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Abstract

Carbonate clumped isotope thermometry has been calibrated for a wide variety of carbonates, including calcite, aragonite,

dolomite, siderite, and many of their biogenic forms. The clumped isotope composition of the carbonate group substituting

for phosphate or hydroxyl in bioapatite (Ca(PO4,CO3)(OH,F)) has also been temperature calibrated using vertebrate tooth

enamel from a range of endothermic body temperatures. We apply this method to other bioapatite-bearing taxa and the

calibrated temperature range is extended to lower paleoclimatologically relevant temperatures. Furthermore, because relatively

large bioapatite samples are required for carbonate clumped isotope measurements (Δ47), replicate sampling of thin tooth

enamel may not be feasible in many situations. Here, we use gar fish (Lepisosteus sp.) scales to extend the calibration. These

fish are unique in that they are entirely covered in ganoine scales, which are >95% hydroxyapatite. Their enamel structure

also makes them resistant to diagenesis. Additionally, gar fossils are common in lacustrine, fluvial, and near-shore facies, and

have a wide distribution in time (Cretaceous to modern) and location (North America, South America, Europe, India, and

Africa). We have developed a reliable lab protocol for measuring Δ47 in gar bioapatite. We estimate the standard error (SE)

for a single measurement as 0.027which is based on replicate analyses and Student T-distribution to account for sample size.

We report results for modern gar scales from seven North American localities with mean annual water temperatures (MAWT)

ranging from 9 to 26 °C. These data give a temperature calibration curve for gar scales of Δ47 = (0.1095 ± 0.0159) x 106/T2

– (0.5941 ± 0.0548) (R2 = 0.74) and a curve for pooled bioapatite of Δ47 = (0.1003 ± 0.0144) x 106/T2 – (0.4873 ± 0.0495)

(R2 = 0.76).
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Abstract 12 

Carbonate clumped isotope thermometry has been calibrated for a wide variety of 13 

carbonates, including calcite, aragonite, dolomite, siderite, and many of their biogenic forms. 14 

The clumped isotope composition of the carbonate group substituting for phosphate or hydroxyl 15 

in bioapatite (Ca(PO4,CO3)(OH,F)) has also been temperature calibrated using vertebrate tooth 16 

enamel from a range of endothermic body temperatures. We apply this method to other 17 

bioapatite-bearing taxa and the calibrated temperature range is extended to lower 18 

paleoclimatologically relevant temperatures. Furthermore, because relatively large bioapatite 19 

samples are required for carbonate clumped isotope measurements (Δ47), replicate sampling of 20 

thin tooth enamel may not be feasible in many situations. Here, we use gar fish (Lepisosteus sp.) 21 

scales to extend the calibration. These fish are unique in that they are entirely covered in ganoine 22 

scales, which are >95% hydroxyapatite. Their enamel structure also makes them resistant to 23 
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diagenesis. Additionally, gar fossils are common in lacustrine, fluvial, and near-shore facies, and 24 

have a wide distribution in time (Cretaceous to modern) and location (North America, South 25 

America, Europe, India, and Africa). We have developed a reliable lab protocol for measuring 26 

Δ47 in gar bioapatite. We estimate the standard error (SE) for a single measurement as 0.027‰, 27 

which is based on replicate analyses and Student T-distribution to account for sample size. We 28 

report results for modern gar scales from seven North American localities with mean annual 29 

water temperatures (MAWT) ranging from 9 to 26 °C. These data give a temperature calibration 30 

curve for gar scales of Δ47 = (0.1095 ± 0.0159) x 106/T2 – (0.5941 ± 0.0548) (R2 = 0.74) and a 31 

curve for pooled bioapatite of Δ47 = (0.1003 ± 0.0144) x 106/T2 – (0.4873 ± 0.0495) (R2 = 0.76) 32 

 33 

1. Introduction 34 

Paleoclimate studies rely heavily on temperature records, and most records come from 35 

marine settings; it is relatively difficult to measure past climatical conditions in terrestrial 36 

environments. Commonly used methods include leaf shape analysis (Wilf, 1997; Wolfe and 37 

Spicer, 1999), the presence and size of ectotherms (Markwick, 1998; Wing and Greenwood, 38 

1993), and palynology (e.g., Germeraad et al., 1968; Traverse, 2007). A drawback with leaf 39 

shape analysis is a lack of understanding of the underlying physiological basis that defines leaf 40 

shape. Historical ectotherm ranges are limited by correlating fossil species with modern analogs. 41 

Fossil pollen is highly subject to geologic reworking and may only be resolvable to the family or 42 

genus level. Branched GDGTs in soils have been used as a temperature proxy, but the empirical 43 

MDT-CBT calibration has large errors of 4.8 °C (1 σ), and may be biased by soil pH and aridity 44 

(Peterse et al., 2012). These methods are based on empirical correlations with available climate 45 
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variables such as surface (as measured at 2 m) air temperature. They are commonly referred to as 46 

proxies because they are based on correlations rather than distinct causal processes. 47 

Stable isotopic methods provide a more direct approach to measuring paleotemperature. 48 

The oxygen isotope method (δ18O) is the oldest and most widely used, and it has been applied to 49 

foraminifera, gastropods, and fish (Grossman and Ku, 1986; Pucéat et al., 2010) and carbonate 50 

deposits in soils and adjacent lakes (Leng and Marshall, 2004; Swart, 2015). A challenge is that 51 

these estimates require an independent measurement of the ambient water at the time of host 52 

mineral formation. Carbonate clumped isotopes is a newer method that provides an estimate for 53 

both the temperature and the isotopic composition of the water (e.g.,  Eiler, 2007; Eiler and 54 

Schauble, 2004; Wang et al., 2004). Here we apply this method to bioapatite, which is commonly 55 

found in teeth, bones, and fish scales. 56 

Natural settings have large temperature variations, both in time and space. For example,  57 

Still et al. (2019) demonstrate via thermal imaging that temperatures on a hill slope at a point in 58 

time range from 35 to 70 °C. A long-term record for this hill slope shows that temperatures 59 

associated with diurnal and seasonal variations range from 0 to 70 °C. This setting has a low 60 

potential for producing a useful paleoclimate record, not only because of the large variation in 61 

temperature but also because the highly localized temperatures are not connected in a clear 62 

manner to regional climate. A counter example is the isotopic record of benthic foraminifera. In 63 

fact, the success of this paleoclimate indicator is largely due to the stable and predictable 64 

temperature conditions in the deep ocean.  65 

We contend that gar scales have the potential to provide a long-term average of surface 66 

temperature. They therefore have the potential to provide essential climate information for the 67 

terrestrial realm in a manner similar to what benthic foraminifera have done for the deep ocean. 68 
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Gars have a number of important attributes: (a) they are found in a wide range of terrestrial 69 

environments (Lee et al., 1980; Netsch and Witt, 1962) and over a long period of geologic time, 70 

(b) individuals have a restricted range and do not migrate (e.g., Buckmeier et al., 2013; Snedden 71 

et al., 1999), (c) their scales grow throughout their lifetime, providing a decadal averaged 72 

environmental record (e.g., Buckmeier, 2008; Haase, 1969), (d) their scales are highly resistant 73 

to diagenesis and commonly occur in the fossil record (Grande, 2010), and (e) the bioapatite in 74 

their scales can be analyzed for temperature and isotopic water composition using clumped 75 

isotopes. 76 

We present a method to prepare and measure gar scale bioapatite for Δ47 that is 77 

reproducible at a level comparable to analytical error. These Δ47 measurements from scales are 78 

compared to temperature along a latitudinal gradient in northern North America to calibrate a 79 

paleothermometer. ‘Effective temperatures’ are calculated using a method from archaeological 80 

dating that takes into account seasonal and diurnal variations in surface air temperatures, which 81 

are then adjusted to yearly average riverine and lacustrine temperatures. Lastly, we resolve 82 

seasonal growth effects using metabolic rate to estimate effective temperatures, with the 83 

potential to be relevant to other paleoclimate studies. 84 

 85 

1.1. CO2 clumped-isotope thermometer 86 

The CO2 clumped-isotope thermometer is based on the concentration of CO2 molecules 87 

with multiply substituted rare isotopes, where 13C and 18O are rare isotopes, and 12C and 16O are 88 

common isotopes. The most common doubly-substituted variety of CO2 is 13C18O16O, with a 89 

mass number of 47. The CO2 clumped-isotope thermometer compares a sample’s concentration 90 

of mass 47 CO2 to its theoretical concentration if the C and O isotopes were randomly distributed 91 
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among all mass 47 isotopologues. The ability to accurately measure these isotopologues, which 92 

have concentrations in the parts per million, is a recent technological development. Eiler and 93 

Schauble (2004) applied this method to measure 13C-18O bond abundance in atmospheric CO2. 94 

Ghosh et al. (2006a) showed that CO2 extracted by phosphoric acid digestion preserved the 95 

isotopologue distribution of the original carbonate anion, CO3
2−, in the host mineral. 96 

The Δ47 measurement used in CO2 clumped-isotope measurements is defined in an 97 

idealized fashion by  98 

Δ47 = [(R47/R47* – 1)  –  (R46/R46* – 1)  –  (R45/R45* – 1)] 99 

where R47, R46, and R45 are the abundance ratios of masses 47, 46, and 45 relative to 44, and 100 

R47*, R46*, and R45* are the stochastic values for this ratios (Affek and Eiler, 2006; Eiler, 2007; 101 

Eiler and Schauble, 2004; Wang et al., 2004). In practice, most labs are unable to measure R46 102 

and R45 (notable exception is Prokhorov et al. (2019)). Fortunately, variations in R47 account for 103 

most of the multiple substitutions that occur in CO2 (Schauble et al., 2006). As a result, clumped 104 

isotope results are approximated by  105 

Δ47 ≈ (R47/R47* – 1) 106 

where R46 = R46* and R45 = R45* (see Appendix A in Zaarur et al., 2013, for details). An 107 

additional approximation involves the isotopic compositions of C and O in the sample CO2. 𝛿13C 108 

and 𝛿18O are measured, but the quantity of 17O is not measured directly, and Δ47 must be 109 

corrected accordingly for mass interference of 17O. 17O and 18O are related via the relationship 110 

(Brand et al., 2010; Gonfiantini et al., 1995) 111 

17R = K·(18R)λ 112 

where K is a coefficient for 17R and 18R in the reference material and λ is a 113 

phenomenological constant that links the fractionation that occurs among the different isotopes 114 
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of oxygen. By using the λ value of Brand et al. (2010) instead of the original λ value of 115 

Gonfiantini et al. (1995), the calculated Δ47 was found to be much less sensitive to changes in 116 

bulk isotopic composition (Daëron et al., 2016). We use the relevant constant λ = 0.528 (Brand et 117 

al., 2010). 118 

The main advantage of carbonate clumped-isotope thermometry is that temperature can 119 

be estimated independent of the isotopic composition of the water and dissolved carbon source. 120 

Clumped isotopes have been applied to corals (Saenger et al., 2012; Thiagaraian et al., 2011), 121 

mollusks (Henkes et al., 2013), brachiopods (Came et al., 2007), and foraminifera and coccoliths 122 

(Tripati et al., 2010). In addition to marine settings, usable carbonates for Δ47 can be found in 123 

lacustrine settings in the otoliths of fish (Ghosh et al., 2007), terrestrially in the carbonate 124 

nodules of fossil soils (Ghosh et al., 2006b), and in the shells of land snails and freshwater 125 

gastropods (Zaarur et al., 2011). Carbonate is also found in vertebrate bone, tooth dentin, and 126 

enamel, where it occurs in biogenic apatite, primarily in the form of hydroxyapatite, 127 

Ca5(PO4)3(OH), with carbonate substituting for the phosphate, PO4
3-, and hydroxyl, OH-, groups. 128 

Carbonate clumped isotope thermometry has been calibrated for bioapatite using modern 129 

mammalian and crocodilian teeth (Eagle et al., 2010), modern ostrich bone, African elephant 130 

enamel, and shark teeth (Löffler et al., 2019; Wacker et al., 2016).  131 

 132 

1.2 Model species, Lepisosteus spp. 133 

Gars belong to the family Lepisosteidae and are ancient Actinopterygiians that diverged 134 

from crown Teleosts around 342 Ma and have a basal phylogenetic node of 141 Ma (Inoue et al., 135 

2005). They have evolved relatively slowly since this divergence, especially when compared to 136 

other vertebrates, including crown Teleosts (Braasch et al., 2016). Today, in North America, gar 137 
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fish are found in fluvial and lacustrine settings from Canada to Central America and over into the 138 

Caribbean. In the geologic record, they were much more widespread, covering every continent 139 

except Australia and Antarctica. 140 

There are seven different living species in Lepisoteidae, all of which are found in North 141 

and Central America. We focused on the most common species in North America, Lepisosteus 142 

osseus, which has a distribution that includes drainages in the Mississippi River Valley and the 143 

Atlantic margin. When L. osseus samples were not available, scales from a sister taxon, L. 144 

platostomus, the shortnose gar, or L. oculatus, the spotted gar, were used instead. The tropical 145 

gar, Atractosteus tropicus, was selected to represent higher temperature tropical environments. 146 

All of these species are capable of hybridization and have similar life histories (Bohn et al., 147 

2017). Any phylogenetic, ecological, or other biological effects on scale isotopic compositions 148 

are expected to be similar across taxa. 149 

A significant amount of body mass and length is accumulated within the first year and 150 

growth slows to a steady rate after sexual maturity (Netsch and Witt, 1962). Gar grow year-151 

round (e.g., McGrath, 2010; Solomon, 2012), with faster growth in the first three years of life. At 152 

that point, longnose gars have a total length of ~650 mm for males and ~730 mm for females 153 

(Johnson and Noltie, 1997). For L. osseus, scales do not begin to ossify until a standard snout 154 

vent length of approximately 150 mm and bioapatite production begins at 200 mm (Thomson 155 

and McCune, 1984). Male longnose gars can live up to 17 years (average 8 years) and females 156 

can live up to 25 years (average 9 years) (Smylie et al., 2016). Alligator gar are more long-lived, 157 

averaging 11 and 14 years for males and females, respectively (Ferrara, 2001). The upper age 158 

limit is >60 years (Buckmeier et al., 2012). 159 
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An important feature of gar scales for our study is that they grow continuously 160 

throughout the gars’ adult lives and thus potentially provide a decadal record of surface 161 

temperature. The banding in scales is a growth artifact, as it is produced in a manner similar to 162 

mammalian enamel (Braasch et al., 2016), which exhibits growth striations on daily and weekly 163 

bases (Boyde, 1964; Bromage, 1991; Dean, 1987). The bioapatite is deposited episodically when 164 

its base scale reaches a critical size (Thomson and McCune, 1984) and thus scales do not 165 

represent seasonal growth cycles. 166 

Gar scales have been used in a small number of paleoclimate studies. Fricke et al. (1998) 167 

measured δ18Ophosphate from fossil gar scales along with mammalian teeth from the Eocene of the 168 

Bighorn Basin, Wyoming, USA, to predict δ18Owater. Fricke and Pearson (2008) measured 169 

δ18Ocarbonate in gar scales from late Maastrichtian fluvial sediments of North Dakota, USA. The 170 

temperature of the Late Eocene fluvial sediment in the UK was estimated using a combination of 171 

δ18O in gar scales, gastropods, otoliths, gyrogonites, and rodent teeth (Grimes et al., 2003). These 172 

studies show reproducible measurements and credible temperature estimates. 173 

 174 

2. Materials and Methods 175 

2.1 Specimen acquisition 176 

Modern specimens of Lepisosteus osseus and L. platostomus were acquired either by 177 

hook-and-line fishing or through coordination with the Mississippi Wildlife, Fisheries, & Parks 178 

Department (Jackson, MS), the Illinois Department of Natural Resources (Springfield, IL), and 179 

the Tennessee Wildlife Resources Agency (Nashville, TN), who obtained specimens by gill 180 

netting, electrofishing, or collecting by-catch (Table 1 and Figure 1). Where appropriate, 181 

individuals were euthanized with an overdose of Tricane methanesulfonate (MS-222), as 182 
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indicated in Protocol 2012-10681 approved by Yale University’s Institutional Animal and Use 183 

Committee (IACUC). Specimens were also received on loan from the University of Michigan 184 

Museum of Zoology (UMMZ) collections and the Yale Peabody Museum Collections (YPM), 185 

either skeletonized or preserved in ethanol. Only specimens with a standard snout vent length 186 

>300 mm to a maximum of 774 mm were sampled to ensure a long record of bioapatite growth. 187 

 188 

2.2 Metabolic Rate and effective temperatures 189 

Most paleothermometers are based on empirically-calibrated proxy relationships. For 190 

example, the TEX-86 index is calibrated to the mean annual temperature of the overlying sea 191 

surface using Archaea in modern ocean sediment cores. The Archaea that synthesize the GDGT 192 

compounds used for the TEX-86 index live throughout the water column, and have the highest 193 

abundances below the base of the photic zone (>80 m water depth)(Pearson and Ingalls, 2013). 194 

Nonetheless, the design of the calibration means that the TEX-86 temperature equation is 195 

optimized to predict mean annual sea-surface temperature, even though Archaea live well below 196 

the surface. 197 

Isotopic methods are designed, at least in theory, to provide a direct estimate of 198 

temperature at the time of precipitation of the host material. More specifically, if one could 199 

measure Δ47 and calculate temperature at infinitesimal points in a gar scale, a large variation 200 

would be expected due to variation in ambient temperature throughout the year. The individual 201 

Δ47 measurements in our study were determined for a full scale, which means that they were 202 

averaged over multiple years. 203 

A key issue is how to relate our Δ47 measurements to ambient temperature in a way that 204 

avoids the variable temperature associated with diurnal and seasonal variations. To address this 205 
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issue, we propose using a method that accounts for variable environmental temperature in the 206 

racemization of amino acids and hydration of volcanic glass, which are used as dating methods 207 

in archeology and geomorphology (McCoy, 1987; Rogers, 2007). Rogers (2007) proposes a 208 

method that accounts for the temperature sensitivity of the chemical reaction associated with 209 

glass hydration. His method is built on the idea of estimating an effective temperature, which is 210 

defined as the steady temperature needed to produce the same amount of hydration as observed 211 

in a sample with a variable temperature history. 212 

The effective temperature method requires a specification of the temperature sensitivity 213 

of the process. The reaction rates for amino-acid racemization and glass hydration are known to 214 

follow an Arrhenius relationship. Gillooly et al. (2001; 2002) and Brown et al. (2004), along 215 

with others, have investigated the rates of a wide variety of biological processes, including 216 

metabolic rate and growth rate, across a wide range of organisms, including fish. Their universal 217 

metabolic equation is  218 

B  M 3/4e-Ea/RT ,     (1) 219 

where B is metabolic rate (kJ s-1), M is body mass (kg), Ea is the activation energy (kJ mol-1), R 220 

is Boltzmann’s constant (8.314 kJ mol-1 K-1), and T is the absolute temperature (K). The 221 

Arrhenius relationship for reaction rate as a function of temperature is accounted for by the 222 

exponential factor on the right (Boltzman factor). Brown et al. (2004) recommended an average 223 

value for Ea = 0.63 eV = 61 kJ/mol. They argue that this value holds for all organisms.  224 

Ecological theory requires that growth rate be proportional to metabolic rate. The 225 

equation above shows that warmer temperatures result in faster growth. Thus, our samples will 226 

be biased towards the warmer times in their life cycle. The calculation of an effective 227 

temperature removes this bias. Because there is little variation in body mass among adult gars, 228 
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growth rate for adult gars can be viewed as proportional to the Boltzman factor. As a result, the 229 

Rogers (2007) method for calculating effective temperature is directly applicable. 230 

Following Rogers (2007), the time variation in temperature over a year is represented by 231 

𝑇(𝑡) = 𝑇𝑀𝐴𝑇 +
Δ𝑇𝑆𝑅

2
sin(2𝜋𝑡) +

Δ𝑇𝐷𝑅

2
sin (

2𝜋𝑡

365
),    (2) 232 

where T is temperature (K), t is time (a = annum), TMAT is the mean annual temperature (K), and 233 

Δ𝑇𝑆𝑅 and Δ𝑇𝐷𝑅 are the seasonal and daily ranges in temperature (K). The mass production rate, 234 

P, (mass/time) of gar scales is represented by Arrhenius relationship, 235 

𝑃 = 𝑃0exp (
𝐸𝑎

𝑅𝑇
),        (3) 236 

where P0 is a pre-exponential constant. The effective temperature, Te is defined by  237 

𝑇𝑒  = ∫ 𝑃(𝑇(𝑡))𝑇(𝑡)𝑑𝑡
1

0
∫ 𝑃(𝑇(𝑡))𝑑𝑡

1

0
⁄ ,     (4) 238 

which represents the weighted mean of the temperature, with the weighting provided by P. There 239 

is no analytical solution for (4), but the integrations are easily solved numerically (for details, see 240 

Rogers, 2007). 241 

Figure 2 shows a comparison of Teffective against TMAT for 19,874 North America stations 242 

(excluding Greenland) for the time interval from 1900 to 2018 (surface air temperature at 2 m 243 

height above ground provided by the Global Historical Climatology Network (GHCN) database 244 

Menne et al. (2012)). These data were used to calculate mean values for TAM, Δ𝑇𝑆𝑅, and Δ𝑇𝐷𝑅 at 245 

each station. The stations provided an average record length of 11 years for these estimates due 246 

to partial records. Note that Te is always greater than TMAT by as much as 12 °C. This difference 247 

increases with decreasing temperature, which is consistent with the fact that surface air 248 

temperature is most steady in the tropics and most variable in the polar regions, and the 249 

production rate P increases with increasing temperature.  250 
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For our gar calibration, TAM, Δ𝑇𝑆𝑅, and Δ𝑇𝐷𝑅 were estimated for each sample site using 251 

the 1-km gridded Daymet dataset (Thornton et al., 2017; Thornton et al., 1997). Daymet was 252 

constructed using a truncated Gaussian filter to approximately 11,000 stations under the National 253 

Weather Service Cooperative Observer Program (NWS COOP), weighting stations by distance 254 

from an arbitrary point. Predicted temperatures were estimated using a weighted least-squares 255 

regression. We added 1 °C to Daymet temperatures to account for the positive offset of river 256 

water temperature relative to air temperature (Fricke and Wing, 2004).  257 

 258 

2.3 Specimen pretreatment 259 

Approximately 5 cm x 5 cm sections of scales were taken from the left lateral side of the 260 

fish, as the alternative side is commonly left for archival purposes, and given to dermestid 261 

beetles for several days to remove collagen and other organic tissues (Hefti et al., 1980). 262 

Debrided scales were further cleaned by scalpel and tweezers. Approximately 1 g of scales from 263 

each specimen were cryogenically milled in a 6750 Freezer/Mill (SPEX CertiPrep) for 3 264 

minutes. 265 

Unlike the bioapatite used in Wacker et al. (2016) and Eagle et al. (2010), gar scales have 266 

an initial higher concentration of organic matter. We sampled whole scales, including the enamel 267 

layer and the underlying bone, as it is difficult to distinguish between the two with the naked eye. 268 

Both are assumed to have the same initial isotopic composition. The mineralized bone is 269 

interwoven with collagen, and the enamel is covered by collagen during life. They are pitted with 270 

vertical canals that contain miniature blood vessels and mesoderm cells (Kerr, 1952). Gar scales 271 

interlock and are further connected in vivo by the fibrous collagen of the stratum compactum 272 

(Gemballa and Bartsch, 2002). Gar scales share the same XRD peaks as carbonate 273 
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hydroxyapatite (LeGeros and Suga, 1980; LeGeros et al., 1967) but have high initial contents of 274 

9.4 ± 0.8% organic carbon and 3.24 ± 0.3 nitrogen (Supplemental Table 1), which is related to 275 

the organic material that these scales possess in vivo. 276 

Some of the organic material can be mechanically removed, but chemical treatment of 277 

samples was needed for complete removal. Any stray hydroxyl groups on the collagen matrix, 278 

such as from glycine, proline, and hydroxyproline (Eastoe, 1957) which surround the ganoine 279 

scales, likely react with the acid during digestion, producing water, as detected by elevated mass 280 

18 values. For a detailed discussion of the effect of chemical treatment methods on gar scale 281 

clumped isotopic values, see Gray (2018). 282 

Koch et al. (1997) found that treatment with 30% H2O2 did not affect the isotopic values 283 

of enamel hydroxyapatite. Milled samples were sonicated (Sonicor DSC-100TH) for several 284 

hours with 30% H2O2 to remove organic carbon. Scales were considered clean when bubbling 285 

from the reaction ceased. Scales were then rinsed with DI water, agitated, and centrifuged; this 286 

process was repeated six times. Samples were dried in a vacuum (Isotemp Vacuum Oven Model 287 

280A, Fisher Scientific, USA) at 40 °C for two days. XRD showed an increase in bioapatite 288 

peaks after sonication, particularly at the [002] and [211] peaks, 25.9° and 31.8° 2ϴ, 289 

respectively. 290 

 291 

2.4 Acid digestion and Δ47 Measurement 292 

Wacker et al. (2013) noted a sample size effect on Δ47 when carbonate samples <7 mg 293 

were digested at 25 °C. Wacker et al. (2016) found a similar effect for bioapatite from elephant 294 

tooth enamel. They inferred that at the lower reaction temperature, there was partial re-295 

equilibration of the resultant gas with water. Wacker et al. (2016) increased the reaction 296 
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temperature to 110 °C for bioapatite to decrease the reaction time. They noted that the partial 297 

pressure of the water vapor above the acid was four times greater, which is much larger than 298 

expected for a 20 °C increase in temperature. Water is known to adversely affect bond ordering 299 

in CO2 samples. Our choice of a 90 °C instead of a 25 °C reaction temperature was meant to 300 

avoid this problem. It is also more consistent with the reaction temperature used in most clumped 301 

isotope labs. 302 

Samples ranging from 45 to 55 mg were reacted in an isolated McCrea vessel with 105% 303 

H3PO4 (ρ = 1.93 g/cm3) at 90 °C. Reactions lasted for 20 to 40 minutes and were considered 304 

complete when visible bubbles stopped forming. Because modern material has a large organic 305 

component and the −OH- group from the bioapatite scale reacts with the H+ ions in the acid to 306 

form water, extra care was taken to purify the extracted CO2 on a Pyrex vacuum line. For every 307 

torr of CO2 produced from the acid digestion, about 1 to 1.5 torr of water was also produced. To 308 

avert re-equilibration with water, samples were kept under constant vacuum throughout the 309 

reaction and were continuously collected. Water was removed by forcing the sample twice 310 

through an ethanol-liquid nitrogen trap held at less than -85 °C. Sample CO2 was then passed 311 

through silver wool to remove any sulfur compounds (Eiler, 2007). 312 

Purified CO2 was then passed through a homemade stainless-steel column (1.22 m long x 313 

0.3175 cm OD) filled with Poropak Q 50-80 mesh (Waters Technologies Co., USA) and housed 314 

in a gas chromatograph (Varian CP-3800, USA). This step was to ensure that sample CO2 had no 315 

remaining hydrocarbons or halocarbon contaminants, which can interfere with the mass 47 316 

measurement (Eiler and Schauble, 2004). The Poropak Q was ultimately chosen over Supelco Q-317 

Plot due to its better ability to handle organic rich samples. 318 



15 
 

During chromatography, samples were held at a constant -20 °C and carried with helium 319 

at a rate of 5 mL/min for approximately 45 minutes through the column. CO2 was frozen 320 

cryogenically after being forced through the GC column and passed through the water trap two 321 

more times before being placed on the mass spectrometer. The GC column was baked at 150 °C 322 

between each sample run. After every four samples, or once daily, it was baked at 220 °C for 600 323 

minutes (Huntington et al., 2009).  324 

Measurements were performed on a MAT 253 dual-inlet gas-source isotope ratio mass 325 

spectrometer (ThermoFisher Scientific, USA) housed at the Yale University Analytical and 326 

Stable Isotope Center. The MAT 253 was modified to measure masses 44 through 49 327 

simultaneously in dual-inlet mode, alternating between sample gas and reference gas. The 328 

standard three Faraday cups were used to measure masses 44, 45, and 46, with an additional 329 

three cups to measure masses 47, 48, and 49, with the same currents and resistances as Eiler and 330 

Schauble (2004). Further modifications were made to the Yale mass spectrometer to allow 331 

measurement of small samples (Zaarur et al., 2011). Measurement routines were as outlined by 332 

Huntington et al. (2009) and Zaarur et al. (2011): nine acquisitions of 10 cycles each with eight 333 

seconds of integration time for the reference and sample gas each cycle. There were two 334 

additional acquisitions of two cycles each to measure the background voltage. Bulk oxygen and 335 

carbon isotopic compositions were made using Oztech Trading Co. CO2 (Safford, AZ) as a 336 

working standard, with a composition of δ18O = -3.629 ‰ and δ13C = 24.992 ‰, which allowed 337 

for conversion to the VSMOW scale. 338 

Measurements of Δ47 were calculated based on the excess of mass 47 from a stochastic 339 

distribution of isotopologues with varying bulk carbon and oxygen isotopic compositions. The 340 

stochastic distribution was determined by heating pure CO2, with a wide range of δ18O and δ13C 341 
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compositions, to 1000 °C for two hours to reset its Δ47 value (Eiler and Schauble, 2004). These 342 

heated gases were run on a weekly basis, or about every 10 to 15 samples. To correct for scale 343 

compression, which varies with time in a single lab and between labs, CO2 was equilibrated with 344 

water at 25 °C (Affek, 2013; Dennis et al., 2011). Carrara marble was regularly run as an internal 345 

carbonate standard, as well as cylinder CO2 (Airgas, USA).  346 

To fit data into an absolute reference frame (Dennis et al., 2011), data were adjusted 347 

using an empirical transfer function slope that averages changes in the heated gas line over time. 348 

Prior clumped isotope work had used 17O abundance correction values from Gonfiantini et al. 349 

(1995), but their recommended λ of 0.5164 – the relationship between δ17O and δ18O – was 350 

based on a study that used a combination of waters and rocks to estimate the coefficient 351 

(Matsuhisa et al., 1978). Brand et al. (2010) recommended λ = 0.528 as a better representation of 352 

the terrestrial fractionation of surface waters. Additionally, the choice of this λ value, along with 353 

the R17 and R18 values as reported in Brand et al. (2010), appear to make Δ47 measurements truly 354 

independent of the bulk isotopic composition (Daëron et al., 2016). Raw Δ47 were converted 355 

using the Brand et al. (2010) parameters as outlined in Daëron et al. (2016). 356 

 357 

3. Results 358 

3.1 Temperature dependence of Δ47 and independence from bulk composition 359 

The lack of correlation between the clumped isotopic measurement (Δ47) and the isotopic 360 

bulk composition (δ18Ocarbonate and δ13Ccarbonate, hereafter labeled δ
18Oc and δ13C) suggested that 361 

they were independent (Figures 3 and 4). δ13C was assumed to be mostly influenced by diet. The 362 

range of δ13C values was consistent with the fact that gars are predators, or secondary consumers 363 

(Fricke and Pearson, 2008; Gu et al., 1996). In addition, factors other than temperature and 364 
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δ18Owater may influence the δ18Oc – temperature relationship in modern fishes, such as the 365 

specific placement of the carbonate ion in the bioapatite lattice (Kolodny and Luz, 1991). 366 

The lowest Δ47 values obtained from gar scales were 0.657 to 0.664‰ from A. tropicus 367 

specimens from Mexico, and the highest Δ47 values were 0.718 to 0.810‰ from L. osseus 368 

specimens from Michigan, USA. A least squares linear regression of the inverse squared 369 

effective temperature experienced by gars versus Δ47 values produced a calibration line 370 

Δ47 = (0.1095 ± 0.0159) x 106 / T2 – (0.5941 ± 0.0548),   (5)  371 

with R2 = 0.7358 (Figure 5).  372 

A second calibration line was calculated that included elephant tooth enamel as a high 373 

temperature endmember (T = 36.2 °C; Δ47 = 0.582‰; temperature from Kinahan et al. (2007)). 374 

Sand tiger shark dentine was not added because its bulk isotopic composition is different from its 375 

overlying enameloid (Löffler et al., 2019). The fluoride-rich quality of shark bioapatite sets it 376 

apart from the other sampled species in the bioapatite calibration. The enameloid of the 377 

Greenland shark (Löffler et al., 2019; Wacker et al., 2016) was not included because its growth 378 

temperature was not well constrained. These sharks migrate from higher latitudes with 379 

temperatures ~ -2 °C to lower latitudes with water temperatures as warm as 10 °C (MacNeil et 380 

al., 2012), and they are found from just below the surface to >1200 m depths (Yano et al., 2007). 381 

The Greenland shark of Wacker et al. (2016) and Löffler et al. (2019) was recovered off of the 382 

coast of Iceland, which is at the crossroads of several major currents with different salinities, 383 

temperatures, and oxygen isotopic compositions. Temperatures of 7.0 °C are obtained when the 384 

appropriate phosphate-oxygen thermometer (Pucéat et al., 2010) is used to estimate its 385 

temperature. Additionally, the effective temperature of a Greenland shark that on average 386 
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experiences temperatures of 2 °C is 4 °C; for 5 °C, it is 7 °C. The bioapatite from Eagle et al. 387 

(2010) were not included as they correct 17O with the Gonfiantini et al. (1995) λ. 388 

The combined calibration of T vs Δ47 for bioapatite from gars in vivo and for endotherms 389 

that produce true enamel, with known internal body temperature, produce the calibration 390 

Δ47 = (0.0987 ± 0.0140) x 106/T2 – (0.4658 ± 0.0481)    (6) 391 

with R2 = 0.798 (Figure 6). 392 

The Δ47 values from gar scales are skewed high compared to the synthetic apatite of 393 

Löffler et al. (2019). Equation (6) for all bioapatite is more robust due to its Χ2 = 1.410 versus Χ2 394 

= 2.790 for the calibration from gar scales alone in Equation (5). A clear offset is recognized at 395 

colder temperatures (<15 °C MAT). 396 

 397 

4. Discussion 398 

4.1. Comparison to other calibrations 399 

The clumped isotope community is often troubled by the lack of consistency among lab 400 

calibrations, but recent modifications to their development have helped minimize these 401 

discrepancies. This was first addressed in Dennis et al. (2011), who developed an absolute 402 

reference frame established on the projection of Δ47 measurements onto an “absolute scale” 403 

based on theoretical predictions about the equilibrium relationship of Δ47 as a function of 404 

temperature (Wang et al., 2004). The absolute reference frame provides support for inter-405 

laboratory reproducibility to a level of 0.017 and 0.008‰ (1 σ). The heated gas intercept was 406 

also recalibrated to account for the scrambling (the fragmentation and recombination reactions of 407 

the sample CO2) within the ion source of a mass spectrometer. 408 
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There remains some discordance between labs, which some have attributed to differences 409 

in the reaction temperature used for the phosphoric-acid step. It is well known that there is a 410 

temperature-dependent isotopic fraction of CO2 gas produced by phosphoric-acid dissolution of 411 

carbonate. The acid fractionation factor between reactions at 25 °C and 90 °C was re-measured 412 

by Henkes et al. (2013) as 0.076‰ ± 0.007‰, which is within 1 σ error to the original value. 413 

Kelson et al. (2017) set to create a universal calibration using different methods of 414 

synthesizing carbonates over a wide range of temperatures and added these results to the current 415 

pool of Δ47 measurements. The scatter between calibrations decreases with the use of the Brand 416 

et al. (2010) parameters (Kelson et al., 2017). 417 

A clumped isotope calibration using unvarying isotopically very heavy or very light bulk 418 

composition carbonate with the Gonfiantini et al. (1995) parameter may be noticeably different 419 

from a calibration that does not. Zaarur et al. (2013) created isotopically very light δ13C 420 

carbonate—from -35.09‰ to -17.53‰—compared to other synthetic calibrations. Holding the 421 

acid digestion temperature constant, it has a steeper slope, even after correction with Brand et al. 422 

(2010). Kelson et al. (2017) explains the main calibration discrepancy as perhaps arising from 423 

lab differences in isolating the CO2 before isotopic measurement. Lab standards were 424 

reproducible among the setup used by Zaarur et al. (2013) and others, so this is likely not the 425 

cause (Dennis et al., 2011; Henkes et al., 2013). It may be biased because the starting bulk 426 

composition of the synthetic carbonate is lighter from that used in other labs, as they are 427 

generally -20 ‰ or heavier. It likely does not fall on the terrestrial meteoric water line. 428 

When the samples in this study were modified using the 17O correction parameters of 429 

Brand et al. (2010) as exemplified in Daëron et al. (2016), the slope was not affected, only the 430 

intercept, in similar fashion to other 17O corrected synthetic carbonate calibrations (Kelson et al., 431 
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2017). If the bulk composition truly affects the calibration due to the choice of 17O parameters, 432 

the range of δ13C from this study, from -5.29‰ to -9.47‰, should have minimal effects, since 433 

they are not on either extreme: isotopically very enriched or very depleted. 434 

The laboratory set-up used here with a GC column of Poropak Q and constant CO2 435 

entrapment during the reaction is similar to several labs, but it does not account for the 436 

significantly steeper slope seen in bioapatite. Additionally, the in-house standard YCM was run 437 

at 25 °C and 90 °C through a Supelco Q-Plot column and through a Poropak Q column within a 438 

GC. No significant difference was seen in Δ47 among the disparate cleaning methods. Only the 439 

acid digestion temperature had an effect, which was expected. The in-house clumped isotope 440 

standard, Yale Carrara Marble (YCM), has a long-term running average of Δ47abs = 0.418 ± 0.016 441 

(1 σ) at 25 °C. At 90 °C, Δ47abs = 0.357 ± 0.015 (1 σ), an offset within error to the acid 442 

fractionation factor α25-90 = 1.0076 ± 0.007 (Henkes et al., 2013).  443 

   444 

4.2 Biological explanations for discrepancy 445 

The enamel scales of gar are produced by proteins encoded by the genes ambn and enam, 446 

which are also present in lobe-finned vertebrates, including mammals (Braasch et al., 2016). 447 

When carbonate is incorporated into bioapatite, it either takes the place of hydroxyl (A-type 448 

substitution) or phosphate (B-type substitution), with the latter placement 28% more prevalent in 449 

mammalian bone (Rey et al., 1989). 450 

The fractionation factor between inorganic phosphate (and consequently carbonate) and 451 

bioapatite in mammals is species dependent or at least affected by a combination of genetic and 452 

lifestyle influences (Ayliffe and Chivas, 1990; D'Angela and Longinelli, 1990; Longinelli, 1984). 453 

Gar likely follow a calibration curve similar to mammals, but a mammalian-only calibration 454 
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curve is not feasible because mammals maintain a constant 37 °C body temperature regardless of 455 

phylogenetic placement. 456 

The potential of isotopic mixing as postulated by Henkes et al. (2013) for mollusks 457 

should not apply for gar; the mollusks were time averaged over a year, whereas these fish are 458 

averaged over several years to decades. Even if isotopic mixing affected the calibration curve, 459 

Henkes et al. (2013) estimated that the effect it would have on the mollusk curve would be 460 

minimal. 461 

Incorporation of carbon from dissolved inorganic carbon (DIC) from dietary sources has 462 

been observed in shark teeth (Vennemann et al., 2001). This DIC has a residual low Δ47 signal 463 

when incorporated into body tissues, which only becomes an issue if the DIC was diffused from 464 

the environment. The one correlation that may indicate kinetic isotope effects, δ18Ocarbonate, shows 465 

no relationship to Δ47. No enrichment in measured δ18Ocarbonate over expected values is seen for 466 

samples. There is also no correlation between Δ47 and δ13C (Figure 4 B). 467 

 468 

4.3 Benefits of natural calibrations 469 

Laboratory experiments can only partially recreate complex isotopic systems. Watkins et 470 

al. (2014) found that non-equilibrium isotopic effects from inorganic calcite precipitation can 471 

produce up to a 2‰ δ18O offset. The universal calibration of Kelson et al. (2017) may be true for 472 

inorganic calcite, but there are other confounding variables, especially those affiliated with 473 

biogenic mineral precipitation (e.g., Henkes et al., 2013; Saenger et al., 2012; Thiagaraian et al., 474 

2011; Zaarur et al., 2011). Hidden variables due to biology or other factors are accounted for 475 

when using a natural calibration on natural samples. In this regard, the Δ47 of bioapatite samples, 476 

including fossils, should not be converted to temperature using a purely carbonate calibration. 477 
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 478 

5. Conclusions 479 

The clumped isotopic composition of bioapatite from multiple sources, including gar 480 

scales, produces a real temperature signal that is different from the Δ47-T relationship for 481 

carbonates, most notably at low temperatures. This divergence cannot be attributed to laboratory 482 

differences or disparity in data transformation and therefore likely represents a unique 483 

relationship possessed by vertebrates. Its steeper slope makes it more sensitive to temperature 484 

changes, further increasing its utility on land. 485 

Ganoine is found not only in gar scales but also in the scales of closely related species, 486 

such as the living Polypteriformes and fossil Semionotiformes. Assuming a similar Δ47-T 487 

relationship occurs for these ancient fish, terrestrial temperatures could be estimated as far back 488 

as the Triassic. Today, gar are commonly seen as ‘trash fish,’ as they can inhabit low-quality 489 

water and their tough exterior makes them largely inedible. This fundamental survivorship 490 

quality, along with paleontologists’ relative apathy toward them, gives gar and their affiliated 491 

isolated scales great potential to reconstruct past terrestrial climates.  492 

Furthermore, the independent temperature proxy, Δ47, can be coupled with δ18Ocarbonate 493 

from the same single clumped isotope measurement to infer δ18Owater. The δ18Ocarbonate value 494 

could be replaced with one from δ18Ophosphate, as it provides a more robust signal. The δ18Owater 495 

values from a single measurement offer insight into the hydrological cycle. When applied to 496 

fossil samples from terrestrial paleoenvironments across a region or across time, these values can 497 

indicate changes in the cycle. 498 

Gar scales are abundant in the fossil record. Two of the most concentrated localities 499 

where gar scales are found are the Green River Formation of Wyoming and the Messel 500 
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Formation in Germany (Grande, 2010), both of which formed during the Eocene period. While 501 

the greatest concentrations of gar fossils are from North America and Europe, there are also 502 

notable fossil deposits from the Cretaceous of Morocco and Brazil. All of these deposits are 503 

inferred to be fluvial or lacustrine in origin and represent glimpses into terrestrial environments. 504 

 505 
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Locality Coordinates MAT (°C) Effective T (°C) Seasonal Temperatures (°C) (1σ error) 

       AMJ                  MJJA             DJF 

n 

Bay Port,  

MI, USA 

43.8569° N, 83.3743° W 9.12 ± 0.22 11.4  14.31 ± 0.29 19.60 ± 0.28 -3.72 ± 0.52 3 

North Scott 

Lake, MI, USA 

42.3307° N, 85.9988° W 

 

8.57 ± 0.17 12.9  13.53 ± 0.31 

 

18.61 ± 0.28 -3.25 ± 0.48 2 

Rend Lake Dam, 

IL, USA 

38.0371° N, 88.9562° W 

  

13.61 ± 0.19 17.2  19.31 ± 0.22 

 

23.48 ± 0.21 1.67 ± 0.38 1 

Ullin, IL, USA 37.2733° N, 89.1838° W 14.21 ± 0.21 16.4  19.10 ± 0.31 

 

23.57 ± 0.32 2.50 ± 0.39 1 

Estill Springs, 

TN, USA 

35.2557° N, 86.1332° W 14.87 ± 0.15 17.2  19.43 ± 0.19 23.74 ± 0.22 4.09 ± 0.37 3 

Yazoo City,  

MS, USA 

32.8966° N, 90.5419° W 

 

18.41 ± 0.21 20.1  22.78 ± 0.28 26.35 ± 0.29 8.78 ± 0.39 6 

Silver Springs,  

FL, USA 

29.1638° N, 82.0777° W 21.73 ± 0.16 22.3  24.33 ± 0.16 26.76 ± 0.08 15.47 ± 0.50  1 

Villahermosa, 

Tabasco, MX 

17.9970° N, 92.9280° W 24.81 ± 0.21 26.3  27.08 ± 0.26 27.09 ± 0.25 21.40 ± 0.37 1 

Table 1. Seasonal and annual climatic data from NOAA’s National Centers for Environmental Information Climate Data Online 

and Mexico’s Servicio Meteorológico Nacional and are averaged for approximately 15 years before the collection date of the gar 

specimen. AMJ = April May June, MJJA = May June July August, DJF = December January February 
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Sample Locality δ18Owater n Species δ18O  

(‰ VPBD) 

δ13C  

(‰ VPBD) 

Δ47  

(Abs. Brand) 

Δ47 SE 

MDF 1 Yazoo City, 

Mississippi 

-3.91 3 L. osseus 0.037 --9.357 0.674 0.008 

MDF 2  4 L. osseus 1.224 --6.759 0.644 0.005 

MDF 3  3 L. osseus -0.009 --7.334 0.697 0.006 

MDF 4  2 L. osseus -1.993 --9.500 0.645 0.027 

MDF 5  3 L. osseus 1.765 --7.890 0.673 0.011 

MDF 6  3 L. osseus 0.666 --7.468 0.680 0.015 

     -0.329    

YPM 27686 Estill Springs, Tennessee -5.68 4 L. osseus  --5.966 0.674 0.007 

YPM 27692  3 L. osseus -0.494 --6.979 0.710 0.017 

YPM 27693  3 L. osseus 0.133 -7.066 0.695 0.007 

     -3.581    

UMMZ 230705v1 North Scott Lake, 

Michigan 

-7.94 3 L. oculatus  -7.682 0.789 0.007 

UMMZ 230705v2  2 L. oculatus -5.178 -8.051 0.768 0.007 

     -0.370    

UMMZ 180463v1 Bay Port, Michigan -9.37 3 L. osseus  -5.981 0.754 0.015 

UMMZ 180463v2  2 L. osseus -6.606 -6.188 0.741 0.011 

UMMZ 180463v3   2 L. osseus -2.785 -5.329 0.764 0.046 

     6.118    

YPM 27215 Rend Lake Dam, Illinois -4.13 2 L. osseus  -7.716 0.687 0.0002 

     -2.777    

IX-03-01 Ullin, Illinois -4.13 3 L. osseus  -6.084 0.726 0.012 

     -2.344    

UMMZ 145166 Silver Springs, Florida -0.84 3 L. osseus  -11.311 0.668 0.013 

UMMZ 145167  4 L. osseus -1.944 

 

-5.016 0.666 0.028 

         

UMMZ 187727 Tabasco, Mexico -2.64 3 A. tropicus 4.595 -6.768 0.661 0.002 

         

Table 2. Data for all samples. Δ47 values are given in the absolute reference frame as outlined in Dennis et al. (2011). 17O is 

corrected using the Brand et al. (2010) parameters. Abbreviations are YPM for the Yale Peabody Museum, UMMZ for the 

University of Michigan Museum of Zoology, and MDF for Mississippi Department of Wildlife, Fisheries, and Parks. 
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Figure 1. Map of specimen localities (white circles) and the closest weather station (light blue 

stars) for temperature data in table 1 (National Oceanic & Atmospheric Administration, 

National Environmental Satellite, Data, and Information Science) superimposed on MAT 

(WorldClim Global Climate Data). Although gars do not migrate, specimens were 

preferentially chosen from dams or reservoirs or small streams to minimize temperature 

fluctuations. 
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Figure 2. Comparison of Teffective against MAT (°C) for 19,874 North America stations 

(excluding Greenland) for the time interval from 1900 to 2018. 
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Figure 3. Comparison between δ18O (VPBD) and δ13C. There is no correlation between δ18O 

and δ13C. 



33 
 

 
 

 

 
 

 

 
 

 

 

 

0.6

0.65

0.7

0.75

0.8

-12 -11 -10 -9 -8 -7 -6 -5 -4

Δ
4

7
(‰

)

δ13C (‰)

0.6

0.65

0.7

0.75

0.8

-8 -6 -4 -2 0 2 4 6 8

Δ
4

7
 
(‰

)

δ18O (‰ VPBD)

Figure 4. Comparison between Δ47 and δ13C (A) and Δ47 and δ18O (VPBD) in gar scales (B). 

There is no correlation between δ18O or δ13C and Δ47. Δ47 is independent of the bulk 

composition. 
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Figure 5. Empirical relationship between Δ47 in gar scales and temperature (K). Error 

bars are 1 SE.  
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Figure 6. Empirical relationship between Δ47 in biogenic apatite, including gar scales, and 

temperature (K). White open circle is elephant enamel from Löffler et al. (2019). 


