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Abstract

Despite the necessity of Global Climate Models (GCMs) sub-selection in the dynamical downscaling experiments, an objective

approach for their selection is currently lacking. Building on the previously established concepts in GCMs evaluation frame-

works, we relatively rank 37 GCMs from the 6th phase of Coupled Models Intercomparison Project (CMIP6) over four regions

representing the contiguous United States (CONUS). The ranking is based on their performance across 60 evaluation metrics

in the historical period (1981–2014). To ensure that the outcome is not method-dependent, we employ two distinct approaches

to remove the redundancy in the evaluation criteria. The first approach is a simple weighted averaging technique. Each GCM

is ranked based on its weighted average performance across evaluation measures, after each metric is weighted between zero

and one depending on its uniqueness. The second approach applies empirical orthogonal function analysis in which each GCM

is ranked based on its sum of distances from the reference in the principal component space. The two methodologies work in

contrasting ways to remove the metrics redundancy but eventually develop similar GCMs rankings. While the models from

the same institute tend to display comparable skills, the high-resolution model versions distinctively perform better than their

lower-resolution counterparts. The results from this study should be helpful in the selection of models for dynamical downscal-

ing efforts, such as the COordinated Regional Downscaling Experiment (CORDEX), and in understanding the strengths and

deficiencies of CMIP6 GCMs in the representation of various background climate characteristics across CONUS.
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Key Points 12 

• A sub-selection of GCMs from the large CMIP ensemble is often necessary before 13 

downscaling due to several unavoidable constraints.  14 

• We evaluate models for their objective sub-selection using two distinct approaches that 15 

remove the redundancy in 60 evaluation metrics.  16 

• Two methods develop a similar ranking, placing the high-resolution models distinctively 17 

higher than their lower-resolution counterparts.  18 
 19 
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Abstract 46 

 47 

Despite the necessity of Global Climate Models (GCMs) sub-selection in the dynamical 48 

downscaling experiments, an objective approach for their selection is currently lacking.  Building 49 

on the previously established concepts in GCMs evaluation frameworks, we relatively rank 37 50 

GCMs from the 6th phase of Coupled Models Intercomparison Project (CMIP6) over four regions 51 

representing the contiguous United States (CONUS). The ranking is based on their performance 52 

across 60 evaluation metrics in the historical period (1981–2014). To ensure that the outcome is 53 

not method-dependent, we employ two distinct approaches to remove the redundancy in the 54 

evaluation criteria. The first approach is a simple weighted averaging technique. Each GCM is 55 

ranked based on its weighted average performance across evaluation measures, after each metric 56 

is weighted between zero and one depending on its uniqueness. The second approach applies 57 

empirical orthogonal function analysis in which each GCM is ranked based on its sum of distances 58 

from the reference in the principal component space. The two methodologies work in contrasting 59 

ways to remove the metrics redundancy but eventually develop similar GCMs rankings. While the 60 

models from the same institute tend to display comparable skills, the high-resolution model 61 

versions distinctively perform better than their lower-resolution counterparts. The results from this 62 

study should be helpful in the selection of models for dynamical downscaling efforts, such as the 63 

COordinated Regional Downscaling Experiment (CORDEX), and in understanding the strengths 64 

and deficiencies of CMIP6 GCMs in the representation of various background climate 65 

characteristics across CONUS.66 
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Plain Language Summary 67 

 68 

Global Climate Models (GCMs) provide climate change projections at spatial scales that are much 69 

coarser than the scales at which regional and local planning decisions are made. Therefore, GCMs 70 

projections are spatially refined through various downscaling procedures. Often, a sub-selection 71 

of GCMs is needed before their downscaling due to issues related to their performance, data 72 

availability, and resources required for spatial refinement. Here we evaluate GCMs from the 6th 73 

phase of Coupled Models Intercomparison Project (CMIP6) over four regions representing the 74 

contiguous United States (CONUS) to guide the GCMs sub-selection decision-making objectively. 75 

We use two distinct approaches to relative rank the models using their performance across 60 76 

evaluation metrics in the historical period. The two methodologies work in contrasting ways to 77 

remove the metrics redundancy but eventually develop similar GCMs rankings. These results 78 

should be helpful in the selection of models for dynamical downscaling efforts and understanding 79 

the strengths and deficiencies of GCMs in the representation of various background climate 80 

characteristics across CONUS.  81 
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1. Introduction 82 

 83 

Global Climate Models (GCMs) are physics-based tools to study Earth system responses 84 

to natural climate variability and anthropogenically driven increases in greenhouse gas emissions 85 

and radiative forcing. Using a common set of future radiative pathways, the Coupled Model 86 

Intercomparison Projects (CMIP; Eyring et al., 2016) provide an extensive suite of GCM 87 

simulations through an international collaborative effort. Since its inception in 1995, not only have 88 

the number of GCMs participating in CMIP efforts increased, but they have also improved in terms 89 

of their physical complexity and spatial resolution. Every new iteration of CMIP is based on the 90 

premise that the more recent generations of GCMs will exhibit improvements over the previous 91 

ones as models progressively improve in terms of their computational efficiency, resolution, and 92 

representation of physical processes. Despite the significant advancements in GCMs, several 93 

challenges related to their horizontal grid spacing and inaccuracies in representing fine-scale land-94 

atmosphere interactions remain unresolved, limiting the direct application of GCM-based climate 95 

projections in regional to local scale climate change impact assessments. The latest Phase 6 96 

(CMIP6) includes over 50 GCMs. While the horizontal grid spacing for some of them is as fine as 97 

half a degree, the resolution of most CMIP6 GCMs is still insufficient (>1° horizontal grid spacing) 98 

to reliably assess the needs for mitigation or adaptation at policy-relevant regional and local scales. 99 

Therefore, it warrants the need for spatial refinement of projected climate change information 100 

through downscaling. 101 

A sub-selection of GCMs from the large CMIP6 ensemble may be necessary before 102 

downscaling for several reasons, including the choice of downscaling framework, computational 103 

cost, and the need for better representation of critical climate processes relevant to the region of 104 

interest (McSweeney et al., 2015). This is the case in dynamical downscaling (also known as 105 

regional climate modeling), where not every GCM can/should be downscaled for several reasons. 106 

First and foremost, although GCM experiments are conducted at sub-hourly time scales, given the 107 

massive data flow, only a subset of variables at aggregated temporal scales are recorded (usually 108 

driven by the specific CMIP requirements). Therefore, not every GCM in the CMIP6 has archived 109 

sub-daily three-dimensional lateral boundary forcings fields needed for regional climate modeling. 110 

Second, the poor GCM skill over the domains of interest may propagate and result in the 111 

unreasonable fine-scale spatiotemporal distribution of downscaled prognostic variables, such as 112 
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precipitation and temperature, in regional dynamical downscaling experiments (Giorgi, 2019). 113 

Therefore, dynamical downscaling of GCMs is limited to those models that exhibit reasonable 114 

skill. Third, several models participating in the CMIP6 share standard modeling components (e.g., 115 

same land, ocean, ice modules, or parametrization), meaning that these models may have similar 116 

systematic biases and do not necessarily represent independent realizations of future climate 117 

(Knutti et al., 2010 and 2013). Therefore, a downscaled ensemble of regional climate model 118 

experiments should consist of GCMs representing unique model developing institutes. However, 119 

such a strategy may not fully resolve this issue as modeling components or parametrization sharing 120 

is standard across the GCMs from different institutes (Boé, 2018; Knutti et al., 2013). Lastly, the 121 

number of downscaled GCMs also depends on the available capacity of the computational and 122 

data storage solutions. 123 

There has been substantial progress in the mathematical art of identifying relatively better 124 

(or worse) performing models (e.g., Ahmadalipour et al., 2017; Ahmed et al., 2019; Chhin et al., 125 

2018; Knutti et al. 2017; Lorenz et al. 2018; Overland et al. 2011; Parding et al. 2020; Pierce et al. 126 

2009). However, there are no set criteria for the choice of evaluation metrics. Due to this reason, 127 

there is quite a disparity among studies on GCMs evaluation, as some are based on only a few 128 

climatological mean comparisons between simulations and observations (e.g., McSweeney et al., 129 

2015; Mote and Salathé, 2010). In contrast, others use dozens of metrics covering various aspects 130 

of background climate (e.g., Chhin et al., 2018; Rupp et al., 2013). A lack of in-depth evaluation 131 

of GCMs in studies with a limited number of evaluation measures runs the risk of errors in their 132 

relative ranking in the CMIP ensemble. A model can yield reasonable climatological distribution 133 

of desired fields over a region while poorly simulating key Earth system processes (e.g., Beobide-134 

Arsuaga et al. 2021; McBride et al. 2021; Mckenna et al. 2020). Alternatively, high covariance 135 

among the extensive suite of evaluation metrics used to investigate the relative skillfulness of 136 

models can also influence the GCMs ranking process. Despite these challenges, a large body of 137 

research towards developing GCMs evaluation frameworks provides valuable insight that requires 138 

seamless integration into the downscaling approaches.  Unfortunately, to a large extent, the 139 

outcome of these efforts has not been systematically used in the choice of GCMs for downscaling 140 

studies, especially for international collaborative efforts such as the Coordinated Regional 141 

Downscaling Experiment (CORDEX; Giorgi et al. 2009). Given that the next phase of CORDEX 142 
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experiments is still in planning, one of the primary aims of this study is to establish an objective 143 

GCMs selection approach as an essential part of the dynamical downscaling process. 144 

As noted, the development of robust strategies to rank GCMs concerning their skillfulness 145 

has remained an active area of research during the last decade (Knutti et al., 2010; Rupp et al., 146 

2013 and others). Instead of reinventing the wheel, our goal in this study is to use established 147 

concepts in this area to streamline the process of GCMs selection from the CMIP6 ensemble for 148 

the downscaling efforts. While this study focuses only on the contiguous United States (CONUS), 149 

the process can be repeated over any geographical area after modifications in the evaluation 150 

metrics as needed. To ensure that the outcome is not method-dependent, our GCMs evaluation 151 

employs two distinct approaches. The first approach is a simple weighted averaging technique. 152 

Each GCM is ranked based on its average performance across selected evaluation metrics after 153 

each metric is given a weight between zero and one depending on its uniqueness. The second 154 

approach is through the application of empirical orthogonal functions (EOFs) in which each GCM 155 

is ranked based on its distance from the reference (observations) in the principal component (PC) 156 

space (Chhin et al., 2018; Rupp et al., 2013; Sanderson et al., 2015). The PCs are further used to 157 

investigate the distinctiveness of the analyzed GCMs in the CMIP6 ensemble. 158 

 159 

2. Methods 160 

2.1 Data 161 

The simulations data for 37 CMIP6 GCMs are obtained from Earth System Grid Federation 162 

(ESGF) archives (https://esgf-node.llnl.gov/search/cmip6) for the historical period (1980–2014) 163 

(Table 1), which include daily and monthly precipitation, mean, maximum, and minimum 164 

temperatures; monthly sea surface temperature; air pressure at sea level; and 500 mb geopotential 165 

height. Due to the unavailability of a complete set of variables required for evaluation at the time 166 

of analyses, some well-known models, such as the National Center for Atmospheric Research 167 

(NCAR) Community Earth System Model (CESM), are not included in this study. To support this 168 

evaluation, the gridded precipitation and temperature observations are obtained from three sources: 169 

1) Daymet – maintained by the Distributed Active Archive Center at Oak Ridge National 170 

Laboratory (Thornton et al., 2021), 2) Livneh – initially produced by the University of Colorado 171 

at Boulder (UCB; Pierce et al., 2021), updated version available from the University of California 172 

Los Angeles, and 3) Parameter elevation Regression on Independent Slopes Model (PRISM) – the 173 

https://esgf-node.llnl.gov/search/cmip6
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United States Agriculture Department (USDA) official climatological data (Daly et al., 2018). 174 

Additionally, European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5; 175 

Hersbach et al. 2020) is used to reference sea surface temperature, air pressure at sea level, and 176 

500 mb geopotential height. For comparisons, all the GCMs and reference datasets are remapped 177 

to a standard 1° latitude-longitude grid. 178 

 179 

GCMs 

Variant 

Label Institute Lon x Lat 

ACCESS-CM2 
r1i1p1f1 

Commonwealth Scientific and Industrial Research Organization, 

Australia 192x144 

ACCESS-ESM1-5 
r1i1p1f1 

Commonwealth Scientific and Industrial Research Organization, 

Australia 192x145 

AWI-CM-1-1-MR r1i1p1f1 Alfred Wegener Institute, Germany 384 ×192 

AWI-ESM-1-1-LR r1i1p1f1 Alfred Wegener Institute, Germany 192x96 

BCC-CSM2-MR r1i1p1f1 Beijing Climate Center, China Meteorological Administration, China 320x160 

BCC-ESM1 r1i1p1f1 Beijing Climate Center, China Meteorological Administration, China 128x64 

CanESM5 r1i1p1f1 Canadian Centre for Climate Modelling and Analysis, Canada 128×64 

CMCC-CM2-SR5 r1i1p1f1 Euro-Mediterranean Centre on Climate Change, Italy  288×192 

CNRM-CM6-1 r1i1p1f2 Centre National de Recherches Météorologiques, France 256x128 

CNRM-CM6-1-HR r1i1p1f2 Centre National de Recherches Météorologiques, France 720x360 

CNRM-ESM2-1 r1i1p1f2 Centre National de Recherches Météorologiques, France 256x128 

EC-Earth3 r1i1p1f1 European EC-Earth consortium  512x256 

EC-Earth3-Veg r1i1p1f1 European EC-Earth consortium  512x256 

EC-Earth3-Veg-LR r1i1p1f1 European EC-Earth consortium  320x160 

FGOALS-f3-L r1i1p1f1 Chinese Academy of Sciences, China 288x180 

FGOALS-g3 r1i1p1f1 Chinese Academy of Sciences, China 180x80 

GFDL-CM4 r1i1p1f1 Geophysical Fluid Dynamics Laboratory, USA 144x90 

GFDL-ESM4 r1i1p1f1 Geophysical Fluid Dynamics Laboratory, USA 288x180 

GISS-E2-1-G r1i1p1f1 National Aeronautics and Space Administration (NASA), United States  144x90 

HadGEM3-GC31-

LL 
r1i1p1f3 

Met Office, United Kingdom 192x144 

HadGEM3-GC31-

MM 
r1i1p1f3 

Met Office, United Kingdom 432x324 

INM-CM4-8 r1i1p1f1 Institute for Numerical Mathematics, Russia 180x120 

INM-CM5-0 r1i1p1f1 Institute for Numerical Mathematics, Russia 180x120 

IPSL-CM6A-LR r1i1p1f1 Institut Pierre Simon Laplace, France 144x143 

KACE-1-0-G r1i1p1f1 National Institute of Meteorological Sciences, Republic of Korea 192 ×144 

MIROC6 r1i1p1f1 Japan Agency for Marine-Earth Science and Technology, Japan 256x128 

MIROC-ES2L r1i1p1f2 Japan Agency for Marine-Earth Science and Technology, Japan 128x64 
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MPI-ESM-1-2-

HAM 
r1i1p1f1 

Max Planck Institute for Meteorology, Germany 192x96 

MPI-ESM1-2-HR r1i1p1f1 Max Planck Institute for Meteorology, Germany 384x192 

MPI-ESM1-2-LR r1i1p1f1 Max Planck Institute for Meteorology, Germany 192x96 

MRI-ESM2-0 r1i1p1f1 Meteorological Research Institute, Tsukuba, J+C34apan 320x160 

NESM3 r1i1p1f1 Nanjing University of Information Science and Technology, China 192x96 

NorCPM1 r1i1p1f1 Norwegian Climate Centre, Norway 144x96 

NorESM2-LM r1i1p1f1 Norwegian Climate Centre, Norway 144x96 

NorESM2-MM r1i1p1f1 Norwegian Climate Centre, Norway 288x192 

SAM0-UNICON r1i1p1f1 Seoul National University, South Korea 288x192 

UKESM1-0-LL r1i1p1f2 Met Office, United Kingdom 192 ×144 

Table 1. List of the CMIP6 GCMs used in the evaluation. The variant label provides 180 

information about realization (r), initialization method (i), physics (p), and forcing (f). 181 

2.2 Evaluation Metrics 182 

For model evaluation, the entire CONUS is divided into four parts (North, East, West, and 183 

South) based on grouped 2-digit Hydrological Unit Codes (HUC2) regions (Figure 1), utilized by 184 

Naz et al. (2016). At the annual, seasonal, monthly, daily, and diurnal time scales, sixty metrics 185 

evaluate the CMIP6 GCMs. Table 2 describes the summary of these metrics. All metrics are 186 

calculated separately for each of the four regions, subsequently averaged to calculate 187 

disagreements at the CONUS scale for each model. The sixty evaluation criteria include both 188 

standalone and derived metrics. All metrics are calculated separately for the three observations 189 

(Daymet, Livneh, and PRISM), subsequently averaged to create a reference dataset. A model 190 

disagreement is calculated as a percent departure from the reference data for each standalone 191 

metric. Several derived metrics are based on the calculation of Taylor Stats (TS; Taylor, 2001) – 192 

a combination of root mean square error, bias, and pattern correlation (Table 2). For this purpose, 193 

model disagreements for each of the three statistical measures are calculated as percent departures 194 

from the reference data. Their averages represent the TS for that metric. The TS is calculated 195 

separately for the diurnal cycle metric for four seasons and then averaged to get the final measure. 196 

Similarly, TS for the metric representing precipitation from moderate to extreme events is also 197 

based on the average of individual TS for precipitation from events exceeding 75th, 90th, 95th, and 198 

99th percentiles of precipitation. The combination of all seasons in a single metric for the diurnal 199 

cycle and four kinds of events ranging from moderate to extreme precipitation magnitudes in one 200 

metric is due to their relatively very high correlations across the CMIP6 GCMs ensemble. The 201 
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dispersion metric averages the TS of 20 indices (Table 2), calculated after transforming the 3-202 

dimensional (time, latitude, longitude) data into 1-dimension. 203 

 204 
 205 

 206 

Figure 1. CONUS division in four HUC2 based regions for GCMs evaluations. The division 207 

was initially used by Naz et al. (2016). R01 to R18 represent 18 US HUC2s. 208 

 209 

The GCMs evaluation also includes representation of three modes of natural climate 210 

variability, namely North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), and 211 

Pacific Decadal Oscillation (PDO), and their impacts on the distribution of winter (December–212 

January–February, DJF) and summer (June–July–August, JJA) precipitation and temperature. The 213 

PDO index represents the first EOF of sea surface temperature over Northern Pacific (20°N–70°N, 214 

110°E–260°E; Mantua et al. 1997; Newman et al. 2016). The ENSO index represents the sea 215 

surface temperature anomalies over the Nino3.4 region (5°S–5°N, 170°W–120°W; Trenberth, 216 

1997). In both cases, the temporally varying global mean is removed from the sea surface 217 

temperatures to avoid any impact of global warming. The NAO index represents the first EOF of 218 

detrended sea level pressure over the Northern Atlantic (20°N–80°N, 90°W–40°E; Hurrell, 1995; 219 

Hurrell & Deser, 2009). The pattern correlation is used to measure GCMs’ skills in representing 220 

these modes of variability. A more detailed background of these indices can be found in the NCAR 221 

climate data guide (https://climatedataguide.ucar.edu/). 222 

 223 

 224 

 225 

https://climatedataguide.ucar.edu/
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GCMs Evaluation Metrics 

1. Amplitudea Mean P1 2. Amplitude Mean T2 3. Amplitude Mean 

Tmax3 

4. Amplitude Mean Tmin4 

5. Amplitude Standard 

Deviation P 

6. Amplitude Standard 

Deviation T 

7. Amplitude Standard 

Deviation Tmax 

8. Amplitude Standard 

Deviation Tmin 

9. Timingb of Peak P 10. Timing of Peak T 11. Timing of Peak Tmax 12. Timing of Peak Tmin 

13. Annual Mean 

Standard Deviation of P 

14. Annual Mean 

Standard Deviation of T 

15. Annual Mean 

Standard Deviation of 

Tmax 

16. Annual Mean 

Standard Deviation of 

Tmin 

17. DJF5 (Taylor Stats) P 18. DJF (Taylor Stats) T 19. DJF (Taylor Stats) 

Tmax 

20. DJF (Taylor Stats) 

Tmin 

21. MAM6 (Taylor Stats) 

P 

22. MAM (Taylor Stats) 

T 

23. MAM (Taylor Stats) 

Tmax 

24. MAM (Taylor Stats) 

Tmin 

25. JJA7 (Taylor Stats) P 26. JJA (Taylor Stats) T 27. JJA (Taylor Stats) 

Tmax 

28. JJA (Taylor Stats) 

Tmin 

29. SON8 (Taylor Stats) P 30. SON (Taylor Stats) T 31. SON (Taylor Stats) 

Tmax 

32. SON (Taylor Stats) 

Tmin 

33. (Taylor Stats) Inter-

quartile Rangec P 

34. (Taylor Stats) Inter-

quartile Range Tmax 

35. (Taylor Stats) Inter-

quartile Range Tmin 

36. (Taylor Stats) Diurnal 

T 

37. (Taylor Stats) P from 

Moderate to Heavy 

Events 

38. (Taylor Stats) Wet 

Daysd 

39. (Taylor Stats) P 

Intensity 

40. (Taylor Stats) 

Summer Dayse 

41. (Taylor Stats) Ice 

Daysf 

42. (Taylor Stats) 

Tropical Nightsg 

43. (Taylor Stats) Frost 

Daysh 

44. Dispersioni P 

45. Dispersion T 46. Dispersion Tmin 47. Dispersion Tmax 48. ENSO Amplitude 

49. PDO Pattern 50. NAO Pattern 51. NAO Correlation with 

DJF P 

52. NAO Correlation with 

DJF T 

53. PDO Correlation with 

DJF P 

54. PDO Correlation with 

DJF T 

55. ENSO Correlation 

with DJF P 

56. ENSO Correlation 

with DJF T 

57. (Taylor Stats) 500mb 

Geopotential Height DJF 

58. (Taylor Stats) 500mb 

Geopotential Height JJA 

59. (Taylor Stats) Sea 

Level Pressure DJF 

60. (Taylor Stats) Sea 

Level Pressure JJA 

Taylor Stats 

Root Mean Square Error Bias Pattern Correlation  

Dispersion (based on 1-dimesnional time series of time x latitude x longitude) 

Lower Octile Lower Sextile Lower Quartile Lower Tritile 

Median Upper Tritile Upper Quartile Upper Sextile 

Upper Octile Upper Dectile Maximum Range 

0.1st Percentile 1st Percentile 5th Percentile 95th Percentile 

99th Percentile 99.9th Percentile Skewness Kurtosis 
1P = Precipitation, 2T = Temperature, 3Tmax = Maximum Temperature, 4Tmin = Minimum Temperature, 5DJF = 
December-January-February, 6MAM = March-April-May, 7JJA = June-July-August, 8SON = September-October-

November, 9ENSO = El Niño-Southern Oscillation), 10PDO = Pacific Decadal Oscillation, 11NAO = North Atlantic 

Oscillation 
aAmplitude = Difference between maximum and minimum in a monthly annual cycle 
bTiming = Month Index with the maximum of the annual cycle 
cInter-quartile range = Difference between the 75th and 25th percentile of daily values in a year 
dWet days = Days with accumulated P ≥ 1.0 mm 
eSummer days = Days with T ≥ 25 °C (77 °F) 
fIce days = Days with Tmax < 0 °C 
gTropical nights = Days with Tmin > 20 °C (68 °F) 
hFrost days = Days with Tmin < 0 °C 
hDispersion = Spatiotemporal distribution of monthly data, calculated as an average of the Taylor Stats of 20 indices. 

The calculation of these indices is based on stat_dispersion function in the NCAR Command Language (NCL). 

 226 

Table 2. Metrics used in GCMs evaluation. 227 



 11 

2.3 Relative ranking methodology 228 

Two approaches – a simple averaging technique based on the average performance across 229 

evaluation metrics and an EOF-based strategy that accounts for the distance of each simulated 230 

metric from the reference in the PC space – are used for model ranking. Although careful selections 231 

are made to use distinct criteria for GCMs evaluation, high correlations among the evaluation 232 

metrics are still possible given the interdependence of physical processes in the coupled Earth 233 

system, which could potentially bias the model ranking process when a simple averaging technique 234 

is employed. Therefore, following a method proposed by Sanderson et al. (2017) for assigning 235 

weights to GCMs based on their uniqueness, a weighting methodology is devised in which highly 236 

correlated metrics are down-weighted. First, percent departures from the reference data for all 237 

metrics are converted to normalized relative errors as follows: 238 

 239 

𝑅𝐸𝐺,𝑖 =
𝑃𝐷𝐺,𝑖−𝑚𝑖𝑛(𝑃𝐷𝐺𝑎𝑙𝑙,𝑖)

𝑚𝑎𝑥(𝑃𝐷𝐺𝑎𝑙𝑙,𝑖)−𝑚𝑖𝑛(𝑃𝐷𝐺𝑎𝑙𝑙,𝑖)
       (1) 240 

 241 

Where 𝑅𝐸𝐺,𝑖 and 𝑃𝐷𝐺,𝑖 represent the normalized relative error and percent departure from the 242 

reference data for GCM 𝐺 in metric 𝑖, respectively. 𝑃𝐷𝐺𝑎𝑙𝑙,𝑖 represents the array of percent 243 

departures from the reference data across all GCMs for that metric. Second, pairwise Pearson linear 244 

cross-correlations are calculated for all metrics, which are converted into a distance measure as 245 

follows: 246 

 247 

𝐶∗
𝑖,𝑗 = 1 − 𝑎𝑏𝑠(𝐶𝑖,𝑗)         (2) 248 

 249 

Where 𝐶𝑖,𝑗 and 𝐶∗
𝑖,𝑗 represent correlation and correlation-based distance between metric 𝑖 and 250 

metric 𝑗, respectively. The small magnitude of 𝐶∗
𝑖,𝑗 reflects high correspondence between the 251 

metrics and vice versa. Furthermore, we calculate the Similarity Score (SS) for each pair of metrics 252 

as follows: 253 

 254 

𝑆𝑆𝑖,𝑗 =  𝑒
−(

𝐶∗
𝑖,𝑗

𝐷𝑥
)
         (3) 255 
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Where 𝐷𝑥 is a tunable parameter representing the radius of similarity that determines the 256 

correlation-based distances over which a metric can be considered redundant. Note that some 257 

covariance between different spatiotemporal characteristics of prognostic variables or between the 258 

prognostic and diagnostic variables is acceptable and unavoidable in a coupled Earth system. 259 

Therefore, our goal is to target only those metrics that exhibit correlations to such an extent that 260 

those measures effectively become redundant.  We use 0.2 for 𝐷𝑥 as it only down-weights those 261 

metrics that exhibit very high correlations in the four regions (Figure 2). 𝑆𝑆 value ranges between 262 

0 and 1, as a metric uniqueness decreases with 𝑆𝑆 → 1. Next, for each metric, the effective 263 

redundancy (ER) is calculated as follows: 264 

 265 

𝐸𝑅𝑖 =  1 + ∑ 𝑆𝑆𝑖,𝑗
𝑛
𝑗≠𝑖          (4) 266 

 267 

The inverse of the 𝐸𝑅𝑖 provides the weight for that metric. Finally, the average weighted relative 268 

error for each GCM is calculated as follows: 269 

 270 

𝑅𝐸∗
𝐺 =  ∑ (𝐸𝑅𝑖)

−1𝑅𝐸𝐺,𝑖
𝑚
𝑖=1         (5) 271 

 272 

These weighted relative errors (𝑅𝐸∗
𝐺

) are calculated separately for each of the four CONUS 273 

subregions. The regionally weighted relative errors are subsequently averaged to provide the 274 

CONUS-scale weighted relative error used in the simple averaging technique to calculate the 275 

relative ranks of each GCM. The GCM with the lowest weighted relative error ranks at the top, 276 

whereas the GCM with the highest weighted relative error ranks at the bottom.  277 

 278 

On the other hand, in the multivariate EOF analyses, models’ skill is evaluated using the sum of 279 

their Euclidean distances from the observations in the PC space, as follows: 280 

 281 

𝐷(𝑂, 𝐺) = √∑ (𝐺𝑖 − 𝑂𝑖)2𝑛
𝑖=1         (6) 282 
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 283 

 284 
 285 

Figure 2. Metrics independence weights ((𝑬𝑹𝒊)
−𝟏) as a function of the radius of their 286 

similarity (Dx). The grey vertical line represents the value of Dx used to calculate similarity 287 

scores. 288 

 289 

Where 𝐷(𝑂, 𝐺) represents the Euclidean distance of GCM 𝐺 from reference data 𝑂 as a sum of 290 

the distances over 𝑛 PCs, which in our case n =10. No strict criteria have been followed to select 291 

the number of PCs in calculating the sum of Euclidean distances through equation 6 in past studies. 292 

Some studies have used North’s rule of thumb (North et al. 1982) to objectively sub-select 293 

statistically different numbers of PCs (e.g., Rupp et al. 2013), while others have made this selection 294 

subjectively (e.g., Chhin et al., 2018; Sanderson et al., 2015). However, they have acknowledged 295 

the difficulty of identifying each selected EOF's distinct characteristics (Rupp et al., 2013).  This 296 

study tests the sensitivity of GCMs ranking to the number of PCs used in calculating Euclidean 297 
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distances and notes that it substantially diminishes after the first ten modes (Figure 3). Therefore, 298 

distances between individual GCMs and observations are computed using the truncated set of the 299 

first ten modes. The GCM with the lowest total distance ranked at the top, whereas the GCM with 300 

the highest total distance ranked at the bottom. 301 

 302 

 303 
 304 

Figure 3. Deviation of GCMs ranking from the mean with the addition of PC modes. The 305 

grey line represents the number of modes used in this study for calculating the sum of the 306 

Euclidean distances. 307 

 308 

3. Results and Discussion 309 

3.1 The rationale for the choice of evaluation metrics  310 

 First and foremost, there may be questions regarding the rationale behind the choice of 311 

evaluation metrics used in this study. Note that our selection of metrics represents a wide range of 312 

spatiotemporal climate characteristics that are common across the CONUS and does not include 313 

those features that are unique to specific regions, such as integrated water vapor transport through 314 

atmospheric rivers in the western US, the monsoonal climate in the southwest and tornadic 315 

environment in the central and eastern United States. We have also avoided the inclusion of trends 316 

analyses in the metric suite, given that not all the observed regional trends are necessarily driven 317 
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by the anthropogenic forcing, and the natural climate variability may influence some. Note that 318 

while greenhouse gas concentrations are aligned in the observations and historical CMIP6 GCMs 319 

simulations, the natural modes of climate variability, such as ENSO, PDO, NAO, are not. 320 

Therefore, lack of correspondence between regional-scale observed and simulated trends cannot 321 

be confidently used as a measure for model validation, as it is not straightforward to distinguish 322 

between the inconsistency arising from natural climate variability and that arising from model 323 

deficiencies. Irrespective of these choices, developing a well-defined universal set of metrics to 324 

assess modeling skill in climate models is relatively improbable, as it may vary depending on 325 

question framing, climate characteristics of the region of interest, and data availability. 326 

Nonetheless, metrics used in this study represent a wide range of stakeholders relevant climate 327 

characteristics over an area, including diurnal cycle, daily thresholds of temperature (e.g., frost 328 

days, summer days, ice days tropical nights), daily precipitation extremes, seasonal precipitation 329 

and temperature distributions, intra-annual variability (amplitudes, timing of peak magnitudes), 330 

the spatiotemporal characteristics of precipitation and temperature distributions (dispersion 331 

analyses), atmospheric dynamics and influences of relevant natural modes of climate variability. 332 

Therefore, not only this comprehensive evaluation should aid in decision-making when it comes 333 

to the selection of GCMs for downscaling studies, it is expected that the outcome of this evaluation 334 

would also be helpful for studies where spatial downscaling of GCMs is not intended. For studies 335 

with a more subregional focus, we expect that other metrics representing region-specific climate 336 

characteristics may be required for more informed model selection. 337 

3.2 GCMs relative errors 338 

The unweighted relative errors for each metric corresponding to all 37 GCMs are shown 339 

in Figure 4 for the North (see Figure 1 for regions definition) and in Supplementary Figures S1 to 340 

S3 for the remaining three regions. For ease of comparison, GCMs are sorted from left to right so 341 

that the GCM with the lowest average relative error is on the left and the one with the highest 342 

average relative error is on the right. Unlike the absolute error, the relative error is not a direct 343 

measure of modeling biases with respect to truth or observations, as it differentiates models from 344 

each other. Nonetheless, models with higher magnitudes of relative error would be further away 345 

from the observations than those with lower magnitudes. The line plot panel on the right displays  346 
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 347 
 348 

Figure 4. The unweighted relative errors of GCMs over the North. The left panel shows 349 

relative errors corresponding to each metric across all GCMs and the line plot on the right 350 

shows the standard deviation of the relative error for each metric across all GCMs. 351 

 352 

the standard deviation of relative errors across GCMs for each metric. Note that if the performance 353 

of many models falls in a similar category, their relative errors display a similar range of colors. 354 

High standard deviation magnitudes represent substantial variation in modeling skills across the 355 

GCMs and vice versa. 356 
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Overall, many GCMs exhibit challenges in simulating key climate characteristics. For 357 

instance, while models are relatively skillful in representing oceanic and atmospheric patterns 358 

associated with natural forcing (ENSO, NAO, PDO), most show limited skill in simulating their 359 

influences on the distribution of seasonal mean precipitation and temperature over the South and 360 

West. Difficulties in reproducing the observed timing of peak magnitudes of precipitation, 361 

minimum temperature, and maximum temperature are also evident in the West and North, and 362 

metrics for precipitation characteristics are relatively poorly simulated in the South. One noticeable 363 

distinction between better and poor performing models is that the latter group is deficient in 364 

reproducing several daily-scale features of temperature and precipitation characteristics across all 365 

regions. Several models consistently display similar better performance across all four CONUS 366 

regions. For instance, KACE-1-0-G and NorCMP1 are always in the bottom three, while GFDL-367 

CM4 and EC-EARTH3-Veg are mainly in the top three. Some models exhibit substantial variation 368 

in performance across regions. For instance, ACESS-ESM1-5 is near the bottom over the East and 369 

South but jumps to the top third in the West. Similarly, BCC-ESM1 falls in the fourth quarter over 370 

the North but remains at the average or below average over the rest of the regions.  However, these 371 

relative unweighted rankings of the GCMs are inconclusive, given potential redundancy in the 372 

evaluation metrics. 373 

3.3 Metrics redundancy 374 

The pairwise absolute correlations, metrics similarity score, and overall metrics weight are 375 

shown in Figure 5 for the North and Supplementary Figures S4 to S6 for the remaining three 376 

regions. The correlation-based distance metric (𝐶∗
𝑖,𝑗) shows that only ~0.8% of the total pairwise 377 

absolute correlations between any two metrics are > 0.8 (𝐶∗
𝑖,𝑗 < 0.2) in each region while 5–7% 378 

of 𝐶∗
𝑖,𝑗 are lower than 0.5 (absolute correlations > 0.5) across the four regions. These small 379 

numbers suggest that majority of the evaluation metrics are primarily independent of each other. 380 

Note that the primary intent for correlative analyses in this study is to minimize the possibility of 381 

unwanted spurious biases in the GCMs ranking process due to metric redundancy. Still, it also 382 

provides valuable insight into the spatiotemporal interplay of various characteristics of background 383 

climate over a region in GCM simulations. Over the CONUS, the strong positive associations 384 

among the evaluation metrics are relatively higher than the strong negative associations. To 385 

explain this point, if we only considered those cases where correlations are >±0.6 or stronger, there  386 

 387 
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 388 

Figure 5. The correlation between the pairwise metrics (bottom triangle) and the 389 

corresponding similarity score (top triangle) over the North. Metrics with high correlations 390 

exhibit a high similarity score and are down-weighted. The line plot on the right shows the 391 

overall weight for each metric. 392 

 393 

is only one instance over the South where the magnitude of negative correlation qualifies this 394 

threshold between any two metrics (Figure S6). The distribution of strong positive associations 395 

among the evaluation metrics is reasonably similar across four regions. Among them, the most 396 

notable and common cases across four regions include the covariance of modeling errors in metrics 397 

representing 1) the timing of peak magnitudes of precipitation, minimum temperature, and 398 

maximum temperature, 2) the wet days, precipitation from extremes, and interquartile precipitation 399 

range, and 3) the dispersion statistics of minimum temperature and its seasonal characteristics. 400 

Moreover, frost days metric strongly covary with metrics representing winter precipitation in the 401 
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South, and with metrics representing seasonal characteristics of minimum temperature and wet 402 

days in the East, while metric describing autumn (September–October–November, SON) mean 403 

temperature strongly correlates with those representing precipitation intensity and interquartile 404 

precipitation range in the South (≥ 0.8). Positive high correlations also exist between metrics for 405 

seasonal mean temperature characteristics with those for wet days and precipitation from extremes 406 

in the North (≥ 0.7). Most of these strong interdependencies require identifying systematic 407 

causative linkages for their physical explanation, which is neither the intent nor the focus of this 408 

study. Nonetheless, all such metrics with strong correlations are proportionally downweighed, as 409 

reflected in their corresponding similarity scores and overall weights. 410 

The information redundancy in the evaluation metrics suite can also be taken care of using 411 

EOF analysis. It finds a subset of metrics that convey as much as original information by reducing 412 

the data dimensionality. One can examine individual loadings of PCs to identify metrics that 413 

provide maximum aid in distinguishing between better and poor-performing models. Note that 414 

more substantial loadings in our analyses do not necessarily mean that those associated variables 415 

are critical measures for a model to perform better; they imply a higher contribution of those 416 

metrics to a particular PC when EOF analysis is applied on the matrix of sixty measures across 37 417 

CMIP6 GCMs. The list of significant contributors can potentially vary if the input data matrix is 418 

changed. Alternatively, metrics with weaker loadings may suggest that most models exhibit similar 419 

skills in simulating those characteristics. Therefore, such measurements provide little ability to 420 

identify models’ distinctiveness. 421 

When the first ten EOFs are considered, which represent approximately > 76% of the 422 

explained variance in each region, they reveal a regionally varying list of dominant metrics. Still, 423 

some interesting features are worth highlighting and explaining. Relatively fewer metrics, 424 

including the ones representing the timing of annual peaks for precipitation, minimum 425 

temperature, and the maximum temperature, noticeably contribute to the first few dominant modes 426 

over the North. Interestingly, this is the only region where these few modes distinctively exhibit 427 

higher variability across the GCMs (Figure 6). Therefore, it is understandable that these modes 428 

have a higher contribution to the first few PCs over the North. These metrics also exhibit strong 429 

loadings for several PCs in other regions. Moreover, South and East display the noticeable 430 

contribution from metrics representing the seasonal characteristics of minimum temperature to the 431 
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first PC. In these cases, and many others not mentioned, the metrics contributing more to the first 432 

 433 

Figure 6. The loadings of metrics with a relatively substantial contribution to the first 10 434 

EOFs over each region. 435 

 436 

few PCs are likely the ones for which GCMs exhibit substantial variability in representing their 437 

characteristics. More interestingly though, these metrics are also the ones that display strong 438 

correlations with other evaluation measures. Recall that EOF analyses reduce data dimensionality 439 

while conserving the explained variance. Therefore, it should be intuitive that a single metric that 440 

exhibits strong correlations with several other metrics contributes more to the first few PCs. In 441 

principle, this approach contrasts with the first methodology. In the simple weighted averaging 442 

technique where weights are assigned to each metric before averaging, metrics with higher 443 

correlations are downweighed so that weights are distributed among the correlated set of metrics. 444 

In contrast, EOF analyses remove redundancy in data by assigning those metrics more weight that 445 

display correlations with several others, as the information in other metrics is already embedded 446 

in the selected set. However, this distinctiveness between the two approaches is not evident in the 447 
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remaining PCs. For instance, metrics representing atmospheric teleconnections and dynamics 448 

make up the list with more substantial loadings for PCs 3–7 over the four regions. At the same 449 

time, most of them get very high weights in the simple averaging approach due to their relatively 450 

little to no correlations with other metrics. 451 

3.4 GCMs relative ranking and independence 452 

The regional and CONUS scale relative GCM rankings are shown in Figure 7 for the two 453 

methodologies. The two approaches yield reasonably similar results at the CONUS scale, as the 454 

same GCMs occupy not only the first and fourth quartiles in both techniques, the individual GCM 455 

placements within these quartiles are also very similar. For instance, the bottom five GCM 456 

rankings are identical in both cases, and the maximum difference in ranking in the fourth quartile 457 

ranges from 0 to 2. The commonality between the outcome of two approaches is also evident in 458 

regional rankings as identical models in the two approaches exhibit substantial deviation from their 459 

mean CONUS-scale relative measures (relative error or Euclidean distances), such as MRI-ESM2-460 

0, CNRM-CM6-1, and MIROC6 over the South, GISS-E2-1-G and MIROC6 over the West, and 461 

ACCESS-CM2 and NorESM2-MM over the North. The remaining GCMs falling between the top 462 

and bottom quartiles tend to exhibit considerably minor differences in their weighted relative errors 463 

in the case of simple averaging and total Euclidean distance in the case of EOF analyses. The high-464 

resolution model from several institutes distinctively performs better than the lower resolution 465 

version, with at least 5 level differences in their relative placement in both methodologies. For 466 

instance, MPI-ESM1-2-HR ranks higher than MPI-ESM1-2-LR, HdGEM3-GC31-MM ranks 467 

higher than HdGEM3-GC31-LL, while NorESM2-MM displays better performance than 468 

NorESM2-LM. 469 

Several models in the CMIP6 share modeling components. The component sharing is more 470 

significant in the models from the same institute, such as models contributed by U.S. Geophysical 471 

Fluid Dynamics Laboratory (GFDL) or those contributed by the United Kingdom Met (UKMET) 472 

Office in the CMIP6. Components sharing across institutes are also standard. For instance, 473 

Australian Commonwealth Scientific and Industrial Research models (ACCESS-CM2, ACCESS-474 

ESM1-5) share several components developed by GFDL and UKMET 475 

(https://research.csiro.au/access/about/). Similarly, the Norwegian Earth System Model 476 

(NorESM2) is based on the second version of CESM (CESM2) (Seland et al., 2020), while Seoul 477 

https://research.csiro.au/access/about/
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National University Atmospheric Model Version 0 with a Unified Convection Scheme (SAM0-478 

UNICON) is based on the first version of CESM (CESM1) (Park et al., 2019).  479 

 480 

 481 
 482 

Figure 7. The ranking of GCMs using the simple weighted averaging (top) and EOF-based 483 

Euclidian distances. The thin lines represent models’ relative ranking over four sub-regions, 484 

and the thick line represents the overall CONUS scale ranking. 485 

 486 
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Given the commonality of modeling components, it is quite possible that these models, 487 

particularly those from the same developing institute, exhibit similar biases. Other studies have 488 

used techniques to assign weights to models based on their independence, which is useful when 489 

various factors impacting the robustness of future climate change are in question (Knutti et al., 490 

2017; Sanderson et al., 2015). However, this study intends to guide the sub-selection of GCMs for 491 

downscaling studies based on their performance in the historical period. Therefore, we restrict 492 

ourselves to the relatively less quantitative identification of models’ interdependencies by 493 

comparing PCs from the EOF analysis – an approach quite commonly used in many earlier studies. 494 

When the loadings of the first two PCs from EOF analyses are compared, they show models from 495 

the same developing center clustering in the same PC space, highlighting the similarities among 496 

those models (Figure 8). Therefore, if a model selection is necessary for downscaling purposes, 497 

the selection of models should consider both the skill and the independence of the selected models. 498 

An easier choice in the case of many is to go for the higher resolution versions, as those display 499 

relatively better skill. 500 

 501 

 502 

Figure 8. The loadings of PC1 versus PC2. The two PCs explain 39.5% of the total variance 503 

across the GCMs. OBS represents the observations. 504 

 505 
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4. Summary 506 

We analyze the performance of CMIP6 GCMs across 60 evaluation metrics over four 507 

CONUS regions. The analysis is restricted to 37 models with complete data needed to calculate all 508 

evaluation metrics.  Based on the performance of models across the evaluation measures, two 509 

methodologies are used to rank the models relative to each other while accounting for the 510 

redundancies in the metrics suite. The first methodology employs a simple weighted averaging 511 

technique where a GCM’s relative errors across all evaluation metrics are averaged after each 512 

metric is assigned a weight based on its uniqueness. The second methodology employs EOF 513 

analysis to reduce the dimensionality of data where metrics that explain the variability across the 514 

GCMs ensemble receive higher loadings – the coefficients of the linear combination of the original 515 

metrics from which the PCs are constructed. The two methodologies work in contrasting ways to 516 

remove the metrics redundancy but eventually develop relatively similar GCMs rankings. The 517 

consistency in the model ranking between the two methods can also be partly due to an extensive 518 

suite of metrics used in analyses that perhaps reduce the possibility of substantial deviations in the 519 

outcome. 520 

The evaluation in this study is intended for downscaling studies where GCMs sub-selection 521 

is necessary due to many unavoidable factors. Many of the evaluated models provide 6-hourly 522 

atmospheric fields. Therefore, the results from this study should be helpful in the selection of 523 

models for dynamical downscaling efforts, such as CORDEX. The results can also be beneficial 524 

in understanding the strengths and deficiencies of CMIP6 GCMs in representing various 525 

background climate characteristics if direct use of GCMs is intended. While we have used an 526 

extensive suite of evaluation metrics, this list is in no way comprehensive. It should be considered 527 

only as a guideline where a more in-depth understanding of GCMs performance is required, 528 

particularly of specific phenomena such as North American monsoon, Atmospheric rivers, and 529 

severe weather environments. Note that our study does not include any models from NCAR in the 530 

CMIP6 because their daily minimum and maximum temperatures data were not available at the 531 

time of this analysis. However, we would like to point out that NCAR models were among the 532 

better performing GCMs when fewer metrics were used (not shown). Lastly, note that only two 533 

methodologies are used for GCMs ranking. Therefore, results may not be entirely insensitive to 534 

the choice of the ranking process. 535 

 536 
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Supplementary Figures  

     

     

 
 

Figure S1. The unweighted relative errors of GCMs over the East. The left panel 

shows relative errors corresponding to each metric across all GCMs, and the line plot 

on the right shows the standard deviation of the relative error for each metric across 

all GCMs. 
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Figure S2. Same as in Figure S1 but over the West. 
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Figure S3. Same as in Figure S1 but over the South. 
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Figure S4. The correlation between the pairwise metrics (bottom triangle) and the 

corresponding similarity score (top triangle) over the East. Metrics with high 

correlations exhibit a high similarity score and are down-weighted. The line plot on 

the right shows the overall weight for each metric. 
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Figure S5. Same as in Figure S4 but over the West. 
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Figure S6. Same as in Figure S4 but over the South. 
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