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Abstract

The volume change component of deformation is often ignored or assumed to be zero in tectonic studies of metamorphic

belts. However, when estimating original geometries of deformed regions, volume change is just as important as the other two

components of deformation, finite strain and rotation. Major permanent volume change in metamorphic rocks is accomplished

by solution transfer facilitated by flow of H2O-rich fluids. Therefore, estimates of volume change can be combined with

solubilities to estimate volumes of fluid flow. Previously applied methods for estimating rock volume change are based on

estimates of absolute stretch, or changes in whole-rock chemical compositions. Estimates based on these approaches give large

discrepancies even when applied to the same region. In this study, we develop a largely unexplored method for estimating

volume change using the direction and deformation type of deformed mineral veins. The assumptions in this method are few

and appropriate uncertainties can be estimated. Application of the new method to the metagreywacke in the Del Puerto

Canyon of the Franciscan belt constrains the syn-metamorphic volume change to be greater than 7%, contrasting with previous

proposals for large volume-loss in the same region. The results of previous studies can be modified taking into account grain

rigid body rotation and grain boundary sliding. The final result of our approach yields a volume change of 7–21% vol.% and

implies large amounts of water-rich fluid must have passed through the rock.
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Key Points:

• Analysis of deformed vein sets can be used to provide estimates of syn-
metamorphic volume change associated with solution mass transfer.

• Volume change of metageywacke of the Franciscan terrane implies that
large amounts of water-rich fluid must have passed through the rock.

Abstract

The volume change component of deformation is often ignored or assumed to be
zero in tectonic studies of metamorphic belts. However, when estimating origi-
nal geometries of deformed regions, volume change is just as important as the
other two components of deformation, finite strain and rotation. Major perma-
nent volume change in metamorphic rocks is accomplished by solution transfer
facilitated by flow of H2O-rich fluids. Therefore, estimates of volume change
can be combined with solubilities to estimate volumes of fluid flow. Previously
applied methods for estimating rock volume change are based on estimates of
absolute stretch, or changes in whole-rock chemical compositions. Estimates
based on these approaches give large discrepancies even when applied to the
same region. In this study, we develop a largely unexplored method for estimat-
ing volume change using the direction and deformation type of deformed mineral
veins. The assumptions in this method are few and appropriate uncertainties
can be estimated. Application of the new method to the metagreywacke in the
Del Puerto Canyon of the Franciscan belt constrains the syn-metamorphic vol-
ume change to be greater than 7%, contrasting with previous proposals for large
volume-loss in the same region. The results of previous studies can be modified
taking into account grain rigid body rotation and grain boundary sliding. The
final result of our approach yields a volume change of 7–21% vol.% and implies
large amounts of water-rich fluid must have passed through the rock.

1 Introduction

Determining the pre-deformation geometry of a geological terrane is one of the
main goals of field-based structural geology. Such reconstructions require knowl-
edge of all three components of finite deformation: strain, rotation, and volume
change. Establishing methods for strain analysis applicable to rocks was one of
the foundations of quantitative structural geology starting the 1960s (e.g. see
summaries in Ramsay, 1967; Ramsay & Huber, 1983). Methods for estimating
the rotational component have also been developed (e.g. Ghosh and Ramberg,
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1976; Lister and Williams, 1983; Passchier, 1987; Passchier and Urai, 1988; Wal-
lis, 1992; Wallis et al., 1993; Simpson and De Paor, 1993; Wallis, 1995; Tikoff
and Fossen, 1995). The third parameter of finite deformation, volume change,
has received much less attention and assessment of this component of finite
deformation is commonly ignored or assumed to be negligible.

The lack of good constraints on the amount of syntectonic volume change in
rocks is a major uncertainty in many balanced cross sections through orogenic
belts that commonly assume constant area. Estimates of volume change of
rock are also key to obtaining reliable estimates of crustal transport of soluble
chemical species, such as SiO2. SiO2 in the form of quartz is both one of the
most common minerals in the continental crust and has a high solubility in
aqueous fluids. Crustal transport of SiO2 in aqueous fluids may help control
the bulk rock composition of the island arc crust (Breeding & Ague, 2002) and
the recurrence interval of slow earthquakes (Audet & Burgmann, 2014). Signif-
icant fluid-mediated transport of SiO2 should be reflected in volume decrease
in its source domain and a volume increase in the sink domain. Despite the
geodynamic importance of estimating syn-metamorphic volume change in meta-
morphic belts, current estimates are in many cases contradictory and generally
lack good estimates of appropriate uncertainties.

In this study, we propose a geometric approach to volume change that is mainly
based on analysis of deformed veins and apply this to the Franciscan meta-
morphic terrane of W USA. Veins are developed on a larger scale than most
previously employed deformation markers and their analysis encompasses small
scale processes such as grain boundary sliding. Our new analysis can be aug-
mented by independent estimates of finite strain. Further constraints on volume
change can be obtained by combining our results with grain-scale data.

1.1 Previous methods for estimating volume change in metamorphic rocks

Volume change of rocks during the stages of diagenesis and at relatively shallow
levels can be assessed by changes in density and porosity (e.g. Wood 1974; Bray
& Karig, 1985). Here, we focus on rocks from deeper levels that have experienced
penetrative ductile deformation and in particular those where deformation by
solution transfer processes is dominant. Such regions are commonly associated
with the development of widespread slaty cleavage. Methods to estimate vol-
ume change in slates and other low-grade metamorphic rocks can be divided into
geometric and geochemical approaches. Geometric approaches commonly indi-
cate very large amounts of volume loss whereas geochemical studies commonly
indicate small to negligible amounts of volume change.

Ramsay & Wood (1973) show that the deformed reduction spots of slate gener-
ally show a flattening or oblate shape. Assuming that the reduction spots were
spherical before deformation and that deformation was plane strain (i.e., the ab-
solute stretching of the middle axis of the strain ellipse was zero) implies volume
loss of ~60%. An ingenious approach to estimating volume change was proposed
by Wright & Platt (1982) who used graptolites to obtain information on absolute
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stretching in slate rocks. Graptolites have a constant spacing between the the-
cae, so these fossils preserve information not only on the shape but also on the
original dimensions: they act as millimeter-sized rulings embedded in the origi-
nal pre-deformation rock. Using these properties Wright & Platt (1982) propose
a volume loss of � 50% during cleavage development in the Martinsburg Shale of
the Appalachian orogen. A similar approach was used by Tan et al. (1995), but
these workers included additional information on stretch derived from pressure
shadows around framboidal pyrites and estimate a much smaller volume loss of
the order of 5% in graptolite-bearing shales in the Gisborne area of Australia.
Analysis of brittlely deformed conodonts contained within reduced spots of the
Hamburg Slate in Shartlesville, central Pennsylvania yields an estimated vol-
ume loss of 29%   –42% (Beutner & Charles, 1985). Analysis of worm-tubes and
deformed veins with high effective viscosity ratios compared to the matrix, led
Wright & Henderson (1992) to estimate a volume loss of 40   –60% in the Gold-
enville Slate in Nova Scotia. Ring & Brandon (1999) use shapes of quartz grains
and surrounding pressure shadows of metaclastic rocks in the Eastern Belt of
the Franciscan Complex to estimate absolute stretching and proposed a volume
reduction of up to 66%.

The most widely used geochemical approach to estimating volume change is
based on the isocon method (Gresens 1968; 1986), which uses bulk rock chemical
analysis and requires knowledge or assumptions concerning the original rock
composition and immobile elements during deformation. Many studies that have
applied this method to deformed slate yield roughly isovolumetric deformation
throughout the rock body (e.g. Bhagat & Marshak 1990, Wintsch et al. 1991,
Erslev & Ward 1994). A notable exception is reported by Kawabata et al.
(2008), who use the isocon method to estimate volume loss of about 50% for
metasedimentary rocks in the Shimanto Belt, southwest Japan.

The above summary shows the wide variety of different estimates of volume
change. Some of the variability may be regional, but it is notable that methods
based on geometric analyses tend to indicate large volume reduction whereas the
geochemical isocon approach generally indicates much smaller volume change.
The results suggest large unquantified uncertainties in the estimates.

In this study, we examine a different approach to estimating volume change
based on geometric analyses of deformed mineral vein sets (e.g. Passchier, 1990;
Wallis, 1992). The method we present is based on the recognition that with
sufficient information on the deformation histories of material lines and their
post deformation orientations it is possible to estimate all three components of
finite deformation: volume change, strain, and rotation. This method requires
few assumptions and has the potential to be a reliable tool for quantifying
volume change in rocks but there are very few examples of it being applied to
rocks and little study of associated uncertainties. Combining these results with
estimates of finite strain and grain-scale analyses reported in previous studies
of the same area allow us to further constrain the amount of volume change.

2 Theoretical background
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2.1 Description of flow and deformation

The parameters of finite deformation of rock can be derived from steady flow
parameters. Homogenous steady flow of rock can be described by the velocity
gradient tensor L composed of nine components. In a rectangular coordinate
system X, L is composed of the Euler velocity coefficients in the displacement
equation (e.g. Malvern , 1969; Passchier, 1988).

𝑑𝑋𝑝
dt = Lpq𝑋𝑞 (1)

L can be described most simply by fixing the directions of the principle instan-
taneous stretching axes (ISAi) of the flow to an external reference system. If
ISA1 indicates the direction of the maximum instantaneous stretch and ISA2
indicates the direction of the minimum instantaneous stretch at 45° to 𝑋1 and
𝑋2 and the two ISA directions are fixed and perpendicular to X3, L can be
expressed by the following matrix (Malvern, 1969).

L = ⎡⎢
⎣

𝑎 𝑠 (1 + 𝑊𝑛) 0
𝑠 (1 − 𝑊𝑛) 𝑎 0

0 0 𝑠3

⎤⎥
⎦

(2)

We define s1, s2 and s3 as the stretching rates along ISAi, and s as the mean
stretching rate in the X1-X2 plane: s = (s1 - s2) / 2. Wn is a measure of
the instantaneous non-coaxiality called the kinematic vorticity number. Wn =
0 corresponds to pure shearing, and Wn = 1 corresponds to simple shearing
(Passchier, 1988). The average value of Wn during the deformation period
defines Wm, which is a parameter of finite deformation, and Wn = Wm in
steady deformation. In addition, if a is the rate of area change then a = s1 + s2,
and a = 0 for isoplanar flow. In this study we deal with plane strain flow that
can be analyzed in two dimensions. In this case the associated two-dimensional
flow in the X1-X2 plane is expressed by the 2 x 2 matrix

L = [ 𝑎 𝑠(1 + 𝑊𝑛)
𝑠(1 − 𝑊𝑛) 𝑎 ] (3)

The deformation gradient (position gradient) tensor F is a tensor that relates
the position X of the object point before deformation with the position X �
after deformation. And the tensor inverse position gradient tensor H has the
opposite meaning.

X′ = FX and X = HX′ (4)
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F is used to derive the position after deformation from the position before
deformation, and H is used to derive the position before deformation from the
position after deformation.
The incremental deformation gradient tensor Fi is obtained by time-integrating
the velocity gradient tensor L.

F𝑖 = ∫ L𝕕𝑡

= [ 𝑎�𝑡 𝑠�𝑡(1 + 𝑊𝑛)
𝑠�𝑡(1 − 𝑊𝑛) 𝑎�𝑡 ] + 𝐶

When �𝑡 = 0, F𝑖 = I

F𝑖 = [ 1 + 𝑎�𝑡 𝑠�𝑡(1 + 𝑊𝑛)
𝑠�𝑡(1 − 𝑊𝑛) 1 + 𝑎�𝑡 ] (5)

The deformation gradient tensor F𝑓 of finite deformation is derived from the
following equation using F𝑖.

F𝑓 = lim
�𝑡 → 𝑜

(𝑛 • �𝑡 = 𝑡)

(F𝑖)
𝑛 = exp (L𝑡) (6)

This can be written as

F𝑓 = ⎡⎢
⎣

exp(𝑎𝑡) • cosh(𝑠𝑡√1 − 𝑊 2𝑛) (1+𝑊𝑛) exp(𝑎𝑡)
√1−𝑊 2𝑛

sinh(𝑠𝑡√1 − 𝑊 2𝑛)
(1−𝑊𝑛) exp(𝑎𝑡)

√1−𝑊 2𝑛
sinh(𝑠𝑡√1 − 𝑊 2𝑛) exp(𝑎𝑡) • cosh(𝑠𝑡√1 − 𝑊 2𝑛)

⎤⎥
⎦

(if

0 ≤ 𝑊𝑛 ≤ 1) (7) 

(McKenzie,1979; Passchier, 1988).

One way to graphically represent a homogenous finite deformation field is to
use a Mohr diagram (Fig. 1). Such representations are useful because they
allow visual checks for possible mistakes in analysis and help determine when
sufficient data have been collected. Despite their utility, such diagrams for finite
deformation are not widely used. The main reason is probably because it has
been thought the coordinates in Mohr space with the vertical axis 𝑇ij(i�j) and
the horizontal axis 𝑇ij(i=j) do not represent any physical aspect of deformation.
However, as pointed out by Means (1982), the polar coordinates represent the
stretch and rotation of the corresponding material line.

Ff can be plotted in Mohr space by defining two points on opposite sides of
a diameter of the Mohr circle (Means, 1982, 1983). The diagonal components
of the velocity gradient tensor and the incremental deformation gradient ten-
sor are equal because the directions of X1 and X2 are fixed in directions where
instantaneous elongation is related only to the rate of area change, which is
represented by the same amount of stretching or shortening parallel to both
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axes (equation 3 & 5). The diagonal components of the finite deformation gradi-
ent tensor are also equal (equation 7) because it can be expressed by powers of
the incremental gradient tensor, so these two points are arranged in the vertical
direction. Therefore, the parameters (Q, R, T, M and N) describing the Mohr
diagram can be represented using the components of Ff .

𝑄 = 𝐹12 − 𝐹21
2 (8)

𝑅 = 𝐹12 − 𝑄 = 𝐹12 + 𝐹21
2 (9)

𝑀 = 𝐹11 + 𝐹22
2 = 𝐹11 = 𝐹22 (10)

𝑁 = √𝑅2 − 𝑄2 = √𝐹12𝐹21 (11)

and

𝑇 = √𝑀2 + 𝑄2

= √𝐹11𝐹22 + 𝑄2

The determinant of Ff represents the area change rate, Ff = 1 + ΔA (Ramsay
& Huber, 1983) so:

𝑇 = √1 + �𝐴 + 𝐹12𝐹21 + 𝑄2 = √(1 + �𝐴) + 𝑅2 (12)

From equations (7)-(12), the parameters of the finite deformation can be de-
scribed using the parameters of the Mohr diagram. Here, 𝑒1 and 𝑒2 are maxi-
mum and minimum principal elongation along finite strain axes.

𝑊𝑚 = 𝑄
𝑅 = cos 𝜃 (13)

And, 1 + 𝑒1 = 𝑇 + 𝑅, 1 + 𝑒2 = 𝑇 − 𝑅 so:

𝑅𝑠 = 1 + 𝑒1
1 + 𝑒2

= 𝑇 + 𝑅
𝑇 − 𝑅 (14)

1 + �𝐴 = (1 + 𝑒1) • (1 + 𝑒2) = 𝑇 2 − 𝑅2 (15)
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Equations (13)-(15) show the usefulness of the Mohr diagram in estimating the
three parameters of finite deformation.

Fig. 1. Mohr diagram for Ff. This diagram is read using polar coordinates,
where the distance from the origin represents the stretch and the angle represents
the rotation. The angle between lines represented by points on the circle is twice
the angle measured in real space.

2.2 Construction of Mohr diagram from field data

A Mohr diagram for finite deformation can be derived using deformed vein
sets (Passchier, 1990; Wallis, 1992). Deformed veins can generally be classified
into three types: those showing only shortening (S-type), those showing
only elongation (E-type), and those showing elongating after shortening (S +
E-type). S-type veins are identified as folded veins, E-type veins are identified
as necked or boudinaged veins, and S + E-type veins are identified as veins
that have been boudinaged and then folded (Fig. 2). These different types of
veins can be formed simultaneously during steady flow and their orientation
ranges are determined by the deformation parameters. Lines representing the
directions of the boundaries separating S-type from S + E-type veins and S +
E-type from E-type veins are labeled as Lai and Lbi, respectively. Lai and Lbi in-
dicate the directions of the material lines that coincided with the directions
of the lines separating the shortening direction and the extension direction
of flow at the end of the deformation and at the start of the deformation,
respectively. In other words, under steady flow, the material line that was
oriented in the direction of Lai at the start of the deformation is oriented
in the direction of Lbi at the end of the deformation. Therefore, since the
material line indicating the direction between Lai and Lbi after the deformation
is rotated from the shortening direction to the elongation direction of flow, it
forms S + E-type veins. Material lines indicating directions between La1 and
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La2 and between Lb1 and Lb2 form S-type and E-type veins, respectively. A
Mohr diagram for deformation can be derived using the fact that the angle

between Lai and
Lbi is equal to the angle through which Lbi is rotated.

Fig. 2. Deformed veins can be divided into three types based on their shapes.
The X-axis is parallel to the maximum finite extension direction, and the Z-axis
is parallel to the minimum finite extension direction. The vein angle is measured
counterclockwise in the XZ-plane in the direction that the vein extends relative
to the X-axis.

When analyzing the deformation of a rock, it is generally the deformed state that
can be observed and the original state must be estimated given the parameters
of finite deformation. Therefore, the Mohr diagram for H is generally the most
useful in geological studies. Here we summarize the procedure for drawing
a Mohr diagram for H from the vein set data (Fig.3). The procedure follows
Passchier (1992). The orientations of the material lines are represented by points
on the Mohr circle for deformation. A central angle between two points on the
Mohr circle is twice the angle in real space, so the two lines La1 and La2, which
form angle � in real space, are plotted as points 2� apart on the Mohr circle. In the
Mohr diagram, the Mohr circle is placed in polar coordinates, and the distance
from the origin to each point on the Mohr circle and the angle of each point
measured from the abscissa represent the stretch of the line in that direction
and the angle rotated during deformation, respectively. If the direction of the
shortening and stretching regions of the rock flow did not change during the
deformation (i.e. steady flow), the central angle of the S+E region is the angle
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at which the line currently pointing in the direction of Lbi rotated during the
deformation. If the direction of the shortening and stretching regions of the flow
did not change during the deformation (i.e. steady flow), the central angle of
the S+E region is equal to the angle at which the line currently directed to Lbi
was rotated during the deformation. Thus, for example, Lb1 is located on the
Mohr circle at an angle of 2� to La1, and at the same time at an angle of � to the
abscissa of the Mohr diagram. The drawing method to satisfy this is as follows.
First the diagram is arranged so that La1� La2 is vertical. The angle on the Mohr
circle is twice the angle in real space. Next, lines are drawn passing through
Lb2 and perpendicular to La1�Lb2, and passing through Lb1 and perpendicular
to La2�Lb1. The intersection of these lines is the origin of the Mohr diagram.

To make calculations of the deformation parameters, first the type and orienta-
tion of the veins on a specific surface of the rock are plotted on a circle, and
the angles defined as � = La1 ^ La2, � = La1 ^ Lb1, and � = Lb1 ^ Lb2. Since
these angles are doubled on the Mohr circle, if the Mohr circle is arranged so
that La1�La2 is vertical, the slope of La1�Lb2, k, and the slope of La2�Lb1, l, are
expressed as:

𝑘 = {sin 𝛼 − sin(𝛼 + 2𝛽 + 2𝛾)}
{cos 𝛼 − cos(𝛼 + 2𝛽 + 2𝛾)} (16)

𝑙 = {sin (−𝛼) − sin(𝛼 + 2𝛽)}
{cos 𝛼 − cos(𝛼 + 2𝛽)} (17)

If the coordinates of the center of the Mohr circle are (M, Q) and 𝐿𝑏1(𝑀 +
𝑥1, 𝑄 + 𝑦1) and 𝐿𝑏2(𝑀 + 𝑥2, 𝑄 + 𝑦2), the coordinates of the center of the Mohr
circle in the Mohr diagram (M, Q) are represented as follows.

If � = 0,

𝑀 = − {𝑥2 + 𝑘 (𝑦2 − 𝑦1)} (18)

𝑄 = −𝑦1 (19)

If �≠ 0,

𝑀 = −kl ( 𝑥1
𝑙 − 𝑥2

𝑘 + 𝑦1 − 𝑦2)
𝑘 − 𝑙 (20)

𝑄 = 𝑥1 − 𝑥2 + 𝑙𝑦1 − 𝑘𝑦2
𝑘 − 𝑙 (21)

If the radius of the Mohr circle is R,
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𝐿𝑏1 = [𝑀 + 𝑥1
𝑄 + 𝑦1

] = [𝑀 + 𝑅 cos(𝛼 + 2𝛽)
𝑄 + 𝑅 sin(𝛼 + 2𝛽) ] (22)

𝐿𝑏2 = [𝑀 + 𝑥2
𝑄 + 𝑦2

] = [𝑀 + 𝑅 cos(𝛼 + 2𝛽 + 2𝛾)
𝑄 + 𝑅 sin(𝛼 + 2𝛽 + 2𝛾) ] (23)

𝑁 = √𝑅2 − 𝑄2 (24)

and

𝑇 = √𝑀2 + 𝑄2 (25)

Here, the kinematic dilatancy number A is introduced (Passchier, 1990). A
represents the area change. If A < 0, the volume decreases, and if A> 0, the
volume increases. The following equation holds for A.

𝐴 = cos 𝛼 (26)

and

𝐴 = 𝑀 ln(𝑀)
𝑅 (𝑖𝑓 𝛽 = 0) (27)

𝐴 = 𝑁 {ln (𝑀 + 𝑁) + ln(𝑀 − 𝑁)}
𝑅 {ln (𝑀 + 𝑁) − ln(𝑀 − 𝑁)} (𝑖𝑓 𝛽 ≠ 0) (28)

R is determined from the equation consisting of equation (26) and equation
(27) or (28). With R determined, the three parameters of the deformation are
derived from equations (13)-(15).
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Fig. 3. Example of a plot of data from deformed vein sets. The left diagram
shows the data of deformed vein sets measured in the field, and the right diagram
is a Mohr diagram for H drawn based on the data. The plots on the left diagram
are used to determine the angular range where different types of vein sets are
distributed.

2.3 New Mohr diagram for analyzing field data

To construct a Mohr diagram for finite deformation, it is necessary to determine
the directions of Lai and Lbi. However, information obtained from natural rocks
can only constrain these orientations and not uniquely determine them. To
incorporate uncertainties inherent in the data collected in the field, we present
a modified approach to the way the Mohr diagram is constructed and presented,
which we term a Variable-origin Mohr diagram (Fig. 4). This modification
enhances our ability to perform quantitative analysis of rock deformation.

A normal Mohr diagram for finite deformation expresses deformation parame-
ters through the position of its center and its radius (R). Therefore, to express
appropriate uncertainties or errors in the estimates of the various deformation
parameters, it is necessary to construct multiple Mohr circles with different
positions and radiuses. This rapidly becomes an inconvenient way to display in-
formation and detracts from the utility of graphical representations. To simplify
the expression of deformation parameters, we propose a Mohr diagram where
the coordinates of the center of the Mohr circle and the radius are fixed but
the location of the origin changes. The location of this origin defines the finite
strain and rotation, and the volume change is expressed by the direction of the
La line on the Mohr circle. Therefore, in the Variable-origin Mohr diagram,
it is possible to show a range of deformation parameters in a simple diagram.
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A similar approach was proposed by Passchier (1993) to visualise progressive
deformation or deformation paths.

Fig. 4. The normal Mohr diagram and Variable-origin Mohr diagram. In the
Variable-origin Mohr diagram, the origin of the polar coordinates is changed to
the center of the circle, and the deformation parameters are represented by the
positions of the plots indicated by the star.

The construction procedure for the Variable-origin Mohr diagram is as follows.

1) Draw a circle of radius 1 centered on the origin using a two-dimensional
Cartesian coordinate system.

2) Plot the angular data of the deformed vein sets on the circle so that the points
indicating the directions of La1 and La2 are aligned in the vertical direction. The
angular data shown on the circle is twice the angle in real space, and the point
indicating the direction of La1 is located in the upper half of the circle.

3) Plot the intersection point P of a line through Lb2 perpendicular to the
line connecting La1 and Lb2 and a line through Lb1 perpendicular to the line
connecting La2 and Lb1 on the figure.

The position of this point P represents the finite strain and the average vorticity.
Specifically, the distance T’ from the origin to point P is related to the finite
strain 𝑅𝑠 by the following equation�
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𝑅𝑠 = 𝑇 ′ + 1
𝑇 ′ − 1 (29)

and the vertical coordinate Q’ of the point P is the mean vorticity number 𝑊𝑚
itself

𝑊𝑚 = 𝑄′ . (30)

The remaining finite deformation parameter, the volume change ΔV, is esti-
mated using Φ, which indicates the direction of La1 (the angle between La1 and
La2 in real space), and the finite strain 𝑅𝑠. The specific estimation method is
presented in the next section.

By incorporating the Monte Carlo statistical method, the Variable-origin Mohr
diagram can also be used to represent appropriate uncertainties in the esti-
mates of the deformation parameters that are estimated from the field data.
The Monte Carlo method approximates the probability distribution of a solu-
tion by repeating a large number of analyses using random numbers. Random
numbers are given for the Lai and Lbi directions within the range constrained
by the field data, and a point representing one deformation parameter per trial
is plotted on the Mohr diagram. By repeating this trial tens of thousands of
times, the range and probability distribution of the deformation parameter can
be examined. When the random numbers are generated with a uniform dis-
tribution, a diagram can be derived that is suitable for examining the range
of deformation parameters. When the random numbers are generated with a
normal distribution, a diagram suitable for examining the probability distribu-
tion of the deformation parameters is obtained (Fig. 5). In the latter case, a
confidence ellipse can be obtained from the distribution of points, allowing es-
timation of the deformation parameters, including error evaluation, from field
data. When generating random numbers with a normal distribution, the range
of angles in the Lai and Lbi directions constrained by the field data is assumed to
match the 99% confidence interval. The 95% confidence ellipse is then overlaid
on a scatterplot of points showing the deformation parameters.
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Fig. 5. Variable-origin Mohr diagram combined with the Monte Carlo method.
(a) The Mohr diagram based on the uniform distribution represents the whole
range of deformation parameters that can be accounted for by the vein sets data.
(b) The Mohr diagram based on the normal distribution represents the probabil-
ity distribution of the deformation parameters and allows for error evaluation.

2.4 Approximate estimation method of volume change

The graph shows the relationship between Φ, which implies the angle between
La1 and La2 in real space, and the volume change (Fig. 6). The graph shows
that the effect of rotation (Wm) is very small to negligible within the range of
realistic volume changes possible for natural rock. Therefore, in order to inves-
tigate the range of possible values of volume change using the Variable-origin
Mohr diagram, it is convenient to use the fact that the best estimate of vol-
ume change is dominantly dependent on the values of RS and Φ (angle between
La1 and La2 in real space). The uncertainties due to the effect of rotation is
minimized by using the best estimate of Wm derived from the Variable-origin
Mohr diagram.
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Fig. 6. The graph of the relationship between Φ and volume change at RS =
2.0, 3.0, 4.0 and 5.0 when Wm = 0 (Red line) and Wm = 1 (Blue line).

The details of this method of estimating the volume change are as follows. The
data required are finite strain (RS), rotation (Wm) and Φ. Normally, these data
are not uniquely defined and have uncertainties. However, as mentioned above,
since the effect of rotation (Wm) is very small when estimating the volume
change, we can use the best estimate of Wm obtained from the analysis of the
deformed vein sets. If Wm is not known, we can adopt an intermediate value
of Wm = 0.5 and any deviation will have only a small influence on the results.
This means that if the ranges of finite strain (RS) and Φ are known, the volume
change can be estimated. To estimate the volume change, we use the following
equations:

𝑀 = {𝑇 2 − (𝑊𝑚𝑅)2}
1
2 (31)

𝑁 = {𝑅2 − (𝑊𝑚𝑅)2}
1
2 (32)
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𝑇 = 𝑅(𝑅𝑠 + 1)
𝑅𝑠 − 1 (33)

𝑁 {ln (𝑀 + 𝑁) + ln(𝑀 − 𝑁)}
𝑅 {ln (𝑀 + 𝑁) − ln(𝑀 − 𝑁)} = cos Φ (34)

By solving these simultaneous equations, we can obtain R as a function of RS,
Wm and Φ. Since one representative value is used for Wm, R is treated as a
function of RS and Φ. R is related to the volume change (ΔV) by the following
equation:

�𝑉 = 𝑇 2 − 𝑅2 − 1 = {(𝑅𝑓 + 1
𝑅𝑓 − 1)

2
− 1} 𝑅2 − 1 (35)

Therefore, the volume change is derived as a function of RS and Φ. The minimum
and maximum values of the estimated volume change are determined by the
combination of the minimum (RSmin) or maximum (RSmax) estimates of RS and
the minimum (Φmin) or maximum (Φmax) estimates of Φ. These relationships
can be shown in graphs showing the relationship between Φ and ΔV at RSmax
and RSmin (Fig. 7).
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Fig. 7. The graph showing the relationship between Φ and ΔV at RSmax and
RSmin . (a) 90°< Φmin < Φmax. (b) Φmin < 90°< Φmax. (c) Φmin < Φmax <
90°.

3 Application to field data

3.1 Geological background

As a real example, in this study, we estimated the deformation parameters
including the volume change of metagraywacke from Del Puerto canyon in the
Franciscan belt in the western United States. The study area is about 10 km
east-west and 5 km north-south along the Del Puerto canyon, about 40 km east
of San Jose, California (Fig. 8).

Metagraywacke that has undergone subduction metamorphism is distributed
throughout this study area. The development of a strong foliation indicates
the region has undergone high-strain deformation. Only one phase of ductile
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deformation was identified. The foliation is associated with well-developed sel-
vages of opaque minerals and. In addition to lithic fragments, clastic grains of
quartz and feldspar are common. Microstructural observations show the clastic
grains are associated with pressure fringes of quartz and there is only limited ev-
idence for dislocation creep and dynamic recrystallization (see also Ring, 2008).
These features suggest the dominant deformation mechanism is solution trans-
fer. Previous studies by Ring (2008) have used grain shapes and analyses of the
pressure fringes to suggest the metagreywake of this area has undergone large
syn-metamorphic volume decrease of about −30%.

Minerals veins are commonly developed within the metagraywacke. These veins
are typically 1–10 mm thickness and are developed in various directions. These
veins dominantly consist of quartz although other minerals including key high-P
metamorphic minerals such as lawsonite are also present (Fig. 9). The mineral
assemblage of these veins suggests that they formed during or close to the peak
of high-pressure metamorphism and the deformation should reflect deformation
close to peak burial depth and including part of the subsequent exhumation
processes. In this study, finite strain analysis was performed using both the
deformed vein sets method described in detail here and the Rf /� method (e.g.
Ramsay 1967; Lisle 1985) applied to clastic rock fragments and grains.
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Fig. 9. Photomicrograph of lawsonite-bearing quartz vein.

3.2 Strain analysis by Rf /� method

The axial ratio Rf after deformation of an elliptical strain marker in a rock and
the angle � that its major axis makes from an appropriate reference plane can
be used to estimate the axial ratio Ri of the marker before deformation and
the axial ratio of the actual strain ellipse RS. This method is called the Rf /�
method (e.g. Ramsay, 1967). A development of the Rf /� method proposed
by Lisle (1985) allows estimation of the uncertainties based on the 𝜒2 test. In
this contribution, the Greek letter ’phi’ is already used in the discussion of
the geometric analysis of veins. To distinguish the two uses we use the lower-
case letter ’�’ when referring to the angles used in the strain analysis. In this
study, quartz particles and sandstone fragments in metagraywacke were used
as strain markers and analyzed by the Rf /� method. The samples used for
the analysis were obtained from two different sites (DP3 & 98DP5 on Fig. 10),
and strain analyses were performed on each sample using both quartz particles
grains and sandstone fragments. The results of the analysis are presented in
Table 1. Samples from both locations show similar results. In general, the
sandstone fragments show about 10% greater shortening in the Z-axis than the
quartz particles.
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Fig. 10. Locations where sampling and deformed vein mesurments were taken.
The thick gray lines represent Del Puerto Canyon Road (Route 130), and the
thin gray lines represent forest roads, etc. The geological map is overlaid on the
topographic map.

Table 1. The results of the Rf /� analysis. RS represents the axial ratio of
the strain ellipse and indicates the range that is statistically compatible with
the data at the 5% significance level. *Indicates the value with the maximum
likelihood.

Sandstone fragments
Sample Grain size (mm) Rs Rs* Shortening in Z-axis (%) Shortening in Z-axis* (%)
DP3 2–15 3.2–4.0 3.7 44–50 48
98DP5 5–20 3.3–4.6 4.0 45–53 50
Quartz particles
Sample Grain size (mm) Rs Rs* Shortening in Z-axis (%) Shortening in Z-axis* (%)
DP3 0.2–1.0 2.4–3.0 2.7 35–42 39
98DP5 0.2–1.0 2.7–3.2 2.9 39–44 41

3.3 Estimation of the shape of grains before deformation using the Rf /� method

In addition to estimating the finite strain, RS, the Rf /� method can also be
used to estimate the aspect ratio before deformation Ri. However, because
the method was established with the aim of estimating RS, uncertainties are
generally only considered for Rf, e.g. the Theta-Curve method (Lisle, 1985;
Moriyama & Wallis, 2002), and Hyperbolic vector mean method (Yamaji, 2008).
In this study, we used the bootstrap method to estimate the uncertainty of Ri.
The bootstrap method is a technique for estimating the statistical properties
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of the true population from the statistical values of each sample by considering
the sample data as a pseudo-population and repeatedly resampling (1000–2000
times or more), allowing for overlap. In this study, we used this method to
estimate the statistical properties of the mean aspect ratio of quartz grains
before deformation in this region.

In the Rf /� method, the aspect ratios, Rf, are plotted against directions, �, of
the major axis of the grains after deformation. If the aspect ratios of all grains
before deformation are equal, the Rf /� plots after deformation will lie on a
single closed curve expressed by the following equation (Lisle, 1985).

cos 2𝜑 = (𝑅𝑓 + 1/𝑅𝑓) (𝑅𝑠 + 1/𝑅𝑠) − 2(𝑅𝑖 + 1/𝑅𝑖)
(𝑅𝑓 − 1/𝑅𝑓) (𝑅𝑠 − 1/𝑅𝑠) (36)

Therefore, Ri of each grain can be calculated from the data of each grain (Rf and
�) and the result of the Theta-Curve method (RS). The Ri data for all grains are
used as sample data for the bootstrap method. Then, we obtained the mean Ri
for each bootstrap sample (BS sample), and from the resulting distribution, we
estimated the probability distribution of the mean Ri of the population. Accord-
ing to the central limit theorem, regardless of the distribution of the original
data, the distribution of the mean of the BS sample approaches a normal distri-
bution as the number of trials increases (Lindeberg, 1922 ), so the probability
distribution of the estimated mean Ri can be approximated to a normal distri-
bution. We also used this information to examine the implied uncertainties for
the estimates of volume change given by Ring (2008). We used published data
from 16 samples from the same Del Puerto Canyon as used for the vein analysis
presented in this study. The mean and standard deviation of Ri for DP3 were
found to be 1.45 and 0.03, respectively, and those for 98DP5 were found to
be 1.34 and 0.04, respectively. Therefore, the mean aspect ratio of the quartz
particles in this region before deformation was up to about 1.5. The associated
mean and standard deviation for volume change implied by the method of Ring
(2008) are then −22% and 4%, respectively (Fig. 11).
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Fig. 11. Histograms of mean Ri for DP3 quartz particles and mean ΔVR ob-
tained by the bootstrap method. In both histograms, the vertical axis represents
the relative frequency.

3.4 Deformation analysis using the deformed vein sets method

In this study, the quartz veins developed in metagraywacke were used to estimate
the deformation parameters. The deformed vein data were collected from five
different sites (DP2, DP3, DP28 & 98DP5 on Fig. 9). Therefore, the estimated
values of deformation parameters are representative of the deformation in the
study area. The obtained deformed vein data are presented in table 2 and the
data are plotted on a circle (Fig. 12).

Table 2. Data on the angle and type of shape of the deformed veins obtained
from the field.

� Type � Type � Type
10 E 60 S 100 S
12 E 70 S 104 S+E
29 S+E 80 S 106 S
30 S 83 S 116 S+E
35 S 90 S 140 S+E
42 S 90 S 145 S+E
42 S 90 S 146 S+E
50 S 94 S 154 S+E
55 S 96 S 160 E
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Fig. 12. Deformed vein data obtained in field.

The data shows that the angles of Lai and Lbi measured counterclockwise from
the foliation are in the following ranges:

La1 = 30∘,

103∘ ≤ La2 ≤ 116∘,

12∘ ≤ Lb1 ≤ 28∘, and

155∘ ≤ Lb2 ≤ 160∘.

We used our newly developed method to estimate constraints on the deformation
parameters based on the field data. First, the range of deformation parameters is
expressed using random numbers and a uniform distribution. This result shows
the entire range of deformation parameters constrained from the field data. The
volume change was estimated by using the average rotation value (Wm = 0.72)
obtained by the analysis (Fig. 13). By using a normal distribution and random
numbers, it is possible to indicate the range most likely for the deformation
parameters, and so estimate appropriate uncertainties. In this case, the greatest
density of points on the plot is approximately at the average position on the
plot. The volume change was estimated using the average rotation value (Wm
= 0.72) obtained by the analysis (Fig. 14).

Summarizing these results, it can be said that deformation was associated with
a high degree of non-coaxiality. The foliation in this region has an east-west
strike and a high-angle northward dip, and the mean vorticity number is positive
(counterclockwise), implying a top to the west sense of shear. Our volume change
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estimates are compatible with volume change from negligible to an increase of
around 60% (Table 3). The results are not compatible with the large volume
reduction proposed by earlier studies of this area (Ring, 2008).

Fig. 13. The result of the analysis using uniform distribution for Lai and Lbi.
(a): Mohr diagram, where the fine dots plotted in Mohr space represent the dis-
tribution of the deformation parameters for each Monte Carlo trial (N=100000).
The lighter the color, the more points are plotted. (b): Graph of the relation-
ship between the distribution range Φ and the volume change of Lai. Using the
upper and lower limits of the estimated range of RS and the mean Wm, a curve
showing the relationship between Φ and volume change is obtained.
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Fig. 14. The result of the analysis using normal distribution for Lai and Lbi.
(a): Mohr diagram, where the fine dots plotted in Mohr space represent the dis-
tribution of the deformation parameters for each Monte Carlo trial (N=100000).
The lighter the color, the greater the density of plotted points. The distribu-
tion of the dots can be approximated to a two-dimensional normal distribution.
The overlaid yellow ellipse indicates the region containing 95% of the dots. (b):
Graph of the relationship between the distribution range Φ and the volume
change indicated by Lai.

Table 3. The results of the deformed vein sets method.

Distribution for Lai and Lbi RS RS (mean) Wm Wm (mean) ΔV ΔV(mean)
Uniform 2.3–5.3 3.3 0.44–0.93 0.72 6%–66% 27%
Normal 2.7–4.6 3.3 0.54–0.90 0.72 7%–59% 26%

4 Discussion

4.1 Effects of non-passive marker behavior of veins

The deformed vein sets method assumes that the deformation of the mineral
veins is directly reflected by folding, necking and boudinage of the veins. How-
ever, when the viscosity ratio between the mineral vein and the host rock is
small, part of the shortening is absorbed by the thickening of the vein with
no folding, and conversely, when the viscosity ratio is large, elongation of the
folded vein may be partially absorbed by the opening of the hinge of the fold.
A complete mechanical analysis of the response of mineral veins to an applied
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deformation field is a complex problem. However, simpler considerations can be
used to examine if the estimates from our approach presented above are lower
or upper bounds.

An effective viscosity ratio between veins and the surrounding rock can be de-
rived from the wavelength/thickness ratio for folded veins (Biot, 1961). The
veins analyzed in this study show wavelength/thickness ratios of ~6.4 implying
a low to moderate viscosity ratio of ~10. This means that unfolding will be
limited and there will be little influence on the estimated location of Lai. There
is more likely to be layer-parallel shortening without folding and this will affect
the estimated location of Lbi. The estimates of volume change depend on the
location of Lai and finite strain, Rf. Rf is known independently of the vein analy-
sis so we conclude the influence of unfolding on volume change estimates will be
limited. Changes in the location of Lbi due to layer parallel shortening should
affect the estimates of finite strain. However, the estimates of finite strain ratio
using both the deformed vein analysis and independent Rf/� methods are in
agreement within the uncertainties suggesting that the influence of layer paral-
lel shortening results in uncertainties that are significantly smaller than those
associated with the current data set.

4.2 Effect of Non-Steady-State Flow

Our analysis assumes steady flow. Natural deformation may deviate from this
simple type of deformation history. To examine the effects of unsteady flow,
we examine a geologically reasonable scenario in which early deformation near
the plate boundary is dominated by simple shear, whereas later deformation
has a greater component of pure shear as the rock moves away from the plate
boundary during exhumation. In this case, applying our method to the predicted
distribution and types of deformed veins would indicate an apparent volume
increase greater than the real value. However, in this scenario there will always
be a region of veins that have been shortened after being elongated (E + S
vein types). This region is characterized by veins that are folded after being
boudinaged. Since E + S type veins were not observed in this region, we consider
the effect of non-steady flow in this case is limited.

4.3 Constraints on volume change based on observation of microstructure

Our deformed vein analysis suggests a minimum 7% volume increase in the study
region. The upper limit from the same vein analysis is around 60%. Because
SiO2 is the most easily transported common chemical species in the sediments,
such a large volume increase should be reflected in an unusual mineralogy and in
particular in very quartz-rich lithologies. Such unusually quartz-rich lithologies
are not observed. In addition, for significant volume increase all clastic grains
should develop rims of extra added quartz. Any volume increase greater than
the shortening due to finite strain should be recorded as a continuous rim around
the clasts. In the examined samples limited overgrowths are observed restricted
to the extension direction and none were observed on surfaces perpendicular to
the Z direction of finite strain (Fig. 15). We conclude that any volume increase
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has to be significantly less than the estimates of shortening along Z, i.e. < 40%.

Fig. 15. Photomicrographs & CL image in XZ sections of a metagreywake
sample. a: an image viewed in plane-polarized light, b: in cross polarized light.
c: a cathodoluminescence image (the area within the dashed line in a). Clastic
quartz grains are associated with pressure fringes of quartz.

4.4 Differences in Strain Estimates and Influence of Grain Boundary Sliding

The results of our strain analysis using the Rf /� method are significantly dif-
ferent for sandstone fragments and individual clastic quartz grains. Both strain
markers record deformation through all periods from subduction to exhumation
and the difference is, therefore, not due to different deformation histories. The
most likely explanation for the differences in apparent strain is that the do-
mains of quartz grains have accommodated strain in a way that is not reflected
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in a change of shape. This is possible if grain boundary sliding occurs. Grain
boundary sliding requires an accommodation mechanism to fill the voids that
open as grain slide past one another. In the absence of dislocation creep, the
two possible mechanisms are diffusion or solution transfer of mobile chemical
species assisted by fluid flow. Both diffusion and percolative fluid flow along
the grain boundaries become more difficult to achieve for greater length scales
and so large particles are less likely to be affected by sliding along their bound-
aries and more likely to undergo internal deformation. Therefore, we consider
the difference in the shortening recorded by the sandstone fragments and quartz
particles represents the amount of shortening accommodated by grain boundary
sliding on the grain scale, which here is about 10% (Fig. 16).

4.5 Stage of Recorded Deformation

The results of the deformed vein sets method show a shortening of 39–53% (Ta-
ble 4). Deformed veins are developed on a cm–m scale and record strain due
to both deformation of the constituent grains of the rock and grain boundary
sliding and the results should be comparable to the sandstone fragments. A sig-
nificant difference in the potential of veins and detrital sedimentary fragments
to record deformation is related to their timing of formation. The presence of
high P minerals in the veins shows the vein sets formed close to peak meta-
morphic conditions and their deformation does not record the prograde burial
history. In contrast, the sedimentary fragments are part of the original rock and
should record deformation developed throughout both subduction and exhuma-
tion phases. In other words, any difference between the strains recorded by the
sandstone fragments and the deformed vein sets can be used as an estimate of
the ductile strain developed during subduction. The analysis of the sandstone
fragments and the deformed vein sets shows that there is no significant dif-
ference in their respective shortening, suggesting that the ductile deformation
during subduction was very small compared to that developed close to peak
metamorphic conditions and during exhumation. This result is compatible with
the observation that only a single phase of ductile deformation is recorded in
the mesofabrics of the metagreywake in this area.

Table 4. The results of the deformed vein sets method using a normal distri-
bution for uncertainties. RS represents the axial ratio of the strain ellipse and
indicates the range that is statistically compatible with the data at the 95%CI.
*Indicates the maximum likelihood value of the result.

Deformed vein sets
Scale of veins Rs Rs* Shortening in Z-axis (%) Shortening in Z-axis* (%)
cm–m 2.7–4.6 3.3 39–53 45
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Fig. 16. Comparison of estimates of shortening along the Z-axis from analyses
of quartz grains, sandstone fragments and deformed vein sets. The error bars
in the results for quartz particles and sandstone fragments represent the range
that is statistically compatible with the data at the 5% significance level, while
the error bars for the deformed vein sets represent the range that is statistically
compatible with the data with 95% CI. The square plots represent the maximum
likelihood estimates for each.

4.6 Grain Boundary Sliding and Discrepancy with Previous Studies

The analyses presented above yield an estimate of volume increase of 7–40%.
This range is large, but is in stark contrast with previous estimates in the same
area of a volume decrease of about 30% based on observations of quartz particles
deformed by pressure dissolution and precipitation processes (Ring, 2008). Ring
(2008) also estimated other deformation parameters and reported a finite strain
(RS) of 1.3 and a mean vorticity number (Wm) of 0.4. To compare the two
sets of results, we calculated the expected distribution of deformed vein sets
for the parameters proposed by Ring (2008) (Fig 17). The expected pattern of
deformed vein types and their orientations is clearly inconsistent with our field
data.
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Fig. 17. Orientation patterns of the deformed vein sets assumed from the de-
formation parameters proposed by Ring (2008). The small circle plots represent
the actual orientation data obtained in the field. Many of these data are in-
consistent with the orientations expected based on the deformation parameters
estimated by previous studies—the observed distribution of the S+E-type field
shows a particularly clear discrepancy.

A significant potential problem with the method used by Ring (2008) to estimate
deformation parameters is that the grain-scale analysis does not incorporate the
possible influence of grain boundary sliding. Ring (2008) used the projected
dimension strain (PDS) and mode methods (Brandon et al. 1994; Feehan &
Brandon 1999) to measure contractional and extensional strains, respectively.
He then used the maximum projected dimension (MPD) of the crystal in the
X-direction as the reference frame for absolute stretching. MPD is commonly
referred to as the Caliper dimension and refers to the length of a 3D particle
as measured by calipers along a specific direction. Ring (2008) considered that
the length of the crystal in the X-direction does not change when there is no
internal strain in the crystal, based on the observation that the pressure solution
proceeds through a mass transfer process at the grain boundary. Ring (2008)
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further assumes that grains were originally randomly oriented and deform solely
by pressure dissolution creep without rotation. In that case, the mean MPD
(𝑋𝑔) in the X-direction of the grains is equal to the pre-deformation mean length
in the X and Z directions, referred to as 𝑋1 and 𝑍1. Based on these assumptions,
the absolute shortening (𝑠𝑧) can be estimated by dividing the mean MPD (𝑍𝑔)
of the particles in the Z-direction by 𝑋𝑔. The absolute elongation (𝑠𝑥) can then
be obtained by measuring the modal abundance (m) of fiber and grain in the
X-direction. However, if grain rotation occurs associated with grain boundary
sliding, the long axes of grains will be become reoriented towards the X-direction
without an associated change in shape. This means that the measured 𝑋𝑔 will be
greater than the true extension, causing an overestimation of the true shortening
(𝑠𝑧). In the case of plane strain, the volume change (ΔV) is expressed by ΔV
= 𝑠𝑥�𝑠𝑧 − 1, and the bias caused by not incorporating grain rotation causes
a systematic underestimation of the volume change. The maximum effect of
rigid body rotation of individual grains on the estimates volume change can be
estimated by assuming all grains become aligned with their long axes parallel
to the maximum extension direction. In this case the amount of shortening in
the Z direction is reduced by an amount equivalent to the mean aspect ratio of
the grains (𝑅𝑟) calculated from the mean MPD in the X-direction (𝑋′

1) and
the mean MPD in the Z-direction (𝑍′

1) (Fig. 18).

Then

ΔVtrue = 𝑠𝑥 • 𝑠𝑧 𝑅𝑟

substitute Δ𝑉𝑅 = 𝑠𝑥�𝑠𝑧 − 1 (from above) and we obtain

�𝑉true = (1 + �𝑉𝑅) 𝑅𝑟 − 1 (37)

Where Δ𝑉true = true volume change, Δ𝑉𝑅 = volume change estimated by the
method of Ring (2008), and 𝑅𝑟 = 𝑋′

1/𝑍′
1.
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Fig. 18. Comparison between the deformation process assumed by Ring (2008)
and those used in this paper. In both cases, the initial conditions are randomly
oriented ellipsoidal grains of arbitrary shape and the average lengths of grains in
the X and Z directions are equal. The final result is the same in both cases. Both
approaches assume that the length of the grains in the X direction (excluding
the fiber) does not change during solution mass transfer, so 𝑥𝑔=𝑥1=𝑥′

1. These
are used as reference frames for length changes. The main difference between
the two processes is that the shortening in the Z direction associated with the
volume change is 𝑍𝑔/𝑍1 in (a) and 𝑍𝑔/𝑍′

1 in (b). 𝑍1 > 𝑍′
1 implying that the

shortening is overestimated in (a), where rigid body rotation is ignored.

4.7 Volume change in the Del Puerto Canyon region

Combining the results of the Rf/� and bootstrap methods suggests that the
1� range of the mean initial aspect ratio of the grains before deformation (𝑅𝑖)
is 1.42–1.48. We used this result and the bootstrap analysis to estimate a 1�
range of −27% – −18% for the apparent volume change given by Ring (2008).
Calculating the volume change using equation (37) based on our maximum
estimate of 𝑅𝑖 = 1.48 and the lower estimate of volume decrease from the Ring
(2008) method of ΔV = −18% yields a maximum value of the true volume
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increase, ΔVtrue, of 21%. Since 𝑅𝑖 is the maximum value that 𝑅𝑟 can take,
the 21% volume increase is an upper limit for the estimation of volume change
in this region. Also, the results of our deformed vein sets method shows a 7%
increase in volume as a lower limit. Therefore, we conclude that appropriate
bounds for the volume change in this region are a volume increase of 7–21%.
This range is similar to the amount of silica addition that has been proposed
based on seismic velocity studies (Audet, P. & Burgmann, R., 2014) and may
help account for time scales of slow slip events.

5 Conclusions

(1) The Variable-origin Mohr diagram for finite deformation with a movable
origin and fixed radius is proposed here as a useful tool for estimating the
deformation parameters, and identifying suitable uncertainties associated with
kinematic analysis using deformed veins sets.

(2) The key angle (between lines La1 and La2) for estimating volume change
is determined almost entirely by finite strain and volume change with little
influence by the rotational component. Estimates of volume change from the
deformed vein set method can be improved by combining them with independent
estimates of finite strain.

(3) A comparison of strain estimates by different methods suggests that the
strain of metagraywacke in the Del Puerto Canyon region of the Franciscan
metamorphic belt is accommodated not only by shape changes of the constituent
mineral grains but also by sliding along the grain boundaries and about 10% of
the shortening in the Z-axis direction is due to this grain boundary sliding. A
comparison between the results of the deformed vein sets method and the Rf /�
strain analysis that uses sandstone fragments allows the strain developed during
subduction and exhumation to be separated; in this case the deformation during
subduction is very small compared to that during exhumation.

(4) A combination of the results of the deformed vein sets method and thin
section observations suggests volume increase in this region of greater than 7%.
A consideration of the effects of grain rigid-body rotation combined with the
microstructural observations of Ring (2008) yields an upper limit for the vol-
ume increase of 21%. This implies that 7–21 vol.% of the rock now observed
was added to this region by precipitation from fluid derived from a deeper re-
gion. Such a volume increase is compatible with estimates for some convergent
margins based on seismic observations.
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