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Abstract

This study developed an ensemble four-dimensional variational (En4DVar) hybrid data assimilation (DA) system. Different

from most of the available En4DVar systems that adopted ensemble Kalman Filter class or ensemble DA approaches to produce

ensemble covariances for their hybrid background error covariances (BECs), it used a four-dimensional ensemble-variational

(4DEnVar) system to obtain the ensemble covariance. The localization scheme for 4DEnVar applied orthogonal functions to

decompose the correlation matrix so that it was implemented easily and rapidly. In terms of analysis quality and forecast skill,

the En4DVar system was evaluated in the single-point observation experiments and observing system simulation experiments

(OSSEs) with sounding and cloud-derived wind observations, using its standalone four-dimensional variational (4DVar) and

4DEnVar components as references. The single-point observation experiments visually verified the explicit flow-dependent

characteristic of the BEC due to the introduction of the ensemble covariance from the 4DEnVar system. The OSSE-based

sensitivity experiments revealed different contributions of the weight for the ensemble covariance in the En4DVar system to

the forecasts in the Northern and Southern Extratropics and Tropics. A much higher weight for the ensemble covariance in a

properly inflated hybrid covariance helped En4DVar produce the most reasonable analysis. The forecast initialized by En4DVar

is overall better than by 4DVar and 4DEnVar, although the quality of En4DVar analysis is between those of 4DVar and

4DEnVar ensemble mean analyses. It indicates that the flow-dependent ensemble covariance provided by 4DEnVar dominantly

contributes to the improvements in the En4DVar-initialized forecast, with certain but necessary constraint from the balanced

climatological covariance.

1



manuscript submitted to Journal of Advances in Modeling Earth System 
 

 

A 4DEnVar-based Ensemble Four-Dimensional Variational (En4DVar) Hybrid 1 

Data Assimilation System for Global NWPs: System Description and Primary 2 

Tests 3 

S. J. Zhu1, B. Wang2,1,5,6, L. Zhang3,4, J. J. Liu2,5, Y. Z. Liu3,4, J. D. Gong3,4, S. M. Xu1, Y. 4 

Wang1, W. Y. Huang1, L. Liu1, Y. J. He2, X. J. Wu3,4, B. Zhao3,4, and F. J. Chen3,4 5 

1Department of Earth System Science, Tsinghua University, Beijing, 100084, China, 6 

2State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid 7 

Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, 8 

China, 9 

3CMA Earth System Modeling and Prediction Centre, China Meteorological Administration, 10 

Beijing, 100081, China,  11 

4State Key Laboratory of Severe Weather, China Meteorological Administration, Beijing, 100081, 12 

China, 13 

5Innovation Group 311020008, Southern Marine Science and Engineering Guangdong Laboratory, 14 

Zhuhai, China, 15 

6School of Ocean, University of Chinese Academy of Sciences, Qingdao, 266400, China 16 

Corresponding author: Bin Wang (wab@lasg.iap.ac.cn)  17 

  

Key Points: 18 

• An En4DVar data assimilation system with a hybrid background error covariance was 19 

developed for global numerical weather predictions 20 

• The hybrid covariance is realized by linearly combining the climatological covariance of 21 

4DVar and the ensemble covariance of 4DEnVar 22 

• The En4DVar-initialized forecast is improved relative to 4DVar- and 4DEnVar-initialized 23 

forecasts  24 
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Abstract 25 

This study developed an ensemble four-dimensional variational (En4DVar) hybrid data 26 

assimilation (DA) system. Different from most of the available En4DVar systems that adopted 27 

ensemble Kalman Filter class or ensemble DA approaches to produce ensemble covariances for 28 

their hybrid background error covariances (BECs), it used a four-dimensional ensemble-29 

variational (4DEnVar) system to obtain the ensemble covariance. The localization scheme for 30 

4DEnVar applied orthogonal functions to decompose the correlation matrix so that it was 31 

implemented easily and rapidly. In terms of analysis quality and forecast skill, the En4DVar 32 

system was evaluated in the single-point observation experiments and observing system simulation 33 

experiments (OSSEs) with sounding and cloud-derived wind observations, using its standalone 34 

four-dimensional variational (4DVar) and 4DEnVar components as references. The single-point 35 

observation experiments visually verified the explicit flow-dependent characteristic of the BEC 36 

due to the introduction of the ensemble covariance from the 4DEnVar system. The OSSE-based 37 

sensitivity experiments revealed different contributions of the weight for the ensemble covariance 38 

in the En4DVar system to the forecasts in the Northern and Southern Extratropics and Tropics. A 39 

much higher weight for the ensemble covariance in a properly inflated hybrid covariance helped 40 

En4DVar produce the most reasonable analysis. The forecast initialized by En4DVar is overall 41 

better than by 4DVar and 4DEnVar, although the quality of En4DVar analysis is between those of 42 

4DVar and 4DEnVar ensemble mean analyses. It indicates that the flow-dependent ensemble 43 

covariance provided by 4DEnVar dominantly contributes to the improvements in the En4DVar-44 

initialized forecast, with certain but necessary constraint from the balanced climatological 45 

covariance. 46 

 

Plain Language Summary 47 

The balance constraint and flow dependence characteristic of the background error 48 

covariance (BEC) are two key factors to affect the analysis quality of a data assimilation (DA) 49 

system. The balanced BEC used in the four-dimensional variational (4DVar) DA approach has no 50 

explicit flow dependence, while the flow-dependent BEC estimated by an ensemble-based DA 51 

method rarely keeps balanced. The hybrid of the 4DVar approach and an ensemble class DA 52 

method can achieve these two important characteristics of BEC. In this study, a hybrid DA system 53 
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called ensemble 4DVar (En4DVar) system was developed. It has two unique features. First, it used 54 

a four-dimensional ensemble-variational (4DEnVar) system to dynamically provide the ensemble 55 

covariance, which differs from most of the available En4DVar systems that estimate their dynamic 56 

covariances with the ensemble Kalman Filter class approaches or ensemble of 4DVars method. 57 

Second, the ensemble covariance was localized in the sample space using a limited number of 58 

leading eigenvectors of the correlation function. In the single-point observation experiments and 59 

observing system simulation experiments, the new En4DVar system exhibited obvious flow-60 

dependent characteristic and higher forecast skill than both the 4DVar and 4DEnVar systems 61 

although its analysis error is between those of the latter two. 62 
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1 Introduction 63 

 Data assimilation (DA) can provide the optimal analysis of the atmospheric state for the 64 

numerical weather prediction (NWP) model combining the background forecasts and observations. 65 

The quality of the analysis relies on proper estimates of the background and observation error 66 

covariances. In recent decades, several advanced research centers have adopted the four-67 

dimensional variational (4DVar) DA approach for the global NWP model (Rabier et al., 2000; 68 

Gauthier & Thépaut, 2001; Kadowaki, 2005; Rawlins et al., 2007; Gauthier et al., 2007; Zhang et 69 

al., 2019). 4DVar can include the constraints of both the dynamics and physics to the analysis 70 

(Rabier et al., 2000; Wang et al., 2010a), but its background error covariance (BEC) is a highly 71 

parameterized model based on the homogeneous and isotropic assumptions (Walsak and Cullen, 72 

2014). Although the flow dependence of the BEC is implicitly realized within the assimilation 73 

window by the tangent linear model (TLM) and the adjoint model (ADM), this information cannot 74 

be developed into the next assimilation window (Lorenc, 2003). Therefore, the static 75 

climatological covariance model used by 4DVar is difficult to match with the time-variant 76 

atmospheric state (Buehner et al., 2010a). In parallel with the development of the variational 77 

approach, the ensemble Kalman filter (EnKF) approach, which estimates the BEC using ensemble 78 

forecasts, has also been noted for its timesaving and the ability to provide the explicit flow-79 

dependent BEC spanning the assimilation windows (Evensen, 1994). This approach has been 80 

applied to many models (Whitaker et al., 2008, 2009; Buehner et al., 2010a, 2010b), but the 81 

sampling error and the underestimation of the BEC during the assimilation cycle limit its 82 

performance. 83 

To overcome the limitation of using static covariance model in 4DVar, attempts have been 84 

made to incorporate the flow-dependent information extracted from the ensemble forecasts into 85 

the standard variational framework. This is typically realized by linearly combining the 86 

climatological covariance and the ensemble covariance (Hamill & Snyder, 2000), or using the 87 

control variables preconditioned by the square root of the ensemble covariance to extend the 88 

variational control variables (Lorenc, 2003), or using ensemble information to estimate the 89 

parameters of the covariance model (Bonavita et al., 2012). Upon these advances, the hybrid DA 90 

system including ensemble information is gradually replacing the standard 4DVar system 91 

(Raynaud et al., 2011; Bonavita et al., 2012; Clayton et al., 2013; Lorenc et al., 2015; Wang et al., 92 

2013; Kleist & Ide, 2015a, 2015b). The European Centre for Medium-range Weather Forecasts 93 
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(ECMWF) and Météo-France used the ensemble of 4DVars to provide the dynamic BECs for the 94 

hybrid DA system and achieve higher forecast skills (Bonavita et al., 2012; Raynaud et al., 2011). 95 

The Met Office combined the climatological covariance and the ensemble covariance obtained by 96 

the ensemble transformed Kalman filter (ETKF) method to construct hybrid DA system (Clayton 97 

et al., 2013). The use of the TLM and ADM is retained in the aforementioned hybrid DA systems, 98 

which is referred to as the En4DVar method. Another method called 4DEnVar, which avoids the 99 

use of the ADM, has also been implemented in some prediction centers. The National Centers for 100 

Environmental Prediction (NCEP), and the Met Office utilized the ensemble covariance obtained 101 

from the ensemble Kalman filter (EnKF) class methods, namely the ensemble square root filter 102 

(EnSRF) method, and the ensemble transform Kalman Filter (ETKF) method to construct the 103 

hybrid 4DEnVar system, respectively (Kleist & Ide, 2015b; Bowler et al., 2017a). 104 

Recently, there have been interests in using the 4DEnVar system to estimate the ensemble 105 

covariance for hybrid DA systems. The Met Office verified that the hybrid DA system can be 106 

benefited from using the En-4DEnVar system instead of using the ETKF system (Bowler et al., 107 

2017a). Some 4DEnVar methods that can reduce the dimension of the optimization problem from 108 

the model space to a subspace composed by a set of basis vectors and can avoid the ADM have 109 

been proposed (Qiu et al., 2007; Tian et al., 2008; Wang et al., 2010a). The dimension-reduced 110 

projection 4DVar (DRP-4DVar) method is one of the representative 4DEnVar methods. In contrast 111 

to the extensive and successful applications of the DRP-4DVar method in regional meso-scale 112 

weather forecasts (Wang et al., 2010a; Zhao & Wang, 2010; Liu & Wang, 2011; Zhao et al., 2012) 113 

and global decadal climate predictions (He et al., 2017, 2020a, 2020b; Li et al., 2021a, 2021b; Shi 114 

et al., 2021a, 2021b), its applications in global medium-range weather forecasts are very lacking 115 

except an early primary tests on it based on a three-dimensional variational (3DVar) DA system 116 

(Shen et al., 2015) and a very recent effort under a 4DVar framework (Zhu et al., 2022). 117 

Using the original ensemble covariance directly may result in sampling error and rank 118 

deficiency problems, and localization techniques can alleviate these problem (Hamill et al., 2001). 119 

The localization of the ensemble covariance in hybrid DA systems is usually implemented upon 120 

unbalanced variables in model space using the transformations copied from the variational system 121 

(Clayton et al., 2013; Lorenc, 2015). In addition to this implementation of localization (e.g., 122 

spectral filtering transformation), ensemble-sample-based subspace localization approaches using 123 
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orthogonal functions to decompose the correlation function were developed (Liu et al., 2009; 124 

Buehner et al., 2010a, 2010b; Bishop et al., 2011; Kuhl et al., 2013; Wang et al., 2010b, 2018). 125 

This study focuses on developing an En4DVar hybrid DA system for the global NWP 126 

model. It has two unusual aspects compared with other hybrid DA systems. On one hand, a 127 

4DEnVar system based on the DRP-4DVar method, which uses the statistical relationship between 128 

the model space and the observation space to avoid the use of ADM, was utilized to estimate the 129 

ensemble covariance for the En4DVar system. On the other hand, a limited number of leading 130 

eigenvectors of the correlation function was employed to localize the ensemble covariance instead 131 

of localization transformations from the climatological covariance model. 132 

The purpose of this study is to provide a mathematical derivation and system introduction 133 

to the En4DVar hybrid DA system. The performance of this system was also evaluated with single-134 

point observation experiments and observing system simulation experiments (OSSEs), using its 135 

standalone 4DVar and 4DEnVar components with identical settings as references. The theoretical 136 

basis of the En4DVar system is presented in Section 2. The designs of the system and experiments 137 

are introduced in Section 3. The results are analyzed in Section 4. Finally, the conclusions and 138 

discussions are given in the last section. 139 

2 Methodology 140 

2.1 Climatological covariance 141 

The global 4DVar system (Zhang et al., 2019) used in this study minimizes the following 142 

incremental formulation (Courtier, 2004) defined within the DA window [𝑡#, 𝑡%] by introducing 143 

𝛿𝑥 = 𝑥 − 𝑥+, and obtained the optimal analysis increment at the initial time 𝑡#:  144 

 
𝐽[𝛿𝑥(𝑡#)] =

/
0
{𝛿𝑥(𝑡#) − [𝑥2(𝑡#) − 𝑥+(𝑡#)]}4𝐵#6/{𝛿𝑥(𝑡#) − [𝑥2(𝑡#) −

𝑥+(𝑡#)]} +
/
0
∑ [𝐇:𝛿𝑥(𝑡:) − 𝑑:]4𝑅:6/[𝐇:𝛿𝑥(𝑡:) − 𝑑:]%
:=# .	

(1) 

Here, 𝑥 and 𝛿𝑥 represent the state vector and its increment, respectively; 𝑥2  and 𝑥+  denote the 145 

state vectors of background and first guess, separately; 𝐵 and 𝑅 are severally the BEC matrix (B-146 

matrix) and observation error covariance matrix, respectively; 𝑑: = 𝑦:? − 𝐻:[𝑥+(𝑡:)]  and 𝑦:? 147 

represent the observation innovation and observation itself at time 𝑡:, separately;	 𝐻: and 148 

𝐇:  are the nonlinear observation operator and its tangent linear operator at time 𝑡: , 149 
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correspondingly; 𝑀: and 𝐌: mean the nonlinear forecast model and its tangent linear model that 150 

integrate from the analysis time to time 𝑡: , severally; and 𝛿𝑥(𝑡:) = 𝐌:𝛿𝑥(𝑡#) it indicates the 151 

forecast state vector at time 𝑡: initialized from the increment state. 152 

 Introducing the preconditioning transformation 𝛿𝑥 = 𝑈𝑣 , the condition number of the 153 

Hessian matrix of Eq. (1) can be improved. Thus, the background term of Eq. (1) can be simplified 154 

as /
0
[𝑣(𝑡#)]4[𝑣(𝑡#)]. Here, 𝑈 is the square root of the climatological B-matrix 𝐵, and 𝑣 is the 155 

preconditioned state variable vector.  156 

The BEC utilized in the standard 4DVar system is a highly parameterized model:  157 

 𝐵F = 𝑈𝑈4.	 (2) 

𝑈 includes multiple transformation processes:  158 

 𝑈 = 𝑈G𝑠I𝑈J𝑈K.	 (3) 

Here, 𝑈J  and 𝑈K  represent the horizontal and vertical transformations of the background error 159 

correlation transformation matrix, respectively. 𝑠I denotes the diagonal matrix consisting of the 160 

background root mean square error of the approximately uncorrelated variables (e.g., stream 161 

function, unbalanced velocity potential, unbalanced non-dimensional pressure and specific 162 

humidity), which is usually obtained by the National Meteorological Center (NMC) method and 163 

zonally averaging. 𝑈G  is the physical transformation operator that converts the approximately 164 

uncorrelated variables into the model variables (Zhang et al., 2019). 165 

 Although the standard 4DVar system realizes the implicit flow-dependent characteristic of 166 

the BEC within the assimilation window using the TLM and ADM, this characteristic cannot carry 167 

over to the next assimilation window. Thus, the abovementioned climatological covariance model 168 

can only simply describes the mean state of BEC, but cannot represent the evolution of BEC with 169 

the weather state in detail. 170 

2.2 Ensemble covariance 171 

 Unlike the static climatological covariance, the ensemble covariance can realize the 172 

explicit flow-dependence of the BEC using the ensemble forecasts initialized from different initial 173 

conditions (ICs). 174 
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 The ICs to initialize the ensemble forecasts are provided by the 4DEnVar system (Zhu et 175 

al., 2022). This system was developed using the DRP-4DVar method that solves the optimization 176 

problem on the subspace composed of a limited number of ensemble samples (Wang et al., 2010a). 177 

The 4DEnVar system uses a set of IC perturbation samples in model space 𝛿𝑋 =178 

[𝛿𝑥/, 𝛿𝑥0,⋯ , 𝛿𝑥N] (𝐾  is the ensemble size), and the corresponding observational perturbation 179 

samples 𝛿𝑌 = [𝛿𝑦/, 𝛿𝑦0,⋯ , 𝛿𝑦N] calculated by 𝛿𝑋 to define the projection matrices:  180 

 Q
𝑝S =

/
√N6/

U𝛿𝑥/ − 𝛿𝑥VVV, 𝛿𝑥0 − 𝛿𝑥VVV,⋯ , 𝛿𝑥N − 𝛿𝑥VVVW

𝑝X =
/

√N6/
YU𝛿𝑦/ − 𝛿𝑦VVVV, 𝛿𝑦0 − 𝛿𝑦VVVV,⋯ , 𝛿𝑦N − 𝛿𝑦VVVVWZ

.	 (4) 

Here, 𝛿𝑥VVV  and 𝛿𝑦VVVV  are the ensemble means of the IC perturbation samples in model space and 181 

observational perturbation samples in observation space, respectively. 𝛿𝑦[ is calculated using the 182 

TLM and tangent linear observation operators. 𝛿𝑥  and 𝐇:𝛿𝑥(𝑡:)  can be projected onto the 183 

subspace composed of the aforementioned projection matrices as the following:  184 

 \
𝛿𝑥 = 𝑝S𝛼																		
𝐇:𝛿𝑥(𝑡:) = 𝑝X(𝑡:)𝛼

,	 (5) 

where 𝛼 = 𝛼(𝑡#) = ^𝛼/(𝑡#), 𝛼0(𝑡#),⋯ , 𝛼_(𝑡#)`
4  is the vector composed of the linear 185 

combination coefficients.  186 

 Substituting Eq. (5) into Eq. (1), a new cost function defined in the subspace is obtained:  187 

 𝐽[𝛼] = /
0
[𝛼]4[𝛼] + /

0
∑ U𝑝X(𝑡:)𝛼 − 𝑑:W

4𝑅:6/U𝑝X(𝑡:)𝛼 − 𝑑:W%
:=# .	 (6) 

The optimal analysis can be obtained by minimizing Eq. (6) and using the first transformation in 188 

Eq. (5). 189 

 The ensemble covariance can be estimated using the ensemble forecasts initialized from 190 

the previous ensemble analyses produced by the 4DEnVar system:  191 

 𝐵a = 𝑝S𝑝S4.	 (7) 

The limited ensemble size, which is much smaller than the dimension of the model space may 192 

easily result in the spurious correlation and rank deficiency problems in the BEC. Thus, a 193 

localization technique should be conducted upon the ensemble covariance (Hamill et al., 2001). 194 
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The localized ensemble BEC can be implemented as the Schür product between the ensemble BEC 195 

and the localization correlation matrix 𝐶:  196 

 𝐵a = (𝑝S𝑝S4) ∘ 𝐶,	 (8) 

where ∘  represents the Schür (element-by-element) product of two matrices with the same 197 

dimension. The localization correlation matrix 𝐶 is designed to reduce the spurious correlation in 198 

the ensemble covariance and as a result to increase the rank of BEC.  199 

In implementation, the zonal (meridional) correlation model is defined adopting the GC 200 

correlation function (Gaspari & Cohn, 1999) with respect to the dimensionless distance 𝑟 in zonal 201 

(meridional) direction: 202 

 𝐶(𝑟) = e
− /
f
𝑟g + /

0
𝑟f + g

h
𝑟i − g

i
𝑟0 + 1, 0 ≤ 𝑟 ≤ 1

/
/0
𝑟g − /

0
𝑟f + g

h
𝑟i + g

i
𝑟0 − 5𝑟 + 4 − 0

i
𝑟6/, 1 < 𝑟 ≤ 2

0, 2 < 𝑟

,	 (9) 

and the vertical correlation model is defined using the following correlation function with respect 203 

to the non-dimensional logarithmic pressure distance 𝑟:  204 

 𝐶(𝑟) = /
/.#rNstu

. (10) 

Due to using the localized ensemble covariance in Eq. (8) directly may lead to lots of 205 

computational costs, the localization correlation matrix 𝐶  is usually decomposed into 206 

transformations that can be copied from the variational system (Clayton et al., 2013; Lorenc, 2015). 207 

The localization of the ensemble covariance may lead to the reduction of sampling errors through 208 

producing extended ensemble samples based on the Schür products between the ensemble 209 

forecasts with small ensemble size and a number of leading eigenvectors of 𝐶, without a lot of 210 

extra complex modeling. Therefore, the localization can be implemented in an extended-ensemble-211 

sample-based subspace. Through approximately decomposing the correlation matrix into a number 212 

of leading eigenvectors and ignoring their time-variation, the extended IC perturbation samples in 213 

model space and the corresponding observational perturbation samples are obtained:  214 

 v
𝐸𝑝S = U^𝑝S,/ ∘ 𝝆S,/,⋯ , 𝑝S,/ ∘ 𝝆S,y`,⋯ , ^𝑝S,_ ∘ 𝝆S,/,⋯ , 𝑝S,_ ∘ 𝝆S,y`W
𝐸𝑝X = U^𝑝X,/ ∘ 𝝆X,/,⋯ , 𝑝X,/ ∘ 𝝆X,y`,⋯ , ^𝑝X,_ ∘ 𝝆X,/,⋯ , 𝑝X,_ ∘ 𝝆X,y`W

, (11) 
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where 𝝆S,z and 𝝆X,z(𝑗 = 1,2,⋯ , 𝐿) are the selected leading eigenvectors in model and observation 215 

spaces according to the cumulative contribution of variance, respectively. The leading 216 

eigenvectors can be further decomposed into zonal, meridional and vertical components. 217 

 The leading eigenvectors are obtained using the empirical orthogonal function (EOF) in 218 

the zonal and vertical directions, and the sine function in the meridional direction:  219 

 }
𝝆S,z = 𝑬S,z^𝜆S,z`

//0

𝝆X,z = 𝑬X,z^𝜆X,z`
//0. (12) 

Here, 𝑬S,z  and 𝑬X,z  are the eigenvectors of the correlation functions in the model space and 220 

observation space, and 𝜆S,z and 𝜆X,z are the corresponding eigenvalues, respectively. 221 

Redefining an 𝐾 × 𝐿 -dimensional vector 𝛽 = 𝛽(𝑡#)  that consists of the combination 222 

coefficients of the extended ensemble samples, a newer cost function is defined in the extended 223 

subspace composed of the extended ensemble samples:  224 

 𝐽[𝛽] = /
0
[𝛽]4[𝛽] + /

0
∑ U𝐸𝑝X(𝑡:)𝛽 − 𝑑:W

4𝑅:6/U𝐸𝑝X(𝑡:)𝛽 − 𝑑:W%
:=# . (13) 

The optimal analysis can be obtained by minimizing Eq. (13) and using the transformation 𝛿𝑥 =225 

𝐸𝑝S𝛽. Moreover, the localized ensemble BEC can be expressed as:  226 

 𝐵a = 𝐸𝑝S𝐸𝑝S4. (14) 

2.3 Hybrid covariance 227 

 The hybrid covariance can be obtained by a linear combination of the climatological 228 

covariance and the ensemble covariance:  229 

 𝐵 = 𝛾F𝐵F + 𝛾a𝐵a. (15) 

Here, 𝛾F  and 𝛾a  denote the scalar weights of the climatological and ensemble covariances, 230 

respectively. Both the climatological and ensemble covariances of the En4DVar system have a 231 

time-variant feature inside the assimilation window, but the way to achieve the time-variant feature 232 

is different. The climatological (ensemble) covariance realizes the implicit flow dependence 233 

through the TLM and ADM (the statistical relationship between the model space and the 234 

observation space). However, they greatly differ in the inclusion of balance constraint and  235 

characteristic of explicit flow dependence spanning the assimilation windows. The climatological 236 
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covariance includes the balance constraint but fails to store and use its implicit evolution 237 

information for the next assimilation window, while the ensemble covariance explicitly evolves 238 

with state from one window to the next but includes little balance constraint. Therefore, a hybrid 239 

of these covariances may be an efficient way to keep the balance and characteristic of explicit flow 240 

dependence in the BEC. 241 

To achieve a hybrid BEC, we use the extended control variable approach (Lorenc, 2003), 242 

which is mathematically equivalent to directly combining the covariances linearly (Wang et al., 243 

2007). The climatological and ensemble contributions to the increment 𝛿𝑥 are multiplied by �𝛾F 244 

and �𝛾a, respectively: 245 

 𝛿𝑥 = �𝛾F𝛿𝑥F + �𝛾a𝛿𝑥a, (16) 

where 𝛿𝑥F = 𝑈𝑣, 𝛿𝑥a = 𝐸𝑝S𝛽.  246 

Then, the new cost function can be obtained:  247 

 
𝐽[𝑣(𝑡#), 𝛽(𝑡#)	] =

/
0
[𝑣(𝑡#)]4[𝑣(𝑡#)] +

/
0
[𝛽(𝑡#)]4[𝛽(𝑡#)] +

/
0
∑ [𝐇:𝐌:𝛿𝑥(𝑡#) − 𝑑:]4𝑅:6/[𝐇:𝐌:𝛿𝑥(𝑡#) − 𝑑:]%
:=# . 

(17) 

To minimize Eq. (13), 𝑣(𝑡#) and 𝛼(𝑡#) needs to satisfy e
Y ��
�K(��)

Z
4
= 0	

Y ��
��(��)

Z
4
= 0

. The calculation of the 248 

gradient for the variational component in Eq. (17) requires the use of the ADM, while that for the 249 

ensemble component can avoid the use of the ADM by adopting the transformation 𝐇:𝛿𝑥(𝑡:) =250 

𝐸𝑝X(𝑡:)𝛽 :  251 

 Y ��
��(��)

Z
4
= 𝛽(𝑡#) + �𝛾a ∑ U𝐸𝑝X(𝑡:)W

4𝑅:6/[𝐇:𝐌:𝛿𝑥(𝑡#) − 𝑑:]%
:=# . (18) 

3 Experimental design 252 

3.1 Configuration of En4DVar system 253 

 The En4DVar system developed in this study realized the hybrid BEC by a linear 254 

combination of the static climatological covariance from the standard 4DVar system and the flow-255 

dependent ensemble covariance from the 4DEnVar system. The ensemble covariance in the 256 
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En4DVar system is estimated by the low-resolution ensemble samples, which is produced by 257 

previously running 60-member 4DEnVar system. The 4DVar and 4DEnVar systems all adopt a 258 

dual-resolution framework with 0.5° × 0.5° for the outer loop and 1.0° × 1.0° for the inner loop. 259 

The flowchart of the En4DVar system is given in Figure 1. 260 

Unlike the ensemble prediction systems that use singular vectors as initial perturbations 261 

without including any observations, the 4DEnVar system itself produces the initial perturbations 262 

that considers both the model constraints and observational information. The IC samples of the 263 

4DEnVar system in the first assimilation window are generated by the “randomcv” method (Baker, 264 

2005), which generates an ensemble of reasonable and balanced samples by the control variable 265 

transformation 𝛿𝑥 = 𝑈𝑣. To alleviate the problems of sampling error and underestimation in BEC 266 

during the assimilation cycle, localization, inflation, and observation and SST perturbation 267 

techniques are employed. Flow-dependent ensemble samples are generated by assimilating 268 

perturbed observations at every 6-hour assimilation window during the assimilation cycle (Figure 269 

1a).  270 

In the En4DVar system, 4DVar uses the same 6-hour assimilation window, and the analysis 271 

time is located at the beginning of the assimilation window as 4DEnVar does. Therefore, at the 272 

beginning of each assimilation window of 4DVar, the flow-dependent ensemble samples in model 273 

space and the corresponding observational ensemble samples at different time slots can be 274 

extracted from the 4DEnVar system to estimate the ensemble covariance for the En4DVar system 275 

(Figure 1b). A localization scheme with a filter radius of 7° in the horizontal directions and a filter 276 

parameter 𝐾G of 3 in the vertical direction is designed based on the theoretical basis introduced in 277 

Section 2.2, which is utilized to remove the spurious remote correlations in the ensemble 278 

covariance. The optimal problem of the ensemble component of the En4DVar is solved in a 279 

subspace consisting of extended samples obtained by the Schür product between the ensemble 280 

samples and the leading eigenvectors of the localization correlation function (Figure 1a). 281 

3.2 Experiment design 282 

To verify the impact of introducing the ensemble covariance into the 4DVar system, six 283 

sets of experiments were conducted based on the En4DVar, standard 4DVar and 4DEnVar systems 284 

using identical settings, respectively, including three sets of assimilation cycle experiments and 285 

three sets of deterministic 10-day forecast experiments. The experiments based on the latter two 286 
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DA systems were used as the references for comparisons and evaluations. The analyses from the 287 

4DEnVar system used the ensemble means of its 60 analysis samples. 288 

All experiments were conducted and evaluated based on an OSSE. The forecast model used 289 

in these experiments are the GRAPES-GFS model version V3.0 with three different horizontal 290 

resolutions (i.e., 0.25° × 0.25°, 0.5° × 0.5° and 1.0° × 1.0°) and the same 87 vertical levels (Su et 291 

al., 2020). The 4DVar system of the GRAPES-GFS model was in use in operational global 292 

forecasts, which was demonstrated to outperform the operational 3DVar system in terms of both 293 

the analysis error and medium-range forecast skill (Zhang et al., 2019). OSSE allows an objective 294 

evaluation of DA system (Wang et al., 2008; Wang et al., 2010a; Kleist & Ide, 2015a , 2015b). 295 

Here, the GRAPES-GFS version with the resolution of 0.25° × 0.25° was used to generate an 296 

uninterrupted free run from 0600 UTC 10 September to 1200 UTC 22 October, 2016, initialized 297 

from the ERA-5 reanalysis, and the results of this run starting from the second day were used as 298 

the “truth” state of the OSSE. The run for the first day was adopted to eliminate the effects of spin-299 

up, and the simulated geopotential height and precipitation of the run for the first 8 days were 300 

verified using the ERA-Interim reanalysis. The “observations” were the “truth” state transformed 301 

from the model space to the observation space by the observation operators of the sounding and 302 

cloud-derived wind superimposed with normal distribution random perturbations of which the 303 

expectations equal zero and the standard deviations adopt the observation errors. In addition, the 304 

15-hour forecast by the GRAPES-GFS version with the resolution of 0.5°×0.5° initialized from 305 

the 6-hour forecast of the ERA-Interim dataset was used as the background field of three sets of 306 

assimilation cycle experiments for the first assimilation window. For the 4DEnVar systems in the 307 

first assimilation window, 60 ensemble background fields were produced using the aforesaid 308 

background plus 60 random perturbations whose ensemble mean is equal to zero. The results of 309 

the experiments for the first 2 days were used for spin-up, and those from day 3 onwards for about 310 

one month covering the period from 0900 UTC 13 September 2016 to 0900 UTC 11 October 2016 311 

were analyzed. To facilitate comparisons with the reanalysis data, the analyses at the middle of 312 

each assimilation window were produced with 3-h forecasts initialized from the corresponding 313 

analyses at the beginning of the window for the evaluations and comparisons. Restarted from these 314 

analyses, three sets of 10-day deterministic forecast experiments were carried out and the forecast 315 

skills were evaluated and compared. 316 
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Moreover, in order to visually verify the performances and flow-dependent characteristics 317 

of the DA systems, the results of the single-point observation experiments in the assimilation 318 

window (0900 UTC 13 September 2016 to 1500 UTC 13 September 2016) on the third day of the 319 

OSSE were used. Three single-point observation experiments based on the En4DVar system with 320 

three linear combinations of the variational and ensemble components adopted the same 321 

background, single-point observation, observation error (0.95°K) and horizontal filter radius (15°) 322 

of localization. The three combinations included 𝛾F = 0.8	and	𝛾a = 0.2, 𝛾F = 0.5	and	𝛾a = 0.5 323 

and 𝛾F = 0.2	and	𝛾a = 0.8 in Eq. (16), respectively. The background used the ensemble mean of 324 

the background samples of the 4DEnVar system at the beginning of this assimilation window. The 325 

single-point observation was selected from the sounding temperature observations in the OSSE 326 

valid at 1200 UTC 13 September 2016, located upstream of the top of the short-wave ridge 327 

(60.77°S, 161.83°W) in the middle troposphere (500hPa), with an observation innovation of -328 

1.53K. 329 

4 Results 330 

4.1 Single-point observation experiments 331 

 To demonstrate the impact of introducing the ensemble covariance provided by the 332 

4DEnVar system, three experiments assimilating the same single-point observation by the 333 

En4DVar system with different linear combinations for its hybrid covariance were conducted. The 334 

analysis increments produced in these experiments are shown in Figure 2. All the experiments 335 

show maximum negative temperature increments near the observation at the beginning of the 336 

assimilation window resulting from assimilating the single-point observation, implying lower 337 

temperatures in three analysis fields than in the background field. There are also clear cyclonic 338 

wind responses around the maximum negative temperature increments, which indicates that the 339 

BEC of all experiments satisfy certain balance constraints. In addition, it is satisfactory that no 340 

significant spurious correlations are exhibited in the experiments due to the localization of the 341 

ensemble BEC (Figure 2a-2c). 342 

In addition to examining the basic assimilation capability, the single-point observation 343 

experiments can also visualize the flow-dependent characteristic of the BEC. On one hand, by 344 

visualizing the evolution of the increments over time, we can find that the center of the maximum 345 
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negative value of all experiments moves to the southeast of the observation. At the end of the 346 

assimilation window, the movement of the center of the maximum negative value and the 347 

extension of the increment along the gradient of the geopotential height are most obvious. This is 348 

reasonable considering that the background field in the vicinity of the observation is the northwest 349 

flow, and indicates that the BECs in all the experiments have flow-dependent characteristics. On 350 

the other hand, the analysis increments in the experiments with higher weight to the ensemble 351 

covariance extend more strongly along the gradient of the geopotential height and show more 352 

obvious asymmetric distributions. This highly weighted ensemble covariance helps the En4DVar 353 

system acquire a more obvious flow-dependent characteristic than the lowly weighted one. 354 

4.2 Observing system simulation experiments 355 

4.2.1 Evaluation metric 356 

To evaluate the performance of the En4DVar system, its analysis quality and forecast skill 357 

were measured by comparing the analysis and forecast against the “truth” state. The root mean 358 

square error (RMSE) is usually utilized to measure the analyses and forecast errors. Here, we 359 

adopted a metric called anomaly root mean square error (ARMSE; He et al., 2021a) instead of 360 

RMSE to exclude the systematic bias and only measure the random error that cannot be corrected 361 

like the systematic bias. This metric is defined as:  362 

 𝐴𝑅𝑀𝑆𝐸 = �∑ �(�)×^�(�)6�tI�J(�)62:��`
u�

���
∑ �(�)�
���

, (19) 

where 𝑤(%) is the weighted coefficients at the 𝑛-th grid point, 𝑁 is the grid size, 𝑀(%) and 𝑡𝑟𝑢𝑡ℎ(%) 363 

denote the forecast (or analysis) and the “truth” state at the 𝑛-th grid point, 𝑏𝑖𝑎𝑠 represents the 364 

mean error (𝑏𝑖𝑎𝑠 = ∑ �(�)×^�(�)6�tI�J(�)`
�
���

∑ �(�)�
���

). We use the anomaly correlation coefficient (ACC) metric 365 

to assess the similarity between the anomalies of the forecast (or analysis) and the “truth” state. 366 

The statistically significant results of the differences of the metrics between different experiments 367 

were given by the paired t-test. In addition, to facilitate comparisons of the abovementioned 368 

metrics, we divided the globe into three regions including the Northern Extratropics (20°N~90°N, 369 

180°W~180°E; NH-X), Southern Extratropics (20°S~90°S, 180°W~180°E; SH-X) and Tropics 370 

(20°S~20°N, 180°W~180°E; TR). 371 
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4.2.2 Weights of climatological and ensemble covariances in the hybrid covariance 372 

 In this subsection, the weight coefficients of the climatological and ensemble covariances 373 

in the hybrid covariance were determined based on two sets of sensitivity experiments. These 374 

sensitivity experiments aim to investigate the effect of different linear combinations of two 375 

covariances in the hybrid covariance with and without inflation on the analysis quality of the 376 

En4DVar system, respectively. Without inflation, the sum of the weight coefficients of two 377 

covariances is equal to 1, i.e., 𝛾F + 𝛾a = 1. In this case, the first set of sensitivity experiments were 378 

conducted using a small, a medium and a large weight coefficients of the ensemble covariance, 379 

i.e., ( 𝛾F = 0.8, 𝛾a = 0.2 ), ( 𝛾F = 0.5, 𝛾a = 0.5 ) and ( 𝛾F = 0.2, 𝛾a = 0.8 ), respectively. The 380 

scorecards of the ACC and ARMSE for the forecasts initialized by the En4DVar system with the 381 

aforesaid three linear combinations against the 4DVar-initialized forecast are shown in Figure 3. 382 

The En4DVar system with these three combinations shows significant improvements on the first 383 

4 lead forecast days and comparable performances on the last 5 lead days in the Northern 384 

Extratropics compared with the 4DVar system. In Tropics, its improvements extend to almost all 385 

the lead forecast days. In the Southern Extratropics, however, performance degradations occurs in 386 

the lead days 2-5. In summary, introducing the ensemble covariance from the 4DEnVar system 387 

into the 4DVar system benefits the short-term forecasts in the Northern Extratropics and the 388 

forecasts on almost all lead days in Tropics, although it degrades the short-term forecasts in the 389 

Southern Extratropics. Without inflation, the En4DVar system with the same weight for both the 390 

climatological and ensemble covariances performs best, indicating equal importance of the balance 391 

constraint and flow dependence in assimilation analysis. 392 

 Moreover, four inflated linear combinations in which the sum of weight coefficients of two 393 

covariances is larger than 1 were used in the En4DVar system to seek further improvements of the 394 

forecasts, especially in the Southern Extratropics. They include (𝛾F = 0.8, 𝛾a = 0.25 ), (𝛾F =395 

0.6, 𝛾a = 0.5), (𝛾F = 0.5, 𝛾a = 0.6) and (𝛾F = 0.25, 𝛾a = 0.8). Figure 4 displays the scorecards of 396 

the ACC and ARMSE for the En4DVar-initialized forecasts with the above combinations against 397 

the 4DVar-initialized forecasts, from which it is found that the En4DVar system with all 398 

combinations except (𝛾F = 0.5, 𝛾a = 0.6) in the Southern Extratropics outperforms the 4DVar 399 

system in the globe. It is suggested that linear combinations with proper inflations perform better 400 

than those without any inflations (Figures 3 and 4). In particular, some of the inflated combinations 401 
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shows improvements in the Southern Extratropics. This is probably due to the underestimation of 402 

the hybrid covariance without inflation although the ensemble covariance has already been inflated 403 

in the 4DEnVar system, and therefore proper inflations are required to allow more observational 404 

information to be incorporated into ICs for better forecast skills. 405 

 Finally, the inflated combination in which the ensemble covariance is dominant, i.e., (𝛾F =406 

0.25, 𝛾a = 0.8), was chosen as the optimal combination to construct the hybrid covariance of the 407 

En4DVar system. The reasons include three aspects. Firstly, the combinations without inflation 408 

have worse performances than those with inflation in the Southern Extratropics (Figures 3 and 4) 409 

and thus they are impossibly the optimal choice. Secondly, among the four inflated combinations, 410 

the combination (𝛾F = 0.5, 𝛾a = 0.6) can be excluded, because it performs worst in the Southern 411 

Extratropics although it has comparable performance to the others in the Northern Extratropics 412 

and Tropics (Figure 4). Thirdly, the combinations (𝛾F = 0.6, 𝛾a = 0.5) and (𝛾F = 0.25, 𝛾a = 0.8) 413 

are better than (𝛾F = 0.8, 𝛾a = 0.25) except some degradations in their initialized short-term 414 

forecasts in the Southern Extratropics (Figures 5a-5b). At last, the combination (𝛾F = 0.25, 𝛾a =415 

0.8) basically outperforms (𝛾F = 0.6, 𝛾a = 0.5), although it degrades the short-term forecasts in 416 

the Southern Extratropics compared with the latter (Figure 5c). In addition, it slightly improves 417 

the medium-range forecasts compared with the 4DVar system (Figure 4d). 418 

 The dominant role of the ensemble covariance in the hybrid BEC of the En4Var system in 419 

this study quite differs from those in the available En4DVar systems in which the climatological 420 

covariances are usually dominant (Clayton et al., 2013; Lorenc et al., 2015), indicating the high 421 

quality of the initial perturbations generated by the 4DEnVar system that allows increasing the 422 

weighting of the ensemble covariance in an En4DVar system (Clayton et al., 2013; Bowler et al., 423 

2017a). 424 

4.2.3 Analysis quality 425 

After the weight coefficients of the climatological and ensemble covariances were 426 

determined, the En4DVar system was completed and came into evaluations in terms of analysis 427 

quality. The analysis errors of the En4DVar, 4DVar and 4DEnVar systems verified against the 428 

“truth” state were compared and evaluated to investigate whether the En4DVar system further 429 

improved the analysis quality on the basis of both 4DVar and 4DEnVar systems. 430 
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First, the vertical profiles of the ARMSE differences of the analysis and background 431 

between the En4DVar and 4DVar systems and between the En4DVar and 4DEnVar systems are 432 

provided in Figure 6. In general, the ARMSE differences between the En4DVar and 4DVar 433 

analyses and backgrounds keep negative for zonal wind, temperature and specific humidity in the 434 

globe on almost all vertical layers. It is indicated that En4DVar fully outperforms 4DVar in terms 435 

of both analysis and background errors except the degraded performances in zonal wind and 436 

temperature at the vertical layers above 100hPa in the Southern Extratropics, with more significant 437 

improvements in the analysis than in the background (Figures 6d-6l). For geopotential height, 438 

En4DVar performs slightly better than 4DVar in the Northern Extratropics and on the middle and 439 

upper layers in the Tropics, and slightly (significantly) worse on the middle (upper) layers in the 440 

Southern Extratropics and on the lower layers in the Tropics (Figures 6a-6c). In contrast, the 441 

ARMSE differences between the En4DVar and 4DEnVar ensemble mean analysis and background 442 

errors have various signs for different variables at different vertical layers. The analysis and 443 

background of geopotential height in En4DVar outperform the 4DEnVar ensemble mean, 444 

especially on the upper layers in the Southern Extratropics (Figure 6a-6c). The error differences 445 

of zonal wind are positive on the layers below 400hPa (200hPa) in the Northern and Southern 446 

Extratropics (Tropics), indicating less observational information incorporated by the En4DVar 447 

than by the 4DEnVar ensemble mean on these layers (Figures 6d-6f). For temperature, the 448 

En4DVar performs worse than the 4DEnVar ensemble mean on the lower layers except the layers 449 

near surface in the Northern and Southern Extratropics and on the layers above 200hPa in the 450 

Northern Extratropics and Tropics, but better on the layers between 500hPa and 200hPa (above 451 

500hPa) in the Northern Extratropics and Tropics (Southern Extratropics) (Figures 6g-6i). The 452 

analysis and background of specific humidity in En4DVar are inferior to those in 4DEnVar 453 

ensemble mean (Figures 6j-6l). In conclusion, the analysis and background of En4DVar draw 454 

closer to the observations than those of 4DVar during the assimilation cycle by introducing flow-455 

dependent information produced by 4DEnVar although they are not as close to the observations as 456 

those of 4DEnVar ensemble mean. 457 

The pressure-latitude distributions of the ARMSEs in the analysis fields of geopotential 458 

height, zonal wind, temperature and specific humidity were further analyzed (Figure 7). The error 459 

maxima in the En4DVar analyses of geopotential height occur in the stratosphere near 60°S 460 

(Figure 7a). The error maxima in the zonal wind analyses related to jets are mainly concentrated 461 
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in the stratosphere and middle and upper troposphere near 60°S, which extend toward lower 462 

troposphere (Figure 7d). The error maxima in the temperature analyses occur near the surface from 463 

the poles to the equator and extend to the middle and upper troposphere and stratosphere near 60°S 464 

(Figure 7g). In addition, the error structure of the specific humidity analyses showed a semicircular 465 

region with large values at low and middle latitudes in the lower and middle troposphere (Figure 466 

7j). The ARMSE differences between the En4DVar and 4DVar analyses of geopotential height, 467 

zonal wind, temperature and specific humidity are shown in the middle column of Figure 7. The 468 

differences are negative on almost all vertical layers at all latitudes for all four variables except the 469 

stratosphere at high latitudes in the Southern Hemisphere for geopotential height, zonal wind and 470 

temperature, which indicate the almost all decrease of the errors in the En4DVar analyses of the 471 

four variables compared with 4DVar. However, from the right column of Figure 7 that displays 472 

the ARMSE differences between the En4DVar and 4DEnVar analyses of the aforesaid four 473 

variables, it can be observed that the En4DVar analyses of zonal wind and specific humidity are 474 

not as close to the observations as the 4DEnVar ensemble mean analyses in general, except the 475 

improvements in the zonal wind analyses at the upper troposphere and stratosphere in the Southern 476 

Hemisphere and at high latitudes in the Northern Hemisphere. The En4DVar system improves the 477 

temperature analyses near the poles and at the middle troposphere near the equator, but degrades 478 

them above the upper troposphere and at the low troposphere near the equator, compared with 479 

4DEnVar ensemble mean. Overall, among the aforesaid three kinds of analyses, the 4DEnVar 480 

ensemble mean analyses of all the variables except geopotential height are the closest to the 481 

observations, which may possibly benefit from the flow dependence of the ensemble covariance, 482 

while the 4DVar analyses are the farthest from the observations, which may probably result from 483 

the balance constraint included in the climatological covariance. The En4DVar analyses of all the 484 

variables except geopotential height are between the above two kinds of analyses, which may be 485 

attributed to the use of the hybrid covariance with both the flow dependence and balance constraint. 486 

In addition, the En4DVar analyses of geopotential height are closer to the observations than the 487 

4DEnVar ensemble mean analyses in most regions, indicating that the hybrid covariance allows 488 

larger improvements in the analyses of geopotential height than in those of other variables (Figure 489 

7c). Given the roles of the flow dependence and balance constraint in the analysis quality, their 490 

impacts on the forecast skill are more concerned. 491 
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4.2.4 Forecast skill 492 

A good fit of the analysis to the observations does not necessarily lead to an improved 493 

forecast. Therefore, we measured the forecast error to verify the impact of improved or degraded 494 

analysis on the forecast skill. 495 

Figure 8 shows the comparison results of the ACC metric for the 500hPa potential height 496 

forecast. The forecast initialized by En4DVar performs better than (comparable to) that initialized 497 

by 4DVar after (within) two (four) days in the Northern (Southern) Extratropics (Figures 8a-8b), 498 

and significantly better on all the lead days in the Tropics (Figure 8c). As for the 4DEnVar-499 

initialized forecast, its improvements against the 4DVar-initialized forecast are only sighted on 500 

part of the lead days, including the lead days 5-8 (7-10) in the Northern (Southern) Extratropics 501 

and the lead days 6-10 in the Tropics. Significant (slight) degradations are found on the lead days 502 

2-4 (5-6) in the Southern Extratropics and on the lead days 1-3 (4-5) in the Tropics. The 9- and 10-503 

day forecasts in the Northern Extratropics also become worse. Moreover, Figure 8 also indicates 504 

that the En4DVar-intialized forecast outperforms the 4DEnVar-intialized forecast in general 505 

except the lead days 7, 8 and 10 in the Southern Extratropics. It is concluded that En4DVar is 506 

overall better than both 4DVar and 4DEnVar in terms of the ACC-based forecast skill. This 507 

conclusion is also true when the forecast skill is measured by ARMSE (Figure 9), except the 508 

obvious degradations of En4DVar relative to 4DVar (4DEnVar) before the lead day 5 (on the lead 509 

days 7-8) in the Southern (Northern) Extratropics. The most likely reason for the improvements in 510 

the forecast of 500hPa geopotential height initialized by En4DVar against those initialized by both 511 

4DVar and 4DEnVar is its alleviation of excessively or insufficiently incorporating observations 512 

into the IC analysis through the hybrid covariance that combines the flow-dependent ensemble 513 

covariance from 4DEnVar and the climatological covariance with balance constraint from 4DVar. 514 

 The En4DVar system can also improve the geopotential height forecasts on other vertical 515 

levels. Large ARMSEs in the En4DVar-initialized forecast are mainly distributed in the 516 

stratosphere and upper troposphere in the Northern and Southern Extratropics and increase with 517 

the lead time (Figures 10a and 10d ), which are consistent with the analysis error distribution. 518 

These forecast errors are significantly reduced for most lead forecast days compared with those in 519 

the 4DVar-initialized forecast, although they seriously increase in the upper stratosphere on all the 520 

lead days and extend to the lower troposphere on the first 3 lead days in the Southern Extratropics 521 
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(Figures 10e). This is consistent with the increased analysis errors located on the upper layers 522 

(Figures 6b and 7b). The errors also decrease compared with those in the 4DEnVar-initialized 523 

forecast, except the slight (large) increase at the layers between 800hPa and 500hPa on the lead 524 

days 6-9 in the Northern Extratropics and in the middle and lower troposphere (stratosphere) on 525 

the lead days 7-10 in the Southern Extratropics (Figures 10c and 10f). Significant improvements 526 

can be found in the stratosphere in both the Northern and Southern Extratropics on the lead days 527 

1-9 and 1-6, respectively, and in the upper and middle troposphere in the Southern Extratropics on 528 

the lead days 4-6. In the Tropics, the errors of the En4DVar-initialized forecast are much smaller 529 

than in the Northern and Southern Extratropics, and En4DVar slightly outperforms or performs 530 

comparably to both 4DVar and 4DEnVar (Figures 10g-10i). 531 

The error structure of the En4DVar-initialized zonal wind forecast is similar to that of the 532 

geopotential height forecast, with large errors in the stratosphere and upper troposphere in the 533 

Northern and Southern Extratropics and increasing with the lead time (Figures 11a and 11d). The 534 

performance of En4DVar for the zonal wind forecast is similar to that for the geopotential height 535 

forecast, with significantly reduced errors on most lead forecast days compared with both 4DVar 536 

and 4DEnVar (the middle and right column of Figure 11). Compared with the forecast errors in 537 

the En4DVar-initialized geopotential height on the first lead day in the Southern Extratropics and 538 

Tropics that are not reduced against the 4DVar-initialized one, the forecast errors in zonal wind 539 

are decreased (Figures 11e and 11h). This is consistent with the reduced analysis errors of zonal 540 

wind by En4DVar relative to those by 4DVar in contrast with the undiminished analysis errors of 541 

geopotential height (Figure 6e). 542 

The error structure of the En4DVar-initialized temperature forecast is slightly different 543 

from those of the geopotential height and zonal wind forecasts. There are large ARMSEs in both 544 

the stratosphere and the lower and middle troposphere in the Northern and Southern Extratropics, 545 

which increase with the lead time (Figure 12a and 12d). These errors are reduced in the Northern 546 

Extratropics on all lead days compared with those in the 4DVar- and 4DEnVar-initialized forecasts, 547 

except the last two lead days when the errors are slightly larger than those in the 4DVar-initialized 548 

forecast (Figures 12b-12c). In the Southern Extratropics, the En4DVar-initialized forecast is better 549 

(worse) than the 4DVar-initialized forecast mainly on the last 4 lead days below (above) 200hPa 550 

(Figure 12e), and is better than the deterministic forecast initialized from the 4DEnVar ensemble 551 

mean analysis at all vertical layers on all the lead days except the upper and low troposphere on 552 
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the last 3 lead days (Figure 12f). The significant improvements by En4DVar are located at the 553 

vertical layers between 900hPa and 100hPa on the lead days 4-6 compared with 4DEnVar. In the 554 

Tropics, the performance of En4DVar for the temperature forecast is similar to those for the 555 

geopotential height and zonal wind forecasts, with much smaller AMSEs than in the Northern and 556 

Southern Extratropics and slightly smaller AMSEs than in both the 4DVar- and 4DEnVar-557 

initialized forecasts overall (Figures 12g-12i). 558 

The error structure of the En4DVar-initialized specific humidity forecast is slightly 559 

different from those of other variables. There are large errors at the layers between 900hPa and 560 

700hPa, which increase with lead time (Figures 13a, 13d and 13g). On one hand, the En4DVar-561 

initialized forecast is better than the 4DVar-initialized forecast, except the last 2 lead days at the 562 

layers near surface in the Northern Extratropics. On the other hand, the En4DVar-initialized 563 

forecast outperforms the 4DEnVar-initialized forecast except in the first few hours due to the larger 564 

analysis errors of En4DVar than that of 4DEnVar. The significant improvements by En4DVar are 565 

located in the lower troposphere compared with both 4DVar and 4DEnVar. 566 

Overall, the change from 4DVar to En4DVar significantly (slightly) improves the 567 

(medium-range) forecasts in the Tropics and Northern Extratropics (Southern Extratropics) 568 

(Figure 4d). In particular, it leads to a sustained improvement in the middle troposphere in the 569 

Tropics and the differences of ACC and ARMSE are statistically significant on almost all the lead 570 

days. This is similar to the findings in Kleist et al. (2015a) on the change from 3DVar to 3D Hybrid. 571 

Similarly, the change from 4DEnVar to En4DVar also significantly improves the forecasts at all 572 

vertical levels in the Tropics on almost all the lead days (Figure 14). Significant improvements can 573 

also be found in the short-term forecasts in the Northern Extratropics. In addition, the 574 

improvements in the Southern Hemisphere are basically more significant than in the Northern 575 

Hemisphere. 576 

5 Summary and discussion 577 

In this study, a new En4DVar hybrid DA system for the GRAPES-GFS model was 578 

proposed and implemented using the extended control variable method based on the original 579 

4DVar system. Most operational centers in the world have chosen to use an ensemble of 4DVars 580 

or EnKF or something like this to estimate the ensemble covariance for En4DVar hybrid DA 581 

systems. Bowler et al. (2017a, 2017b) also used the En-4DEnVar system instead of the ETKF 582 
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system to provide ensemble forecasts to the hybrid DA systems and obtained encouraging results, 583 

but there are fewer related studies. Here, a 4DEnVar system was adopted to estimate the ensemble 584 

covariance for the new En4DVar system. This system gave a dominant weight to the ensemble 585 

covariance and a small weight to the balanced climatological covariance of 4DVar. The weight 586 

coefficients of two covariances were determined based on the sensitivity experiments. In addition, 587 

we applied an ensemble-sample-based subspace localization scheme, which is different from the 588 

localization transformations in the climatological covariance, to reduce the spurious remote 589 

correlations in the ensemble covariance. This scheme is not only easy to implement, but also allows 590 

rapid generation of expanded samples thus improving the quality of the ensemble covariance and 591 

benefiting the optimal analysis. 592 

We conducted single-point observation experiments and OSSE-based one-month DA cycle 593 

experiments and batch forecast experiments to systematically evaluate the analysis quality and 594 

forecast skill of the new system using the 4DVar and 4DEnVar systems as references. Single-point 595 

observation experiments show that introducing the ensemble covariance can help the En4DVar 596 

system acquire the explicit flow-dependent characteristic. We also investigated the roles of the 597 

ensemble and climatological covariances in the improvements of the En4DVar-initialized forecast. 598 

The results show that a properly inflated hybrid covariance with a dominant weight to the ensemble 599 

covariance leads to the optimal improvements in the forecast, indicating a more important role of 600 

the flow dependence included in the ensemble covariance than that of the balance constraint 601 

incorporated in the climatological covariance. According to the above investigation, the weight 602 

coefficients of the climatological and ensemble covariances in the hybrid covariance of the 603 

En4DVar system were finally determined, which were 0.25 and 0.8, respectively. 604 

Using the optimal hybrid covariance, the performance of En4DVar on the analysis was 605 

evaluated. The analysis error of the En4DVar system is smaller than that of the 4DVar system, but 606 

basically larger than that of the 4DEnVar system. It is encouraging that the 500hPa geopotential 607 

height forecast initialized from the En4DVar analysis overall outperforms those initialized from 608 

both the 4DVar analysis and 4DEnVar ensemble mean analysis in terms of the ACC-based and 609 

ARMSE-based forecast skills. The En4DVar system performs similarly for the geopotential height 610 

forecast on other vertical layers. It also improves the forecasts of other variables in general relative 611 

to both 4DVar and 4DEnVar. Overall, on one hand, the upgrade from 4DVar to En4DVar 612 

significantly improves the forecasts in the Tropics and Northern Extratropics, and also slightly 613 
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ameliorates the medium-range forecasts in the Southern Extratropics. On the other hand, although 614 

the ICs from the En4DVar analysis are as not close to the observations as those from the 4DEnVar 615 

ensemble mean analysis, the En4DVar-initialized forecast generally performs better than the 616 

4DEnVar-initialized forecast, significantly in the middle and upper troposphere in the Tropics and 617 

in the short-term forecasts in the Northern and Southern Extratropics. It is suggested  that a much 618 

more accurate IC may not lead to a farther improvement of forecast unless the generation of this 619 

IC includes some balance constraint. 620 

Future improvements of the En4DVar system will depend on the increase of the quality of 621 

the ensemble covariance and the use of more observations. To increase the quality of the ensemble 622 

covariance, the 4DEnVar system needs further development and updating. For example, the 623 

observational ensemble samples can be generated using nonlinear forecast models instead of 624 

TLMs, which can both improve the qualities of the ensemble samples and save time in model 625 

integration. The inclusion of the balance constraint into the 4DEnVar system may also ameliorate 626 

the ensemble covariance, which may be implemented through an advanced localization technique 627 

upon the separated unbalanced variables. In addition, the assimilation of satellite observations may 628 

also effectively improve the ensemble covariance and the En4DVar analysis. 629 
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 790 

Figure 1. Schematic of the En4DVar system developed in this study. The key components and 791 
techniques of the En4DVar system are shown in (a), and the exchange of information between the 792 
4DEnVar system and the En4DVar system on the timeline during the assimilation cycle is shown 793 
in (b). 794 
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 795 

Figure 2. The temperature (shading; units: K) and vector wind (vector; units: m/s) analysis 796 
increments valid at the (top) beginning, (middle row) middle, and (bottom) end of the assimilation 797 
window resulting from assimilating the single-point temperature observation valid at the middle 798 
of the assimilation window for the En4DVar system adopting the linear combination coefficients 799 
of (left) (𝛾F = 0.8, 𝛾a = 0.2), (middle column) (𝛾F = 0.5, 𝛾a = 0.5) and (right) (𝛾F = 0.2, 𝛾a =800 
0.8) on the model level closest to the assimilated observation (marked with a green dot). The solid 801 
contour is the 500hPa background field geopotential height (units: gpm) valid at the (top) 802 
beginning, (middle row) middle, and (bottom) end of the assimilation window. 803 
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 804 

Figure 3 The scorecard of the ACC and ARMSE calculated for the forecasts initialized by the 805 
En4DVar system adopting the linear combination coefficients of (a) (𝛾F = 0.8, 𝛾a = 0.2), (b) 806 
(𝛾F = 0.5, 𝛾a = 0.5) and (c) (𝛾F = 0.2, 𝛾a = 0.8) against those initialized by the 4DVar system 807 
with identical settings, respectively. If the former forecast has a significantly higher / smaller  808 
(lower / larger) ACC / ARMSE than the latter, a green upward-pointing (red downward-pointing) 809 
triangle is marked. The large, medium and small filled triangles respectively indicate that the 810 
differences of ACC or ARMSE are greater than 3 times, between 1 times and 3 times, and between 811 
0.5 times and 1 times the t value of the 95% confidence level, i.e., fairly significant, significant, 812 
and insignificant. No triangles are shown when the differences are less than 0.5 times the t value 813 
of the 95% confidence level, indicating equivalent. 814 
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 815 

Figure 4. Same as Figure 3, except for the linear combinations of (a) (𝛾F = 0.8, 𝛾a = 0.25), (b) 816 
(𝛾F = 0.6, 𝛾a = 0.5), (c) (𝛾F = 0.5, 𝛾a = 0.6) and (d) (𝛾F = 0.25, 𝛾a = 0.8). 817 
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 818 

Figure 5. Same as Figure 3, except for the forecasts initialized by the En4DVar system adopting 819 
the linear combinations of (a) (𝛾F = 0.6, 𝛾a = 0.5) and (b) (𝛾F = 0.25, 𝛾a = 0.8) against those 820 
using the linear combination of (𝛾F = 0.8, 𝛾a = 0.25), and (c) (𝛾F = 0.25, 𝛾a = 0.8) against those 821 
using the linear combination of (𝛾F = 0.6, 𝛾a = 0.5). 822 
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 823 

Figure 6. Vertical profiles of the ARMSE (verified against the “truth” state) differences of the 824 
background (dashed line) and analysis (solid line) fields of the geopotential height (row 1; units: 825 
gpm), zonal wind (row 2; units: m/s), temperature (row 3; units: K) and specific humidity (row 4; 826 
units: g/Kg) in the Northern Extratropics (20°N~90°N, 180°W~180°E; left), Southern Extratropics 827 
(20°S~90°S, 180°W~180°E; middle column) and Tropics (20°S~20°N, 180°W~180°E; right). The 828 
red (blue) lines show the ARMSE differences between the En4DVar and 4DVar (4DEnVar 829 
ensemble mean) background and analyses. 830 
  



manuscript submitted to Journal of Advances in Modeling Earth System 
 

 

 831 

Figure 7. The pressure versus latitude plots of the ARMSEs (verified relative to the “truth” state) 832 
of the geopotential height (row 1; units: gpm), zonal wind (row 2; units: m/s), temperature (row 3; 833 
units: K) and specific humidity (row 4; units: g/Kg) analyses from the En4DVar (left), and the 834 
ARMSE differences between En4DVar and 4DVar (middle column) and between En4DVar and 835 
4DEnVar (left), respectively. 836 
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 837 

Figure 8. The anomaly correlation coefficients (ACCs) of the forecasts  of the 500hPa geopotential 838 
height respectively initialized from the 4DVar (black line), 4DEnVar ensemble mean (red line) 839 
and En4DVar analyses (blue line) against the “truth” state in the (a) Northern Extratropics 840 
(20°N~90°N; 180°W~180°E), (b) Southern Extratropics (20°S~90°S; 180°W~180°E) and (c) 841 
Tropics (20°S~20°N, 180°W~180°E). The corresponding ACC differences between the forecasts 842 
initialized from the 4DEnVar ensemble mean and 4DVar analyses (red line) and between those 843 
initialized from the En4DVar and 4DVar analyses (blue line), with the 95% confidence threshold, 844 
are also plotted in the bottom. 845 
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 846 

Figure 9. The ARMSE differences between the forecasts of the 500hPa geopotential height 847 
initialized from the 4DEnVar ensemble mean and 4DVar analyses (red line) and between those 848 
initialized from the En4DVar and 4DVar analyses (blue line) against the “truth” state in the (a) 849 
Northern Extratropics (20°N~90°N; 180°W~180°E), (b) Southern Extratropics (20°S~90°S; 850 
180°W~180°E) and (c) Tropics (20°S~20°N, 180°W~180°E). The bar charts shows the 95% 851 
confidence threshold. 852 
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 853 

Figure 10. The ARMSEs of the geopotential height forecasts (units: gpm) initiated from the 1200 854 
UTC analyses of the En4DVar experiment as a function of lead time (left column) in the (a) 855 
Northern Extratropics (20°N~90°N; 180°W~180°E), (d) Southern Extratropics (20°S~90°S; 856 
180°W~180°E) and (g) Tropics (20°S~20°N, 180°W~180°E). The differences of ARMSE 857 
between the En4DVar- and 4DVar-(4DEnVar-)initialized (deterministic) forecasts are plotted in 858 
the middle (right) column. 859 

  



manuscript submitted to Journal of Advances in Modeling Earth System 
 

 

 860 

Figure 11. Sam as Figure 10, except for the zonal wind forecasts (units: m/s). 861 
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 862 

Figure 12. Sam as Figure 10, except for the temperature forecasts (units: K). 863 
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 864 

Figure 13. Sam as Figure 10, except for the specific humidity forecasts (units: g/kg). 865 
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 866 

Figure 14. Same as Figure 3, except for the forecasts initialized by the En4DVar system adopting 867 
the linear combination coefficients of (𝛾F = 0.25, 𝛾a = 0.8)  against the 4DEnVar-initialized 868 
deterministic forecasts. 869 

 


