Characterization of Water Sorption by Mineral Dust and Nonproteinaceous Biological Particles at Subzero Temperatures

Naruki Hiranuma¹, Elise Wilbourn¹, and Nathan Howell²

¹Dept. of Life, Earth, and Environmental Science, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA

November 28, 2022

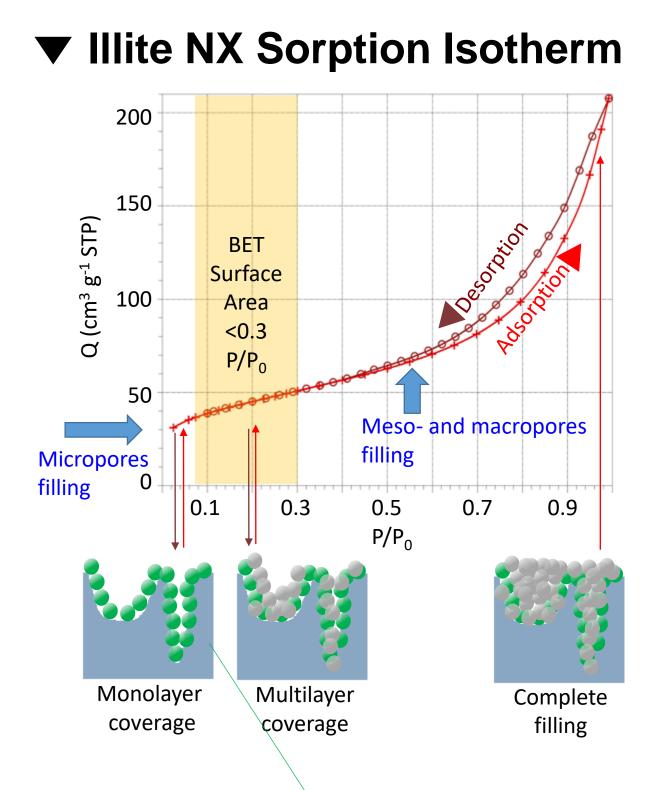
Abstract

Atmospheric ice-nucleating particles (INPs) from mineral dust and non-proteinaceous biological sources can influence cloud formation, precipitation, and Earth's radiation budget due to their efficient freezing abilities. The ambient aerosol particles from these sources are abundant with ambient concentrations exceeding a few μ g m[^]-3 for each type. Thus, the characterization of INPs and aerosol particles from these sources is important. We typically characterize their specific surface area (SSA), which is the primary variable to estimate their ice-nucleation active surface site density, using a sorbate gas, such as nitrogen. However, it is still uncertain how these particles interact with water vapor under subzero temperatures. To fill this gap, we used the 3Flex instrument (Micromeritics Instrument Corp.) with multiple sorbates to comprehensively characterize the nanoscale surface structure, pore size distribution, and accessibility to water molecules of a commercially available model proxy of mineral dust (illite NX) and cellulose materials. To date, we have completed more than 60 physisorption 3Flex experiments with various sorbates, such as CO2, H2O, Kr, and N2, for each sorbent. In particular, we examined SSA by water vapor sorption at temperatures relevant to atmospheric heterogeneous freezing (~ 0 to -20 °C). We will present our results as physisorption isotherms. In addition, our preliminary results of temperature-dependent SSA observed for micro- and nano-crystalline cellulose materials as well as illite NX will be discussed. Our preliminary result suggests that the SSA of illite NX is less temperature-dependent compared to the cellulose materials, which may be potentially swelling while interacting with water. Therefore, illite NX may be suitable for an INP test proxy.

Characterization of Water Sorption by Mineral Dust and Non-proteinaceous Biological Particles at Subzero Temperatures

¹Dept. of Life, Earth, and Environmental Science, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, TX, USA, ²College of Engineering, West Texas A&M University, Canyon, ²College of Engineering, West Texas A&M University, Canyon, ²College of Engineering, ²College of Enginee

Objectives


- Characterization of the nanoscale surface properties and accessibility of **sorbate** molecules on atmospherically relevant sorbents.
- Examining the water vapor sorption at temperatures relevant to atmospheric heterogeneous freezing (~0 to -20 °C).
- Comparing specific surface areas with various sorbates for each sorbent to understand the role of surface on ice nucleation.

Method

- ✤ 3Flex instrument ^[1] characterizes the specific surface area, nanoscale surface structure, pore size distribution of samples based on physisorption isotherms ^[2].
 - \succ Sorbates: CO₂, N₂, Kr, and H₂O
 - > Sorbents: illite NX, micro-crystalline cellulose, (MCC), and cellulose nano fiber (CNF) as dust and biological particle proxies

Sorption Isotherm & BET Theory

Q =

where Q is the quantity of gas adsorbed (g/cm³), P/P_0 and P_0/P the relative pressure, C the BET (Brunauer-Emmett-Teller) constant, V_m the quantity of gas adsorbed when the entire surface is covered with a monolayer of molecules, $\frac{C-1}{V-C}$ the slope of the linear portion of the isotherm, and $\frac{1}{V-C}$ the y-intercept of the isotherm. NOTE: In the case of using water molecules as sorbates (i.e., $P/P_0 = RH_w$), we introduce a k constant to correct for the sorption state of the sorbed molecules beyond the first layer, so their character lies somewhere between the strongly bound first layer and the totally free liquid ^[3].

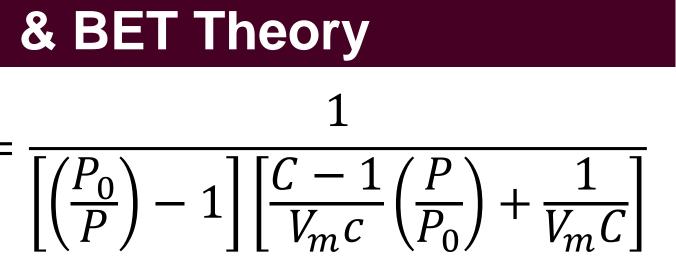
$$S = \frac{V_m}{m}$$

Gas adsorption (0.3 nm – 300 nm)

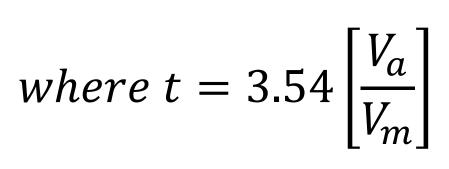
Micropores (<2 nm) Mesopores (2-50 nm) Macropores (> 50 nm

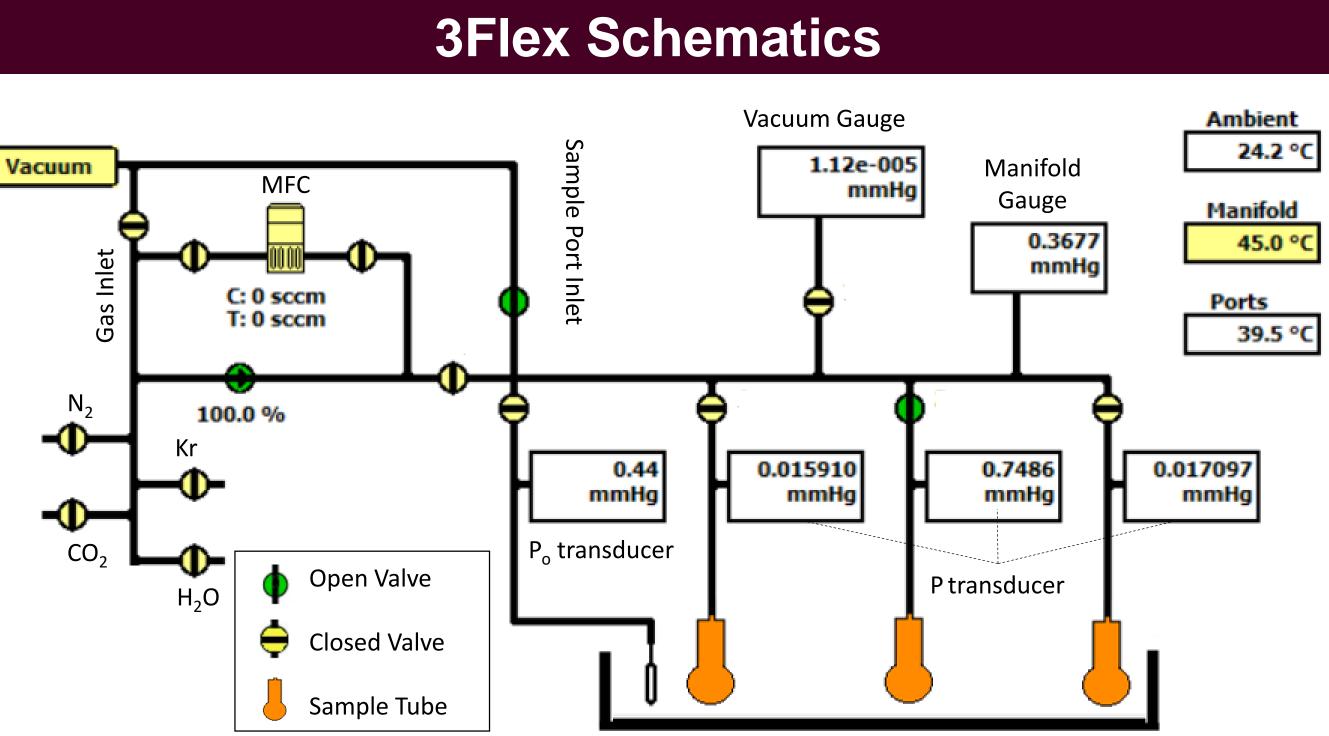
 $CO_2 < N_2$, Kr, and H_2O Adapted from: PennState MCL web ^{[4} where S is specific surface area (m² g⁻¹), σ is the area of surface occupied by a single adsorbed gas molecule (m²/molecule), N_A is the Avogadro constant $(6.023 \times 10^{23} \text{ molecules/mole})$, m the mass of the sorbents (g), and V_0 the molar volume of the gas (cm³/mole). e.g., for nitrogen, σ is 16.2 Å² or 16.2 x $10^{-20} \text{ m}^2 \& V_0 \text{ is } 22414 \text{ cm}^3.$

Pore Volume Estimation


$$V_p = \left[\frac{(S_1 - S_2)(t_1 - t_2)}{2}\right] K$$

in which, V_p is the volume of pores per a unit mass (cm³ g⁻¹), S_1 and S_2 the surface areas obtained at condition 1 and 2 (e.g., P/P_0 or other associated parameters), t the thickness of the adsorbed layer at different conditions, K the constant converting gas volume (STP) to liquid volume and Å to cm, and V_a the quantity of gas adsorbed at pressure *P*.


Paul Engler College of Agriculture and Natural Sciences Dept. of Life, Earth and Environmental Sciences Discover Real-World Experience!


Naruki Hiranuma¹, Elise K. Wilbourn¹, and Nathan Howell²

$$\sigma N_A$$

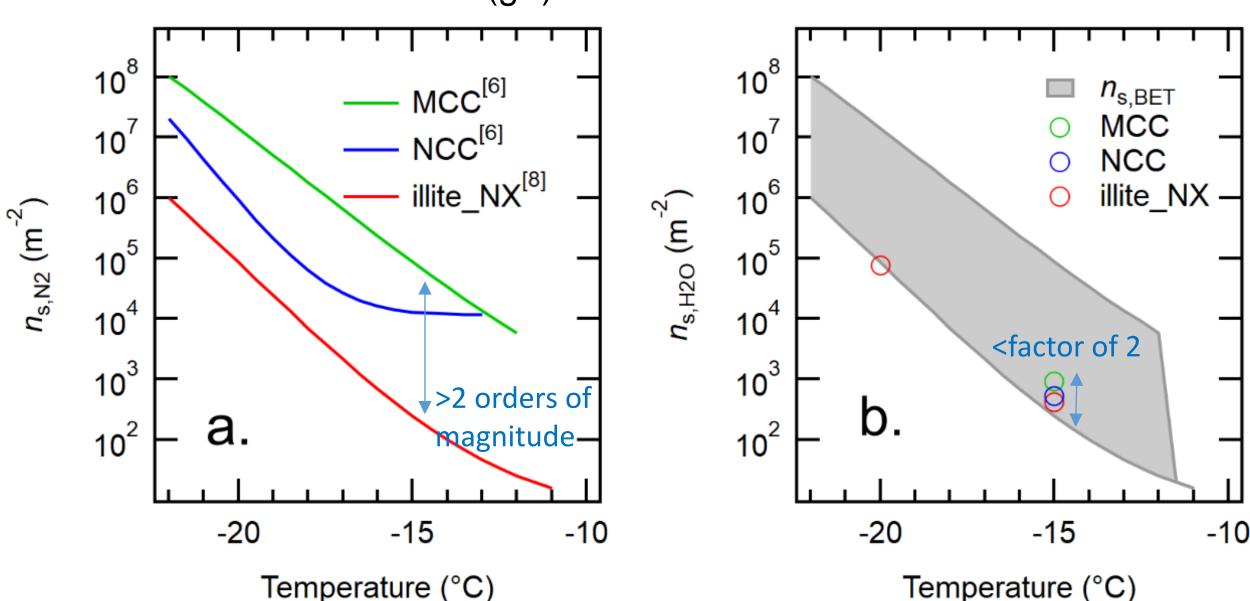
$$iV_0$$

▲ The operation of 3Flex is governed by automated control of 15 solenoid valves, 1 MFC, 1 vacuum pump unit, 2 pressure gauges, and 4 pressure transducers for 3 sample tubes in a dewar cooler.

Preliminary Results

- values from previous studies; illite NX 124.4 m² g⁻¹ [5] and MCC 1.44 m² g⁻¹ [6]. lower BET specific surface area than nano crystalline cellulose (Melodea, 3wt%)^[6], perhaps due to a fundamental difference in surface properties of CNF and NCC.
- $Our N_2$ and Kr sorption BET values for individual sorbents are comparable to the BET ↔Our CNF (Nippon Paper Industries, CM-CNF powder 94.8 wt%)^[7] exhibited a much ♦ We examined 0.2 – 1.4 g of MCC, and varying the mass did not impact our BET values (<4% variation).
- ✤We also examined the influence of degassing process on the N₂ sorption analyses of MCC and CNF (<16% variation).
- \bullet For the analyses with Kr, CO₂, and H₂O, we made sure to degas our samples before each sorption measurement begins.
- ♦3Flex was calibrated by a known composition standard (Carbon Black ~21.5 m² g⁻¹) and examined only for $C > 10^{[2]}$.
- \bullet The measured BET of CO₂ sorption is slightly higher than N₂ sorption for CNF, suggesting the presence of micro(nano-)pores.
- ♦ The resultant specific surface area of illite NX at 0 °C ≈ the result of N₂ sorption. ↔We observed a slight suppression of water-based BET in the temperature range of -5 to
- -15 °C for illite NX (reason unknown). MCC and CNF exhibited much higher BET values through water sorption across the examined temperatures, presumably due to the physical alteration of sorbents while adsorbing water on the surface and absorbing bulk water (e.g., swelling) but likely not through liquid water condensation or phase change.
- The pore volume of illite NX is much larger than that of MCC and CNF. Illite NX might contain mesopores, which provides high specific surface area.

Summary of BET specific surface area and pore volume of each sorbent


• Ourmary of DET specific surface area and pore volume of cacil sorbern				
	Sorbate	<i>T</i> (°C)	BET (m ² g ⁻¹)	Pore Volume (cm ³ g ⁻¹)
illite NX	N_2	-196	148.28 ± 47.39	$3.73 \times 10^{-1} \pm 7.29 \times 10^{-2} *$
	H ₂ O	0	130.34 ± BDL*	N/A
	H ₂ O	-5	92.63 ± 0.67*	N/A
	H ₂ O	-15	74.84 ± 0.94*	N/A
	H ₂ O	-20	139.02 ± 1.52*	N/A
MCC	N ₂	-196	0.96 ± 0.11	$3.59 \times 10^{-3} \pm 1.95 \times 10^{-3} *$
	Kr	-196	1.27 ± 0.15	N/A
	H ₂ O	0	142.69 ± 15.91*	N/A
	H ₂ O	-5	99.59 ± BDL*	N/A
	H ₂ O	-15	136.56 ± 2.43*	N/A
CNF	N_2	-196	0.65 ± 0.10	$4.39 \times 10^{-3} \pm 4.13 \times 10^{-4} **$
	Kr	-196	$0.64 \pm 0.01^*$	N/A
	CO ₂	0	0.76 ± 0.18	1.63 x 10 ⁻⁴ ± 4.93 x 10 ⁻⁵ **
	H ₂ O	0	74.26 ± 1.49*	N/A
	H ₂ O	-5	37.93 ± 2.76*	N/A
	H ₂ O	-15	193.93 ± 90.25*	N/A

*BJH method applied ^[2]; ***DFT method applied ^[2]; BDL: Below detection lim

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 2018383 (MRI: Acquisition of a surface & sorption characterization instrument to enable multi-disciplinary research at a rural West Texas HSI). N. Hiranuma acknowledges K. Cory for her work funded through NSF-EAPSI as well as Nippon Paper Industries for sharing cellulose nano fibers.

- INPs.
- INP scaled to a unit mass (g^{-1}) .

 \blacktriangle Ice nucleation efficiency of illite NX, MCC, and NCC in terms of n_s as a function of temperature based on (a) N_2 sorption BET and (b) H_2O sorption BET

- function of temperature.
- hypothesis).
- parameterization (expected outcome).
- study).

[1] Micromeritics Instrument Corp.: 3Flex, https://www.micromeritics.com/3flex/ (last visited on November 15, 2021). [2] Webb. P. A. et al.: Analytical Methods in Fine Particle Technology, ISBN 0-9656783-0-X, 301 pp., Micromeritics Instrument Corp., Norcross, GA, USA, 1997. [3] Timmermann, E. O.: Multilayer sorption parameters: BET or GAB values? Colloids and Surfaces A: Physicochem. Eng. Aspects, 220, 235-260, 2003. [4] PennState Materials Research Institute – Materials Characterization Lab (MCL): Surface Area, https://www.mri.psu.edu/materials-characterization-lab/mcl-techniques/surface-area (last visited on November 24, 2021).

[5] Broadley, S. L. Et al.: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust, Atmos. Chem. Phys., 12, 287-307, 2012. [6] Hiranuma, N. et al.: A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water, Atmos. Chem. Phys., 19, 4823-4849, 2019. [7] Cory, K. et al.: Laboratory measurements of immersion freezing abilities of non-proteinaceous and proteinaceous biological particulate proxies, Earth and Space Science Open Archive, DOI: https://doi.org/10.1002/essoar.10500739.1, 2019 [8] Hiranuma, N. et al.: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques, Atmos. Chem. Phys., 15, 2489-2518, 2015.

Implication in Atmospheric Ice Nucleation

Adapting the water sorption-based BET values for different ice-nucleating particles (INPs) yields a similar ice nucleation efficiency at -15 °C for examined

The observed agreement is within a factor of two in terms of ice nucleation active surface site density, $n_{s,BET}(T) = n_m(T) / BET^{[8]}$. Note: $n_m = \text{concentration of}$

Temperature (°C)

Summary & Outlook

 \checkmark Our test sorbents have different surface properties – illite NX possesses high specific surface area with mesopores while cellulose materials come with low specific surface area with micropores. \checkmark We observed different affinities of water on our test sorbents as a

\checkmark Understanding a total sorption properties (i.e., surface and bulk) via temperature-dependent water sorption (rather than a surface gas sorption) is key in understanding the physics of atmospheric ice nucleation on insoluble aerosol particles (confirmed

□ Surface analysis of other INPs and heterogeneous mixture of waterinsoluble sorbents with water sorption, as well as their $n_{\rm SBFT}(T)$ examination might lead to developing a simple ice nucleation

The molecular dynamics level process of water sorption BET suppression at certain temperatures must be understood (future

References

www.wtamu.edu

Dewar Cooler