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Abstract

In this paper, a neural-network-based super-resolution technique is applied to the reconstruction of significant wave height and

other sea state variables calculated over coarse meshes by a spectral wave model. The potential of the technique is demonstrated

in a case study and the efficiency of the training process as well as the requirements with respect to data quality are analyzed.

In this particular example, reasonable accuracy is achieved using only one year of training data with the help of traditional

Machine Learning methods like Transfer Learning and Data Augmentation. The presented method leads to up to 50-times lower

computation time in comparison to an equivalent traditional direct modeling approach at fine resolution. Overall, incorporation

of the presented method into major wave forecasting systems has the potential to allow for the creation of “zoomed-in’ areas

of interest without the requirement for supplementary calculations at higher resolution.
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Key Points:5

• Deep learning super-resolution methods can be used to reconstruct coastal sea states.6

• The method can substitute high-resolution results from low-resolution computa-7

tions.8

• Super-resolution can provide local high-resolution wave forecasts without addi-9

tional computations in operational models.10
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Abstract11

In this paper, a neural-network-based super-resolution technique is applied to the12

reconstruction of significant wave height and other sea state variables calculated over coarse13

meshes by a spectral wave model. The potential of the technique is demonstrated in a14

case study and the efficiency of the training process as well as the requirements with re-15

spect to data quality are analyzed. In this particular example, reasonable accuracy is16

achieved using only one year of training data with the help of traditional Machine Learn-17

ing methods like Transfer Learning and Data Augmentation. The presented method leads18

to up to 50-times lower computation time in comparison to an equivalent traditional di-19

rect modeling approach at fine resolution. Overall, incorporation of the presented method20

into major wave forecasting systems has the potential to allow for the creation of “zoomed-21

in” areas of interest without the requirement for supplementary calculations at higher22

resolution.23

Plain Language Summary24

Accurate wave height forecasts on a daily basis are essential for many coastal com-25

munities worldwide. Though multiple operational wave models provide access to global26

wave forecasts, local high-resolution output is often not available. In this paper, we pro-27

pose an approach based on neural networks to convert low-resolution computations into28

higher resolution. In our case study, this method is reasonably accurate, it enhances the29

resolution up to 16 times, and can be more than 50 times faster than what is required30

for the actual high-resolution calculation. After a one-time training process of the neu-31

ral network, it has the potential to be incorporated into major forecasting systems, al-32

lowing to ”zoom” into specific regions of interest in real-time.33

1 Introduction34

Many coastal communities rely on daily wave height forecasts for the purpose of35

safety and hazard mitigation. Over the last decades, improvements in numerical meth-36

ods have lead to more accurate predictions of sea states, which had a considerable in-37

fluence on marine transport, fisheries, and ocean engineering. Global efforts of produc-38

ing ocean observation networks paired with national ocean services (e.g., the National39

Oceanic and Atmospheric Administration), national and international buoy networks (e.g.,40

the CANDHIS network in France - https://candhis.cerema.fr), and global ocean wave41

models like SWAN (Booij et al., 1999) and WAVEWATCH III (Tolman, 2009) provide42

critical information - often in real-time. However, high-resolution data, particularly in43

the coastal zone, is often missing due to computational constraints associated with large44

computational domains in combination with fine meshes. Nevertheless, the need for lo-45

cal high-resolution data still exists at this scale, since local forecasts for wave-driven pro-46

cesses are increasingly based on refined computations.47

The recent rise in interest in Machine Learning and its ongoing integration into nat-48

ural sciences can be largely attributed to its ability to perform various computational49

tasks faster and with similar accuracy after an initial training phase has been completed.50

In this article we present a super-resolution approach to decrease computation time for51

forecasts of up to 50 times compared to traditional direct modeling of an equivalent do-52

main at fine resolution. The idea is based on training a neural network that converts low-53

resolution (LR) results to a higher resolution for a specific study area. The main advan-54

tage of this approach is that the computation of a low-resolution forecast and the sub-55

sequent conversion are considerably faster than a direct high-resolution (HR) computa-56

tion. Furthermore, once trained, this model has the potential to be directly linked to the57

output of global ocean wave models, thus providing local high-resolution results on the58

fly without the need for costly direct calculations.59
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60

Super-resolution has been an active field of research in computer vision for almost61

a decade. Recently, it also started to be applied to fluid mechanics - especially in the field62

of turbulence (Kim et al., 2020; Gao et al., 2021). In ocean sciences, deep-learning-based63

super-resolution was already successfully applied to remote sensing data of sea-surface64

temperature (Ducournau & Fablet, 2016; Su et al., 2021). Furthermore, treating grid-65

ded bathymetric data as digital images, Sonogashira et al. (2020) enhanced the resolu-66

tion of coarse bathymetric charts by outperforming naive interpolation. This showcased67

that super-resolution might considerably reduce the amount of measurements needed.68

Even though previous papers addressed the need for improving local forecasts with neu-69

ral networks (Londhe et al., 2016; James et al., 2018), this is the first time, to the best70

of our knowledge, that super-resolution techniques are applied to coastal wave model-71

ing.72

73

In the present paper, we propose to apply the Downsampled Skip-Connection Multi-74

Scale (DSC/MS) neural network introduced by Fukami et al. (2019) to convert low-resolution75

SWAN computations to an up to 16-times higher resolution. In the first part of this pa-76

per, the workflow is explained with a focus on data processing and potential data en-77

hancement methods. We then present the results from an application of the model to78

a study case for the nearshore area at Biarritz (SW France). Lastly, we discuss our re-79

sults, the presently existing limitations of this approach, and the potential for future re-80

search.81

2 Materials and Methods82

As a first step to construct a framework for neural-network-based super-resolution83

it is necessary to obtain a training and test data set from a coastal wave model .84

2.1 SWAN and Data Pre-processing85

For the creation of a data set with matching LR and HR images, we compute var-86

ious quantities including significant wave height HS , peak wave period TP and mean wave87

direction θ with the third-generation spectral wave model SWAN (Simulating WAves Nearshore)88

(Booij et al., 1999) for a part of the coastal area near Biarritz (Fig. 1).89

The area of interest is nested inside a coarser grid that is forced by homogeneous90

spectral boundary conditions taken from the HOMERE hindcast database (Edwige et91

al., 2013), at the location of the Donostia buoy (i.e., around 35km from Biarritz in a wa-92

ter depth of about 450m). The wave data set, which is considered for this work covers93

a two-year time period spanning from January 01, 2018 to December 31, 2019. For the94

HR nested grid, we chose a grid with 160 x 160 quadratic cells (8 km in x- and y-direction95

with ∆x = ∆y = 50m), which is of sufficient resolution to capture small variations in96

the wave regime, while enabling down-scaling by multiples of two. Consequently, the cor-97

responding LR grids are of size 40 x 40, 20 x 20, and 10 x 10.98

The bathymetry data was obtained from the publicly-available 0.001 ◦ precision99

Digital Terrain Model ”MNT bathymétrique de façade Atlantique” provided by the French100

Service Hydrographique et Océanographique de la Marine (SHOM) (SHOM, 2015) and101

interpolated with Octave (Eaton et al., 2020) to the various grid sizes.102

With the objective to demonstrate the feasibility of the application of neural-network-103

based super-resolution to ocean wave modeling, we use basic, but still realistic settings104

for the SWAN computations. In particular, wind forcing, wind growth, and white-capping105

are not taken into account. The water level was set constant and equal to the mean wa-106
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Figure 1. Bathymetry map of the study area and the locations of the outer and the nested

grid. (Top left panel : location of the study site on the French Atlantic coast.)

ter level 2.25m. Depth-induced wave breaking was modeled with constant values α =107

1 and γ = 0.73 adapted from Battjes and Stive (1985). Bottom friction is based on Madsen108

et al. (1988) with a constant coefficient of 0.085.109

We note that the SWAN model returns NANs for cells that fall across the coast-110

line. Since Neural Networks cannot work with NANs, they have to be addressed sepa-111

rately as discussed in the workflow in section 2.6.112

2.2 Neural-Network architecture113

For our neural network architecture, we used the hybrid Downsampled Skip-Connection114

Multi-Scale (DSC/MS) model presented in Fukami et al. (2019), given their success in115

reconstructing turbulent flows and its easier implementation and much lower training116

time as compared to, for example, Generative Adversarial Networks (GAN) (Stengel et117

al., 2020). Since quality literature exists on the topic of Deep Learning, Neural Networks,118

and more specifically Convolutional Neural Networks (CNN) and their application to im-119

age processing, we refer the interested reader to one of the following sources for an in-120

troduction to the topic (Guo et al., 2016; Rawat & Wang, 2017; Aloysius & Geetha, 2018).121

As for the model employed, it is based on a CNN, but is modified to improve the recon-122

struction of both large and small-scale patterns. The modifications include data com-123

pression, which makes the network more robust to rotations and translations (Ngiam et124

al., 2010) and skipped connections, that reduce difficulties concerning the convergence125

of the weights often seen in deep CNNs (He et al., 2016). This is paired with the multi-126

scale model by Du et al. (2018), which comprises multiple CNN filters of varying length127

to capture a range of scales. For more detailed information, we refer to the original ar-128

ticle of the author.129

2.3 Data Augmentation130

Improvements of the predictions made by the neural network can be achieved though131

an artificial increase of the size of the data set by modifying the labeled data in a real-132
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istic way. This is a common procedure, especially in the area of image recognition (Perez133

& Wang, 2017). As an example, a picture of a recognizable object can be mirrored hor-134

izontally or the brightness and contrast of the image can be changed, but the object in135

the picture would still be recognizable. These artificial modifications help the neural net-136

work to generalize better and consequently enhance the results (Shorten & Khoshgof-137

taar, 2019).138

In this study, we perform data augmentation on the significant wave height data139

set by adding a random uniformly distributed offset between zero and five meters to each140

data instance, to artificially account for wave heights in different regimes. The distribu-141

tion parameters are arbitrary but realistic and worked well in our case. Excessively small142

or large offsets deteriorate the performance of the data augmentation. It should be noted143

that the same offset has to be applied to the input and reference data instances.144

2.4 Transfer Learning145

Another commonly used technique when working with neural networks is trans-146

fer learning (Pan & Yang, 2010), where some or all of the weights of another already trained147

neural network are reused. Indeed, the lower layers of a network tend to learn small-scale148

features that might contain useful information for similar tasks.149

Here, we first create artificial LR input by downsampling the reference HR sam-150

ples with average pooling. This operation computes the average over a so-called pool-151

ing window that slides with a given stride s over the whole image. In our case the given152

HR grid size is 160x160 and the pooling window is 4x4 (resp. 8x8, or 16x16) with a stride153

of s = 4 (resp. 8, or 16). The output is a LR image with a 40x40 (resp. 20x20, or 10x10)154

grid, where each pixel corresponds to an average of a 4x4 (resp. 8x8, or 16x16) part of155

the original data instance.156

We then train the neural network with the average pooled LR images as an input157

and the corresponding HR images as the references. Models trained from average pooled158

data usually predict well, given that comparatively much of the information is retained159

after the downsampling. The weights obtained by training on the averaged pool data are160

taken to initialize the weights of the actual neural network, which is trained on the di-161

rectly modeled data. This leads to faster convergence and commonly improves the mean162

square error (MSE). However, the pre-training on the averaged pool model can take about163

as long as training the actual execution of the model, which makes transfer learning com-164

putationally expensive. Nonetheless, training is a one-time cost, which is typically com-165

pensated by the considerably quicker run time after training.166

2.5 Bicubic Interpolation167

It is also possible to upsample the LR image to the reference grid size with bicu-168

bic interpolation to further minimize the prediction error. This is a standard technique169

in image super-resolution (Dong et al., 2016) and it helped to improve the model results170

in our study for certain configurations.171

2.6 Workflow172

Our workflow is summarized in Fig. 2. First, the data set is obtained by comput-173

ing a coastal wave model over two grids - one with high and the other one with low res-174

olution. The data is then split into ”snapshots”, i.e. into files containing a particular dis-175

tribution of a variable (e.g., Hs) across the numerical domain at one time step. In our176

case, the sampling interval is one hour in both the high and low resolution data set. As177

a next step, it is customary to set aside a certain fraction of the whole data set for test-178

ing purposes. Then, the rest of the data is divided into a training and validation set. The179
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former is used by the model to adjust the weights, whereas the latter is for hyper-parameter180

tuning and performance assessment of the model after each training epoch. All of the181

low-resolution data, including the test data, is upsampled by a simple nearest-neighbor182

scheme to enable passing the input to the neural network. This means that if the low-183

resolution grid has 4-times less cells, each pixel gets copied 4 times to fill the high-resolution184

grid size (Sonogashira et al., 2020). Alternatively, this step is skipped and replaced by185

upsampling with a bicubic interpolation method. In all cases, the NaNs resulting from186

the coastline of the coastal wave model are replaced by zero, as the neural network han-187

dles only numbers. If necessary, the training set is enhanced artificially by performing188

data augmentation. Alternatively, or additionally, it is also possible to train a pre-model,189

on average-pooled data, of which the weights are then used for transfer learning. After190

the optional data treatment the model is trained with ADAM optimization (Kingma &191

Ba, 2014) and early stopping (Prechelt, 1998). It is then evaluated with the test set to192

obtain a realistic estimation of the performance of the neural network. If required, cer-193

tain parameters are adjusted and the model is retrained. Lastly, after a satisfactory re-194

sult is reached, the model is trained with all the data available, including the test data195

to then deploy the neural network.196

Figure 2. Workflow for training a DSC/MS model from data of a coastal wave model.

2.7 Application197

In the present study, we run a pair of high- and low-resolution SWAN computa-198

tions for the two year period between January 01, 2018 and December 31, 2019. For each199

model, we use the first year for training (80%) and validation (20%), and the second200

year solely for testing to get a realistic estimation of the performance of the model over201

various sea states. We perform data augmentation as described in section 2.3 on 2000202

data instances randomly sampled from the training set. Finally, the three models are trained203

to convert modeling results of significant wave height to a grid size of 160x160 from one204

of 40x40, 20x20, and 10x10, respectively.205

3 Results206

In Fig. 3 the low-resolution inputs along with the corresponding predictions and207

their MSE are shown. For comparison, the high-resolution reference snapshot is displayed208

as well. The data instance was chosen as being close to the average wave regime.209
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In the three cases, the high-resolution computations are well approximated by the210

reconstructions. The prediction not only correctly captures most of the wave features,211

but also reconstructs the original coastline in a sense that the neural network predicts212

negligible values (< 0.01) for values on land. Setting values lower than a small thresh-213

old to NaN results in a near-perfect reconstruction of the original coastline. This turns214

out remarkably well in particular for the third model with an original grid size of 10x10215

where the low-resolution input only provides very coarse information regarding wave height216

patterns and coastline.217

Figure 3. Reconstructions of direct high-resolution computations from different lower reso-

lution calculations. The MSE is shown for the predictions. The data instance is from April 21,

2019 at midnight.

In general, the results improved after performing data augmentation or transfer learn-218

ing. In certain cases, mostly in models converting 40x40 grid sizes, application of bicu-219

bic interpolation also reduced the mean-square error. For other grid sizes, however, pre-220

dictions usually deteriorated. Here, only the results without any prior data ”enhance-221

ment” are shown to demonstrate the feasibility of the method in its simplest form. Var-222

ious combinations of the techniques mentioned here, paired with careful hyperparam-223

eter tuning, and possible normalization of the data set can significantly improve the pre-224

dictions. However, a thorough analysis is beyond the scope of this article.225
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Models trained on the peak wave period or direction performed reasonably well.226

However, the overall patterns were not reproduced as sharply and accurately as in the227

case of the significant wave height. This might be due to the more heterogeneous nature228

of those two variables, as well as larger absolute values. The latter might be mitigated229

by prior normalization.230

For a quantitative overview of the most common reconstruction errors, we compute231

the prediction for every data instance in the test data set and subtract it from the cor-232

responding reference to obtain the deviation. We then average the LR input, the pre-233

diction, the HR references and the errors, which are shown in Fig. 4 for the reconstruc-234

tion of a 10x10 grid. The mean errors are commonly the most prominent around the vis-235

ible patterns, with a tendency to underestimate large and overestimate small wave heights.236

Nonetheless, the average error amounts only to a few centimeters, in consistency with237

errors of single data instances. We found that the largest errors occurred in the recon-238

struction of very high and very low sea states. This is to be expected, given that those239

sea states were the least frequent in our data set and were thus the least represented dur-240

ing training. Data augmentation is able to mitigate the errors by generating artificially241

more representative sea states, but it is efficient only to a certain extent. This is likely242

due to a corresponding structural change of the patterns in the extreme sea states, which243

is not taken into account in the data augmentation process. Possible approaches to min-244

imize the error further are discussed later.245

Figure 4. Average reconstruction error over the study area for a 16-times increase in resolu-

tion. The mean was taken over the whole test data set.
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3.1 Comparison of Computation Time246

To outline the gains in computation time by this approach, we listed the time needed247

at all the steps of the method. The SWAN computations were run with 12 parallel threads248

on an Inter Core i7-9750H processor with 6 cores and 12 threads. For the pre-processing,249

we used the same processor without parallel threading and for training and prediction250

of the neural network, a Nvidia GeForce RTX 2070 Max-Q was used.251

252

As a first step, the outer grid of the SWAN model was computed over the time range253

of 2 years, which took around 7.5 h. Similarly, computing the same time range in the nested,254

high-resolution 160x160 grid took also 7.5 h. Calculation of the same nested grid in lower255

resolutions (40x40, 20x20, 10x10) required only 35min, 14min, and 8min, respectively.256

Training times of the neural network can change significantly (on the order of 10s257

of minutes) for the same model, if the algorithm gets stuck in a local minimum. Usu-258

ally pre-processing and training took 2 h - 4 h, but more specifically for our models, the259

time required were 2.5 h, 2.5 h, and 3.5 h, respectively. One has to note, however, that260

this is only a one-time cost, since in theory the model can be re-used for later calcula-261

tions. In practice, occasional re-training with additional data would be advisable.262

The actual prediction by the model is computed very fast, since, once the weights263

are determined after training, predictions are simple matrix multiplications. A conver-264

sion of 1000 data instances, which corresponds to around 40 days of hourly significant265

wave height, required only 1.9 s.266

267

In summary, converting 2 years of data of 10x10 LR calculations to 160x160 HR,268

takes only around 8.5min, including the time to run the LR SWAN computations, com-269

pared to the 7.5 h when modeling the domain directly in high-resolution, which is a more270

than 50-fold increase in computation time.271

4 Summary and discussion272

The DSC/MS model proposed by Fukami et al. (2019) is able to reconstruct high-273

resolution features of various sea state variables given a low-resolution image. Overall,274

this approach has the potential to reduce computation time for forecasts considerably.275

After a high, but only single computational effort of training the model, predictions can276

be obtained 50-times faster, compared to a standard high-resolution SWAN computa-277

tion, with good accuracy. Furthermore, the speed and accuracy presented here are prob-278

ably lower bound estimates, which can be ameliorated with a more elaborated pre-processing279

routine, an improved model architecture and careful training data sampling. Also, ex-280

isting hindcast databases could be used to train the model extensively. Additionally, dif-281

ferent loss equations and other neural network architectures like GANs, could improve282

the results substantially.283

Instead of data augmentation a large or well-sampled data set could be used, which284

covers many possible wave conditions. This would also very likely improve the predic-285

tions. Here, we focus on data augmentation to demonstrate that even with relatively small286

training sample sizes, a robust prediction can be achieved for various wave conditions.287

A drawback of our approach is that one model has to be trained for each wave vari-288

able, which increases the training time substantially. Nevertheless, it does not affect the289

prediction time. Training one model to predict all variables is possible, however, it de-290

teriorates the results as commonly reported in literature (Schultz et al., 2021).291
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Moreover, the trained models are location-specific and, consequently, a model has292

to be trained for each new location. As discussed in section 2.4, the training time can293

be reduced with transfer learning. Another recent approach builds on incorporation of294

physical equations in the training process to produce so-called Physics-Informed Neu-295

ral Networks (PINN) (Um et al., 2020; Gao et al., 2021). Commonly, this is done by adding296

particular terms, like the constraint of zero divergence for incompressible fluids in the297

loss equations (Raissi et al., 2019). This forces the neural network to not only produce298

more physically plausible results, but also helps it to better generalize. A thorough overview299

of PINNs can be found in Willard et al. (2020). While this approach appears difficult300

to implement in a spectral wave model like SWAN, it might be possible for other wave301

models relying on different governing equations.302

Note also, that in comparison to other applications for instance in fluid mechan-303

ics, temporal coherence is much easier to achieve in our setting. This is presumably due304

to the easier structure of our problem. While a reconstruction of turbulent flows varies305

strongly in space and time, coastal waves do not exhibit the same amount of variation.306

For example, Xie et al. (2018) developed a sophisticated Generative Adversarial Network307

to achieve temporal coherence in their super-resolution reconstruction of smoke flow. How-308

ever, we observed that for our simpler case temporal coherence was already given with309

the least complex model that we employed. Lastly, we considered only rectangular, uni-310

form grids due to the simplicity of finding and computing high- and low resolution pairs.311

Given that many studies use more complex grid structures, more research has to be un-312

dertaken to generalize this approach to any type of grid.313

Despite the current limitations of the super-resolution method applied to coastal314

wave modeling, it is able to produce high-resolution results and consistently reconstruct315

the underlying patterns with remarkable accuracy, while being considerably faster than316

traditional direct computations. Additionally, it has the potential to be more generic and317

accurate at equal computation time and could be used in the future for locally ”zoomed-318

in” global wave models.319

5 Open Research320

5.1 Data Availability321

For the creation of the low- and high-resolution sea state quantities we used the322

third-generation spectral wave model SWAN (Booij et al., 1999), version 41.31. It was323

forced by data from the HOMERE hindcast database (Edwige et al., 2013) at the loca-324

tion of the Donostia buoy covering the time range from January 1st 2018 to December325

31st 2019. Bathymetry data from the 0.001◦ Digital Terrain Model ”MNT bathy-métrique326

de façade Atlantique” provided by the French Service Hydrographique et Océano-graphique327

de la Marine (SHOM) (SHOM, 2015) and interpolated with Octave version 5.2.0 (Eaton328

et al., 2020). The Neural Network in this paper is based on the code and the implemen-329

tation of Fukami et al. (2019). Pre-processing and training was done entirely in Python330

3.9.7, using mostly the following libraries: Keras 2.4.3 (Chollet & Others, 2015) with Ten-331

sorflow 2.4.1 as a backend (Abadi et al., 2015), Pandas 1.3.4 (Reback et al., 2021), and332

Numpy 1.19.2 (Harris et al., 2020). For the creation of the figures Matplotlib 3.5 (Hunter,333

2007) was used. The SWAN, pre-processing and training scripts are available through334

GitHub under https://github.com/janfer95/SR on SWAN (Kuehn et al., 2022).335
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