors that (1) 230 

plants adjust their functional behaviors based not only on the resources provided by the 231 

environment and their own maximum capabilities, but also on the fact that their physical or 232 

biological properties have bounds; and (2) our descriptions and understanding of the complex 233 

eco-biological processes involved are incomplete and limited, and constraints are imposed in our 234 

optimization search. For example, under a drought condition, not only is the availability of water 235 

to plants limited, reflected by leaf water potential, but also the physical size of the minimum and 236 

maximum stomatal opening may be limited as well, leading to a  constrained optimal 237 

photosynthesis process. Also, due to the complex processes involved in plants’ responses to 238 

drought, our current descriptions or representations of the drought processes are likely 239 

incomplete, leading to solutions outside feasible ranges if no bounds are imposed.  Therefore, 240 

upper and lower bounds posed by plant physiology should be included whenever appropriate.  241 

 Constraints and boundary conditions play a central role in fusing different perspectives of 242 

the same process (Luo et al., 2016; 2013). Constrains limit the degrees of freedom of a model 243 

caused by the large number of model parameters and their interactions. Due to the complex water 244 

transport and photosynthesis process, a large number of free parameters still remains despite the 245 

use of an optimality theory.  A potential serious consequence may emerge in that similar model 246 

responses are obtained with different and even unrealistic combinations of parameters. This 247 

phenomenon is referred to as equifinality of parameter sets (Beven, 2006). Equifinality is 248 

especially pronounced when (1) the number of parameters involved is large and the available 249 

observations that can be simultaneously used to determine the parameter values are small; and 250 

(2) there are substantial errors in the data and in the model structures. Beside the presence of 251 

multiple sources of errors, one essential dominant factor leading to the equifinality pitfall is the 252 

lack of constraints (Sun et al., 2020). Equifinality is pronounced in ill-posed inverse problems 253 

which have insufficient constraints.  In this study, we extend the equifinality description to 254 

variables. That is, if similar model responses are obtained with different and unrealistic 255 

combinations of values of model variables, we refer to this phenomenon as equifinality of 256 

variables. Introducing constraints based on plant physiology is an effective and rational way to 257 

reduce the “free” model variables, and thus the degree of the model’s uncertainties (Prentice et 258 

al., 2015). In a broader sense the simultaneous representation of the same process using multiple 259 
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expressions from different perspectives is a form of imposing constraints. The idea behind this 260 

strategy, as stated earlier, is that each equally or quasi-equally plausible expression describes one 261 

perspective of our understanding of the whole process. Since these expressions are not equal, it 262 

implies that each of the different views gives different pieces of incomplete information about 263 

the process. When brought in together, as each perspective tells one another what the process 264 

should be in a specific view, they thus mutually constrain one another into a coherent and more 265 

complete picture. As long as all these different expressions are equally or quasi-equally plausible 266 

and not excessively overlapped, then using them at the same time would more accurately 267 

describe the reality and fill the gaps that other perspectives leave. This is the modeling 268 

framework we present in this study. With this approach, not only can one more accurately 269 

represent the plants’ behaviors under different conditions, but also reduce model’s uncertainties 270 

due to the removal of a large number of free variables. It is important that one is not 271 

inadvertently introducing more uncertainties when adding new expressions or constraints to a 272 

model trying to reduce the model’s free variables. Therefore, one should always balance and 273 

weigh the new expressions against the existing knowledge in assessing their relevant parameters 274 

and associated uncertainties, robustness and reliability so that indeed more rational constraints, 275 

rather than more uncertainties, are added.  276 

In this study, we simultaneously employ two formulations to represent the stomatal 277 

conductance behaviors, an optimality rule of Prentice-2014 from the third group and a semi-278 

empirical expression of Tuzet et al. (2003), or BBL-update, to illustrate the philosophy of our 279 

framework. We choose these two even though they have identical forms of stomatal 280 

conductance, however, the slopes of their expressions are different, and that together they cover 281 

the current understanding better than other combinations. For the Prentice-2014 model, we 282 

further first extend it so that it is applicable to both wet and dry conditions, and also to conditions 283 

when the original coordination hypothesis of Rubisco-limited photosynthetic rate being equal to 284 

the electron transport-limited photosynthetic rate does not hold. We also follow Luo et al. (2013) 285 

and use both the Ohm’s law analogy and the Penman-Monteith method to simultaneously 286 

represent the transpiration, and employ both the diffusion method and biochemical model to 287 

represent the carbon assimilation at the same time.  288 
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We represent the plant hydraulics considering the leaf water potential dynamics and 289 

multiple stomatal conductance formulations among transpiration, photosynthesis, and carbon 290 

assimilation. This is different from recent developments reviewed in Wang et al. (2020) in which 291 

the plant hydraulics was only associated with one optimality rule in presenting the water stress 292 

factor. The simultaneous application of an optimality rule with a semi-empirical stomatal 293 

conductance formulation used in this study is unique and different from the previous efforts (De 294 

Kauwe et al., 2015; Heroult et al., 2013; Manzoni et al., 2013).   295 

 The reminder of this paper is organized as follows: Section 2 describes the methodology 296 

of our modeling framework and the underlying insights. Section 3 presents the implementation 297 

of the modeling framework. Section 4 presents the results and analyses of the results between our 298 

modeling framework and two other approaches with two hydrological models at four locations. 299 

Conclusions are provided in Section 5.  300 

 301 

2. Modeling Framework: Philosophy and Construct  302 

The objectives of our modeling framework are to combine current understandings in 303 

advancing modeling capability and reducing model uncertainties which are achieved through the 304 

following actions: First, identify processes that have different formulations but are equally or 305 

quasi-equally plausible for each activity or task of the model. In the case of describing the plant 306 

stomatal behavior, for example, there are three activities involved: photosynthesis, transpiration 307 

and carbon assimilation. Second, simultaneously combine these different formulations for each 308 

of the process identified. Third, impose boundary conditions where appropriate. Finally, solve 309 

these resulting coupled expressions.   310 

The ideas and procedures of the modeling framework are explained herein in terms of the 311 

incorporation of the number of modeling variables related to the photosynthesis and plant 312 

transpiration processes through hydrological modeling. Conventionally, this part is formulated as 313 

a five-variable problem (Anderegg et al., 2018), and the five variables are typically chosen to be 314 

CO2 stomatal conductance (g
s,co2

), leaf water potential (ψ
l
), plant transpiration (Etr), leaf CO2 315 

concentration (ci), and carbon assimilation (An). Corresponding to them, our conventional 316 
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approach uses the following five equations: one optimality equation, two equations for 317 

transpiration, and two equations for carbon assimilation. As for the current framework, we have, 318 

however, six equations since we use two equations for stomatal conductance instead of one. This 319 

enables us to solve the posed problem with six variables that better represents the three activities 320 

(i.e., photosynthesis, transpiration and carbon assimilation) of the stomatal behavior. The 321 

selection of the additional variable is discussed below. For our new approach, we first extend the 322 

Prentice-2014 optimality model. 323 

2.1 The first model for CO2 stomatal conductance -- extended Prentice-2014 optimality 324 

model  325 

As Prentice-2014 was originally developed for wet conditions, it is not expected to 326 

perform well under water-limited conditions. In this study, Prentice-2014 is extended to 327 

overcome this deficiency. In addition, the coordination hypothesis made in Prentice-2014 328 

(Prentice et al., 2014; Wang et al., 2017) between Rubisco-limitation and electron transport-329 

limitation is not required.  330 

The Prentice-2014 model minimizes the total summed cost of carboxylation and 331 

transpiration as follows, 332 

Min Cost=a ∙ Etr
' An

′⁄ +b ∙ Vcmax An
′⁄      (1) 333 

where a is the unit cost transpiration parameter; b is the unit cost carboxylation parameter; Etr
'  334 

[mol·m-2·s-1] is the transpiration; An
'
 [mol·m-2·s-1] is net carbon assimilation; and Vcmax [mol·m-

335 

2·s-1] is the maximum carboxylation rate. Etr
'  is calculated as follows, 336 

 Etr
'  = 1.6∙g'

s,co2
∙D'       (2) 337 

where g's,co2
 [mol·m-2·s-1] is the CO2 stomatal conductance; and D’ [Pa·Pa-1] is the normalized 338 

leaf-to-air vapor pressure deficit calculated by D'=[e
sat

(Tl)-e(Ta)]/𝑝𝑐, with esat(Tl) being the 339 

saturated vapor pressure at the leaf temperature, Tl, and e(Ta) the actual vapor pressure at the air 340 

temperature, Ta, and 𝑝𝑐 is the surface air pressure. Vcmax [mol·m-2·s-1] depends on Tl. 341 

Furthermore, in Prentice-2014, the Rubisco activity considered in its carbon assimilation, 342 
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through the coordination hypothesis, is related only to CO2 concentration within the leaf (ci) 343 

[mol·mol-1], and not to leaf water potential (ψ
l
) [MPa]. For the transpiration (𝐸𝑡𝑟

′ ), its g's,co2
 does 344 

not include leaf water potential (ψ
l
) either. Thus, Eq. (1) involves only four unknows: Etr

' , g's,co2 ,  345 

An
′
, and ci, and they are obtained by solving Eqs. (1) and (2), together with Eqs. (3) and (4) 346 

below: 347 

 348 

𝐴𝑛
′ = g'

s,co2
(ca-ci)     (3) 349 

 350 

𝐴𝑛
′ =Vcmax

ci − Γ
*

(ci+K)
      (4) 351 

 352 

where ca is the leaf ambient mole fractions of CO2; K is the Michaelis–Menten coefficient for 353 

Rubisco-limited photosynthesis at a pO2 (partial pressure of oxygen) of 21 kPa.; and Γ* 354 

[mol·mol-1] is the CO2 compensation point which also depends on Tl . 355 

 It is noted here that following Dewar et al. (2018), the ca term in g's,co2
 from Prentice-356 

2014 can be replaced by ci and gives, 357 

            g's,co2
=

𝜉

√𝐷′

𝐴𝑛
′

𝑐𝑖−
 ∗     (5) 358 

where 𝜉 is defined by 359 

𝑐𝑖−
 ∗

𝑐𝑎−
 ∗ =

𝜉

𝜉+√𝐷′
                 (6) 360 

  361 

It will become clear later that g'
s,co2

of Prentice-2014 (Dewar et al., 2018) which follow 362 

Eq. (5) is clearly different from that of the BBL-updated (Tuzet et al., 2003), even though their 363 

forms are the same.  364 

 365 

We extended the preceding carbon assimilation to consider leaf water potential (ψ
l
) and 366 

also relax the original coordination hypothesis that Rubisco-limitation be equal to electron 367 

transport-limitation by employing a modified Farquhar model (Farquhar et al., 1980; Daly et al., 368 

2004). In addition, we include ψ
l
 in the g's,co2

 calculation. By doing so, Eq. (1) is extended and 369 

become applicable to water-limited conditions, and that g's,co2
 and An

′
 are modified to account for 370 
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the leaf water potential (ψ
l
) and other factors affecting carbon assimilation. To avoid confusion, 371 

the modified equation uses Etr and An without prime for transpiration and carbon assimilation, 372 

respectively, and Eq. (1) becomes, 373 

 Min Cost=a ∙Etr An⁄ +b ∙Vcmax An⁄      (7a) 374 

Following Prentice-2014 by taking the derivative of cost with respect to ci, Eq. (7a) at optimum 375 

is given by, 376 

      
dCost

dci
=a ∙

∂(
Etr

An
)

∂ci
+b ∙

∂(
Vcmax

An
)

∂ci
=0                                           (7b) 377 

where, in this new cost equation, both Etr and An are functions of leaf water potential (ψ
l
) as 378 

stated, and ψ
l
 becomes the fifth unknown variable.  379 

As stated, the two perspectives of transpiration are from the Penman-Monteith equation 380 

and the Ohm’s law analogy, following the approach of Luo et al. (2013).  They are listed below 381 

as Eqs. (8) and (9), respectively:  382 

                                                             Etr=
∆(Rn-G)+ρ

a
Cp𝐷g

a
̅̅̅

ρ
w

 λw (∆+γ
w

+
γwga̅̅ ̅

LAI gs
)
                      `                                   (8) 383 

where Etr [m·s-1] is the transpiration; ∆ [Pa·K-1] is the rate of change of saturation vapor pressure 384 

with air temperature; Rn [W·m-2] is the net radiation; G [W·m-2] is the ground heat flux; ρ
a
[kg·m-

385 

3] is the air density; Cp [J·kg-1·K-1] is the specific heat capacity of air; D [Pa] is the vapor pressure 386 

deficit and D = esat(Ta)-e(Ta); g̅
a
[m·s-1] is the conductance of the atmospheric boundary layer to 387 

H2O (per unit ground area); w [kg·m-3] is the water density; w [J·kg-1] is latent heat of water 388 

vaporization; w [Pa·K-1] is psychrometric constant; LAI is the leaf area index; and gs [m·s-1] is 389 

the stomatal conductance to H2O per unit leaf area. Note that the H2O stomatal conductance 390 

expressed as g
s,H2O

 [mol·m-2·s-1] is the same as stomatal conductance g
s
 [m s-1] but with a 391 
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different unit, and g
s,H2O

 is equal to 1.6∙ g
s,co2

 when both take the unit of [mol·m-2·s-1].  392 

Equation (9) is expressed as, 393 

   Etr= 
ψ

p
 -ψ

l

r
+

ψ
soil

 -ψ
l

R
                                           (9) 394 

where ψ
p
[Pa] is the water potential of plant storage; ψ

l
 [Pa] is the leaf water potential; ψ

soil
 [Pa] 395 

is the lumped soil water potential in the root zone; r [Pa·s·m-1] is the hydraulic resistance 396 

between plant storage and leaves; R [Pa·s·m-1] is the total hydraulic resistance, a function of 397 

ψ
soil

, from the soil to the leaves. Further details about Eq. (9) can be found in Luo et al. (2013).  398 

The carbon assimilation (An) which has appeared in Eq. (7) is hereby formulated using 399 

both the modified Farquhar model (e.g., (Daly et al., 2004; Farquhar et al., 1980) and the 400 

diffusion method which are represented by Eqs. (10) and (11), respectively, as follows, 401 

        An=Aψ
l
(ψ

l
)×Aϕ,ci,Tl

(ϕ,ci,Tl)                                          (10) 402 

  An=g
sba,co2

∙(ca-ci)     (11) 403 

 404 

where An [mol·m-2·s-1] is carbon assimilation; and in Eq. (10), Aψ
l
(ψ

l
) is a function related to 405 

leaf water potential, reflecting the reduction of carbon assimilation under water stressed 406 

conditions. Aϕ,ci,Tl
(ϕ,ci,Tl) is the Farquhar model of biochemical carbon assimilation under well-407 

watered condition, and it depends on photosynthetically active radiation (ϕ), CO2 concentration 408 

(ci) within the leaf, and leaf temperature (Tl).   409 

The term Aϕ,ci,Tl
(ϕ,ci,Tl) is expressed by the minimum of Ac and Aq, where Ac is the 410 

assimilation rate restricted by Rubisco activity (i.e., restricted by ci), and Aq is the assimilation 411 

rate limited by RuBP regeneration when ϕ is low. The triose phosphate utilization (TPU) 412 

limitation and the quadratically smooth transition approach used in Daly et al. (2004) to obtain 413 

the minimum An from Collatz et al. (1991) are not used here as the smooth approach and TPU 414 

limitation lead to underestimation of the An  (Rogers et al., 2021).  The relevant equations for 415 
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theses parameters are: 416 

                                        Aψ
l
(ψ

l
)=

{
 
 

 
 0 (ψ

l
<ψ

lA0
)

ψ
l
-ψ

lA0

ψ
lA1

-ψ
lA0

(ψ
lA0

<ψ
l
<ψ

lA1
)

1 (ψ
l
>ψ

lA1
)

                                                  (12) 417 

where ψ
l
 [Pa] is the leaf water potential; ψ

lA1
[Pa] is the leaf water potential value in well-watered 418 

condition; ψ
lA0

[Pa] is the leaf water potential value below which assimilation is reduced to zero.  419 

                                      Ac=Vcmax
ci - Γ

*

ci+Kc(1+oi Ko⁄ )
                                             (13) 420 

where oi [mol·mol-1] is the oxygen concentration; Kc and Ko are the Michaelis-Menten 421 

coefficients for CO2 and O2, respectively, which depends on Tl. 422 

Aq=
J∙( ci - Γ

*)

4(ci+2Γ*)
                                                         (14) 423 

where 𝐽 [mol·m-2·s-1] is the electron transport rate which depends on ϕ and Tl.  424 

As for the diffusion method of Eq. (11), g
sba,co2

 in Eq. (11) is represented by  425 

g
sba,co2

(ψ
l
)= (g

s,co2

-1 (ψ
l
)+g

a,co2

-1 +g
b,co2

-1 )
-1

    (15) 426 

where g
a,co2

 [mol·m-2·s-1] is the atmospheric conductance, and g
b,co2

  [mol·m-2·s-1] is the CO2 leaf 427 

boundary layer conductance.  We note that g
s,co2

(ψ
l
) is related to leaf water potential, while 428 

g's,co2
 in Eqs. (2) and (3) is not since g's,co2

 is only for not water-limited condition.  429 

This extended least cost optimality of Prentice-2014, denoted as LC-extended (for 430 

extended Least Cost) hereafter, is extended to water-limited conditions and to the situations 431 

where the coordination hypothesis on having An = Ac = Aq is relaxed, allows the five unknows of 432 

Etr, gs,co2
, An, ci, and ψ

l
 to be obtained by solving Eqs. (7)-(11) together. LC-extended as 433 

presented is shown works under both wet and water-limited conditions in the numerical study 434 
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section.  435 

2.2 The second model for CO2 stomatal conductance – BBL-updated formulation  436 

Our second perspective uses BBL-updated and we make use of the fact that g
s,co2

 is 437 

explicitly related to the CO2 assimilation An, ci, and the empirical function of f(l). This BBL-438 

updated relationship is expressed as follows, 439 

g
s,co2

=g
0
+

a'An

ci - Γ
* ∙f(ψ

l
)          (16) 440 

where g
0
 [ mol·m-2·s-1] is the stomatal conductance at the light compensation point; a' is an 441 

empirical slope coefficient which varies between [0, amax
' ] where amax

'  is the upper bound of a', 442 

Γ*  [mol·mol-1] is the CO2 compensation point; and f(l) is an empirical function of stomatal 443 

sensitivity to leaf water potential which varies between [0, 1]. Eq. (16) is widely used and 444 

validated with observations for obtaining plant CO2 stomatal conductance.  445 

Eq. (16) has a slope of a'f(ψ
l
) which is different from the slope of  

𝜉

√𝐷′
 given by Eq. (5). 446 

The slope a'f(ψ
l
) varies between [0, amax

' ], while the slope of 
𝜉

√𝐷′
 ranges between [0, +∞) in 447 

principle as D’ might approach zero. This is what we mean that the Semi-empirical approach, 448 

i.e., BBL-updated, is different from the Prentice-2014, and for that matter, different from the 449 

extended Prentice et al. (2014). To implement our philosophy of combining different 450 

perspectives in our new approach, LC-extended and Eq. (16) of BBL-update are simultaneously 451 

considered. 452 

That is, by adding Eq. (16), the problem now has six equations. For that, we also choose 453 

a' as the sixth variable. Does the choice of a'  as a new unknown make sense? Value of a' has 454 

been assumed a constant for a given vegetation type and is predetermined via model calibration 455 

in practice. But Miner et al. (2017) have showed that a' changes under elevated CO2 and water 456 

stressed conditions, thus, its selection here as an unknown time-varying variable incorporates 457 

their findings.   458 

It can be shown that a' has an upper limit, amax
' ,  that is vegetation type dependent related 459 
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to the slope in the original BBL model. This slope can be obtained using field measurements. 460 

Miner et al. (2017) provided a summary table for the slope values of the original BBL model for 461 

different plant species. Thus, the maximum slope value of a' (i.e., a'
max) in Eq. (16) can be 462 

derived through the relationship between the original BBL model and the BBL-updated model. 463 

In this way, a' varies over time according to the changes in water stress and CO2 concentration 464 

level. Such a treatment on a' is more consistent with the observations by Miner et al. (2017) as 465 

stated. 466 

When comparing Eq. (16) with the model of Medlyn et al., (2011), one can obtain the 467 

relationship between a’ and g1 below, 468 

   g
1
=(

a'ca 

ci - Γ
* ∙f(ψ

l
) − 1)∙√𝐷′ ∗ 𝑝𝑐                                            (17) 469 

where g1 is the slope value in Medlyn et al. (2011) and can be computed from a’.  470 

From g1, one can easily obtain the values of . With Eq. (17), g1 or  associated with the 471 

WUE approach can be estimated at each time step via a'. With this, we may have indirectly 472 

addressed the longstanding problem to some extent of how to represent the varying nature of  at 473 

all time scales based on the WUE optimality rule as demonstrated later.   474 

                                      475 

3. Numerical Studies 476 

To investigate the effectiveness and implications of the present framework, a series of 477 

numerical studies are conducted with two hydrological models. Two hydrological models are 478 

used simply to show that the framework works in different hydrological scales. The numerical 479 

study explores three approaches which differ in how stomatal conductance is considered.    480 

 481 

3.1 Three approaches 482 

The three approaches are deigned as follows: 483 

 484 



manuscript submitted to Water Resources Research, AGU 

19 

 

Approach 1: This, we denote as the “New Approach”, is an implementation of the core of 485 

the present framework using two formulations for stomatal conductance as detailed in 486 

Sections 2.1 and 2.2, in which six unknows, Etr, gs,co2
, An, ci, ψl

, and a', are solved 487 

together (Figure 1a).  488 

Approach 2: This uses LC-extended expression for stomatal conductance modeling, and 489 

that results in five unknows, Etr, gs,co2
, An, ci and ψ

l
 with five equations (Figure 1b). We 490 

call this approach “LC-extended”, of which a' is back-calculated from Eq. (16) after the 491 

five unknowns are solved and it is not a constant. 492 

Approach 3: This uses the BBL-updated expression, Eq. (16), for stomatal conductance 493 

modeling and is referred to as the “Semi-empirical” approach. The parameter a' is treated 494 

as a constant with its values determined during model calibration. This also has five 495 

unknowns, Etr, gs,co2
, An, ci, and ψ

l
, to solve based on Eqs. (8)-(11) and (16).  496 

With this setup, the New Approach, can be compared with the currently widely adopted 497 

methods of Semi-empirical and LC-extended approaches which work under water stressed 498 

conditions and for the latter the Prentice-2014 coordination hypothesis of An = Ac = Aq is relaxed 499 

as well.  500 

3.2  An implementation  501 

With New Approach of the present modeling framework, we solve the six unknows of 502 

Etr, gs,co2
, An, ci, ψl

, and a' by six equations, i.e., Eqs. (7)-(11) and Eq. (16). We have assigned 503 

ranges of search during optimization computation for g
s,co2

 and a'  in the following bounds,  504 

0 ≤  g
s,co2

≤ g
s,co2max

       (18) 505 

and  506 

0 ≤ a' ≤ amax
'         (19) 507 

The upper bound of g
s,co2

 is taken as g
s,co2max

= 0.5 [mol·m-2·s-1] which is based on the 508 

general observed physical maximum value for all of the vegetation types based on the literature 509 
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reported in Nobel (1999). The value of amax
'  depends on the type of vegetation. Slopes in the 510 

original BBL model that 𝑎′ is related to vary between 2 and 250 (Miner et al., 2017). In this 511 

study, amax
'  are obtained through regression between the original BBL and the BBL-updated for 512 

different vegetation types (Clavijo Sanabria, 2020).  513 

For the present New Approach, the problem to be solved is thus a constrained 514 

optimization problem. There are multiple ways of solving these six unknows, Figure 1a describes 515 

one way of solving them. As for LC-extended, they are solved with Eqs. (7)-(11) as described in 516 

Figure 1b. Procedure of solving the five unknowns for the Semi-empirical is achieved by simply 517 

keeping a’ constant following Luo et al. (2013). 518 

For the optimality-based New Approach, the minimum cost criterion, dCost dci⁄ , could be 519 

obtained via some optimization schemes but here we use an exhaustive search method which 520 

searches all possible ci values at a regular interval to ascertain the global minimum is reached for 521 

in-depth discussion. The solution procedure starts with known soil water potential, ψ
soil

 , at the 522 

time step t=1 in Figure 1a. The main steps are briefly described below: 523 

Step 1: Follow a sequential order and use the one in the queue of the equally spaced ci for the 524 

current time step.  525 

Step 2: Try a value of  g
s,co2

 from the range based on Eq. (18). Calculate gs, Etr, then ψ
l
.  526 

Step 3: Calculate An based on Eqs. (11) and (15) and express it as An1. Calculate the CO2 527 

assimilation from the modified Farquhar model, i.e., Eqs. (10) and (12) – (14), and 528 

express it as An2 (Figure 1a).  529 

Step 4: Check the difference between An1 and An2. If their difference, |(An2- An1)/An1|, is greater 530 

than the threshold 10−10,  go back to Step 2 and select a new value for  g
s,co2

 and repeat 531 

until this threshold is met. If the tolerance is not met after the maximum number of 532 

iterations is reached, go back to Step 1 and select the next value of ci. 533 

Step 5: Calculate  𝑎′  based on Eq. (16).  If  a' > amax
'  and the maximum number of iterations 534 

prescribed is not reached, go back to Step 1 and select the next value of ci and start over. 535 

If the maximum number of iterations is reached, then stop. This study has not 536 
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encountered this scenario, however. If  a' ≤ amax
' , calculate and store the cost defined by 537 

Eq. (7a).  538 

Step 6: Proceed to the next ci and repeat Step 2 – Step 5 until all the equally spaced ci between 539 

 Γ* and ca are checked.   540 

The ci that produces the least cost, together with its associated Etr, gs,co2
, An, ψl

, and a' are the 541 

solution for the current time step.   542 

 When processes are considered simultaneously from different perspectives, they are 543 

coupled through shared variables. There is less “freedom” for these shared variables as they must 544 

conformed to different perspectives and thereby reduces the model uncertainty. In addition, this 545 

modeling framework can reduce the required number of model parameters that need to be 546 

calibrated. A case in point: here we solve ψ
l
 and ci together with the leaf water potential (ψ

l
) 547 

shared in Eqs. (9), (10), (12), (15), and (16), and CO2 concentration within leaf (ci) in Eqs. (7), 548 

(10), (11), (13), (14), and (16). 549 

3.3 Two hydrological models used 550 

Two hydrological models, VIC+ and DHSVM, that have significantly different model 551 

structures are employed and each is applied to two different locations to investigate the 552 

versatility and benefits of our modeling framework.  553 

 VIC+ (Luo et al., 2016; 2013) extends the Three-Layer Variable Infiltration Capacity 554 

(VIC-3L) large-scale hydrological model (Liang et al., 1994,1996a,1996b, 2003; Liang & Xie, 555 

2001, 2003) with important new features. The enhancement in VIC+ are as follows: First, VIC+ 556 

considers hydraulic redistribution (HR) process and its effect on the interplay between plant 557 

transpiration and groundwater dynamics under water-limited conditions. Second, it explicitly 558 

represents groundwater table movement within the soil column and its tight interactions with the 559 

HR process. Third, it explicitly represents the photosynthesis process and its interactions with 560 

transpiration process. Fourth, it introduces our strategy into hydrological modeling by 561 

simultaneously representing the same process using multiple expressions from different 562 

perspectives to constrain the model. Fifth, VIC+ considers impact of plant storage on the water, 563 
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energy, and CO2 cycles. In addition to these new features introduced to it, VIC+ also maintains 564 

the original unique features included in the VIC-3L model (Liang et al., 1994, 1996a, 1996b, 565 

2003, 2004; Liang and Xie, 2001, 2003; Cherkauer and Lettenmaier, 1999, 2003), such as 566 

considering subgrid spatial variability of soil and vegetation properties and precipitation, 567 

accounting for both infiltration and saturation excess runoff generation mechanisms for each 568 

modeling grid in an interactive way under the context of subgrid spatial variability associated 569 

with watershed properties (Liang and Xie, 2001; 2003). These original VIC features make the 570 

VIC model more robust and less scale dependent as compared to other land surface models as 571 

illustrated by different studies (e.g., Liang et al., 1996a, 2004; Konapala et al., 2020; Li et al., 572 

2011).  573 

The small-scale Distributed Hydrology Soil and Vegetation Model (DHSVM) (Wigmosta 574 

et al., 2002; 1994) was developed to numerically represent the effects of topography, soil type, 575 

and vegetation on hydrological processes, such as plant transpiration, surface and subsurface 576 

runoff, and snow process for small watersheds with high spatial resolution described by digital 577 

elevation model (DEM) data. Unlike VIC+ in which the groundwater table is computed based on 578 

the mixed form of Richards equation (Luo et al., 2013), DHSVM calculates its groundwater table 579 

based on a simple conceptual approach. Also, DHSVM does not have the hydraulic 580 

redistribution process represented either. In DHSVM, the water and energy budgets are solved 581 

for each modeling grid cell which may contain an overstory canopy and an understory or bare 582 

soil. DHSVM uses Penman-Monteith equation to calculate its plant transpiration and it does not 583 

consider photosynthesis process, nor CO2 assimilation. Thus, we have added these processes to 584 

DHSVM in this study, and the modified DHSVM model is denoted as DHSVMm. 585 

There are some conceptual model parameters and physically based model parameters 586 

which cannot be well determined for either VIC+ or DHSVMm due to limited available 587 

observations.  Together there are eleven parameters needed to be calibrated for each model as 588 

listed in Table 1: three are common to both, and if a' is posed as an unknown as in the New 589 

Approach that number reduces to two. These parameters are manually calibrated for each 590 
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hydrological model using the Semi-empirical approach. The calibrated parameters are then kept 591 

unchanged for use in the other two approaches.  592 

3.4 Four study sites and calibration 593 

The four study sites selected are all of plot-scales. The main reasons to choose the plot-594 

scale sites are because (1) the availability of observations, e.g., gross primary production (GPP), 595 

latent heat flux, and soil moisture, are all of plot-scales; (2) fewer number of model parameters 596 

need to be manually calibrated, and (3) the routing process and its associated routing parameters 597 

do not need to be included and calibrated. This allows the major efforts of the analysis be 598 

devoted to the focus of the study.  599 

Since VIC+ includes the representation of hydraulic redistribution, groundwater and 600 

surface water interaction, plant storage, and leaf water potential, it is applied to two forest sites 601 

where impacts on fluxes due to deep roots under normal and water-limited conditions can be 602 

effectively investigated.  These two forest sites are the Duke Forest Loblolly Pine (US-Dk3) 603 

located in North Carolina and the Blodgett Forest (US-Blo) located in California. The main 604 

vegetation of the Duke forest is loblolly pine trees with different hardwood understory species. 605 

Soil types are loam and clay. The mean annual precipitation is 1145 mm and the mean air 606 

temperature is 15.5 ℃. The hourly forcing data of years 2004 and 2005 at the Duke site are used 607 

for calibration and validation, respectively. The Blodgett site is covered by mixed-evergreen 608 

conifer forest with dominant even-aged ponderosa pine. Its primary soil type is loam. The mean 609 

annual precipitation is 1226 mm and the mean air temperature is 11.1 ℃. The hourly forcing data 610 

of year 2004 at the Blodgett forest site are used for calibration. Since there are no complete 611 

hourly forcing data available for other periods at the Blodgett site, no validation was carried out. 612 

The seasonal precipitation distributions are different at the two forest sites. For the Duke forest 613 

site, the dry period is short and distributed throughout the year. But for the Blodgett site, the dry 614 

period is long and occurs over the summer months. Thus, plants at the Blodgett site survive the 615 

summer through optimizing their behaviors and stored soil moisture to adapt to the dry climate 616 

conditions.  617 

The DHSVMm is applied to two grassland sites since its limitations are less severe for 618 

grassland as discussed. These two are the Mather site located in Pennsylvania in USA and the 619 
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Oensingen site located in Switzerland. The Mather site is covered with alfalfa, white clover, red 620 

clover, and tall fescue grass. Its mean annual precipitation is 1148 mm with about 85 621 

precipitation days per year, and its mean annual temperature is 10 oC. The Mather site has a 622 

temperate continental climate with warm summers. The Oensingen site is covered with mixed-623 

grasses. The mean annual precipitation is 1100 mm and the mean annual temperature is 9 oC. 624 

Hourly forcing data of the year 2010 are used at both grassland sites.  625 

The main reason we use the Semi-empirical approach to carry out the calibration and 626 

validation is that it has the additional constant a’ in its semi-empirical stomatal conductance 627 

model which needs to be calibrated. Results from the two hydrological models are shown in 628 

Figure 2.  The observed data are from AmeriFluxin for Duke and Blodgett sites, and from 629 

MODIS for Mather and Oensingen sites.  630 

Through regression between the original BBL and the BBL-updated for different 631 

vegetation types, we obtain for both the Duke and Blodgett sites, amax
' = 9 , for the Mather site, 632 

a'
max= 17, and for the Oensingen site a'

max= 24. In Semi-empirical, a' is considered constant and 633 

a’ = 2 is found to have the best fit for all four sites based on the manual calibrations in both 634 

VIC+ and DHSVMm.   635 

The relative differences based on L2 norm (LD) and the coefficient of determination (R2) 636 

for each observed variable are computed. From Figure 2, we can see that VIC+ simulates the soil 637 

moisture best, followed by latent heat flux, then the gross primary productivity (GPP); while 638 

DHSVMm simulates the GPP quite well. At the Duke site, for soil moisture, latent heat and GPP, 639 

their R2 and LD (in parenthesis) are 0.87 (0.13), 0.83 (0.39) and 0.7 (0.47), respectively; and at 640 

the Blodgett site, they are 0.92 (0.12), 0.62 (0.54), and 0.60 (0.81). For the two grassland sites, 641 

total evapotranspiration (ET) and GPP are measured and DHSVMm consistently gives larger ET, 642 

but better estimates of GPP. For ET and GPP, their R2 and LD for Mather are 0.79 (1.35) and 643 

0.88 (0.36), respectively; and 0.64 (1.21) and 0.87 (0.39) for Oensingen site. Considering the 644 

complexity of the modeling involved, these levels of relative difference with the limited 645 

measured data can be viewed as having reached reasonably good fit. 646 

After the model calibrations, the cost function of Eq. (7) is employed to determine the 647 

ratio a/b needed. A sensitivity analysis between ci ca⁄  and the different ratios of a b⁄  for each of 648 
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the four sites is presented in Figure 3. The ratio of a b⁄  =1/146  ≈ 0.0068 suggested by (Stocker 649 

et al., 2020) based on data is also included in Figure 3 for comparison. All these four sites show 650 

similar patterns – the value of ci ca⁄  increases with a decrease in a b⁄ . When a b⁄  is between 651 

0.001 and 1, the value of ci ca⁄  is not sensitive to the a b⁄  value at these four sites. Therefore, a/b 652 

= 1/146, which is within the insensitive range for all these four sites, is used in this study.    653 

4. Results and analyses 654 

On the outset it is important to emphasize that for the present complex modeling problem 655 

the available measurements related to plant behaviors are limited to only 3 and 2 variables, 656 

respectively, for the forest sites and the grassland sites, and only one of the measurements is 657 

directly related to a modeling variable, Etr. Because of this limitation, a system with variables 658 

incorrectly solved might still perform seemingly well with respect to the data – an equifinality 659 

pitfall. Under this circumstance, what physical insights one approach can reveal over another 660 

weigh more on the merits of different approaches than their goodness of fit to the few 661 

measurements. This is particularly so as we are dealing with plausible expressions of the same 662 

processes and, by nature, they give similar results with respect to the limited measurements in 663 

order to be considered equally plausible. 664 

4.1  Models versus available data 665 

Results of New Approach, LC-extended and Semi-empirical approaches are first 666 

compared with the limited available measurements. The latter two represent the current practice 667 

albeit that LC-extended is an extension of Prentice-2014 to cover dry climates. All three 668 

approaches using the same parameter values calibrated via Semi-empirical. Results from each 669 

approach in comparison with the available observation data are shown through Figures 2, 4 and 670 

5. Unsurprisingly, they all give compatible relative errors and goodness of fit to the data as the 671 

results summarized in Figures 2, 4 and 5 illustrate. These plots include both daytime and 672 

nighttime simulation results and observations. These results also show that the LC-extended 673 
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formulation developed in this study and used in LC-extended approach works for the dry weather 674 

condition as intended.   675 

4.2  Comparison of the solved variables  676 

To gain deeper insights, we compare results of the main variables An, 𝑐𝑖 ,Etr, ψl
, g

s,co2
 and 677 

a' obtained from different approaches during the study period. Nighttime ci, An, gs,co2
, ψ

l
, and Etr 678 

from sunset to 8am the next day are excluded from evaluation because at nighttime ci approaches 679 

ca which results in the three variables of ci, An, and Etr having similar values among different 680 

approaches and, if included, would skew the overall differences.  681 

 682 

Before we start our detailed analyses and discussions, it is important to note that (1) a’ 683 

has not been treated as a variable in previous studies, (2) impacts of a’ on other variables, An, 684 

𝑐𝑖,Etr, ψl
, g

s,co2
 are found significant, and (3) solutions Sof An, 𝑐𝑖,Etr, ψl

 , g
s,co2

 from LC-extended 685 

are the same as those from New Approach, when the former gives a’<a’
max,  but are very 686 

different otherwise.   687 

 688 

To show indeed each of the two different perspectives on stomatal conductance leads to 689 

different results, we first compare Semi-empirical and LC-Extended. Their results presented in 690 

Figure 6 do show significant difference.  691 

 692 

To assess merits of the New Approach, pairwise comparisons are made. First, New 693 

Approach vs Semi-empirical results plotted in Figure 7 show that their g
s,co2

,   a', ci, and ψ
l
 are 694 

significantly different at all four sites studied. Relative differences presented in Figure 8 provide 695 

a sharper view of these comparisons. The largest relative differences happen in Etr, ψl
, g

s,co2
 and 696 

a’ which can be as high as 100% except for ψ
l
 at the two grassland sites where the relative 697 

differences can be as high as 200%, followed by ci which can be up to 50%, while the 698 

differences in An, generally less than 50% at all four sites, are the smallest. The dramatic 699 

differences in a' occur because the Semi-empirical fails to consider the time-varying nature of a’ 700 

by keeping it constant. The constant a' = 2, determined through calibration, is much smaller 701 

almost at all time than those obtained by New Approach during the study period as shown in 702 
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Figure 7. This implies that a'  turns out to be a critical factor driving the differences in the 703 

solution of other variables.  704 

Comparisons between the New Approach and LC-extended are presented in Figures 8 and 705 

9. For LC-extended, a' are back-calculated using Eq. (16) after An, gs,co2
, ci, and ψ

l
 are solved. 706 

Their relative differences (Figure 8) are the lowest in An among the six variables at the two forest 707 

sites, and are comparable between An and ci at the two grassland sites. At all four sites, 708 

differences in Etr are similar to those between New Approach and Semi-empirical but with less 709 

scatter. We note that the largest relative differences in Etr between New Approach and LC-710 

extended are greater than those between the New Approach and Semi-empirical; furthermore, 711 

13.6% (Duke), 18.4% (Blodgett), 15.9% (Mather), and 7.6% (Oensingen) of the data lie outside 712 

the bounds of Figure 8. Also, Etr estimates from the New Approach are generally greater than 713 

those from Semi-empirical at all four sites, while mostly smaller than those from LC-extended 714 

(Figure 8). The differences in ci are smaller than those between New Approach and Semi-715 

empirical except for the summer months at the Blodgett site where the differences are larger. 716 

Similar to Etr, the ci estimates from the New Approach are also generally greater than those from 717 

Semi-empirical at all four sites, while mostly smaller than those from LC-extended (Figure 8). 718 

For ψ
l
, even though the largest differences between the New Approach and LC-extended are 719 

larger than those between New Approach and Semi-empirical, the majority of the differences are 720 

smaller as indicated by the LD metric for the two forest sites; as for the two grassland sites, the 721 

differences between the New Approach and LC-extended are much smaller than those between 722 

New Approach and Semi-empirical (Figures 7, 8, and 9). The relative differences between New 723 

Approach and LC-extended that lie outside the bounds of Figure 8 for ψ
l
 is 9.3% for the Mather 724 

site and 5.2% for the Oensingen site, respectively. On the other hand, the relative differences 725 

between New Approach and Semi-empirical that lie outside the displayed bounds for ψ
l
 are 726 

17.7% and 59.2% for the Mather and Oensingen sites, respectively. Values in ψ
l
 and Etr from 727 

LC-extended (Figures 8 and 9) are also closer to those from New Approach than from Semi-728 

empirical (Figures 78, and 9) at all four sites. Similar to Etr and ci, estimates in ψ
l
 from the New 729 

Approach are also generally smaller than those from LC-extended, while they are mostly larger 730 

than those from Semi-empirical (Figure 8) at both forest sites. For the two grassland sites, 731 

however, estimates in ψ
l
 from the New Approach are generally smaller than those from both LC-732 
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extended and Semi-empirical. These general patterns are, in fact, associated with the large 733 

differences in g
s,co2

 and  a' among the three approaches further discussed next.  734 

In terms of the relative differences in An, ci, Etr, and ψ
l
, (see Figure 8), the largest 735 

differences still reside in Etr and ψ
l
, followed by ci, with the smallest in An at all four sites, 736 

although the differences in ci and An are comparable at the two grassland sites. Comparing the 737 

relative differences between New Approach and Semi-empirical, those between New Approach 738 

and LC-extended are generally smaller at all four sites. However, the differences in g
s,co2

 and  a' 739 

are pronounced (Figures 8 and 9), and the trend of the differences in g
s,co2

 and  a' is reversed 740 

from that between LC-extended versus Semi-empirical. For both g
s,co2

 and  a' the New Approach 741 

gives much higher values than Semi-empirical (see Figures 7 and 8) but much lower values than 742 

LC-extended (see Figures 8 and 9) at all four sites. This is because a large number of a' are 743 

unrealistically high for all four sites with the LC-extended. For Duke, Blodgett, Mather, and 744 

Oensingen sites, there are, respectively, 45.7%, 79.1%, 49.4% and 44.9% of a' that are higher 745 

than amax
'  (see Table 2a). These unreasonable a' values imply that using the minimum cost 746 

function, i.e., Eq. (7), together with other Eqs. (8) – (11), leaves a’ an unmodeled free variable, 747 

and that introducing additionally Eq. (16) is necessary, even though the levels of differences in 748 

An, Etr, ci, and ψ
l
 between these two approaches are generally much smaller than those in g

s,co2
 749 

and  a' between the New Approach and LC-extended. In fact, there are some a' values in the LC-750 

extended that are higher than 200 at all four sites which are out of the display bound in Figure 9. 751 

Also, there are large percentages of relative differences between New Approach and LC-extended 752 

for g
s,co2

 and  a' whose values are outside their respective bounds displayed in Figure 8. For 753 

g
s,co2

, these percentages are, respectively, 29.9% (Duke), 32.3% (Blodgett), 32.6% (Mather), and 754 

17.2% (Oensingen). Further examination on a’ is given below. Figures 8 and 9 clearly show that 755 

the differences in An, Etr, ci, and ψ
l
 are much smaller than those in g

s,co2
, and a' between the New 756 

Approach and LC-extended, but these smaller differences are produced at the expense of 757 

unrealistic  a'. This is an example of variable equifinality.  758 

After studying these comparisons, it is clear that a’ is a discriminant factor that explains 759 

the observed differences. In LC-extended, a’ is an unmodeled free variable, and if a’ < a’max, 760 
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which happens 54.3% (Duke), 20.9% (Blodgett), 50.6% (Mather), and 55.1% (Oensigen) of the 761 

time, New Approach and LC-extended give same An, ci, Etr, ψl
, g

s,co2
 and  𝑎′. But for the rest of 762 

the time when a’ > a’max, results are very different. In this case, LC-extended gives solutions that 763 

consist of unreasonable five variable combinations—this is further detailed in the next section. 764 

As for the Semi-empirical, because a' is held constant, it yields even larger differences with the 765 

New Approach. Introducing a’ as an additional modeled variable in the New approach is thus 766 

important and necessary. 767 

Impact of a’, either from the unmodeled thus unconstrained a’ in LC-extended, or from 768 

the inadequate treatment of a' as a constant from model calibration in Semi-empirical, is not 769 

known previously, and is an important investigation of this study. 770 

4.3  Why a’ should be a model variable  771 

In this section we will show that consider a’ as an additional model variable and set a'≤  772 

a'
max has important implications.  We will further show via analyzing LC-extended results that a’ 773 

being a free variable lead to a large percentage of results having a'> a'
max as summarized in 774 

Table 2a, and that those solutions having a'> a'
max are predominantly unreasonable in light of 775 

physical reality as shall be presented in Table 2g. In contrast, by taking up a’ as a model 776 

variable, such a serious problem is greatly reduced (Table 2h).  777 

Eq (16) provides a clue as to when a' could be high in LC-extended. The solved An, ci, ψl
, 778 

g
s,co2

results corresponding to  a' > a'
max are loosely parsed  into four groups based on Eq. (16): 779 

(1) g
s,co2

>0.3 mol/m2/s (red), (2) ψ
l
 < -2.2 MPa (blue), (3) An < 2 (green) and (4) ci > 300 780 

(orange). Each group by itself does not mean much, however, a daytime (defined to be from 8 781 

AM to sunset in this study) result is deemed unrealistic if it falls into more than one of these four 782 

groupings as explained below.  The intent here is not to define a rigorous boundary, but to 783 

explain how one can determine results to be unreasonable and slight variations on these 784 

boundaries would not affect the conclusions.  785 

The LC-extended results having a' > a'
max are presented in Figure 10a (forest sites) and 786 

Figure 10c (grassland sites) distinguished by the above grouping, while results that do not belong 787 
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to these four groups but have a' > a'
max are also plotted (in grey).  Table 2b lists the percentage of 788 

each group showing that these four groups indeed contribute most to a' > a'
max. Since they are 789 

not mutually exclusive from one another, the sum of them is more than 100%, indicating that 790 

there are points belonging to multiple groups at the same time. This is of significance as this is 791 

how we are able, guided by Figure 10, to pinpoint the problems of unreasonableness with those 792 

results having a' > a'
max. Take for example the combination of An < 2 μmol/m2/s and ci > 300 793 

μmol/mol (exclude those with small g
s,co2

 which may be potentially reasonable), such 794 

combination is unlikely when their corresponding g
s,co2

 values are not small (see orange dots in 795 

Figures 10b and 10d), for during daytime  ci > 300 μmol/mol means photosynthesis activity is 796 

strong, and net carbon assimilation should be high, and thus An < 2 μmol/m2/s is unlikely and 797 

thus the set of solution should be discarded. The solutions having ψ
l
 < -2.2 with either g

s,co2
> 0.3 798 

or ci > 300 and g
s,co2

> 0.3 and An < 2 can be similarly discounted. The combination of ψ
l
 < -2.2 799 

and An  < 2 is found associated with large ci (close to 300 μmol/mol) (see Figure 10b) which is 800 

unrealistic. The combination of g
s,co2

>0.3 mol/m2/s and ci > 300 μmol/mol in daytime is possible, 801 

however, Figures 10b and 10d show that points in this group are associated mostly with small to 802 

medium An (although An > 2) under not water stressed conditions (in contrast to larger An values 803 

shown in Figure 9 at all four sites). Such a combination makes them unreasonable since with 804 

large gsco2 and large ci, the assimilation An should be high as well in the daytime when they are 805 

not water stressed. Following such a detailed examination, we found that LC-extended results are 806 

unreasonable when they fall into any of the two-combinations of Table 2c. It then follows, three-807 

combinations of Table 2d also are unreasonable based on similar reasoning discussed for the 808 

two-combinations in Table 2c. There is no result that simultaneously satisfies the four-809 

combinations.  810 

From Table 2c, data points satisfying both An < 2 μmol/m2/s and ci > 300 μmol/mol 811 

constitute the largest fraction of two-group combination (except for the Oensingen Site) that 812 

leads to a' > a'
max with 32.9% for Duke site, 14.7% for Blodgett site, 35.2% for Mather site, and 813 

20.8% for Oensingen site. That is to say, since a’ is a free variable as in LC-extended, large ci in 814 

daytime is often accompanied by unrealistically low An in order to achieve reasonable values of 815 

g
s,co2

 (see Figures 10b and 10d) as observed from Eq. (16) as such combination would lead to the 816 
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optimal cost. With Eq. (16) added, however, An can no longer be very small as a’ cannot be very 817 

large to compensate the very small An.  818 

The grassland sites, comparing with the forest sites, are less water stressed for their ψ
l
 are 819 

always higher than -2.2 MPa. In less water stressed environments, the interactions between ci 820 

and An and between g
s,co2

 and ci over the specified ranges are stronger for  the combinations of 821 

g
s,co2

>0.3 mol/m2/s and ci > 300 μmol/mol and of ci >300 mol/m2/s and An < 2 account for much 822 

higher percentages at the grassland sites than at the forest sites (see Table 2c). Other than that, 823 

the four sites exhibit similar trends as can be seen in Figure 10. 824 

Table 2c summarizes six possible 2-combinations of the 4 groupings while Table 2d 825 

shows four possible 3-combinations of the 4 groupings. Each of the rows of Table 2c plus Table 826 

2d does not sum up to 100% leading to an important question: might the results represented by 827 

other possible combinations be unreasonable as well? Further analysis is carried out to answer 828 

this question. First, we determine the percentage of results that only falls within one group 829 

(Table 2e) and not to any other three groups listed in Table 2e, and then further divide each 830 

group into subgroups. The difference between groups shown in Table 2e and those in Table 2b is 831 

that in Table 2e, the results in one column do not appear in another column, whereas it is not the 832 

case for Table 2b. In other words, results in each group shown in Table 2e do not overlap with 833 

any other groups.  For groups in Table 2e, they are further divided into subgroups shown in 834 

Table 2f. Based on the behaviors of the plants and the observed data (e.g., Deans et al., 2020; 835 

Ennahli & Earl, 2005; Joshi et al., 2020; Leuning, 1995; Schulze & Hall, 1982; Urban et al., 836 

2014; Zhou et al., 2013), those variable values having combinations fallen into these subgroups 837 

in Table 2f are identified as unreasonable. Using these added criteria, the fraction of data points 838 

within each subgroup of the unreasonable results is summarized in Table 2f. A total summation, 839 

together with Tables 2c and 2d, gives the total fraction of unreasonable results for those with 840 

a' > a'
max in Table 2g. The results so obtained show that at least 70.9% for the forest sites and 841 

could be as high as 98.1% for grassland sites of all a' > a'
max results are deemed unreasonable. 842 

We note that what this analysis shows is that we are not trying to conduct an exhaustive search 843 
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for all unreasonable variable combinations associated with a' > a'
max, but to show that there is a 844 

large fraction of them that is unreasonable.  845 

But then there is a question that has to be addressed: are the results from New approach 846 

where a' ≤a'
max all reasonable? Following the same analysis we have calculated its fraction of 847 

the unreasonable results, and find that they are much lower and are in the range between 3.2% to 848 

9.3% as shown in Table 2h.  This represents a dramatic improvement. It, nonetheless, also points 849 

out that the current understanding still has room to improve.  850 

In addition, in terms of what we have obtained with New Approach on the variation of a’ 851 

values, our results (Figure 9) have shown that  a’ varied in a narrower range over time than those 852 

from LC-extended, and definitely not a constant. The a’ values from LC-extended have a much 853 

larger variation range over the different periods of a year at all four sites. Specifically, for the 854 

New Approach the ranges of the hourly a’ obtained for the two forest sites are, respectively, 855 

between 1.38 and 9 (Duke site, Figure 9g) over the two-year period and between 0.89 and 9 856 

(Blodgett site, Figure 9s) over one-year period; for the two grassland sites, it is between 1.79 and 857 

17 (Mather site, Figure 9ee) and between 2.15 and 24 (Oensingen site, Figure 9qq). In contrast, 858 

for the LC-extended approach the hourly a’ varies between 1.36 and 800 (Duke) and between 0.8 859 

and 2270 (Blodgett) for the forest sites; and for the grassland sites between 1.79 and 313 860 

(Mather) and between 2.15 and 191 (Oensingen). Furthermore, New approach gives much 861 

narrower diurnal a’ variation than LC-extended at both forest sites (see Figures 11g and 11o) and 862 

at the two grassland sites (Figure not shown)—which agrees well with the current data and 863 

understanding of a’ (Miner et al., 2017).  864 

The limited data available at present time only allow us to state that g
s,co2

, An, ci, and ψ
l
 865 

combinations are more reasonable with our New Approach based on plants general behaviors in 866 

the daytime and the observed data shown in the literature. Additionally, the time-varying a’ from 867 

our New Approach removes the need of constant assumption, and from which one can easily 868 

estimate values of g1 based on Eq. (17) which is related to =∂An/∂Etr used in the optimality rule 869 

for the WUE group (e.g., Medlyn et al., 2011). In other words, one no longer needs to calibrate 870 

g1 or  at each daily time step as is currently done in practice. Figures 11h and 11p show the 871 

comparisons of g1’s among the three approaches over a summer week at both forest sites. In 872 
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Figure 11, comparisons on variables of g
s,co2

, An, ci, ψl
, and a’, together with Etr and GPP where 873 

observations are available, are also included.   874 

Results presented in Figures 6 - 11 demonstrate that, for all six solved variables, Etr, An, 875 

ci, ψl
, a’ and g

s,co2
, our New Approach, which simultaneously employs two stomatal conductance 876 

models are significantly different from those using only either one. Furthermore, these results 877 

demonstrate that the differences between Semi-empirical and LC-extended (Figure 6) are larger 878 

than those between our New Approach and either Semi-empirical (Figure 7) or LC-extended 879 

(Figure 9) based on both metrics, R2 and LD. These results clearly show that our New Approach 880 

takes the advantage of both models, LC-extended and Semi-empirical. 881 

The preceding results show that only the New Approach gives reasonable values of a’ and 882 

with it reasonable solutions, and that the problem studied is better described as having six 883 

variables.  884 

4.4  Relationship between carboxylation and transpiration 885 

The cost function, Eq. (7), represents a trade-off between carboxylation and transpiration. 886 

The relationship between carboxylation and transpiration is shown in Figure 12 in which 887 

carboxylation is presented by V = Vcmax/An, and transpiration is presented by G = gsab,co
2
/An. 888 

Prentice et al. (2014) showed that the V~G relationship follows a hyperbola shape based on 889 

observed data with the observed V in the range between 0 and 30, and the observed G in the 890 

range between 0 and 0.05. Although their data are from instant measurements under certain 891 

conditions while here our modeling gives hourly results over one or two years, such a hyperbola 892 

relationship between V and G does provide another baseline to evaluate the results obtained. 893 

Figure 12 shows that results from both New Approach and LC-extended generally follow the 894 

hyperbola shape at all four sites, while the Semi-empirical does not, even though they have the 895 

same goodness of fit to the available data (see Figures 2, 4, and 5). Between New Approach and 896 

LC-extended, the former has less scatter, and a larger percentage of its results fall inside the 897 

range of 0 < G ≤ 0.05 [mol·mol-1] and 0 < V≤ 30 [mol·mol-1] (see Table 3). The larger scatter in 898 

the LC-extended in Figure 12 is due to its larger g
s,co2

 and a’ (see Figures 8 and 9) that result in 899 

larger G at all four sites, since the differences in An from both approaches are much smaller.  On 900 
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the other hand, the reason that the Semi-empirical approach does not show hyperbola V~G 901 

relationship is because g
s,co2

 are constrained to small values (see Figure 7) by the use of a 902 

constant a’=2 from calibration. Not having a dynamic a’ imposes limitations on the Semi-903 

empirical approach.    904 

5. Conclusions 905 

In this study, we present a modeling framework which is applied to model the water and 906 

carbon exchange of plants inside hydrological models. We have demonstrated how we pose six 907 

equations, i.e., Eqs. (7) – (11) and Eq. (16), and two constraints (18) and (19) to solve a 908 

constrained optimization problem of six variables, Etr, gs,co2
, An, ci, ψl

, and a'. The core idea of 909 

this modeling framework is to model processes that are important and yet not completely 910 

understood with multiple equally plausible expressions from different perspectives. This 911 

represents an extension of the modeling strategy proposed in VIC+ by Luo et al. (2016; 2013). In 912 

the process, we have also extended the minimum cost optimality rule of Prentice et al. (2014) so 913 

that it applies to water-limited conditions. The extension also relaxes the coordination 914 

assumption that the Rubisco-limited photosynthetic rate be equal to electron transport-limited 915 

photosynthetic rate.   916 

The unique strength of this modeling framework includes the following: First, not only 917 

does this modeling framework provide more constraints to the same process to reduce the 918 

modeling system’s free variables and unreasonable variable value combinations, but also 919 

individual processes are more comprehensively described because they are represented from 920 

multiple perspectives. Second, the presence of various constraints makes the individual processes 921 

more tightly coupled through shared variables which are solved simultaneously.  922 

To further shed light on the impacts of the present framework, we conduct comparative 923 

studies employing two currently widely used stomatal conductance models. Three approaches 924 

used are denoted as: New Approach (the present model), LC-extended and Semi-empirical.  To 925 

illustrate the versatility of the framework, this study uses two different hydrological models and 926 

four different study sites: VIC+ on two forest sites and the modified DHSVMm on two grassland 927 

sites. Our results show that all three approaches give compatible results regarding the available 928 

limited observation data. But a close examination shows that the differences in the solved 929 
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variables Etr,  An, ci, gs,co2
,ψ

l
 and a’ are significant. This is a well-known phenomenon called 930 

equifinality that in modeling a complex system that the “right” results may be obtained  with 931 

wrong solutions  when observation data are limited.  In-depth investigation reveals that the 932 

differences among the variables can be attributed to the treatment of a’: Semi-empirical treats it 933 

as a constant; LC-extended treats it as a free variable by not considering it; and the present New 934 

Approach considers it as a modeling variable. The New Approach with two stomatal conductance 935 

models fused together is able to solve a’ that agrees with the current understanding obtaining 936 

nearly constant day time a’ and how the a’ values vary between days . This indicates that Semi-937 

empirical using a constant a’ throughout a study period is not desirable, and that LC-extended 938 

not considering it at all which would result in a high fluctuation of a’ over a diurnal cycle (see 939 

Figures 11g and 11o) is not desirable either. Furthermore, results from New Approach give 940 

hyperbolic relationship between plant carboxylation and transpiration as field observation 941 

dictates which further indirectly provides merits to the proposed framework as it matches with 942 

the trend observed.  943 

Our investigation into the reasonableness of results in terms of physical reality has shown 944 

that the New approach, albeit makes dramatic improvements in this respect, still gives some 945 

unreasonable variable combinations, albeit a much smaller fraction, in the results. This reflects 946 

that there still exists some knowledge gap in the current understanding and expressions, and 947 

more work needs to be done.  948 

It is also worth mentioning that the New Approach presented is simply one 949 

implementation of our modeling framework. The core idea of including as many least overlapped 950 

equally plausible or quasi-equally plausible formulations as possible can constrain a modeling 951 

system, reduce model’s free variables and mitigate equifinality, decrease result uncertainties, and 952 

ultimately increase the model robustness and predictability – very important characteristics a 953 

model should possess (Prentice et al., 2015). This strategy also enables the modeling system to 954 

have more unknowns solved simultaneously, and thus makes it possible to have the different 955 

expressions in the model interact with and depend on one another. Plausible expressions for the 956 

same process obtained via different perspectives, when properly introduced, complement one 957 

another. This is why our modeling framework can make the system more robust and stable when 958 

the unknown variables of the system are solved in such a manner. Our results with two different 959 
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hydrological models, VIC+ and DHSVMm, applied to four different locations, clearly 960 

demonstrate these points. That is, results from our framework – the New Approach – provide not 961 

only good estimates on Etr, An, ci, and ψ
l
, but also more reasonable values on g

s,co2
 and a’, and 962 

the hyperbolic V~G shape as well.  963 

Our modeling framework could also facilitate identification of inconsistency, should it 964 

exist, among the different quasi-equally plausible expressions. This is because if no reasonable 965 

solutions could be obtained by solving simultaneously all of the unknowns of the system, it could 966 

imply that some of these expressions were not compatible with each other. In this way, by 967 

analyzing the results, one may be provided with new insight regarding what could be the terms 968 

or factors that may be missing, and under what conditions these expressions may not be 969 

compatible, while at other conditions they are compatible and complement each other. After all, 970 

the ecosystem is such a complex system, our current understanding of the system and the 971 

available observations may not yet provide us processes that could fully describe the nature. This 972 

modeling framework could help us move forward in identifying the gaps.  973 

Lastly, our modeling strategy is not only applicable to the hydrological models (e.g., 974 

VIC+ and DHSVMm), but also suitable to other modeling systems in other fields where 975 

knowledge is incomplete and many models from different perspectives are equally or quasi-976 

equally plausible. With the advance of our understanding and knowledge of the various complex 977 

natural processes, more constraints/equations/expressions will be discovered, and they can be 978 

fused together in a fashion similar to what we do here in studying the soil-plant-atmosphere 979 

continuum. This study shows how this modeling framework can be realized, tested, and 980 

explored.  981 
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Figure 1. Flowchart of (a) The New approach, and (b) LC-extended approach.  
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Figure 2. Comparison of the results using calibrated parameters by the Semi-empirical approach 

(green dots)with observations (orange dots).  Plots (a)-(f): Hourly results over two years at the 

Duke site. Plots (g)-(l): Hourly results over one year at the Blodgett site. (m)-(p): 8-day results 

over one year at the Mather site. (q)-(t): 8-day results over one year at the Oensingen Site. (a), 

(b), (g), and (h) represent gross primary productivity (GPP); (c), (d), (i), and (j) latent heat flux 

(LE); (e), (f), (k), and (l) soil water content (SWC) at the depth of 10 cm; (m), (n), (q), and (r) 

represent gross primary productivity (GPP); and (o), (p), (s), and (t) 8-day total 

evapotranspiration (ET). For the Duke site, results on the left side of the vertical black dotted line 

in (a), (c) and (e) are for the calibration period while results on the right side are for the 

validation period.  
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Figure 3. Sensitivity analysis between ci/ca and the different ratios of a/b in Eq. (7): (a) Duke 

site, (b) Blodgett site, (c) Mather site, and (d) Oensingen Site. 
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Figure 4. Comparison of the results using the same calibrated parameters by the New approach 

(green dots) with observations (orange dots). The notations used are the same as those in Fig. 2.  
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Figure 5. Comparison of the results using the same calibrated parameters by the LC-extended 

(green dots) with observations (orange dots). The notations used are the same as those in Fig. 2.  
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Figure 6. Comparison of results between the LC-extended approach (green dots) and Semi-

empirical (red dots) over 8AM to sunset.  (a)-(l): Hourly results over two years at Duke site; (m)-

(x): Hourly results over one year at Blodgett site; (y)-(jj): Hourly results over one year at Mather 

site; (kk)-(vv): Hourly results over one year at Oensingen Site; (a), (b), (m), (n), (y), (z), (kk), 

and (ll) represent carbon assimilation (An); (c), (d), (o), (p), (aa), (bb), (mm), and (nn) plant 

transpiration (Etr); (e), (f), (q), (r), (cc), (dd), (oo), and (pp) CO2 stomatal conductance (g
s,co2

); 

(g), (h), (s), (t), (ee), (ff), (qq), and (rr) empirical coefficient (a'); (i), (j), (u), (v), (gg), (hh), (ss), 

and (tt) leaf CO2 concentration (ci); and (k), (l), (w), (x), (ii), (jj), (uu), and (vv) leaf water 

potential (ψ
l
). The LD in the figure are calculated with a reference to the values from the semi-

empirical approach.  
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Figure 7. Comparison of the results between the New approach (green dots) and the Semi-

empirical approach (red dots) over 8AM to sunset. (a)-(l): Hourly results over two years at Duke 

site; (m)-(x): Hourly results over one year at Blodgett site; (y)-(jj): Hourly results over one year 

at Mather site; (kk)-(vv): Hourly results over one year at Oensingen Site; (a), (b), (m), (n), (y), 

(z), (kk), and (ll) represent carbon assimilation (An); (c), (d), (o), (p), (aa), (bb), (mm), and (nn) 

plant transpiration (Etr); (e), (f), (q), (r), (cc), (dd), (oo), and (pp) CO2 stomatal conductance 

(g
s,co2

); (g), (h), (s), (t), (ee), (ff), (qq), and (rr) empirical coefficient (a'); (i), (j), (u), (v), (gg), 

(hh), (ss), and (tt) leaf CO2 concentration (ci); and (k), (l), (w), (x), (ii), (jj), (uu), and (vv) leaf 

water potential (ψ
l
). The LD in the figure are calculated with a reference to the values from the 

New approach.  
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Figure 8. Relative differences between New approach and Semi-empirical and between New 

approach and LC-extended over 8AM to sunset. The first 4 rows are for the two forest sites with 

columns 1-2 for the Duke site and columns 3-4 the Blodgett site. The bottom 4 rows are for the 

two grassland sites with columns 1-2 for the Mather site and columns 3-4 the Oensingen site. 

Some of the relative differences between New Approach and LC-Extended are outside the plot 

bounds and not plotted. The percentages of data outside the plots displayed are as follows: (1) for 

the Duke site, they are 13.6%, 5.2%, 42.2%, and 30.9% for Etr, ψl, gs,co2
, a' respectively; (2) for 

the Blodgett site, they are 18.4%, 7.0%, 42.4%, and 61.1%; (3) for the Mather site, they are 

15.9%, 9.3%, 34.5%, and 34.4% ; and (4) for the Oensingen site, they are 7.6%, 5.2%, 18.4%, 

and 18.2%. For the variable ψ
l
, its relative differences between New Approach and Semi-

empirical have 17.7% and 59.2% data outside plot bounds for Mather and Oensingen 

respectively.  
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Figure 9. Comparison of results between the New approach (green dots) and the LC-extended 

approach (blue dots) over 8AM to sunset. Other notations are the same as those in Fig. 5.  The 

LDs in the figure are calculated with a reference to the values from the New approach. Note that 

for a’, values greater than 100 from the Prentice-updated approach are not shown in the plots 

here. These large a’ values account for, respectively, 1.9%, 1.1%, 9.3%, and 5.2%, for the Duke, 

Blodgett, Mather, and Oensingen sites.  
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Figure 10a. Results over 8AM to sunset with the LC-extended approach at two sites in groups 

associated with a' > a'max: gs,co2  > 0.3 [mol/m2/s] (red dots), ψ
l
 < -2.2 [MPa] (blue dots), An < 2 

[𝜇mol/m2/s] (green dots), ci > 300 (orange dots), and data points not belonging to the preceding 

four groups (grey dots). (a)-(f) and (m)-(r): Duke site; (g)-(l) and (s)-(x): Blodgett site; (a), (g), 

(m), and (s) represent carbon assimilation (An); (b), (h), (n), and (t) leaf water potential (ψ
l
); (c), 

(i), (o), and (u) empirical coefficient (a') vs. carbon assimilation (An); (d), (j), (p), and (v) 

empirical coefficient (a') vs. leaf CO2 concentration (ci); (e), (k), (q), and (w) empirical 

coefficient (a') vs CO2 stomatal conductance (g
s,co2

); and (f), (l), (r) and (x) empirical coefficient 

(a') vs. leaf water potential (ψ
l
). The dotted lines in each of the a' subplots represent their 

respective upper bound values. Like Figure 9, a’ values greater than 100 are not shown in the 

plots here.  
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Figure 10b. The overlapping data points belonging to two groups shown in Figure 10a at the two 

forest sites by the LC-extended approach: overlapping between ψ
l
 < -2.2 [MPa] and An < 2 

[𝜇mol/m2/s] (blue dots), between An < 2 [𝜇mol/m2/s] and ci > 300 (orange dots), between 

gs,co2  > 0.3 [mol/m2/s] and ψ
l
 < -2.2 [MPa] (red dots), between gs,co2  > 0.3 [mol/m2/s] and ci > 

300 (green dots), between ψ
l
 < -2.2 [MPa] and ci> 300 (purple dots), between g

s,co2
 > 0.3 

[mol/m2/s] and An, < 2 [𝜇mol/m2/s] (lime dots), and remaining points (grey dots). These seven 

groups are not overlapping with each other. (c), (i), (o), and (u) empirical coefficient (a') vs. 

carbon assimilation (An); (d), (j), (p), and (v) empirical coefficient (a') vs. leaf CO2 concentration 

(ci); (e), (k), (q), and (w) empirical coefficient (a') vs CO2 stomatal conductance (g
s,co2

); and (f), 

(l), (r), (x) empirical coefficient (a') vs. leaf water potential (ψ
l
). The dotted lines in each of the a' 

subplots represent their respective upper bound values (a'max). Like Figure 9, a’ values greater 

than 100 are not shown in the plots here. 
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Figure 10c. Similar to Figure 10a, but for the Mather and Oensingen sites.  
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Figure 10d. Similar to Figure 10b, but for the Mather and Oensingen sites. 
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Figure 11. Comparison of one week hourly daytime results from June 30th to July 6th, 2004 

among the New Approach, LC-extended, and the semi-empirical at the Duke site (a-h) and at the 

Blodgett site (i-p), respectively.  
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Figure 12. Comparison of the V~G G relationship among the Semi-empirical, LC-extended and 

New approach where V=Vcmax/An and G=g
sab,co2

/An. (a), (c), and (e) are for the Duke site; (b), 

(d), and (f) the Blodgett site; (g), (i), and (k) the Mather site; (h), (j), (l) the Oensingen Site; (a), 

(b), (q), and (h) are from the Semi-empirical approach; (c), (d),( i), and (j) from the LC-extended 

approach; and (e), (f), (k), and (l) from the New approach.   
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Table 1. A list of model parameters calibrated for VIC+ and DHSVMm 

 
VIC+ DHSVMm 

Parameters Meaning Parameters Meaning 

b Exponent of variable infiltration 

capacity curve 

Ksat Lateral saturated hydraulic 

conductivity 

Ws Fraction of maximum soil 

moisture content of the lowest 

layer where nonlinear baseflow 

occurs 

f Exponent for change of lateral 

conductivity with depth (exponential 

decrease) 

Dsmax Maximum velocity of baseflow Romin Minimum stomatal resistance for the 

overstory 

Ds Fraction of Dsmax where 

nonlinear baseflow begins 

Rumin Minimum stomatal resistance for the 

understory 

d2 The depth of 2nd soil layer fc Fraction coverage of overstory 

d3 The depth of 3rd soil layer  Aerodynamic attenuation 

Krr Radial hydraulic conductivity of 

roots per unit of root surface area 
o Soil moisture threshold to restrict 

transpiration for the overstory 

Kra Axial hydraulic conductivity of  

roots per unit area 
u Soil moisture threshold to restrict 

transpiration for the understory 

Common parameters to both VIC+ and DHSVMm 

Ro Reference resistance 

C Capacity of plant water storage 

a' An empirical coefficient (i.e., the slope) in BBL-updated equation 

 

 

  



 

21 

 

Table 2. Investigation on reasonableness of variable values: 2a-2g from LC-extended, 2h from 

New Approach (Only daytime, 8AM to sunset, results are included.)  

 

2a. Percentage of results that has a’>a’max   
 

Duke 

Site 

Blodgett 

Site 

Mather 

Site 

Oensigen 

Site 

45.7 79.1 49.4 44.9 

                          

 

2b. Percentage of results in 2a satisfying four separations but overlapped groups 
 

Site  g
s,co2

>0.3 
 

ψ
l
 < -2.2 An < 2  ci > 300 

Duke  33.3 4.8 36.0 53.6 

Blodgett  16.5 46.7 22.8 42.7 

Mather Site 60.1 0 47.5 81.1 

Oensingen  74.5 0 33.6 86.9 

Units: g
s,co2

in mol/m2/s; ψ
l
 in MPa,  An in μmol/m2/s, and ci in μmol/mol. 

 

 

2c. Percentage of results in 2a that fall into non-overlapping 2-groups 
 

Site   g
s,co2

>0.3  

 ψ
l
 < -2.2  

g
s,co2

>0.3  

An < 2   

g
s,co2

>0.3  

ci > 300   

ψ
l
 < -2.2  

An < 2   

ψ
l
 < -2.2  

ci > 300  

An < 2   

ci > 300*  

Duke  2.3% 0% 5.1% 0 % 0% 32.9% 

Blodgett  4.0% 0% 3.4% 2.6% 0.9% 14.7% 

Mather  0 % 0% 32.6% 0% 0% 35.2% 

Oensingen  0% 0% 52.4% 0% 0% 20.8% 

*Note: percentages in this column exclude potentially reasonable results between 8AM and sunset. 

 

 

2d. Percentage of results from 2a that belong to 3-groups 
 

Site  g
s,co2

>0.3, ψ
l
 < -2.2, 

An < 2 

g
s,co2

>0.3, ψ
l
 < -2.2, 

ci > 300 

 

g
s,co2

>0.3, An < 2, 

ci > 300 

 

ψ
l
 < -2.2, An < 2, 

ci > 300 

Duke  0 0 0.3 0 

Blodgett  0 0.1 0 5.0 

Mather  0 0 9.8 0 

Oensingen  0 0 10.4 0 

Note: There is no result that simultaneously satisfies 4 grouping criteria. 
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2e. Percentage of results in 2a that belong to only one group and not to any other three groups 

listed in 2e 
 

Site   g
s,co2

>0.3 only 
 

ψ
l
 < -2.2 only  An < 2 only  ci > 300 only  

Duke  25.9 2.5 2.4 15.1 

Blodgett  9.3 34.6 0.5 19.3 

Mather  18.9 0 0 2.1 

Oensingen  13.1 0 0 2.3 

 

 

2f.  Percentage of results after further grouping of each single group from 2e 
 

Site   g
s,co2

>0.3 only 
 

ψ
l
 < -2.2 only  An < 2 only  ci > 300 only  

ci < 200  

Etr≥ 0.1 

Etr < 0.1  

200 < ci≤ 300 

200 < ci ≤ 300 

g
s,co2

 ≤ 0.1 

200 < ci ≤ 300 5≥An≥2  

0.1<gs≤0.3 

Duke  30. 6 22.1 5.1 94.6 94.5 

Blodgett  0.4 42.5 99.0 100 91.6 

 200 < ci ≤ 300 

 5≥An≥2, Etr>0.2 
  

0.2<gs≤0.3 

3≥An≥ 2 

Mather  64.2   83.3 

Oensingen  93.5   97.7 

Units: Etr in mm/hr 
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2g. Percentage of results in 2a that are deemed unreasonable 
 

Site  *Unreasonable 

Duke  *70.9 

Blodgett  87.1 

Mather  91.5 

Oensingen  98.1 
        

   *= Sum of each cells in the row of Table 2c + sum of each cell of each row of Table 2d + (each cell of 

Table 2e) multiplied by (its corresponding unreasonable values occurrence in Table 2f) 
 

For example, the percentage of unreasonable at the Duke site is:  

* = (2.3%+5.1%+32.9%)+0.3%+25.9%×(30.6%+22.1%)+2.5%×5.1%+ 

       2.4%×94.6%+15.1%×94.5% = 70.9% 

 

 

2h. Percentage of New Approach results that are deemed unreasonable which all have a’<=a’max  
 

Site  Unreasonable 

Duke  9.3 

Blodgett  3.2 

Mather 3.9 

Oensingen  6.2 

 

 

Table 3. Percentage of  0 < G ≤ 0.05 and 0 < V ≤ 30 obtained from each approach 
 

Site Approach 
0< G ≤ 0.05 

[mol·mol-1] 

0< V ≤ 30 

[mol·mol-1] 

Duke  

New Approach 100 69 

LC-extended 91 69 

Semi-empirical 100 69 

Blodgett  

New Approach 100 90 

LC-extended 89 89 

Semi-empirical 100 90 

Mather  

New Approach 98 95 

LC-extended 75 95 

Semi-empirical 100 92 

Oensingen  

New Approach 86 98 

LC-extended 79 98 

Semi-empirical 100 97 

 


