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Abstract

Submarine landslides are usually enormous in size but often developed from a minute slip surface. Attention has previously been

paid to quantifying the failure initiation of a submarine landslide through two-dimensional (2D) plane strain slope stability

analyses. The findings of failure initiation from the 2D simplifications need to be justified in a realistic 3D scenario, and

more importantly, are inconvenient to apply into analysing the subsequent 3D post-failure behaviours. This study aims to

explore to discover the true physical mechanism of submarine landslides and to establish practical criteria for submarine slope

stability analysis, by modelling and investigating the whole 3D landslide evolution integrating both the failure initiation and

post-failure behaviours. The numerical method is formulated by solving governing equations in terms of the conservations

of mass and momentum considering isotropic and linear strain softening materials. Ability of this framework to simulate a

complete landslide evolution, including the initiation and growth of slip surface, global slab failure, post-failure behaviours and

re-deposition, has been demonstrated for different slope geometries. The proposed numerical scheme is able to capture diverse

post-failure behaviours, such as retrogression and blocky slide mass, in sensitive soils. The characteristics of the slip surface

growth within a favoured layer and the patterns of the global slab failure in the overlying layer have been thoroughly discussed.

For planar slopes, it helps to establish an analytical criterion for unstable dynamic growth of a planar slip surface, which can

optimise the slope stability analysis in sensitive soils.
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Investigating three-dimensional (3D) evolution of submarine landslide 35 

initiation and dynamics  36 

ABSTRACT 37 

Submarine landslides are usually enormous in size but often developed from a minute slip 38 

surface. Attention has previously been paid to quantifying the failure initiation of a submarine 39 

landslide through two-dimensional (2D) plane strain slope stability analyses. The findings of 40 

failure initiation from the 2D simplifications need to be justified in a realistic 3D scenario, and 41 

more importantly, are inconvenient to apply into analysing the subsequent 3D post-failure 42 

behaviours. This study aims to explore to discover the true physical mechanism of submarine 43 

landslides and to establish practical criteria for submarine slope stability analysis, by modelling 44 

and investigating the whole 3D landslide evolution integrating both the failure initiation and 45 

post-failure behaviours. The numerical method is formulated by solving governing equations 46 

in terms of the conservations of mass and momentum considering isotropic and linear strain 47 

softening materials. Ability of this framework to simulate a complete landslide evolution, 48 

including the initiation and growth of slip surface, global slab failure, post-failure behaviours 49 

and re-deposition, has been demonstrated for different slope geometries. The proposed 50 

numerical scheme is able to capture diverse post-failure behaviours, such as retrogression and 51 

blocky slide mass, in sensitive soils. The characteristics of the slip surface growth within a 52 

favoured layer and the patterns of the global slab failure in the overlying layer have been 53 

thoroughly discussed. For planar slopes, it helps to establish an analytical criterion for unstable 54 

dynamic growth of a planar slip surface, which can optimise the slope stability analysis in 55 

sensitive soils.  56 

Keywords: submarine landslides, landslide evolution, landslide dynamics, slip surface 57 

growth, 3D slope geometry 58 
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PLAIN LANGUAGE SUMMARY 60 

Submarine landslides can be tens of kilometres long but may originate from a relatively small 61 

initial slip surface, growing within a ‘sandwiched’ weak layer. The physical mechanisms 62 

causing the slip surface growth and the whole evolution of submarine landslides are difficult 63 

to assess even with the help of state-of-the-art geophysical and geological investigations. 64 

Advanced numerical modelling is a useful tool to improve our understanding of the three-65 

dimensional (3D) evolution of submarine landslides. Here, we propose such an original 66 

numerical method formulated from the fundamental physical laws and simulate the entire 67 

landslide evolution from slip surface growth to failure of the sliding layer and its post-failure 68 

behaviour with final re-deposition of slide mass. We optimise the assessment of the critical slip 69 

surface size for catastrophic failure, which may facilitate safe offshore and coastal development, 70 

e.g., for offshore renewables. Our criterion shows, upon certain conditions, that a slip surface 71 

can grow at considerable velocities and become as large as ~100 km2 within minutes. This is 72 

followed by global failure and post-failure evolution, such as extended failure upslope and fan 73 

heaving downslope. The numerical replication of submarine landslide evolution improves our 74 

understanding of the complex cascading mass movement mechanisms of submarine landslides. 75 

  76 



INTRODUCTION 77 

Layered marine sediments usually exhibit reduction in strength during shearing, because of the 78 

collapse of the inter-particle bonding structures and the accumulation of pore water pressure. 79 

The ratio between the initial (peak) and softened (residual) strengths of marine soil sediments 80 

is usually between 3 to 7, and such soil with strength sensitive to shearing is referred to as 81 

‘sensitive soil’ (Skempton 1985, L’Heureux et al. 2012, Issler et al. 2015). For slope failure in 82 

marine sensitive soils, shearing failure within a basal slip surface might lead to the growth of 83 

the slip surface, eventually evolving into a huge translational landslide such as the well-known 84 

enormous Storegga Slide (Kvalstad et al. 2005, Micallef et al. 2007) or the massive 85 

retrogressive landslide in December 2020 at Gjerdrum, Norway, which caused seven deaths.  86 

Figure 1 shows a conceptual evolution of typical translational submarine landslides. Although 87 

their scales are usually very large, e.g. the Storegga Slide covered between 2500 and 3500 km2 88 

of sediment (Haflidason et al. 2004), translational slides might be initiated at a minute slip 89 

surface, as shown in Figure 1a, triggered by external factors such as earthquakes. An initial slip 90 

surface is often concentrated in a favoured soil layer (the so-called ‘weak layer’) where shear 91 

strength relative to the overburden pressure is lower than adjacent layers. The weak layer 92 

provides a locus for progressive growth of the slip surface with extensive external triggers, as 93 

shown in Figure 1b. Once the size of the slip surface reaches a threshold, the slip surface growth 94 

becomes catastrophic and can only be limited by slope flattening or global slab failure (see 95 

Figure 1c). Diverse post-failure behaviours, such as retrogression upslope and progressive 96 

ploughing or debris flow downslope, may present after the global slab failure (Zhang et al. 97 

2021), as illustrated in Figure 1d.  98 

Submarine slope stability analysis and assessment of landslide dynamics and impact to offshore 99 

infrastructure are important areas of study for engineering geology professionals and 100 

geotechnical engineers. In practice, slop stability (failure initiation) is usually simplified as a 101 



two-dimensional (2D) plane strain problem (e.g., Morgenstern and Price 1965, Spencer 1967, 102 

Cornforth 2005), which has been considered conservative in the Limit Equilibrium Method 103 

(LEM), as resistances from the out-of-plane direction are ignored. However, the slip surface of 104 

translational landslides can grow in any direction within a favoured ‘weak’ layer, which may 105 

or may not be parallel to the main travel direction of the slide mass as depicted in Figure 1. 106 

Such a multi-directional propagation mechanism can provide additional driving force because 107 

of the reduction in strength during slip surface growth, but this physical failure mechanism 108 

cannot be considered in a 2D case and remains poorly understood.  109 

Moreover, the 2D simplification needs the justification that the linear cross section chosen from 110 

a three-dimensional (3D) ground is the most ‘pessimistic’ (Duncan 1996). This is not an easy 111 

task in realistic complex terrain, where the most pessimistic section, if it can be found, is most 112 

likely nonlinear. To partly avoid such a geometrical uncertainty, slope stability analysis might, 113 

in practice, be conducted for multiple cross sections of a single slope, which could be a huge 114 

workload for risk assessment and mapping of a large area involved in an engineering project 115 

such as the determination of a subsea pipeline route. A practical and effective criterion 116 

considering 3D slope geometry may facilitate risk assessment of submarine landslide and help 117 

safe offshore developments.  118 

Therefore, the main aims of the study are to discover the true physical mechanism of multi-119 

directional slip surface growth leading to submarine landslides and to establish practical criteria 120 

for slope stability analysis in marine sensitive soils. To achieve so, the whole evolution of 3D 121 

submarine landslides, covering the failure initiation, slip surface growth, slab failure and post-122 

failure behaviours, is observed and discussed through an original Lagrangian-Eulerian depth 123 

integrated numerical analysis. The governing equations of the problem are formulated based 124 

on conservation of mass and momentum. The solutions of landslide dynamics are obtained 125 

from a finite volume scheme with a staggered mesh strategy. New criteria for slip surface 126 



growth in planar slopes are proposed and characteristics of slab failure are discussed based on 127 

the numerical investigations, which are expected to facilitate slope stability analysis and risk 128 

assessment of submarine landslides in sensitive soils. Finally, the ability of the framework to 129 

account for the effects of the true 3D slope geometry is demonstrated. 130 

METHODS 131 

Existing methods for analysing submarine landslide initiation and dynamics 132 

Because of greater computational capacity, numerical studies have been able to consider 3D 133 

slope stability analysis in the last several decades (Hungr et al. 1989, Lam and Fredlund 1993, 134 

Huang and Tsai 2000, Cheng and Yip 2007), although most of them have focused on rotational 135 

slide mechanisms using the LEMs. Some more sophisticated 3D models for slope stability 136 

problems have been emerging that use numerical methods such as the Finite Element Method 137 

(Griffiths and Marquez 2007, Lin et al. 2020) and Finite Difference Method (Zhang et al. 2013). 138 

The LEM and most existing numerical methods reach their limits in carrying out satisfactory 139 

stability analyses of submarine slopes with sensitive clays against potential translational 140 

landslides, due to the progressive failure process and large deformation involved (Puzrin et al. 141 

2004, 2016, Locat et al. 2011, Zhang et al. 2015). Instead, some recent studies have explored 142 

simplified analytical criteria for 3D translational landslide initiation in sensitive clays by 143 

interpretation and quantification of slip surface growth along a weak layer (Zhang et al. 2020, 144 

Klein and Puzrin 2021), based on planar or idealised conical geometry and static conditions. 145 

The applicability of these criteria to realistic slope conditions and complex geometry remains 146 

uncertain.  147 

Another important issue in assessing the risk of slope instability is the modelling of landslide 148 

dynamics and its evolution, which can be performed by using large deformation numerical 149 

methods such as the depth-integrated method (Hungr 1995, Liu and Huang 2006, Zhang and 150 



Puzrin 2021), computational fluid dynamics (Biscarini 2010), smoothed particle 151 

hydrodynamics (Zhang et al. 2020) or the material point method (Dong et al. 2017). However, 152 

most of these are 2D in nature and need the input of details of the initial slide mass such as 153 

geometry, volume and initial velocity, which are rarely determined in practice.  154 

A correlation between slope stability analysis (landslide initiation) and evolved debris flow 155 

(landslide dynamics) in 3D is required for fully understanding 3D landslide evolution and 156 

hence for optimised risk assessment, which will be for the first time addressed in the study.  157 

Governing equations 158 

In order to analyse slope stability and evolution of landslides in sensitive soils, the domain of 159 

interest is essentially divided into regularised cells, with each cell holding characteristics of the 160 

evolving landslide, as shown in Figure 2. Note that the bathymetry map, showing a submarine 161 

landslide offshore Scotland (after Carter et al. 2020) is just for illustration. The edges of the 162 

cell are parallel to the axes of coordinates x and y, and the x–y plane (z = 0) was set as the 163 

horizontal plane and crossing through a reference point (taken as the slope centre in the study) 164 

at the basal slip surface. Cells are fixed during the landslide process, with materials travelling 165 

through them, forming a Eulerian framework. Conservations of mass and momentum are then 166 

formulated within each cell, and global instability can be modelled by integrating all cells with 167 

consideration of proper inter-cell constitutive models and fluxes. 168 

Key assumptions for establishing governing equations are as follows. 169 

• The thickness of the landslide is small (<1:10) compared to its dimensions, so that the 170 

velocity can be averaged along the depth of each cell. 171 

• Momentum of the slide mass along the z-direction is negligible. 172 

• Trapped water moves together with soils in each cell, and any generated pore pressures 173 

have no time to dissipate, ensuring an undrained (and incompressible) condition. 174 



Based on these assumptions, conservation of mass in each cell can be expressed by 175 

𝜕ℎ

𝜕𝑡
+

𝜕ℎ𝑢

𝜕𝑥
+

𝜕ℎ𝑣

𝜕𝑦
= 0 (1) 

where ℎ is the height of the cell, 𝑢 and 𝑣 are the velocity in the 𝑥- and 𝑦-directions (as shown 176 

in Figure 2), respectively, and 𝑡 is the elapsed time. Conservation of momentum in each cell is 177 

given by 178 

𝜕ℎ𝑢

𝜕𝑡
+

𝜕ℎ𝑢2

𝜕𝑥
+

𝜕ℎ𝜎𝑥

𝜌𝜕𝑥
+

𝜕ℎ𝑢𝑣

𝜕𝑦
−

𝜕ℎ𝜏𝑥𝑦

𝜌𝜕𝑦
−

𝜏𝑤,𝑥 + 𝜏𝑔,𝑥 + 𝜏𝑑𝑟𝑎𝑔,𝑥

𝜌
= 0 (2) 

and 179 

𝜕ℎ𝑣

𝜕𝑡
+

𝜕ℎ𝑣2

𝜕𝑦
+

𝜕ℎ𝜎𝑦

𝜌𝜕𝑦
+

𝜕ℎ𝑢𝑣

𝜕𝑥
−

𝜕ℎ𝜏𝑥𝑦

𝜌𝜕𝑥
−

𝜏𝑤,𝑦 + 𝜏𝑔,𝑦 + 𝜏𝑑𝑟𝑎𝑔,𝑦

𝜌
= 0 (3) 

for the 𝑥 - and 𝑦 -directions, respectively. In the above equations, 𝜎𝑥 , 𝜎𝑦  and 𝜏𝑥𝑦  are stress 180 

components applied at the centre of the cell face, with the face normals parallel to the 𝑥 or 𝑦 181 

axis; 𝜏w,𝑥 and 𝜏w,𝑦 are weak layer (or slip surface) shear stress components; 𝜏g,𝑥 and 𝜏g,𝑦 are 182 

gravity shear stress components at the buried depth of the weak layer; and 𝜏drag,𝑥 and 𝜏drag,𝑦 183 

are drag shear stress components. 184 

The governing equations are solved through a finite volume scheme with a staggered mesh 185 

strategy, which is detailed in the Appendix. Determinations and numerical treatments of marine 186 

sediment properties and drag forces from the ambient sea water are also fully addressed in the 187 

Appendix, with briefs given as follows. 188 

Marine sediment properties 189 

In addition to solving the governing equations of dynamics of the sliding layer, the changes in 190 

soil properties of slip surface (within the weak layer) during the landslide process are 191 

considered. The soil properties, such as stress and strength, in the weak layer are updated in the 192 

fixed mesh scheme based on the current values of ℎ, 𝑢 and 𝑣, assuming that the weak layer 193 



does not move with the sliding layer. As the sliding layer moves during the landslide process, 194 

its soil properties are updated at the deformed cell centre (based on current values of 𝑢 and 𝑣) 195 

and interpolated to the original fixed centre after each time increment, in the spirit of the 196 

Arbitrary Lagrangian-Eulerian method. To this end, the numerical scheme proposed here is 197 

hereafter called the Lagrangian-Eulerian depth integrated method (LEDIM). 198 

Within the slip surface, the shear stress (𝜏w) is limited to the current shear strength, which is 199 

reduced during shearing, and given by 200 

𝜏𝑤 = 𝑠𝑢𝑤(𝛿𝑝) = 𝑚𝑎𝑥 (1 −
𝛿𝑝

𝛿𝑟
𝑝 ,

1

𝑆𝑡
) ∙ 𝑠𝑢𝑤,𝑝 (4) 

where 𝛿p = ∫ ‖�̇�p‖𝑑𝑡
𝑡

0
 is the accumulated plastic shear displacement across the weak layer, 𝛿r

p
 201 

the value of 𝛿p at the residual shear stress, and 𝑠uw,p the peak undrained shear strength in the 202 

weak layer. Considering a linear and isotropic elasticity model, the pre-peak shear stress can 203 

be expressed by 204 

𝝉𝑤 = 𝐾𝜹𝑒 (5) 

where 𝐾 is the shear stiffness and 𝛿e is the elastic component of the shear displacement across 205 

the weak layer. 206 

Hydrodynamic pressure drag for a streamlined body like a submarine sliding mass is less 207 

significant than the skin friction drag, and the latter can be approximated by (Norem et al. 1990, 208 

Elverhoi et al. 2005) 209 

𝜏𝑑𝑟𝑎𝑔 =
1

2
𝐶𝑓𝜌𝑤𝑣2;  𝐶𝑓 = (1.89 + 1.62 𝑙𝑜𝑔

𝐿

𝑘
)

−2.5

 (6) 

where 𝐶f is the frictional drag coefficient, 𝜌w is the seawater density, 𝐿  is the sliding mass 210 

length and 𝑘 is the roughness length of the sliding mass surface in the range of 0.01–0.1 m. For 211 

a length of the sliding mass varying between 10 and 1000 m, the friction drag coefficient falls 212 



in the range of 0.005–0.016.  213 

Verification 214 

A series of 2D landslides with 1D slip surface growth along a weak layer, studied in Zhang et 215 

al. (2019), were re-simulated using the proposed numerical scheme to verify its accuracy. The 216 

governing equations are tailored to fit for the 2D problems by ignoring the momentum in the 217 

y-direction (assuming the slide mass travels in the x-direction) and considering only one row 218 

of cells (assuming the problem is of plane strain nature). The numerical results from the 219 

proposed numerical scheme are compared with the observations from the large deformation 220 

finite element (LDFE) modelling by Zhang et al. (2019). 221 

A curvilinear slope model composed of an overlying layer and a weak layer was used, as shown 222 

in Figure 3a. The weak layer is parallel to the slope surface and antisymmetric about the slope 223 

centre, which is set as the origin of the coordinate system. The weak layer geometry is described 224 

by 225 

 𝑧 = {
−𝐻 [1 − 𝑒𝑥𝑝 (

𝑦

𝐻
𝑡𝑎𝑛 𝜃𝑐)] , 𝑦 < 0

𝐻 [1 − 𝑒𝑥𝑝 (−
𝑦

𝐻
𝑡𝑎𝑛 𝜃𝑐)] , 𝑦 ≥ 0

 (7) 

where 𝜃c is the maximum slope angle at the centre, and 𝐻 is the half-height of the slope.  226 

The length of the model was set to 8,000 m so that the slope angles at two ends approach zero. 227 

The soil properties are the same as those in Zhang et al. (2019) and are listed in Table 1. For a 228 

curvilinear slope, plastic deformation is initiated at the steepest point once the maximum 229 

gravity shear stress exceeds the peak undrained shear strength. In the benchmark cases, the 230 

peak undrained shear strength of the weak layer soil is fixed at 𝑠uw,p = 10 kPa, which is small 231 

enough to achieve catastrophic slip surface growth along the weak layer, according to the 232 

criterion of Zhang et al. (2015). The undrained shear strength of the sliding layer, however, 233 

varies between 𝑠us,p = 10, 20, 30 and 100 kPa, to simulate different post-failure behaviours.  234 



For 𝑠us,p = 100  kPa, the sliding layer is strong enough to remain stable, with the failure 235 

concentrated within the weak layer only. The evolution of the length of the slip surface is shown 236 

in Figure 3b for both LEDIM and LDFE modelling. The slip surface firstly increases and stops 237 

with a final length of 2,350 m. The results from the two numerical methods compare well 238 

overall, although the growth of the slip surface is slightly slower, and the final slip surface 239 

length is about 2% higher in the LDFE analysis. This validates the accuracy of the proposed 240 

method in simulating the slip surface growth in the weak layer. 241 

For the other three cases with 𝑠us,p = 10, 20  and 30 kPa, active and passive failure are 242 

apparent at the upslope and downslope portion of the slope, respectively, as shown in Figure 4. 243 

Figure 4 also compares the upslope and downslope segments of the slip surface in the weak 244 

layer at the final stage according to the two numerical methods. With 𝑠us,p = 10 kPa, the upper 245 

layer soils are soft and flow downward after the global slab failure, with the layer becoming 246 

thinner upslope and thicker downslope. The relative strong sliding layer with 𝑠us,p = 20 and 247 

30 kPa leads to break-up of the layer and a main scarp somewhere upslope. The proposed 248 

numerical method can generally simulate the same post-failure behaviours as the LDFE method, 249 

which further validates the method in modelling global failure. 250 

The LDFE method is rather inefficient in simulating a 3D landslide process because of current 251 

computational capacity and the difficulty in treating a highly distorted slope surface. The 252 

proposed numerical method has a particular advantage in computational efficiency which 253 

enables it to simulate the evolution of a 3D translational landslide in sensitive soils, as will be 254 

demonstrated in the remainder of the paper. 255 

Slope geometry 256 

Four types of submarine slopes (planar, S-shape, convex, and concave, as shown in Figure 5) 257 

are used in the study. All of them consist of a continental shelf, a continental slope, and a 258 



continental rise from nearshore to deep sea, with an overlying layer, a weak layer, and a base. 259 

An initial slip surface was assumed to occur within the weak layer at the centre of the 260 

continental slope. The continental slope is assumed to have an average inclination of 6° to 261 

horizontal, and the continental shelf and continental rise are horizontal. Investigations of slip 262 

surface growth and slab failure initiation focus on the planar continental slope, which is 263 

assumed sufficiently long (8,000 m) and wide (6,000 m). The complete landslide evolution, 264 

including the post-failure behaviours and the arrest of mass transport deposit, is then simulated 265 

with considerations of the full slope model and different 3D slope geometries.  266 

A local Cartesian coordinate system x-y-z is used, with the origin set at the slope centre and the 267 

z-axis pointing away from the seabed as shown in Figure 5. The expression of the planar slope 268 

geometry is straightforward with the coordinate z linearly varying from the slope crest to the 269 

toe. To describe the S-shape slope geometry, the exponential function (7), extending through 270 

the x-axis, is used. The convex and concave slope geometries are constructed from a truncated 271 

cone and expressed, in terms of a global Cartesian coordinate system X-Y-Z as shown in Figure 272 

5c and d, by 273 

𝑍 = 2𝐻 (1 −
√𝑋2 + 𝑌2 − 𝑅𝑡

𝑅𝑏 − 𝑅𝑡
) (8) 

and 274 

𝑍 = 2𝐻
√𝑋2 + 𝑌2 − 𝑅𝑏

𝑅𝑡 − 𝑅𝑏
 (9) 

where 𝑅t and 𝑅b are radii of circular cross sections of the truncated cone through the slope 275 

crest and the slope toe, respectively. The local coordinates can then be easily related to the 276 

global coordinates based on the origin shifting as shown in Figure 5c and d. 277 



RESULTS 278 

In this section, the numerical results of submarine landslide evolution are presented covering 279 

the initiation and growth of slip surface, slab failure, post-failure evolution and arrest.  280 

Initiation of slip surface 281 

The initial local slip surface occurs where the permanent or transient driving force exceeds the 282 

resistance. It forms either because of an increase in the driving force, e.g., by seismic events or 283 

diapirs, or a decrease in shear strength, e.g., by soil degradation or accumulation of pore 284 

pressures. In this first study, it is sufficient to assume the initial slip surface is symmetric, and 285 

its boundary can be described by a series of functions: 286 

|
2𝑥

𝑙𝑥
|

𝑛

+ |
2𝑦

𝑙𝑦
|

𝑛

= 1 (10) 

where 𝑛 is a shape parameter, and 𝑙𝑥 and 𝑙𝑦 are dimensions of the slip surface in the x- and y- 287 

directions, respectively. The value of 𝑛 is larger than unity for a convex slip surface. For 𝑛 = 1 288 

and 2, the boundary of the slip surface is a rhombus and an ellipse, respectively. As n increases, 289 

the pre-softened zone extends further and further outward, and as 𝑛  → ∞, the boundary 290 

becomes rectangular. For most cases studied here, the value of 𝑛 was taken as 2. The shear 291 

strength in the initial slip surface might be reduced from the peak to the residual by slip 292 

weakening, time weakening or both, although the process may take a long time. Therefore, it 293 

is sufficient and conservative to assume that the shear strength in the slip surface has been 294 

reduced to the residual.  295 

The force imbalance from the slip surface can be transferred and sustained by surrounding soils, 296 

which may undergo plastic failure and fall into the post-peak strain softening state. Figure 6 297 

shows the contour of shear strength after the formation of a circular slip surface (𝑛 = 2, and 298 

𝑙𝑥 = 𝑙𝑦 = 40 m), as simulated by using the proposed numerical scheme. At the initial state, the 299 



undrained shear strength is reduced to the residual at the slip surface while being maintained 300 

at the peak elsewhere. Other properties of the numerical model and materials are listed in Table 301 

2. Within the weak layer, three zones can be identified as shown in the figure: the intact zone 302 

(where soils remain intact), the ‘process zone’ (where soils undergo strain softening, and shear 303 

strength ranges between the peak and the residual) and the slip surface (where soils reach the 304 

residual state). Six cross sections, three in each (x- or y-) direction, are chosen to further observe 305 

the distribution of the shear strength within the three zones, as given in Figure 6b and c. For 306 

the x-I, x-II, y-I and y-II sections which cross all three zones, discontinuities in the distributions 307 

of the shear strength exist, dropping from a post-peak value to the residual. These distinguish 308 

the process zone from the initial slip surface. The x-III and y-III profiles, however, cross the 309 

process zone and intact zone only, and the discontinuity in shear strength distribution is absent. 310 

Note that, in this case, the process zone is developed to fully resist the unbalanced forces from 311 

the slip surface, and hence the slope remains stable. This is defined as stable slip surface growth 312 

and will be detailed in the next sub-section. 313 

Stable growth of slip surface 314 

Figure 7 shows under what conditions a process zone might be initiated and developed. For a 315 

relatively large slip surface (i.e., 𝑙𝑥 = 40  m for a circular slip surface), it can disturb and 316 

weaken adjacent soils, leading to the development of a process zone surrounding the slip 317 

surface. However, if the slip surface is sufficiently small (e.g., 𝑙𝑥 = 20 m), the driving force 318 

from the slip surface might be easily sustained by the surrounding soils without the formation 319 

of the process zone, i.e., the soils remain intact as shown in Figure 7. When the diameter of the 320 

slip surface grows to 𝑙𝑥 = 30 m, the process zone appears only at the front and rear of the slip 321 

surface.  322 

The above observation reveals that: 1) for a circular slip surface, the process zone firstly 323 

emerges at the rear and in front of the slip surface; and 2) the larger the slip surface, the more 324 



significant the process zone. Figure 7 also compares the shear stress contours resulting from 325 

different sizes of slip surface. The shear stress remains the gravity value (≈6 kPa for parameters 326 

listed in Table 2) and increases to the peak at the interface between the intact and process zones. 327 

It is limited to the shear strength within the process zone and the slip surface.  328 

Stability can be eventually achieved for the cases of 𝑙𝑥 = 20 , 30 and 40 m despite the 329 

development of the process zone. As defined above, the process of extensive expansion of the 330 

slip surface up to 𝑙𝑥 = 40 m can be termed stable slip surface growth. In contrast, for the case 331 

of 𝑙𝑥 = 50  m, the growth of the slip surface cannot be restricted under existing forces and 332 

hence is termed unstable slip surface growth. Note that Figure 7 shows a transient moment of 333 

this case, and the dynamic expansion of the slip surface during unstable slip surface growth 334 

will be discussed in the next section.  335 

Unstable growth of slip surface 336 

With an initial slip surface of 𝑙𝑥 = 𝑙𝑦 = 50 m and other properties listed in Table 2, the growth 337 

of the slip surface is unstable and can only be limited by slope flattening or global slab failure. 338 

Figure 8a, b and c, respectively, shows the evolution of the shear strength contour, horizontal 339 

velocity field and vertical velocity field during the unstable growth of the slip surface. To 340 

intensively investigate the slip surface growth without slab failure, the shear strength in the 341 

overlying layer was intentionally set to a high value (1,000 kPa). At 𝑡 = 10 s, the slip surface 342 

grows from a circle to an ellipse with the major axis parallel to the potential travel direction. 343 

Thereafter, the slip surface grows dramatically and propagates more outward at the four 344 

shoulders, forming a distinctive ‘peanut’ shape at 𝑡 = 25 s. The wide shoulders are generated 345 

because of larger horizontal velocity in these areas, whereas along the major (y-) and minor (x-) 346 

axes of the slip surface, the horizontal velocity is close to zero, as shown in Figure 8b. The slip 347 

surface is symmetric in terms of both x- and y-axes before 𝑡 = 50 s. At 𝑡 = 50 s, however, the 348 

downslope part of the slip surface is slightly larger than the upslope, as soil begins to be 349 



accumulated more downslope.  350 

Slab failure 351 

Figure 9 shows the slab failure with respect to the contours of the plastic strain and deviatoric 352 

stress in the overlying layer, together with the slip surface growth with respect to the contours 353 

of the shear strength in the weak layer. Note that the at-rest lateral earth pressure coefficient, 354 

which is the horizontal earth pressure over the vertical earth pressure, was set to 𝐾0 = 0.5. The 355 

peak undrained shear strength was fixed at 𝑠uw,p = 𝑠us,p = 10 kPa for this case. At 𝑡 = 5 s, 356 

slab failure emerges at the rear of the slip surface where soils are unloaded and the deviatoric 357 

stress reaches the maximum 20 kPa; while in front of the slip surface, soils are loaded and the 358 

deviatoric stress decreases from the initial value. At 𝑡 = 10  s, the soils in front of the slip 359 

surface have been loaded to the (passive) failure state, and, accordingly, the deviatoric stress 360 

also reaches the maximum. Thereafter, the slab failure propagates mainly at the downslope 361 

portion with diffusive plastic strain; at the rear of the slip surface, the plastic strains are 362 

accumulated, but the propagation of the slab failure is not apparent. Rather than like a fan zone 363 

formed in front of the slip surface, the rear boundary of the slip surface (or the main scarp) is 364 

quite straight. For the planar slope studied here, the slip surface keeps growing along the x-365 

direction, with the side boundaries of the slip surface continuing to extend further outward.  366 

Post-failure evolution and arrest of landslide 367 

It has been demonstrated above that, once initiated, the slip surface growth and slab failure 368 

propagation cannot be arrested on a planar continental slope. Either slope flattening or material 369 

strengthening can restrict slip surface growth and slab failure propagation. To further observe 370 

the arrest of slip surface and post-failure behaviours, the full slope model including a relatively 371 

flat continental shelf and a continental rise, as shown in Figure 5, is used. It consists of a 372 

continental slope with a slope angle of 6° and length of 400 m (coordinate 𝑦 from −200 m to 373 

200 m), a flat continental shelf (𝑦 <−200 m) and a flat continental rise (𝑦 > 200 m). The peak 374 



undrained shear strength of the weak layer soil, the weak layer depth and the submerged soil 375 

unit weight were chosen as 𝑠uw,p = 15  kPa, ℎ = 8  m, and 𝛾′ = 8  kN/m3, respectively. This 376 

parameter set generates a strength ratio of 𝑠uw,p 𝛾′ℎ⁄ = 0.234, which is typical for normally 377 

consolidated marine sediments. The overlying layer was assumed slightly over-consolidated 378 

with a peak strength of 𝑠us,p = 10 kPa and strength ratio of 0.31. The soil sensitivities of the 379 

weak layer and the overlying layer were set to 7 and 2, respectively. An elliptical initial slip 380 

surface of 𝑙𝑥 = 40 m and 𝑙𝑦 = 80 m was pre-set. Other parameters are the same as those listed 381 

in Table 2. 382 

Figure 10a shows the landslide dynamic evolution from the slab failure initiation, post-failure 383 

stage to re-deposition with respect to the contours of the shear strength in the weak layer and 384 

the plastic strain in the overlying layer, and the changes in the overlying layer thickness. Note 385 

that the normalised sliding layer thickness is calculated as the ratio of the current thickness and 386 

the initial thickness of the overlying layer. At 𝑡 = 10 s, slab failure is initiated with a certain 387 

amount of slip surface growth. The plastic strain is more concentrated at the rear of the slip 388 

surface, and a curved back scarp is formed at this stage, with the height of the scarp exceeding 389 

4 m (0.5ℎ). The main scarp moves backward with the retrogressive failure at the rear of the slip 390 

surface. The retrogression is stopped by the flat continental shelf, leaving a fairly straight main 391 

scarp of 200 m in length and over 4 m in height. Because of the strain softening, the failed 392 

overlying mass is torn apart into blocks, within which the plastic strain of the sliding layer is 393 

insignificant as shown in the second row of Figure 10a. The blocks are broken into smaller 394 

pieces and finally disappear during their downward movement. The failed and softened slide 395 

mass is finally deposited at the continental rise, forming a compressed fan zone of around 400 396 

m in diameter and over 4 m in heave. The extent of the slip surface in the weak layer is almost 397 

identical to the combined area of the source region and deposition fan zone. Features such as 398 

the main scarp, the blocks seen during progressive failure, and the deposition fan zone are 399 



consistent with site investigations of many historical submarine landslides, e.g., the Loch 400 

Eriboll Slide discovered offshore Scotland (Carter et al. 2020) and shown in Figure 10b.  401 

DISCUSSIONS 402 

Mechanism and evolution of translational submarine landslides 403 

Observed from the numerical modelling, the evolution of translational submarine landslides in 404 

sensitive marine sediments can be summarised as follows. 405 

I. Slip surface initiation. A slip surface might be formed and grow stably within a weak 406 

layer due to extensive external triggers such as earthquakes and excess pore pressure 407 

accumulation. Strain softening of sensitive soils during shearing leads to formation of 408 

a process zone, where undrained shear strength reduces from the peak towards the 409 

residual, surrounding the slip surface.  410 

II. Slip surface growth. Once the slip surface reaches a certain size because of intensive 411 

triggers, its growth becomes unstable and catastrophic, restricted only by slope 412 

flattening or slab failure. The critical area of the slip surface for unstable growth is 413 

almost independent of its shape but depends on the material properties and shear stress 414 

ratio over the slip surface. Regardless of the initial shape, the slip surface transitions 415 

from an ellipse to a ‘peanut’ pattern during the unstable growth stage.  416 

III. Slab failure. With the growth of the slip surface, the driving force increases, and so does 417 

the deviatoric stress within the overlying layer. Therefore, at a certain stage of the 418 

unstable slip surface growth, the overlying soils may reach the maximum allowable 419 

stress, initiating slab failure. After the slab failure, the growth of the slip surface is in 420 

alignment with the propagation of the slab failure. 421 

IV. Post-failure evolution. A main scarp forms at the rear of the slip surface after the slab 422 

failure, and is followed by retrogression, which is limited by upslope slope flattening. 423 



The failed slide mass disintegrates into blocks and then turns to fully softened debris 424 

flow with downward movement. The slide mass finally re-deposits at the flat terrain 425 

with the mass transport deposit forming a fan zone.  426 

Features of dynamic slip surface evolution 427 

Slip surface growth pattern 428 

The pattern of stable growth of the slip surface depends on the shape of the initial slip surface. 429 

Figure 11 shows the different patterns of stable slip surface growth for elliptical slip surfaces 430 

with different ratios of major and minor axes, in terms of the shear strength contour. Similar to 431 

Figure 6b and c, Figure 12 presents the distributions of shear strength along the major and 432 

minor axes of the slip surface to visualise the growth pattern of the slip surface. In all cases, 433 

the stable growth of the slip surface together with the development of the process zone is 434 

obvious. As demonstrated above, for a circular slip surface with 𝑙𝑥 𝑙𝑦⁄ = 1, the travel direction 435 

(x-direction) is the favoured direction for slip surface growth. The favoured direction along the 436 

x-direction of growth is enhanced with a larger axis ratio (a wider slip surface), e.g., 𝑙𝑥 𝑙𝑦⁄ = 2. 437 

For a slender slip surface (of small axis ratio, 𝑙𝑥 𝑙𝑦⁄ = 0.25), however, the slip surface tends to 438 

propagate along the y-direction first, presenting a different growth pattern from wide slip 439 

surfaces. For instance, with 𝑙𝑥 = 20 m and 𝑙𝑦 = 60 m, soil at the two sides of the slip surface 440 

begins to soften while the soil in front and at the rear of the slip surface remains intact. With 441 

the axis ratio 𝑙𝑥 𝑙𝑦⁄ = 0.5, the slip surface seems to grow simultaneously along the periphery 442 

of the slip surface without an obvious favoured direction, which forms the most pessimistic 443 

situation.  444 

Figure 13 briefly illustrates the three modes. The growth of the slip surface along the x-direction 445 

is driven by the compression force downslope and extension force upslope, akin to the in-plane 446 

shear mode of crack propagation in fracture mechanics (i.e., a shear stress acting parallel to the 447 



plane of the slip surface and perpendicular to the slip surface front); while the growth along the 448 

y-direction is driven by the shear force, akin to the out-of-plane shear mode of crack 449 

propagation in the fracture mechanics (i.e., a shear stress acting parallel to the plane of the slip 450 

surface and parallel to the slip surface front). Here, the former is defined as the compression-451 

extension mode and the latter is defined as the shear mode. In reality, a combined mode 452 

including both the compression-extension and shear modes is expected to be more common, 453 

particularly when the slip surface growth is unstable and continuous. It has not been possible 454 

to study the shear and combined modes in previous 2D investigations (e.g., Puzrin et al. 2004, 455 

Kvalstad et al. 2005, Zhang et al. 2015).  456 

Zhang et al. (2020) assumed that the (horizontal) velocity of the slide mass along the x- 457 

direction is negligible compared to the y-direction component, which has been found to be a 458 

robust result during the stable growth of slip surface through LDFE modelling. This generates 459 

a plane strain condition with the compression/extension modulus in the sliding layer calculated 460 

by 461 

𝐸𝑝𝑠 =
𝐸

1 − 𝜈2
=

2𝐺

1 − 𝜈
 (11) 

where 𝐸 is the Young’s modulus and 𝜈 the Poisson’s ratio. This assumption needs to be verified 462 

for the stage of unstable slip surface growth. To achieve this, conservation of momentum in the 463 

x-direction, i.e. governing equation (2), was ignored and the horizontal component of the 464 

velocity was set to zero. Numerical results of such an idealised case in terms of the strength 465 

contours are presented in Figure 8d. For 𝑡 = 5 s and 10 s, the slip surfaces of the idealised case 466 

are almost identical to the case formulated by rigorous governing equations as shown in Figure 467 

8a. However, with further unstable growth of the slip surface, the shape of the slip surface 468 

remains an ellipse, which is different from the ‘peanut’ shape of the rigorous case.  469 

Figure 14 compares the two mechanisms at 𝑡 = 50 s. The major and minor axes of the ‘peanut’ 470 



slip surface are the same as those of the ‘ellipse’ slip surface, with the area of the slip surface 471 

larger in the former mechanism. The different mechanisms found in the two cases imply that 472 

the horizontal movement of the slide mass plays an important role and has to be considered 473 

during the unstable growth of the slip surface.  474 

Slip surface growth speed 475 

Once a slip surface falls into the unstable growth stage, the growth speed depends on how the 476 

unbalanced forces are transferred within the overlying layer. For the compression-extension 477 

mode, the growth of the slip surface is driven by the compressional/tensile force, and therefore 478 

the growth speed (of the major axis) can be related to the compression wave velocity 479 

𝑣𝑚𝑎𝑗 = 2√
𝐸′

𝜌
 (12) 

where 𝐸′ is the compression modulus. Note that the number 2 in the expression means that the 480 

growth speed is double the wave velocity, as the slip surface grows in both the upslope and 481 

downslope directions. Similarly, for the shear mode, the growth speed of the minor axis can be 482 

related to the shear wave velocity 483 

𝑣𝑚𝑖𝑛 = 2√
𝐺

𝜌
 (13) 

For plane strain and undrained conditions, the compression modulus, 𝐸′ = 𝐸ps, is four times 484 

the shear modulus (see equation (11)) and therefore, the major axis always doubles the minor 485 

axis of the slip surface. This can be seen in Figure 14, where the major axes of the slip surfaces 486 

are almost 3,000 m while the minor axes are around 1,500 m in both mechanisms.  487 

Figure 15a shows the length (major axis) and width (minor axis) of the slip surface during its 488 

growth for the selected case, compared with the analytical solutions given by equations (12) 489 

and (13). It should be noted that the growth of the slip surface evolves from the stable to 490 



unstable stages with the transition emerging at around 𝑡 = 4 s. During the stable growth stage, 491 

both axes of the slip surface are assumed unchanged. With this idealisation, the growth of the 492 

two axes of the slip surface in the numerical modelling can be well predicted by the analytical 493 

solutions, with the growth speeds being 34 m/s and 68 m/s for the minor and major axes, 494 

respectively. Such fast speeds reveal that unstable growth of the slip surface is catastrophic and 495 

significantly differs from creep failure. 496 

Figure 15b gives the area of the slip surface during its unstable growth for both mechanisms. 497 

For the ‘ellipse’ mechanism, the area can be calculated exactly by 498 

𝐴 =
𝜋

4
𝑙𝑥𝑙𝑦 (14) 

which is shown by the good agreement between the numerical and analytical results in the 499 

figure. The area of the ellipse slip surface is initially 1,962.5 m2 and increases to 3.6 km2 in 50 500 

s. The peanut slip surface (5.3 km2) is about 45% larger than the ellipse slip surface at 𝑡 = 50 s. 501 

The fast growth of the slip surface implies that during an earthquake, even with a short period 502 

of shaking, a large slip surface with a magnitude of ~ km2 might be formed. Such a large slip 503 

surface may further result in global slab failure and debris flow. Therefore, it is key to determine 504 

in what conditions the slip surface can grow unstably, which will be discussed in the next sub-505 

section.  506 

Criteria for unstable growth of slip surface 507 

For a slip surface described by a series of functions (10), the area of the slip surface can be 508 

calculated by 509 

𝐴 =
𝑙𝑥𝑙𝑦

𝑛
∙

𝛤(1 + 1 𝑛⁄ )𝛤(1 𝑛⁄ )

𝛤(1 + 2 𝑛⁄ )
 (15) 

where 𝛤  is the gamma function. By integrating the normal and shear resistances along the 510 

boundary of the slip surface, one may calculate the total resistance and compare it to the driving 511 



force from the slip surface, whereby the critical area of the slip surface for unstable growth is 512 

given by (Zhang et al. 2020) 513 

𝐴𝑐𝑟𝑖 = 32 (
1 − 𝑟

𝑟
𝑙𝑐)

2

 (16) 

where 𝑟 is the shear stress ratio and 𝑙c is the critical length relevant to the process zone size, 514 

given by 515 

𝑟 =
𝜏𝑔 − 𝑠𝑢𝑤,𝑟

𝑠𝑢𝑤,𝑝 − 𝑠𝑢𝑤,𝑟
, 𝑙𝑐 = √

𝐺ℎ𝛿𝑟
𝑝

𝑠𝑢𝑤,𝑝 − 𝑠𝑢𝑤,𝑟
 (17) 

For static analysis, ignoring any inertia effects, the criterion (16) is conservative compared to 516 

the numerical data from finite element and finite difference modelling (Zhang et al. 2020).  517 

A parametric study was conducted to observe the effects of the shape parameter, 𝑛, and the 518 

dimensions of the slip surface on the critical area for unstable slip surface growth. The gravity 519 

loads and the critical surface areas at critical conditions for all cases are presented in Table 3. 520 

Figure 16a shows a comparison of the numerical results with or without inertia effects and the 521 

analytical results by criterion (16). In dynamic analysis conducted in the current study, the 522 

critical area estimated by (16) is not always conservative, particularly with a large shear stress 523 

ratio. Assuming that the dynamic criterion meets the same series of functions as the static 524 

criterion (16), the best fit of the numerical data from the dynamic analysis gives 525 

𝐴𝑐𝑟𝑖 = 18.4 (
1 − 𝑟

𝑟
𝑙𝑐)

2

 (18) 

which is shown in Figure 16b. This means that the critical area of the slip surface for unstable 526 

slip surface growth under dynamic conditions is on average 42.5% smaller than that ignoring 527 

inertia effects. This echoes the finding that in a 2D plane strain slope, the critical length (major 528 

axis) of slip surface for catastrophic propagation can be up to 50% lower with inertia effects 529 

than without inertia effects (Zhang et al. 2016). Extending this observation to the 3D case, one 530 



may simply assume for the dynamic unstable growth a 50% reduction in the critical area of the 531 

slip surface from the static criterion (18), that is 532 

𝐴𝑐𝑟𝑖 = 16 (
1 − 𝑟

𝑟
𝑙𝑐)

2

 (19) 

Figure 16a shows that the criterion (19) gives estimates of the critical slip surface area well 533 

below the numerical data and is therefore conservative. 534 

Slip surface growth vs slab failure 535 

Growth of the slip surface within the weak layer and slab failure within the overlying layer are 536 

two competing mechanisms leading to large-scale landslides in sensitive soils. The extent of 537 

the slip surface depends on how ‘weak’ the weak layer is. With the growth of the slip surface, 538 

the driving force increases, and so does the deviatoric stress within the overlying layer given 539 

by equations (26) and (27). Therefore, at a certain stage of the unstable slip surface growth, the 540 

overlying soils may reach the maximum allowable deviatoric stress, initiating slab failure. 541 

Figure 17 shows the increase of the maximum deviatoric stress of the overlying soils with the 542 

growth of the slip surface. The peak undrained shear strength of the weak layer soil was fixed 543 

at 𝑠uw,p = 10 kPa, while the strength of the overlying soil, 𝑠us,p, was varied between 10 kPa, 544 

20 kPa, 50 kPa, 100 kPa and 1,000 kPa without strain softening. The other parameters remain 545 

the same as those in Table 2. At the initial state, the deviatoric stress is 26 kPa, which is essential 546 

to make the slip surface grow unstably from an initial area of 2,352 m2 (with 𝑙𝑥 = 40 m and 547 

𝑙𝑦 = 80 m). In the case of 𝑠us,p 𝑠uw,p⁄ = 100, the ‘unrealistic’ strong overlying layer leads to 548 

the pure growth of the slip surface over the whole simulation domain (8,000 m × 6,000 m), 549 

and the deviatoric stress keeps growing, as shown in the figure. For the other cases, the 550 

deviatoric stress is limited to 2𝑠us,p, which satisfies the generalised nature of the von Mises 551 

failure criterion with respect to the Tresca failure criterion. The stronger the overlying soil, the 552 

larger the slip surface at the initiation of slab failure. For example, the slip surface at the slab 553 



failure initiation is as large as 1.1 km2 in the case of 𝑠us,p 𝑠uw,p⁄ = 10, while it is reduced by 554 

2/3 when the undrained shear strength of the overlying soil is decreased by half. When the 555 

weak layer is not literally ‘weak’, i.e., in the case of 𝑠us,p 𝑠uw,p⁄ = 1, the slab failure is triggered 556 

without unstable growth of the slip surface, as the required deviatoric stress (26 kPa) is 557 

essentially higher than the maximum allowable value (2𝑠us,p = 20 kPa).  558 

Figure 18 compares the slip surface and slab failure at 𝑡 = 50 s for cases with different strength 559 

ratios, 𝑠us,p 𝑠uw,p⁄ = 1, 2, 5, 10. For the case of the strongest overlying layer (𝑠us,p 𝑠uw,p⁄ =560 

10), the slab failure initiates only at the rear and the sides of the growing slip surface. With the 561 

decrease of the overlying soil strength, the downslope portion fails together with the upslope 562 

portion. The slip surface pattern of the downslope portion does not alter significantly, although 563 

the accumulated plastic strain in the overlying layer decreases with the increase of the overlying 564 

soil strength. A ‘peanut’ slip surface mechanism remains for 𝑠us,p 𝑠uw,p⁄ = 2, 5, 10 before the 565 

slab failure; while for 𝑠us,p 𝑠uw,p⁄ = 1, only the bottom half of the ‘peanut’ is developed as the 566 

slab failure occurs early and stops the growth of the slip surface upslope. The upper half of the 567 

slip surface, however, becomes flat and propagates less after the slab failure. 568 

Effects of a 3D slope geometry 569 

Three typical 3D slope types, as shown in Figure 5b, c and d, are considered in this section in 570 

order to gain an initial insight into the slope geometry effects on the translational landslide 571 

evolution. For the S-shape slope, the half-height of the slope in equation (7) was set to be the 572 

same as for the planar slope, i.e., 𝐻 = 21 m, and the maximum slope angle was taken as 𝜃𝑐 =573 

9° such that the average slope angle within the range of −500 m < 𝑦 < 500 m is equal to the 574 

planar slope angle of 6°. For the convex slope, the values of 𝑅𝑡 and 𝑅𝑏 were set to 800 m and 575 

1,200 m, respectively; while for the concave slope, 𝑅𝑏 = 800 m and 𝑅𝑡 = 1,200 m. The slope 576 

angle of the convex and concave slope models is the same with the planar slope model.  577 



Figure 19 compares the final states of the four slope models with respect to the fields of the 578 

shear strength in the weak layer, the shear stress in the weak layer, the plastic strain in the 579 

sliding layer, and the normalised sliding layer thickness. It can be noted that the far field gravity 580 

shear stress fields (second row of Figure 19) strongly depend on the geometry of the problem. 581 

The results of the planar, convex and concave slopes look very similar, with slightly more 582 

horizontal slip surface growth observed in the convex slope and slightly more retrogressive 583 

extension pertained in the concave slope, suggesting that the slope gradient along the x-584 

direction has limited influence on the landslide evolution. In contrast, the final slip surface and 585 

mass transport deposit observed in the S-shape curvilinear slope are significantly different from 586 

the other three models with less extended retrogressive failure and a smaller fan heave zone. 587 

This confirms the conclusions from the previous studies (e.g., Puzrin et al. 2017, Zhang et al. 588 

2021) that the slope gradient along the y-direction has a considerable effect on the landslide 589 

evolution. 590 

The examples shown here present an initial investigation of 3D post-failure behaviours of 591 

submarine landslides in sensitive clays. Detailed investigation of the effects of the 3D slope 592 

geometry on post-failure patterns is beyond the scope of the present work and will be explored 593 

in future studies by using the proposed numerical tool.  594 

CONCLUSIONS 595 

This study has simulated and discussed the whole evolution of a translational landslide in a 3D 596 

slope of sensitive soils by using an original large deformation numerical tool, in order to 597 

understand the true failure mechanism and physical evolution of translational submarine 598 

landslides and establish original criteria for analysing landslide initiation. The numerical 599 

scheme has been established by solving governing equations in terms of the conservations of 600 

the mass and the momentum of sliding mass in discretised Eulerian cells of a simulation domain 601 



with a depth integrated finite volume method.  602 

The complete evolution of submarine translational landslides in sensitive soils includes the slip 603 

surface initiation and growth along a weak layer, slab failure, post-failure behaviours and re-604 

stabilisation. A slip surface might be formed and grow stably within a weak layer due to 605 

extensive external triggers such as earthquakes and excess pore pressure accumulation. The 606 

growth pattern depends on the shape of initial slip surface. For an initially wide slip surface, 607 

the process zone first emerges in front and at the rear of the slip surface, whereas for an initially 608 

slender slip surface, it occurs at the two sides. For an elliptical slip surface, the process zone 609 

develops around the periphery of the slip surface without any favoured direction. The critical 610 

area of the slip surface for unstable growth is almost independent of its shape but depends on 611 

the material properties and shear stress ratio over the slip surface. For planar continental slopes, 612 

it is given by 𝐴cri = 16 (
1−𝑟

𝑟
𝑙c)

2

 where the shear stress ratio, 𝑟, and characteristic length, 𝑙c, 613 

are expressed by equation (17).  614 

Regardless of the initial shape, the slip surface transitions from an ellipse to a ‘peanut’ pattern 615 

during the unstable growth stage, with expansion rates equal to compression wave velocity and 616 

shear wave velocity along the major and minor axes of the slip surface, respectively. The global 617 

slab failure usually initiates at the rear of the slip surface if the at-rest earth pressure coefficient 618 

is smaller than unity. The stronger the overlying layer, the larger the slip surface before the 619 

global slab failure. A main scarp forms at the rear of the slip surface after the slab failure, and 620 

is followed by retrogression, which is limited by upslope slope flattening. The slide mass finally 621 

re-deposits at the flat terrain with the mass transport deposit forming a fan zone. The differences 622 

in the landslide failure extension and mass transport deposit morphology between the planar, 623 

the convex, and the concave slopes of the same and uniform slope angle and parallel layering 624 

characteristic of sediments were found to be insignificant. In contrast, in the curvilinear slope, 625 



a significantly less extended failure upslope and a smaller fan heave zone downslope have been 626 

observed.  627 
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APPENDIX – NUMERICAL SCHEME FOR 3D MODELLING OF SUBMARINE 718 

LANDSLIDE EVOLUTION 719 

Governing equations 720 

Based on assumptions given in the subsection of ‘governing equations’, conservation of mass 721 

in each cell can be expressed by 722 

𝜕ℎ

𝜕𝑡
+

𝜕ℎ𝑢

𝜕𝑥
+

𝜕ℎ𝑣

𝜕𝑦
= 0 (20) 

where ℎ is the height of the cell, 𝑢 and 𝑣 are the velocity in the 𝑥- and 𝑦-directions (as shown 723 

in Figure 2), respectively, and 𝑡 is the elapsed time. Conservation of momentum in each cell is 724 

given by 725 

𝜕ℎ𝑢

𝜕𝑡
+

𝜕ℎ𝑢2

𝜕𝑥
+

𝜕ℎ𝜎𝑥

𝜌𝜕𝑥
+

𝜕ℎ𝑢𝑣

𝜕𝑦
−

𝜕ℎ𝜏𝑥𝑦

𝜌𝜕𝑦
−

𝜏𝑤,𝑥 + 𝜏𝑔,𝑥 + 𝜏𝑑𝑟𝑎𝑔,𝑥

𝜌
= 0 (21) 

and 726 

𝜕ℎ𝑣

𝜕𝑡
+

𝜕ℎ𝑣2

𝜕𝑦
+

𝜕ℎ𝜎𝑦

𝜌𝜕𝑦
+

𝜕ℎ𝑢𝑣

𝜕𝑥
−

𝜕ℎ𝜏𝑥𝑦

𝜌𝜕𝑥
−

𝜏𝑤,𝑦 + 𝜏𝑔,𝑦 + 𝜏𝑑𝑟𝑎𝑔,𝑦

𝜌
= 0 (22) 

for the 𝑥 - and 𝑦 -directions, respectively. In the above equations, 𝜎𝑥 , 𝜎𝑦  and 𝜏𝑥𝑦  are stress 727 

components applied at the centre of the cell face, with the face normals parallel to the 𝑥 or 𝑦 728 

axis; 𝜏w,𝑥 and 𝜏w,𝑦 are weak layer (or slip surface) shear stress components; 𝜏g,𝑥 and 𝜏g,𝑦 are 729 

gravity shear stress components at the buried depth of the weak layer; and 𝜏drag,𝑥 and 𝜏drag,𝑦 730 

are drag shear stress components. 731 

Stress components at cell face centre 732 

Usually, the stress tensor (𝝈) describing the stress status at the centre of the cell face can be 733 

decomposed into  734 



𝝈 = 𝒔 + 𝑝 ∙ 𝑰 (23) 

where 𝒔 is the deviatoric stress tensor, 𝑝 the mean stress and 𝑰 the second-order identity tensor. 735 

Note that the vertical normal stress component 𝜎𝑧 can be expressed by 736 

𝜎𝑧 =
1

2
𝛾′ℎ (24) 

where 𝛾′ is the submerged unit weight of soils.  737 

Similarly, the strain tensor (𝜺) can be decomposed into 738 

𝜺 = 𝒆 +
휀𝑣

3
∙ 𝑰 (25) 

where 𝒆 is the deviatoric strain tensor and 휀v the volumetric strain. It can also be divided into 739 

the elastic and plastic portions, which will be denoted by superscripts ‘e’ and ‘p’, respectively, 740 

in the remainder of the paper. Note that the volumetric strain satisfies 휀v = 휀v
e = 휀v

p
→ 0, as 741 

the undrained condition was maintained and the von Mises yield criterion with an associated 742 

flow rule was used. Hence, one may write 𝜺 ≅ 𝒆 , 𝜺e ≅ 𝒆e , and 𝜺p ≅ 𝒆p . The elasticity of 743 

materials is assumed linear and isotropic, and therefore the deviatoric stress tensor is expressed 744 

by 745 

𝒔 = 2𝐺𝒆𝑒 ≅ 2𝐺𝜺𝑒 (26) 

where 𝐺 is the shear modulus.  746 

A modified von Mises yield criterion was adopted in order to consider isotropic and linear 747 

strain softening, given by 748 

𝑞 = 𝑚𝑎𝑥 (1 −
휀𝑠

𝑝

휀𝑠,𝑟
𝑝 ,

1

𝑆𝑡
) ∙ 2𝑠𝑢𝑠,𝑝 (27) 

where 𝑞 = √
3

2
‖𝒔‖ is the deviatoric stress, 𝑠us,p the peak undrained shear strength in the sliding 749 

layer which can be measured from a triaxial element test; 휀s
p

= ∫ √
2

3
‖�̇�p‖𝑑𝑡

𝑡

0
 the accumulated 750 



plastic deviatoric strain; 휀s,r
p

 the accumulated deviatoric strain to the residual shear strength; 𝑆t 751 

the soil sensitivity defining the ratio of the peak and residual shear strengths. 휀s,r
p

 can be 752 

determined from a triaxial test by 휀s,r
p

=
2

3
𝛾r

p
 where 𝛾r

p
 is the plastic shear strain associated to 753 

the residual undrained shear strength.  754 

The softening and associated flow rules used for calculating stress components on the cell faces 755 

are also depicted in Figure A1a. The solid circle represents the current yield surface in the 756 

meridian plane while the dashed circle represents the softening yield surface. With an 757 

incremental deviatoric strain tensor, soils may move from the initial elastic state A to the plastic 758 

state B (see Figure A1a). An intermediate virtual state T outside the yield surfaces was assumed, 759 

in order to calculate the plastic strain. According to equations (26) and (27), one may write 760 

𝑶𝑨 = 2𝐺𝒆𝑒,𝐴; 𝑶𝑩 = 2𝐺𝒆𝑒,𝐵; 𝑨𝑻 = 2𝐺∆𝒆; 𝑩𝑻 = 2𝐺∆𝒆𝑝; 𝑩𝑻′ =
4

3

𝑠𝑢𝑠,𝑝

𝑠,𝑟
𝑝 ∆𝒆𝑝 (28) 

where 𝑇′ is the intersect of the line 𝐵𝑇 and the current yield surface. As the radius of the current 761 

yield surface (the solid circle) is 𝑅ys = √
2

3
𝑑(휀s

p
), the incremental plastic deviatoric strain can 762 

then be calculated based on the geometric relationship, by  763 

𝑅𝑦𝑠 − ‖𝑩𝑻′‖ = ‖𝑶𝑻‖ − ‖𝑩𝑻‖ → √
2

3
𝑑(휀𝑠

𝑝) −
4

3

𝑠𝑢𝑠,𝑝

휀𝑠,𝑟
𝑝 ‖∆𝒆𝑝‖

= 2𝐺‖𝒆𝑒,𝐴 + ∆𝒆‖ − 2𝐺‖∆𝒆𝑝‖ 

→ ‖∆𝒆𝑝‖ =
2𝐺‖𝒆𝑒,𝐴+∆𝒆‖−√

2

3
𝑑( 𝑠

𝑝
)

2𝐺−
4

3

𝑠𝑢𝑠,𝑝

𝜀𝑠,𝑟
𝑝

  

(29) 

Alternatively, it can be determined by forcing the deviatoric stress at state B (𝑞𝐵) to fall at the 764 

reduced yield surface, by 765 



𝑞𝐵 = 𝑞𝑇 − 3𝐺∆휀𝑠
𝑝 = 𝑑(휀𝑠

𝑝) −
∆ 𝑠

𝑝

𝑠,𝑟
𝑝 2𝑠𝑢,𝑝 → ∆휀𝑠

𝑝 =
𝑞𝑇−𝑑( 𝑠

𝑝
)

3𝐺−2
𝑠𝑢,𝑝

𝜀𝑠,𝑟
𝑝

  (30) 

where 𝑞𝑇 = 2√
3

2
𝐺‖𝒆𝑨 + ∆𝒆‖ is the deviatoric stress at the virtual state T. The elastic strain 766 

tensor at the new state B is therefore 767 

𝒆𝑒,𝐵 = (𝟏 −
‖∆𝒆𝑝‖

‖𝒆𝑨+∆𝒆‖
) (𝒆𝑒,𝐴 + ∆𝒆)  (31) 

The stress tensors can then be fully solved through equations (23) to (26). 768 

Non-negative value of incremental plastic strain requires 769 

2𝐺 −
4

3

𝑠𝑢𝑠,𝑝

휀𝑠,𝑟
𝑝 > 0 → 𝑠𝑢𝑠,𝑝 <

3

2
𝐺휀𝑠,𝑟

𝑝  (32) 

The physical meaning of inequality (32) is that the softening rate 
𝑠u,p

𝛾r
p  should be less than the 770 

unloading shear modulus; otherwise, the portion of plastic shear strain transferred from the 771 

initially elastic part (due to softening) may self-drive the softening process. Therefore, if 772 

inequality (32) is not satisfied, the shear strength would be essentially reduced to the residual 773 

even with little plastic deformation.  774 

Shear stress at weak layer 775 

Within the slip surface, the shear stress (𝜏w) is limited to the current shear strength, which is 776 

reduced during shearing, and given by 777 

𝜏𝑤 = 𝑠𝑢𝑤(𝛿𝑝) = 𝑚𝑎𝑥 (1 −
𝛿𝑝

𝛿𝑟
𝑝 ,

1

𝑆𝑡
) ∙ 𝑠𝑢𝑤,𝑝 (33) 

where 𝛿p = ∫ ‖�̇�p‖𝑑𝑡
𝑡

0
 is the accumulated plastic shear displacement across the weak layer, 𝛿r

p
 778 

the value of 𝛿p at the residual shear stress, and 𝑠uw,p the peak undrained shear strength in the 779 

weak layer. Ignoring displacement beneath the weak layer (Zhang et al. 2015), the horizontal 780 

slide displacement can be related to the shear displacement across the weak layer by 
𝑢

cos 𝜃
=781 



𝛿 = 𝛿e + 𝛿p where 𝜃 is the slope angle and 𝛿e and 𝛿p the elastic and plastic portion of the 782 

shear displacement, respectively.  783 

Soils surrounding the slip surface are first mobilized elastically before reaching the yield stress 784 

governed by equation (27), and the shear stress is increased to be larger than the initial value 785 

caused by gravity. Considering a linear and isotropic elasticity model, the pre-peak shear stress 786 

can be expressed by 787 

𝝉𝑤 = 𝐾𝜹𝑒 (34) 

where 𝐾 is the shear stiffness.  788 

Figure A1b gives details of the constitutive model for weak layer soils in the 𝜏w,𝑥 − 𝜏w,𝑦 plane, 789 

where the strain softening behaviour is isotropic, i.e., reduction of shear strength in the x-axis 790 

results in the same-magnitude reduction in the y-axis. Similar to equation (29), the incremental 791 

plastic shear displacement can be given by 792 

𝐾‖𝜹𝑒,𝐴 + ∆𝜹‖ − 𝐾‖∆𝜹𝑝‖ = 𝑠𝑢𝑤(𝛿𝑝) −
𝑠𝑢𝑤,𝑝

𝛿𝑟
𝑝 ‖∆𝜹𝑝‖ → ‖∆𝜹𝑝‖

=
𝐾‖𝜹𝑒,𝐴 + ∆𝜹‖ − 𝑠𝑢𝑤(𝛿𝑝)

𝐾 −
𝑠𝑢𝑤,𝑝

𝛿𝑟
𝑝

 

(35) 

Again, a non-negative value of ‖∆𝜹p‖ requires  793 

𝐾 −
𝑠𝑢𝑤,𝑝

𝛿𝑟
𝑝 > 0 → 𝑠𝑢𝑤,𝑝 < 𝐾𝛿𝑟

𝑝 (36) 

Otherwise, the shear strength could be immediately reduced to the residual upon any small 794 

plastic deformation.  795 

The updated elastic shear displacement is therefore 796 



𝜹𝑒,𝐵 = (1 −
‖∆𝜹𝑝‖

‖𝜹𝑒,𝐴 + ∆𝜹‖
) (𝜹𝑒,𝐴 + ∆𝜹) (37) 

and the weak layer stress (vector) can then be updated through equation (34). 797 

Gravity and drag shear stresses 798 

The gravity shear stress is given by 799 

𝜏𝑔 = 𝛾′ℎ 𝑠𝑖𝑛 𝜃 (38) 

where 𝛾′ is the submerged unit weight of soil. 800 

Hydrodynamic pressure drag for a streamlined body like a submarine sliding mass is less 801 

significant than the skin friction drag, and the latter can be approximated by (Norem et al. 1990, 802 

Elverhoi et al. 2005) 803 

𝜏𝑑𝑟𝑎𝑔 =
1

2
𝐶𝑓𝜌𝑤𝑣2;  𝐶𝑓 = (1.89 + 1.62 𝑙𝑜𝑔

𝐿

𝑘
)

−2.5

 (39) 

where 𝐶f is the frictional drag coefficient, 𝜌w is the seawater density, 𝐿  is the sliding mass 804 

length and 𝑘 is the roughness length of the sliding mass surface in the range of 0.01–0.1 m. For 805 

a length of the sliding mass varying between 10 and 1000 m, the friction drag coefficient falls 806 

in the range of 0.005–0.016.  807 

Finite volume scheme 808 

Two layers of fixed meshes with the same mesh size and alignment were taken, as shown in 809 

Figure A2a, with the top layer used for solving mass and momentum conservation equations 810 

and the bottom layer tracking the changes in soil properties in the weak layer during slip surface 811 

growth. A finite volume method with staggered grids, as shown in Figure A2b, was used to 812 

integrate and solve the governing equations (1) to (3).  813 

Let us consider a slope of a rectangular space domain Ω: (0, 𝐿𝑥) × (0, 𝐿𝑦) and a time interval 814 

(0, 𝑇) . Dirichlet boundary conditions, i.e., 𝑢 = 0  and 𝑣 = 0 , are prescribed representing 815 



unaffected remote regions. The space domain is meshed with a grid of 𝑁𝑥 × 𝑁𝑦 cells, and the 816 

cells of dimensions ∆𝑥  and ∆𝑦  are indexed by (𝑖, 𝑗)  where 𝑖 ∈ (0, 𝑁𝑥)  and 𝑖 ∈ (0, 𝑁𝑦) . The 817 

centres of the bottom, top, left, and right edges of the cell (𝑖, 𝑗)  are denoted by (𝑖, 𝑗 −
1

2
) , 818 

(𝑖, 𝑗 +
1

2
) , (𝑖 −

1

2
, 𝑗) , and (𝑖 +

1

2
, 𝑗) , respectively. The mass conservation is integrated and 819 

solved over the cell, with the thickness of the sliding layer, ℎ, and slope angle (topography), 𝜃, 820 

discretised at the cell centre. The velocity in the x-direction is discretised at the centre of the 821 

edges normal to the x-direction, while the velocity in the y-direction is discretised at the centre 822 

of the edges normal to the y-direction. The approximation of ℎ  at cell (𝑖, 𝑗)  and time 𝑡𝑛  is 823 

denoted by ℎ𝑖,𝑗
𝑛 . The approximation of 𝑢 at the edge (𝑖 +

1

2
, 𝑗) and time 𝑡𝑛 is denoted by 𝑢

𝑖+
1

2
,𝑗

𝑛  824 

while the approximation of 𝑣 at the edge (𝑖, 𝑗 +
1

2
) and time 𝑡𝑛 is denoted 𝑣

𝑖,𝑗+
1

2

𝑛 .  825 

At time 𝑡𝑛+1, the mass conservation equation (1) is discretised as 826 

ℎ𝑖,𝑗
𝑛+1 − ℎ𝑖,𝑗

𝑛 =
∆𝑡

∆𝑥
(𝑞𝑥

𝑖−
1
2

,𝑗

𝑛 − 𝑞𝑥
𝑖+

1
2

,𝑗

𝑛 ) +
∆𝑡

∆𝑦
(𝑞𝑦

𝑖−
1
2

,𝑗

𝑛 − 𝑞𝑦
𝑖+

1
2

,𝑗

𝑛 ) (40) 

where  827 

𝑞𝑥
𝑖−

1

2
,𝑗

𝑛 = ℎ̂
𝑖−

1

2
,𝑗

𝑛 𝑢
𝑖−

1

2
,𝑗

𝑛 , ℎ̂
𝑖−

1

2
,𝑗

𝑛 = {

ℎ𝑖,𝑗
𝑛 𝑢
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The momentum conservation in the x-direction, i.e., equation (2), is discretised as 828 
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where 829 
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The momentum conservation in the y-direction, i.e., equation (3), can be discretised in a similar 830 

way. 831 
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Table 1 Parameters for benchmark case 841 

Parameter Value  Unit  

Length of slope 8,000 m 

Maximum slope angle, 𝜃𝑐 6 degrees 

Half slope height, 𝐻 20 m 

Shear modulus, 𝐺 662.25 kPa 

Shear stiffness in the weak layer, 𝐾 1656 kPa/m 

At-rest earth pressure coefficient, 𝐾0 0.75  

Gravity acceleration, 𝑔 9.81 m/s2 

Saturated density, 𝜌 1870 kg/m3 

Peak undrained shear strength in weak layer, 𝑠𝑢𝑤,𝑝 10 kPa 

Peak undrained shear strength in sliding layer, 𝑠𝑢𝑠,𝑝 10, 20, 30, 100 kPa 

Soil sensitivity in weak layer 5  

Soil sensitivity in sliding layer 1  

Residual plastic shear displacement, 𝛿𝑟
𝑝
 0.2 m 

 842 

  843 



Table 2 Base parameters for numerical cases 844 

Parameter Value Unit 

Overall model length, 𝐿 4,000 m 

Overall model width, 𝐵 150 m 

Slope angle, 𝜃 6.0 degrees 

Sliding layer thickness, ℎ 8.0 m 

Shear stiffness in weak layer, 𝐾 1,656 kPa/m 

Shear modulus in sliding layer, 𝐺 500 kPa 

Peak shear strength in weak layer, 𝑠𝑢𝑤,𝑝  10 kPa 

Residual shear strength in weak layer, 𝑠𝑢𝑤,𝑟  2  kPa 

Plastic shear displacement to the residual strength, 𝛿𝑟
𝑝
 0.2 m 

Plastic shear strain to the residual strength, 휀𝑠,𝑟
𝑝

 0.2  

At-rest lateral earth pressure coefficient, 𝐾0 0.5  

Characteristic length1, 𝑙𝑐  10 m 

Submerged soil density, 𝜌 740 kg/m3 

1 𝑙c = √
𝐺ℎ𝛿r

p

𝜏p−𝜏r
 845 

 846 
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Table 3 Critical conditions for unstable slip surface growth by numerical analysis 848 

Dimension of slip surface Gravity load 

𝒍𝒙 (m) 𝒍𝒚 (m) 𝒏 𝑨 (m2) 𝝆 (kg/m3) 𝒓 

First series: 𝑙𝑦 𝑙𝑥⁄ = 1, 𝑛 = 2 

10 10 2 79 1,170 0.943 

20 20 2 314 1,070 0.841 

40 40 2 1,257 870 0.637 

60 60 2 2,827 730 0.494 

80 80 2 5,027 640 0.403 

100 100 2 7,854 580 0.341 

120 120 2 11,310 540 0.301 

140 140 2 15,394 500 0.260 

160 160 2 20,106 470 0.229 

180 180 2 25,447 450 0.209 

200 200 2 31,416 430 0.189 

Second series: 𝑙𝑦 𝑙𝑥⁄ = 2, 𝑛 = 2 

10 20 2 157 1,130 0.902 

20 40 2 628 980 0.749 

40 80 2 2,513 750 0.515 

60 120 2 5,655 630 0.392 

80 160 2 10,053 550 0.311 

100 200 2 15,708 500 0.260 

120 240 2 22,619 460 0.219 

140 280 2 30,788 430 0.189 

Third series: 𝑙𝑦 𝑙𝑥⁄ = 3, 𝑛 = 2 

10 30 2 236 1,090 0.862 

20 60 2 942 910 0.678 

40 120 2 3,770 680 0.443 

60 180 2 8,482 570 0.331 

80 240 2 15,080 500 0.260 

100 300 2 23,562 460 0.219 

120 360 2 33,929 430 0.189 

Fourth series: 𝑙𝑦 𝑙𝑥⁄ = 0.5, 𝑛 = 2 

20 10 2 157 1,130 0.902 

40 20 2 628 990 0.760 

80 40 2 2,513 770 0.535 

120 60 2 5,655 640 0.403 

160 80 2 10,053 560 0.321 

200 100 2 15,708 510 0.270 

240 120 2 22,619 470 0.229 

280 140 2 30,788 450 0.209 

Fifth series: 𝑙𝑦 𝑙𝑥⁄ = 2, 𝑛 = 1 

20 40 1 400 1,040 0.811 

40 80 1 1,600 830 0.596 

60 120 1 3,600 700 0.464 

80 160 1 6,400 610 0.372 

100 200 1 10,000 550 0.311 

120 240 1 14,400 510 0.270 

Sixth series: 𝑙𝑦 𝑙𝑥⁄ = 2, 𝑛 = 10 

20 40 10 789 950 0.719 

40 80 10 3,154 720 0.484 

60 120 10 7,097 590 0.352 

80 160 10 12,617 520 0.280 

100 200 10 19,715 470 0.229 

120 240 10 28,389 440 0.199 
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Figure 1 Conceptual evolution of submarine landslides: (a) local slip surface in weak layer; (b) slip surface growth; (c) global slab failure; (d) 892 

post-failure behaviour 893 
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Figure 2 Discretisation and velocity and stress components of numerical model (bathymetry image shows the main scar of the Loch Eriboll 896 

Slide, after Carter et al. 2020)  897 
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Figure 3 (a) Model used for verification case: 2D slope with 1D slip surface growth; (b) comparison of slip surface length obtained by large 902 

deformation finite element (LDFE) modelling and by the proposed depth integrated numerical scheme  903 
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Figure 4 A comparison of two-dimensional post-failure configuration by large deformation finite element (LDFE) modelling and proposed depth 905 

integrated numerical scheme  906 
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Figure 5 Conceptual 3D submarine slope models used in the study: (a) planar; (b) S-shape; (c) convex; and (d) concave  909 
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 911 

Figure 6 A typical case with stable growth of slip surface: (a) shear strength contour; (b) distributions of shear strength along cross sections 912 

parallel to x-axis; and (c) distributions of shear strength along cross sections parallel to y-axis  913 
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Figure 7 Evolution of shear strength (top row) and shear stress (bottom row) contours during stable growth of slip surface for a typical case 915 
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 916 

Figure 8 (a) Shear strength contours, (b) horizontal velocity contours and (c) vertical velocity 917 

contours for the case of free movement in x direction (perpendicular to the travel direction); 918 

and (d) shear strength contours for the case of restricted movement in x direction 919 

  920 

=10s =25s =50s

(a)

(b)

kPa

kPa

m/s

m/s

(c)

(d)



 921 

Figure 9 Contours of shear strength in weak layer and plastic shear strain in sliding layer for 922 

the case with 𝑠us,p 𝑠uw,p⁄ = 1 and 𝐾0 = 0.5 923 
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(b) 927 

Figure 10 (a) Post-failure evolution of submarine landslides in terms of contours of shear strength in weak layer, plastic shear strain in sliding 928 

layer and normalised sliding layer thickness; (b) similar submarine landslide morphology discovered in the Loch Eriboll Slide (Carter et al. 929 

2020)  930 

Loch Eriboll Slide, Scotland



 931 

Figure 11 Stable growth of slip surface with different sizes and shapes of initiation zone 932 
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 934 

Figure 12 Distributions of shear strength along the x- and y-axes during stable growth of slip surface with different sizes and shapes935 
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(c) 942 

Figure 13 Three slip surface growth modes: (a) compression-extension mode; (b) shear mode; 943 

and (c) combined mode 944 
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 947 

Figure 14 Two mechanisms for unstable growth of slip surface 948 
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Figure 15 Speed of slip surface growth in terms of (a) major and minor axis lengths and (b) 955 

area of slip surface 956 
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(a) 959 

 960 

(b) 961 

Figure 16 (a) Critical area of slip surface for unstable growth by numerical and analytical 962 

analyses; and (b) best fitting of numerical data 963 
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Figure 17 Maximum deviatoric stress in the sliding layer during unstable growth of slip 966 
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 968 

Figure 18 Contours of shear strength in weak layer and plastic shear strain in sliding layer for cases with different strength ratios 𝑠us,p 𝑠uw,p⁄969 
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 970 

Figure 19 3D slope geometry effect on the ultimate slip surface growth and morphology of 971 

the mass transport deposit in translational landslides972 
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 973 

Figure A1 Constitutive models of soils in (a) sliding layer and (b) weak layer 974 
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(a) (b)



 976 

Figure A2 (a) Schematics of depth integrated model; (b) staggered mesh scheme; (c) update of properties for the fixed weak layer; and (d) update 977 

of properties for the movable sliding layer 978 
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