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Abstract

Terrestrial vegetation is known to be an important sink for carbon dioxide (CO2). However, fluxes to and from vegetation
are often not accounted for when studying anthropogenic CO2 emissions in urban areas. This project seeks to quantify urban
biogenic fluxes in the Greater Toronto and Hamilton Area located in Southern Ontario, Canada. Toronto is Canada’s most
populated city but also has a large amount of green-space, covering approximately 13 % of the city. In addition, vegetation
is not evenly distributed throughout the region. We therefore expect biogenic fluxes to play an important role in the spatial
patterns of CO2 concentrations and the overall local carbon budget. In order to fully understand biogenic fluxes they can be
partitioned into the amount of CO2 sequestered via photosynthesis, gross primary productivity (GPP), and the amount respired
by vegetation, ecosystem respiration (Reco). Solar induced chlorophyll fluorescence (SIF) measured from space has been shown
to be a valuable proxy for photosynthesis and thus can be used to estimate GPP. Vegetation models, including the Urban
Vegetation Photosynthesis and Respiration Model (UrbanVPRM) and the SIF for Modelling Urban biogenic Fluxes (SMUrF)
model, have also been used to estimate both GPP and Reco In this study we compare modelled and SIF-derived biogenic CO2
fluxes at a 500 m by 500 m resolution, to ground-based flux tower measurements in Southern Ontario to determine how well
these methods estimate biogenic CO2 fluxes. This study works towards determining the importance of biogenic fluxes in the
Greater Toronto and Hamilton Area. Furthermore, the results of this work may inform policy makers and city planners on how

urban vegetation affects CO2 concentrations and patterns within cities.
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MOTIVATION AND INTRODUCTION

Main Goal: Estimation of the net effect of urban vegetation on
the carbon cycle in the Greater Toronto and Hamilton Area

« In order to properly monitor the amount of CO, emitted by cities it is important to
understand the biogenic fluxes of CO> in and arround the area of study.

« Accounting for vegetation will result in better estimates of anthropogenic fluxes which in
turn will help cities to monitor and reduce their greenhouse gas emissions (Newman et
al. 2013).

o Let's start with some definitions:

o Net Ecosystem Exchange (NEE): The net amount of CO, exchanged between the
atmosphere and vegetation

o Gross Primary Productivity (GPP): Amount of CO» sequestered by vegetation via
photosynthesis

o Ecosystem Respiration (Reco): Amount of CO» respired by vegetation

NEE = Reco - GPP
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Figure 2: During photosynthesis some energy is re-emitted at a longer
wavelength as Solar Induced Fluorescence (SIF), with peaks near 685 nm
and 740 nm. Figure from Mohammed et al. (2019).

« Solar Induced Fluorescence (SIF), a by-product of photosynthesis, has been shown to be linearly
related to GPP on regional scales (Frankenberg et al., 2011; Magney et al., 2019; Turner et al.,
2020; Wood et al., 2017).

« SIF has been shown to be a better proxy for photosynthesis than Vegetation Indices which use
reflectance to estimate photosynthesis (Frankenberg et al., 2011).

o Therefore SIF can be used to estimate GPP.



METHODS
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Figure 3: SIF measured from TROPOMI downscaled using NIR, from MODIS over the Greater
Toronto and Hamilton Area averaged over June 4t"— 17" 2018,

e We used SIF from the satellite-borne TROPOspheric Monitoring Instrument (TROPOMI).

« Using the downscaling method outlined in Turner et al. (2020) we took overlapping
measurements of SIF from TROPOMI and averaged them. This average is weighted by
the Near Infrared Reflectance of vegetation index (NIR,) (Badgley et al., 2017) from the
MODerate Resolution Imaging Spectroradiometer (MODIS) to allocate the SIF signal to
photosynthesizing vegetation.

e We obtained a 500 m x 500 m resolution of SIF over the Greater Toronto and Hamilton
Area (Figure 3).
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Figure 4: Relationship between downscaled TROPOMI SIF and GPP measured at three flux
towers in Southern Ontario.

« We compared the downscaled TROPOMI SIF to GPP measured at three nearby flux
towers to obtain a linear relationship between SIF and GPP (Figure 4).

« We used this relationship with the downscaled SIF product to estimate GPP over the
Greater Toronto and Hamilton Area at a spatial resolution of 500m x 500m (Figure 5).
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Figure 5: GPP in the Greater Toronto and Hamilton Area from downscaled SIF (Figure 3) scaled
by a linear relationship between SIF and GPP (Figure 4). Flux tower locations are indicated by
white stars.

e The Solar-Induced Fluorescence for Modeling Urban biogenic Fluxes (SMUrF) model, developed
by Wu et al. (2021), uses SIF and meteorological data to model biogenic fluxes, including
those in urban areas.

« SMUTF uses the spatially Contiguous SIF (CSIF) data product at a resolution of 0.05° and
4-days and thus the original SMUrF code (CSIF-SMUrF) has a spatial resolution of
0.05° x 0.05° (Figure 6a) (Zhang et al., 2018; Wu et al., 2021).

« We updated SMUTrF to use the downscaled TROPOMI SIF product. This new product
(TROPOMI-SMUrF) has a resolution of 500 m x 500 m (Figure 6b).
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Figure 6: Using downscaled TROPOMI SIF with the SMUrF model (b) obtains a significantly
higher spatial resolution compared to SMUrF with CSIF (a).



KEY RESULTS

Downscaled SIF from TROPOMI
coupled with the SMUrF model
has a 10x finer spatial resolution
compared to SMUrF using the
CSIF product, and can reproduce
biogenic fluxes at 2 out of 3 flux
towers in Southern Ontario.

We compared the Solar-Induced Flurescence (SIF) for modelling Urban biogenic Fluxes

(SMUrF) modelled GPP, Reco, and NEE using Contiguous SIF (CSIF) and downscaled
TROPOMI SIF to the biogenic fluxes measured at 3 flux tower locations in Southern
Ontario (indicated by stars in Figure 5 and 11).

We found that for the 4-day GPP estimates, TROPOMI-SMUTF better reproduced the fluxtower

GPP measurements at 2 out of 3 towers compared to CSIF-SMUTrF (Figure 7).
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Figure 7: 4-day TROPOMI-SMUrF (orange) GPP agrees better with 4-day averaged flux tower
GPP (blue crosses) than does CSIF-SMUrF (green) at 2 out of three flux towers.

e Hourly GPP, Ry, and NEE from TROPOMI-SMUrF and CSIF-SMUrF were compared to
estimates from flux towers (Figure 8).

« When using data from all three flux towers, TROPOMI-SMUTrF has slightly better 1 to 1
correlation with flux tower data than CSIF-SMUTrF.

e Reco is poorly correlated between both TROPOMI-SMUrF and CSIF-SMUrF and fluxtower

estimates at hourly scales.
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Figure 8: Correlation between hourly TROPOMI-SMUTF (left column) or CSIF-
SMUTF (right column) GPP (top row), R...(middle row) and NEE (bottom row),
and flux tower estimates at three flux tower locations in Southern Ontario.



DISCUSSION
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Figure 9: Daily averaged GPP (column 1), R, (column 2), and NEE (column
3) modelled by SMUTrF using downscaled TROPOMI SIF (orange), and CSIF
(green) compared to fluxtower estimates (blue) at three fluxtowers during 2018

and 2019.




« Although the overall TROPOMI-SMUrF agrees fairly well with the flux tower
measurements, compared to CSIF-SMUrF, there is a significant disagreement in GPP
and R, at the Turkey Point Deciduous plot during late spring and early summer in 2018
and late spring in 2019.

« One potential reason for the disagreement is that the NIRv values over the Turkey Point
Deciduous site are significantly higher than the surroundings in spring and early summer
while they are comparable to the surroundings in late summer (Figure 10).
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Figure 10: NIRv, from the Harmonized Landsat Sentinel-2 surface reflectance dataset (Claverie
et al., 2018) over the Turkey Point Deciduous flux tower (red dot) in early summer (left) and late
summer (right) 2018.

« Since downscaled SIF is weighted by NIRv, a higher NIRv signal will allocate more SIF to
that location than surrounding locations. Since SIF and NIRv are not perfectly correlated
(Turner et al., 2020) this could be causing a high bias in the downscaled SIF (and
therefore TROPOMI-SMUrF GPP) during early summer.

« Another potential reason for the disagreement may be that the flux tower is measuring
fluxes from areas outside of the forest plot thus altering the fluxes observed at the tower.
This may also affect the relationship between the TROPOMI-SMUrF GPP and the Turkey
Point Deciduous flux tower values.

« Further investigation is required to determine the root cause of the disagreement
between the modelled TROPOMI-SMUrF fluxes and those determined from this particular
flux tower.



FUTURE WORK
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column CO, and the estimated biogenic fluxes to try to asses the contribution of

fluxes from vegetation to the measurement. Fluxtowers are indicated by white
stars.

Future work includes:

« Further investigation of the disagreement between TROPOMI-SMUrF fluxes and those
estimated at the Turkey Point Deciduous flux tower.
o Running TROPOMI-SMUrF without weighting TROPOMI-SIF by NIRv

o Investigation of the effect of wind speed and direction on fluxes at theTurkey Point
Deciduous flux tower.

« Running and comparing the Urban Vegetation Photosynthesis and Respiration Model
(UrbanVPRM) to SMUrF and fluxtower estimates of GPP, R, and NEE (Hardiman et
al., 2017).

« Using downscaled SIF, SMUrF, and/or UrbanVPRM to estimate vegetative fluxes of
COs, in the Greater Toronto and Hamilton Area.

« Combining column CO, measurements, from ground-based EM27/Sun instruments

located throughout the GTA and the Orbiting Carbon Observatory versions -2 and -3, with

vegetative fluxes to better constrain anthropogenic CO, emissions.



« Applying this method to Canada’s 4 largest cities to better estimate the role of vegetation
on the urban carbon cycle.
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ABSTRACT

Terrestrial vegetation is known to be an important sink for carbon dioxide (CO,). However,
fluxes to and from vegetation are often not accounted for when studying anthropogenic
CO, emissions in urban areas. This project seeks to quantify urban biogenic fluxes in the
Greater Toronto and Hamilton Area located in Southern Ontario, Canada. Toronto is
Canada's most populated city but also has a large amount of green-space, covering
approximately 13 % of the city. In addition, vegetation is not evenly distributed throughout
the region. We therefore expect biogenic fluxes to play an important role in the spatial
patterns of CO, concentrations and the overall local carbon budget. In order to fully
understand biogenic fluxes they can be partitioned into the amount of CO, sequestered via
photosynthesis, gross primary productivity (GPP), and the amount respired by vegetation,
ecosystem respiration (R..,). Solar induced chlorophyll fluorescence (SIF) measured from
space has been shown to be a valuable proxy for photosynthesis and thus can be used to
estimate GPP. Vegetation models, including the Urban Vegetation Photosynthesis and
Respiration Model (UrbanVPRM) and the SIF for Modelling Urban biogenic Fluxes
(SMUTrF) model, have also been used to estimate both GPP and R.,. In this study we
compare modelled and SIF-derived biogenic CO, fluxes at a 500 m by 500 m resolution, to
ground-based flux tower measurements in Southern Ontario to determine which method
best estimates biogenic CO, fluxes. These fluxes will also be compared to local
measurements of total column CO,. This study works towards determining the importance
of biogenic fluxes in the Greater Toronto and Hamilton Area. Furthermore, the results of
this work may inform policy makers and city planners on how urban vegetation affects
CO, concentrations and patterns within cities.
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