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Abstract

The ultimate goal of a scientific investigation is usually to find answers to specific, often low-dimensional questions: what is

the size of a subsurface body? Does a hypothesised subsurface feature exist? Existing information is reviewed, an experiment

is designed and performed to acquire new data, and the most likely answer is estimated. Typically the answer is interpreted

from geological and geophysical data or models, but is biased because only one particular forward function is considered, one

inversion method is applied, and because human interpretation is a biased process. Interrogation theory provides a systematic

way to answer specific questions by combining forward, design, inverse and decision theories. The optimal answer is made more

robust since it balances multiple possible forward models, inverse algorithms and model parametrizations, probabilistically. In a

synthetic test, we evaluate the area of a low-velocity anomaly by interrogating Bayesian tomographic results. By combining the

effect of four inversion algorithms, the optimal answer is very close to the true answer, even on a coarsely gridded parametrisation.

In a field data test, we evaluate the volume of the East Irish Sea basins using 3D shear wave speed depth inversion results. This

example shows that interrogation theory provides a useful way to answer realistic questions about the Earth. A key revelation is

that while the majority of computation may be spent solving inverse problem, much of the skill and effort involved in answering

questions may be spent defining and calculating those target function values in a clear and unbiased manner.
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Abstract13

The ultimate goal of a scientific investigation is usually to find answers to specific, of-14

ten low-dimensional questions: what is the size of a subsurface body? Does a hypoth-15

esised subsurface feature exist? Existing information is reviewed, an experiment is de-16

signed and performed to acquire new data, and the most likely answer is estimated. Typ-17

ically the answer is interpreted from geological and geophysical data or models, but is18

biased because only one particular forward function is considered, one inversion method19

is applied, and because human interpretation is a biased process. Interrogation theory20

provides a systematic way to answer specific questions by combining forward, design, in-21

verse and decision theories. The optimal answer is made more robust since it balances22

multiple possible forward models, inverse algorithms and model parametrizations, prob-23

abilistically. In a synthetic test, we evaluate the area of a low-velocity anomaly by in-24

terrogating Bayesian tomographic results. By combining the effect of four inversion al-25

gorithms, the optimal answer is very close to the true answer, even on a coarsely grid-26

ded parametrisation. In a field data test, we evaluate the volume of the East Irish Sea27

basins using 3D shear wave speed depth inversion results. This example shows that in-28

terrogation theory provides a useful way to answer realistic questions about the Earth.29

A key revelation is that while the majority of computation may be spent solving inverse30

problem, much of the skill and effort involved in answering questions may be spent defin-31

ing and calculating those target function values in a clear and unbiased manner.32

Plain Language Summary33

This paper shows how to answer specific questions about the subsurface using prob-34

abilistic tomography. Usually tomographic methods are used to estimate images of the35

subsurface; the ’best’ images are then interpreted to answer questions of interest. This36

work shows that by setting up a formal target function that allows any image to be in-37

terpreted automatically, many samples of possible subsurface models can be translated38

into probabilistic answers to the questions, from which a least-biased answer can be con-39

structed. In the real-data examples presented here the subsurface shape of a sedimen-40

tary basin is determined automatically, and a least-biased estimate of its volume is con-41

structed. This method is shown to give accurate answers about high resolution struc-42

tures even given only low resolution tomographic images; this suggests that the prob-43

abilistic results compensate for the lack of resolution.44
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2 Introduction48

Scientific investigations are usually initiated to answer high-level questions posed49

by investigators. Answers to these questions often lie within low-dimensional spaces: what50

is the depth of the Moho beneath a particular location? What is the best location to place51

a new sensor given locations of pre-existing sensors? Can this subsurface aquifer be used52

for carbon storage? The answers to each of these questions are binary (yes/no) or low-53

dimensional (Moho depth or sensor location), yet they may depend on high-dimensional54

parameter spaces, describing the structure of Earth’s subsurface for example. We usu-55

ally seek answers using information that we know already – so-called prior information,56

and to better constrain the answer we collect new data. This involves designing an ex-57

periment, acquiring new data by experimentation, and interpreting the data to produce58

new and useful information. Finally the question is answered by taking both the prior59

information and the information from new data into account.60

More formally, the new data is used to solve a Bayesian inverse problem in which61

we update the prior information with new information from the data, and seek to de-62

scribe the resultant state of information by a probability distribution (Tarantola, 2005).63

Generally, inversion methods can be divided into two categories: linearised and non-linear64

methods. The former iteratively approximates the possibly complex and non-linear model-65

data relationship (the forward function) by a linear relationship, after which the inverse66

problem can be solved by minimizing a predefined objective function that measures the67

misfit between the observed data and synthetic data simulated from a given Earth model68

(Jackson, 1972). This kind of method requires a good initial model to avoid converging69

to local minima. In addition, it is not known how to estimate uncertainty or probabil-70

ity robustly from linearised inversion results, which means that we fail to find the solu-71

tion to the Bayesian inverse problem. This in turn introduces bias when we use the re-72

sults to answer questions of interest.73

In contrast to linearised methods, fully non-linear inversion methods solve the in-74

verse problems under a probabilistic framework. They estimate or characterise the full75



probabilistic inversion results that describe all information about model parameters given76

the data – the so called posterior probability distribution or density function (pdf). Such77

problems are often solved using Markov chain Monte Carlo (McMC) which generates an78

ensemble of samples of the posterior distribution that fit the observed data to within mea-79

sured data uncertainties. Many different kinds of McMC methods have been introduced80

for geophysical inversion, e.g.: Metropolis Hastings McMC (MH-McMC) (Mosegaard &81

Tarantola, 1995), Reversible Jump McMC (RJ-McMC) (Bodin & Sambridge, 2009; Bodin82

et al., 2012; Galetti et al., 2015, 2017; X. Zhang et al., 2018), Hamiltonian Monte Carlo83

(HMC) (Fichtner & Simutė, 2018; Fichtner et al., 2019; Gebraad et al., 2020), informed84

proposal Monte Carlo (Khoshkholgh et al., 2021) and so on. All of these methods be-85

come very expensive when dealing with high-dimensional inference problems due to the86

curse of dimensionality (Curtis & Lomax, 2001). In an attempt to improve the compu-87

tational efficiency, approaches have been proposed to solve non-linear Bayesian inverse88

problems using an optimization framework. These include neural network (NN) inver-89

sion (Devilee et al., 1999; Meier et al., 2007; Käufl et al., 2014, 2016; Earp & Curtis, 2020;90

Siahkoohi, Rizzuti, & Herrmann, 2021; Singh et al., 2021) and variational inference (Nawaz91

& Curtis, 2018, 2019; Nawaz et al., 2020; X. Zhang & Curtis, 2020a; Zhao et al., 2021;92

X. Zhang et al., 2021; Siahkoohi, Orozco, et al., 2021; Siahkoohi, Rizzuti, Louboutin, et93

al., 2021). However, the relative efficiency of all of the above methods depends on the94

problem at hand (Wolpert & Macready, 1997).95

The probabilistic results of the inverse problem can be used to answer questions.96

For non-linear inversion, a common way to achieve this is to interpret the mean model.97

For example, if we wish to estimate the size of a subsurface structure or feature using98

Bayesian tomographic inversion results, an intuitive way to proceed is to estimate its size99

using the mean seismic velocity map. However, answering questions using the mean model100

alone can be inaccurate since the mean model is only a single statistic of the posterior101

distribution and may not even represent a model that fits the observed data. In addi-102

tion, human interpretation is a biased process, which sometimes leads incorrect answers103

as we show in an example below. In addition, since uncertainty in the result of the in-104

verse problem is not considered, we cannot estimate uncertainty in the answers. Indeed,105

most of the information within the posterior distribution is summarily discarded when106

answering questions in this manner, which is extremely wasteful considering the com-107

putational cost of Bayesian inversion in non-linear problems.108



To address the above deficiencies, we suggest to answer questions using interroga-109

tion theory, a structured framework to design scientific investigations (Arnold & Cur-110

tis, 2018). It combines inverse theory, decision theory and the theory of experimental de-111

sign to optimise scientific investigations so as to find information that best answers sci-112

entific questions of interest. In this paper, we test interrogation theory on real data by113

using Bayesian non-linear inversion results to answer a specific type of question: what114

is the size of a near-surface geological body? In our test the result is compared to the115

answer estimated from surface geological mapping.116

The rest of this paper is organized as follows. In the next section, we summarise117

the key components of interrogation theory and how we augment that theory in this pa-118

per, and show how optimal answers may be derived using Bayesian inversion results. In119

section 3, we establish a detailed interrogation procedure using a synthetic example which120

estimates the area of a subsurface low velocity body based on probabilistic tomographic121

results. By using a coarse grid parametrisation, we show that human interpretation can122

be significantly in error, yet in the same case the answer provided by interrogation the-123

ory remains accurate. In section 4, we use interrogation theory to answer two real-world124

questions about the East Irish Sea sedimentary basins. Finally, we provide a brief dis-125

cussion about this work and draw conclusions.126

3 Theory127

3.1 Bayesian Inverse Theory128

Inverse theory is used to estimate the vector model parameter m given some ob-

served data d, as shown in Figure 1a. This usually includes solving a forward problem

that generates synthetic data corresponding to any parameter m using a predefined for-

ward function f(m). The parameter space is then explored to find values that match

the observed data to within their uncertainties. In a Bayesian framework, the inverse prob-

lem is solved in a probabilistic way by evaluating the so-called posterior probability den-

sity function (pdf) p(m|d) – the probability of model parameter m given observed data

d – using Bayes’ theorem:

p(m|d) =
p(d|m)p(m)

p(d)
(1)

Here p(m) is the prior pdf of model parameter m, that is, the information we know about129

m prior to the inversion. The conditional probability p(d|m) is the likelihood of observ-130



ing data d given a particular set of values for parameter vector m, and is used to mea-131

sure how consistent are the sample and the data. In the denominator, p(d) is a normal-132

ization constant called the evidence.133

Markov chain Monte Carlo (McMC) is often used to solve Bayesian inference prob-134

lems by sampling from the posterior distribution directly, yet it is often highly, if not im-135

possibly, expensive to sample it with representative density due to the curse of dimen-136

sionality (Curtis & Lomax, 2001). As an alternative, variational inference solves Bayesian137

inversion using an optimization framework by seeking the best approximation to the pos-138

terior distribution. This can be accomplished by minimizing the Kullback-Leibler (KL)139

divergence (Kullback & Leibler, 1951) between the approximated (so-called variational)140

distribution and the posterior distribution (Bishop, 2006; Blei et al., 2017; C. Zhang et141

al., 2018; Nawaz & Curtis, 2018, 2019; Nawaz et al., 2020; X. Zhang & Curtis, 2020a;142

Zhao et al., 2021; X. Zhang et al., 2021; Siahkoohi, Rizzuti, Louboutin, et al., 2021; Siahkoohi,143

Rizzuti, & Herrmann, 2021). In this work we combine results from both Monte Carlo144

and variational algorithms C.145

3.2 Interrogation Theory146

3.2.1 Fundamentals147

Figure 1b outlines the key components of an interrogation problem, and a more de-148

tailed algorithmic flow chart is illustrated in Figure 2. Rather than focusing on the model149

parameter m in an inverse problem, interrogation theory orientates all theory around150

a scientific question Q and corresponding optimal answer a∗, which usually lies in a low-151

dimensional space A. For example, geoscientists may be interested in the volume of a152

particular subsurface reservoir; the answer to this question would be a (1-dimensional)153

positive number. For other cases we may pose a binary question such as: is there a geother-154

mal plume beneath this area? The answer would be yes or no. Since low-dimensional155

answers often lie within high-dimensional model parameters, which are constrained by156

high-dimensional data, it is hard to interpret data and answer questions directly. Inter-157

rogation theory provides a systematic way to investigate optimal answers to those ques-158

tions.159

As illustrated in Figure 2, at the beginning of an interrogation problem, investi-160

gators pose a question Q of interest given some background knowledge B. To answer this161



Figure 1. Comparison between inverse theory and interrogation theory. (a) Inverse theory:

given observed data d, we estimate model parameter m. This is accomplished by evaluating the

data match between the observed data and synthetic data simulated by solving a forward prob-

lem f(m). (b) Interrogation theory: given a scientific question or set of questions Q, we wish to

find the optimal answer a∗. Forward, design, inverse and decision problems are solved together to

maximise information about the answer to question Q, rather than about parameter m. In addi-

tion, in this paper the effect of different computational algorithms C for solving these problems is

considered to reduce the bias of the final answer.



question, we first define a space of forward models F(M) in which all of the forward func-162

tions are deemed relevant to the question Q. Each element f(m) maps parameter space163

into corresponding data space, and has a prior density functional p(f(m)) which states164

the probability that this specific forward function f(m) would accurately represent the165

parameter-data relationship. The set of forward models satisfies:
∑

f∈F p(f(m)) = 1,166

assuming that the space of forward function is discrete. For each forward model, we de-167

fine the corresponding model parameter m and its prior probability distribution p(m|f(m))168

such that
∫
m
p(m|f(m))dm = 1 where the integration is over the entire parameter space.169

For example, assume we are facing a seismic tomography related project. In this project,170

we use the following two forward functions to map subsurface velocity structure m into171

corresponding first arrival travel time data d between sources and receivers: ray trac-172

ing (f1(m) – Julian et al., 1977) and the fast marching method (f2(m) – Rawlinson &173

Sambridge, 2004). Since the former may fail to find the shortest travel time (the correct174

ray path) and is not robust for complex velocity structures, whereas the latter is capa-175

ble of predicting travel times accurately in complex media, we assign prior probability176

density for these two forward functions as p(f1(m)) = 0.2 and p(f2(m)) = 0.8 respec-177

tively. For both forward functions, we use the same Uniform distribution to define our178

prior information on model parameter m.179

To answer question Q, we usually need some additional information, which is ob-180

tained by collecting new data. Given a set of forward models f(m), an experimental de-181

sign problem is solved to select the optimal design Ed to acquire data, selected from the182

space of designs Ed. The difference between the design problem mentioned here and tra-183

ditional experimental design problems (e.g., Maurer et al., 2010) is that the former finds184

a design that is chosen to provide the most relevant information to answer question Q,185

whereas the latter finds a design that best constrains model parameter m. After imple-186

menting the experiment, the recorded data is used to update information about model187

parameter m by solving an inverse problem, after which we can answer question Q.188

Usually a variety of different computational algorithms can be used to solve for-189

ward, design and inverse problems. These may provide significantly different solutions.190

For example, Zhao et al. (2021) illustrated that different results were obtained when solv-191

ing the same Bayesian tomographic problem with four different inversion algorithms. Choos-192

ing any one of those results is likely to bias any inferred answer to question Q. To re-193

duce bias in the optimal answer, in this paper we account for uncertainties due to the194



Figure 2. Algorithmic flow chart for interrogation theory. Given background knowledge B

and a scientific question Q, we define forward model f(m), the corresponding parameter m,

and experimental design Ed to collect new data d. An inverse problem is solved to update the

model parameter m using the acquired data d. A utility function U is constructed and further

maximised to obtain the optimal answer a∗. The blue dashed lines show one way to define the

utility function by combining all of the above elements directly, which is usually hard to achieve

in reality. Instead, we introduce a target space T and define a target function T (m|f(m), C,Q)

to simplify the utility function U(a|t, Ed), as shown by the red lines.



variety of possible computational algorithms C, augmenting the original interrogation195

framework outlined in Arnold and Curtis (2018).196

We define a utility function U(a), which quantifies the net benefits of accepting any197

particular answer a. The utility is defined such that the optimal answer a∗ that max-198

imises the utility function is the one that best satisfies whatever properties we require199

of our answer (Chaloner & Verdinelli, 1995): a∗ = arg max
a∈A

U(a). Figure 2 shows two200

approaches to construct the utility function. In the first, we combine all of the informa-201

tion provided in the components of interrogation problems described above, to define a202

highly structured utility function: U(a|m,f(m),d, Ed, C) as illustrated by dashed blue203

lines in Figure 2. Note that this utility function is conditioned on the data d and exper-204

imental design Ed to account for the cost of conducting the experiment given a specific205

design, or to allow the data to provide some components of answer a directly (Arnold206

& Curtis, 2018). However, the investigator may in general have no means of construct-207

ing a utility function of such structure and complexity. Moreover, even when agreeing208

to a utility function with such a high dimensional set of independent variables, an in-209

vestigator cannot generally be expected to appreciate all of the consequences of choos-210

ing a specific functional form (Curtis & Lomax, 2001). Also, there is no straightforward211

way to maximise this utility function over the usually discrete choices of forward func-212

tions and algorithms under consideration. As an alternative, Arnold and Curtis (2018)213

introduced a target space T which is determined by question Q such that Q can be an-214

swered directly in T. The target space should be the same for all forward functions f(m)215

and algorithms C. A target function T (m|f(m), C,Q) is defined to convert the model216

parameter m into a target value t. Based on this, a new utility function can be expressed217

as U(a|t, Ed) which has a much simpler form since it is only conditioned on target value218

t and design Ed. Usually this is expected to be easier to maximise (shown by red lines219

in Figure 2).220

As an example of a target function, below we will address the question Q, “What221

is the volume of a subsurface body?”. We wish to answer this question using seismic to-222

mographic results. The target function T (m|f(m), C,Q) is defined to transform the model223

parameter m – the subsurface velocity structure in this case – into the corresponding224

volume of the subsurface body of interest. Thus, the target function maps a high-dimensional225

parameter space into a low-dimensional target space, eliminating nuisance parameters226

and retaining only information that is essential to represent the answer to the question.227



For more details about interrogation theory and these components, we refer readers to228

Arnold and Curtis (2018).229

3.2.2 The Optimal Answer230

In this paper, we use the same utility function defined in Arnold and Curtis (2018)

– a negative squared error function:

U(a|t, Ed) = U(a|t) = −(a− t)2 (2)

in which t is assumed to be the true summarized state of nature in the target space. The

utility function in equation 2 is maximized when the estimated answer a is equal to (or

is as close as possible to) state t. This results in an analytical solution of the optimal an-

swer a∗: the posterior mean of T (m|f(m), C,Q) averaged over all m, f(m) and C:

a∗ = E[T (m|f(m), C,Q)|d, Ed]

=
∑

f(m),C

∫
m

T (m|f(m), C,Q)p(m,f(m), C|d, Ed) dm

=
∑

f(m),C

p (C,f(m))

∫
m

T (m|f(m), C,Q)p(m|f(m),d, Ed, C) dm

=
∑

f(m),C

p(f(m))p (C|f(m))

∫
m

T (m|f(m), C,Q)p(m|f(m),d, Ed, C) dm

(3)

where p(m|f(m),d, Ed, C) is the probability of model parameter m given a specific for-231

ward function f(m), observed data d, design Ed and algorithm C, describing the pos-232

terior distribution of model parameter m in Bayesian inversion. Integration in the third233

line
∫
m
T (m|f(m), C,Q)p(m|f(m),d, Ed, C) dm calculates the optimal answer given234

a specific forward model f(m) and computational algorithm C (denoted as a∗f(m),C be-235

low). The third line of equation 3 holds based on the assumption that forward model236

f(m) and algorithm C are usually independent of design Ed and observed data d. Then,237

term p(C,f(m)) = p(f(m))p (C|f(m)) describes the joint probability density of for-238

ward function f(m) and algorithm C, where p(C|f(m)) is the prior probability that a239

specific algorithm C will find the correct solution given that forward function f(m) does240

adequately describe the forward physics. Note that C and f(m) are not necessarily in-241

dependent of each other since some forward functions may preclude the use of different242

algorithms. For example, we would prefer to use Monte Carlo sampling method if the243

forward function can be solved cheaply, since the algorithm provides an unbiased approx-244

imation of the true solution of a Bayesian inversion problem only as the number of sam-245



ples becomes large. Therefore we would not consider this algorithm when the forward246

function is incredibly expensive (for example a full waveform simulator that solves the247

3D wave equation). Equation 3 states that the final optimal answer a∗ is a weighted sum248

of a∗f(m),C over all of the models and algorithms considered. This can be understood in-249

tuitively: by considering the effect of different forward models and algorithms, we reduce250

the bias due to subjective choices and so obtain a more robust interrogation result.251

To conclude, equation 3 answers question Q by interrogating the Bayesian inver-252

sion results. It also shows that a design Ed that provides optimal answers to question253

Q would potentially be very different from one designed to maximise information in the254

posterior distribution p(m|f(m),d, Ed, C) as has been performed in previous research255

on Geophysical optimal design (e.g., van Den Berg et al., 2003; Guest & Curtis, 2009;256

Bloem et al., 2020).257

4 Implementation258

4.1 Problem Statement259

Interrogation theory described above can be used to answer many types of real-world260

questions. In this paper, we provide a specific application to answer volume-related (3D),261

area-related (2D), or other shape-related questions about a body or medium of interest262

using fully non-linear tomographic results. This kind of question appears frequently in263

both academia and industry where we wish to interpret some geological phenomena from264

geophysical imaging results, such as to estimate the size of a subsurface body, the vol-265

ume of a reservoir, or the depth of a particular feature such as the Moho under a spe-266

cific location.267

In this section, we use a 2D synthetic example to establish an interrogation pro-268

cedure for estimating the area of a 2D subsurface body. Figure 3a shows the true veloc-269

ity model used in this example: a circular low velocity anomaly of 1 km/s is discretised270

on a grid size of 0.1 km, and located at the centre of the model, and its surrounding area271

has a high velocity value of 2 km/s. White triangles display the location of 16 receivers272

(equivalently 16 virtual sources) to collect traveltime data. Given only seismic travel time273

data from waves that traverse this velocity model, we pose a scientific question: what274

is the area of the low velocity anomaly?275



Figure 3. (a) True velocity model used for the 2D synthetic example. (b) A random sample

drawn from the posterior distribution of MH-McMC. (c) The same sample in (b) after applying

the mask defined in the main text. (d) The retained low velocity pixels after comparing the ve-

locity of every pixel in (c) with the optimal threshold value. (e) Black crosses mark the largest

spatially-continuous low velocity body in (d). The defined target function calculates the area of

this body.

4.2 Interrogation Procedure276

Table 1 summarizes some key elements defined for this interrogation problem. We277

use the fast marching method (FMM) to represent the model-data relationship. Since278

this is the only forward model considered in this example, it has a prior probability p(f(m)) =279

1. The corresponding model parameter m is the subsurface seismic velocity structure280

using a regularly-gridded parametrisation, and a Uniform prior distribution is used for281

the velocity in each cell. To answer the question, we use an experimental design (i.e. source282

and receiver locations) that contains 16 receivers placed in a circular shape with a ra-283

dius of 4 km around the low velocity area, as shown by the white triangles in Figure 3a,284

such that the collected data provides relevant information about the low velocity anomaly.285

These receivers are also treated as sources, to emulate the use of standard inter-receiver286

interferometry to provide source to receiver traveltimes (Shapiro et al., 2005; Curtis et287

al., 2006). Given the collected traveltime data, we solve a Bayesian inference problem288

to estimate the posterior distribution of the model parameter m. We use four different289

algorithms to perform non-linear Bayesian tomographic inversion: automatic differen-290

tial variational inference (ADVI) (Kucukelbir et al., 2017), normalizing flows (Rezende291

& Mohamed, 2015), Stein variational gradient descent (SVGD) (Liu & Wang, 2016) and292

Metropolis Hastings McMC (MH-McMC) (Tarantola, 2005); each algorithm is described293

in Zhao et al. (2021), and the corresponding inversion results are shown in Figures 4a294

- 4d. The top row of Figure 4 shows the (pixelated) mean velocity maps from the above295



Table 1. Key interrogation elements defined for the synthetic test.

Symbol Meaning Description

Q Question What is the area of the low velocity anomaly?

f(m) Forward model Fast marching method (FMM)

m Parameter Pixelated velocity structure with a Uniform prior pdf

Ed Design Source and receiver station locations

d Data Source to receiver traveltimes

C Algorithms ADVI, Normalizing flows, SVGD and MH-McMC

T (m) Target function Transform m into area of low velocity anomaly

U(a|t) Utility function −(a− t)2

a∗ Optimal answer E[T (m|f(m), C,Q)|d, Ed]

four methods, while the bottom row shows the corresponding standard deviation maps.296

In this paper we will not focus on comparing the four inversion results as details about297

this inversion and a corresponding discussion can be found in Zhao et al. (2021). They298

concluded that (at least for seismic tomography problems that use FMM as the forward299

function f(m)) ADVI provides an accurate mean velocity model but a biased uncertainty300

estimation, and the other three methods give similar and accurate mean and uncertainty301

maps (the same conclusion can be reached by comparing Figure 4a to Figures 4b - 4d).302

We wish to include the results from ADVI when we determine the optimal answer to the303

question since this method is relatively efficient and robust (in the sense that the result304

is highly repeatable), and the mean tends to be accurate in previous tests so it clearly305

provide information at relatively low computational cost. We downweight the contribu-306

tion of this algorithm because of the bias expected in its uncertainty estimates by as-307

signing it a relatively low prior probability: p(C|f(m)) = 0.1. For the other three al-308

gorithms, we assign equal prior values p(C|f(m)) = 0.3.309

Based on the above elements, we define a target function that maps a posterior sam-310

ple in high-dimensional parameter space into the area of the central low velocity anomaly311

in low-dimensional answer space. From the inversion results in Figures 4a - 4d, the low312

velocity anomaly of interest is located close to the centre of the model. Even though there313

might be some low velocity anomalies far from the central region, we assume that they314



Figure 4. (a) - (d) Pixel-by-Pixel mean (top row) and standard deviation (bottom row) maps

of the posterior distributions obtained using ADVI, normalizing flows, SVGD and MH-McMC.

(e) The corresponding maps of MH-McMC in (d) after applying the mask introduced in the

main text: only the remaining pixels are considered when estimating the area of the low velocity

anomaly. White triangles in (a) - (d) illustrate the receiver (and source) locations of the experi-

mental design. Red crosses and black stars in each figure denote the selected pixels used to define

the threshold value to discriminate of low and high velocities.

have no relation with the central anomaly in which we are interested since they will be315

on or outside of the circular array of receivers. To encode this prior assumption, we in-316

troduce a mask to confine the region used to calculate the target function. Figure 4e il-317

lustrates the effect of the mask, which displays the mean and uncertainty maps of MH-318

McMC after applying the mask. The area outside of this mask is discarded, and only319

the remaining velocity pixels are retained to calculate the low velocity area. Thus the320

target function of each posterior sample T (m|f(m), C,Q) becomes: the area of the low321

velocity anomaly inside the mask.322

Figure 3b shows a posterior sample drawn from the inversion results of MH-McMC,323

and Figure 3c shows the same sample after applying the defined mask. One way to cal-324

culate the target function of this posterior sample is to sum up all of the area of low ve-325

locity pixels. This highlights a sub-question that must be answered in order to proceed:326

“what is the best threshold to discriminate low velocity from high velocity pixels with327

minimal bias?” If we could estimate such an optimal threshold value, we could classify328

each pixel as low or high velocity and hence calculate the target function value.329



Figure 5. (a) and (b) Marginal pdfs of low and high velocity marked in Figure 4. Dashed

black lines denote the crossing point in (e), which is used to classify low and high velocity pix-

els. (c) and (d) Marginal cdfs obtained by integrating the corresponding pdfs in (a) and (b) in

opposite directions. (e) Averaged cdf curves for low (red line) and high (blue line) velocity pixels

calculated using (c) and (d). Black dot marks the crossing point of the two curves, and is the

threshold value that discriminates low from high velocities with minimal bias.

We define a data-driven way to obtain such a threshold value. Firstly, we pick some330

pixels that are most likely to be high (and low) velocity cells from the four inversion re-331

sults. Ideally, these pixels should have higher (lower) mean velocity values relative to the332

mean, and low uncertainties, as denoted by the red crosses (black stars) in Figure 4. A333

threshold value estimated from such pixels should represent high and low velocity infor-334

mation better than a value estimated using other, more ambiguous pixels, thus intro-335

ducing minimal bias.336



Figures 5a and 5b show marginal pdfs of the selected low and high velocity pix-337

els, and Figures 5c and 5d display the corresponding marginal cumulative density func-338

tions (cdfs). Note that the low velocity marginal cdfs in Figure 5c are obtained by in-339

tegrating the low velocity marginal pdfs in Figure 5a from low to high velocity (from left340

to right), whereas the high velocity cdfs in Figure 5d are obtained by integrating the marginals341

pdfs in Figure 5b in the opposite direction (from high to low velocity). We then aver-342

age the marginal cdfs in Figures 5c and 5d and plot the averaged cdf curves in Figure343

5e. The red line is the averaged cdf for low velocity pixels, and the blue line is that for344

high velocity pixels, and note that while these curves are close to being mirror images345

of each other this is not generally the case. The crossing point of the two lines is marked346

by the black dot with a velocity value of 1.676 km/s. This value is also illustrated by347

the dashed black line in each pdf curve in Figures 5a and 5b. This point has the prop-348

erty that the probability that the velocities of the selected low velocity pixels (black stars349

in Figure 4) are lower than this value equals the probability that the velocities of the se-350

lected high velocity pixels (red crosses in Figure 4) are higher than this value. This spe-351

cific threshold value therefore discriminates low from high velocity values with minimal352

bias.353

We compare the velocity value of each pixel in Figure 3c with the optimal thresh-354

old, and retain those whose velocity value is smaller than the threshold, as shown in Fig-355

ure 3d. We interpret these pixels as low velocity bodies in this sample. Question Q de-356

mands the area of a single low velocity anomaly, rather than all of the low velocity pix-357

els in Figure 3d. Therefore we add additional prior information that the low velocity anomaly358

of interest should represent a continuous geological body in space. The target function359

then becomes the area of the largest continuous low velocity body inside the mask, which360

is marked by black crosses in Figure 3e (continuity can occur through both laterally and361

diagonally adjacent pixels). Obviously this target function transforms a high-dimensional362

velocity vector m into a (1-dimensional) scalar value, and eliminates nuisance param-363

eters that are less relevant to the question, such that Q can be answered directly in the364

target space T.365

For each of the four inversion results we calculate the target function T (m|f(m), C,Q)366

for every posterior sample, and plot the corresponding posterior histograms in Figure367

6. Given the negative squared error utility function in equation 2, the optimal answer368

for each algorithm a∗C can be expressed as the posterior mean of target function T (m|f(m), C,Q)369



Figure 6. Posterior distributions of the target function for ADVI, normalizing flows, SVGD

and MH-McMC, from left to right respectively. The posterior mean value of each target function

is displayed at the top-left corner, and is also marked by the dashed black line in each figure. The

true answer to this question (12.56 km2) is denoted by the red lines.

(equation 3), noted at the top-left corner and denoted by the dashed black line in Fig-370

ure 6. We could further substitute these 4 results, their prior probability values p(C|f(m)),371

and the prior probability of forward function p(f(m)) = 1 into equation 3 to obtain372

the final optimal answer: 12.89 km2; this is very close to the true answer (12.56 km2)373

which is marked by red lines in Figure 6.374

This example illustrates the accuracy of this interrogation procedure. Although the375

final answer is very close to (even slightly less accurate than) the answer obtained from376

normalizing flows (12.85 km2), we usually do not know the true answer to our question377

for reference, and thus have no means to select the answer from one algorithm over any378

other. On the other hand, by considering the effect of different algorithms and by defin-379

ing prior probabilities that each algorithm will provide the correct solution based on their380

past performance, we would be more confident about the final answer obtained.381

Considering the true Earth has infinitely fine structure, whereas in reality we parametrise382

it with a finite (coarse) grid or number of parameters to reduce the dimensionality of our383

inverse problem, so it is crucial to consider the effect of different parametrisations when384

answering questions. In the supporting information associated with this article, we in-385

vestigate the effect of interrogations carried out using models with different parametri-386

sations. We double the grid size in both directions from 0.5 km to 1 km, which decreases387

the dimensionality of the tomographic problem from 441 to 121. The results show that388

both the posterior histograms and their corresponding mean values from the coarser in-389

version results are quite similar to those obtained from the finer grid parametrisation in390

Figure 6. The final answer of the coarser grid parametrisation (12.37 km2) is very close391



to the true answer (12.56 km2), as well as that estimated from the finer grid parametri-392

sation (12.89 km2).393

We thus obtain an accurate answer using interrogation theory using either parametri-394

sation. By contrast interpreting the mean map alone provides a severely erroneous an-395

swer (9 km2). This makes interrogation theory more attractive for answering scientific396

questions since we obtain an accurate answer to the question even under a coarse parametri-397

sation, which usually offers orders of magnitudes of computational cost reduction in real398

problems.399

5 Interrogating the East Irish Sea basins400

5.1 Shear Wave Velocity Inversion of the East Irish Sea basins401

In the second example, we use interrogation theory to answer questions about the402

East Irish Sea sedimentary basins. Figure 7a displays 61 seismometer locations (red tri-403

angles) around the British Isles used in this test, all of which contain one vertical (Z)404

and two horizontal (North and East) components to detect ground motion. We consider405

ambient noise data recorded by these stations during 2001 to 2003, 2006 to 2007 and in406

2010. Nicolson et al. (2014) cross-correlated the vertical component of the ambient noise407

data to estimate inter-receiver traveltimes of Rayleigh waves, and to perform Rayleigh408

wave tomography of the British Isles. Galetti et al. (2017) used two horizontal compo-409

nents to calculate Love wave group velocity maps at different periods. A more detailed410

description about the ambient noise data and data processing can be found in Galetti411

et al. (2017). Since Love waves are dominantly sensitive to the near surface shear veloc-412

ity structure, we perform shear wave group velocity depth inversion of the East Irish Sea413

basins using the estimated Love wave traveltime measurements between 4 and 15 s pe-414

riods, and interrogate the size of those sedimentary basins using the inversion results.415

Note that the receiver network used in this paper may not be the optimal experimen-416

tal design to provide the most relevant information about the Irish Sea basins. However,417

it represents a common situation in seismology where we have fixed legacy designs which418

are definitely not optimal for every question being posed, and nevertheless wish to find419

optimal answers to specific questions about the Earth.420

We use a two-step scheme for the 3D shear wave group velocity depth inversion.421

In the first step, we perform Love wave tomography of the British Isles using inter-receiver422



Figure 7. (a) The locations of 61 seismometers (red triangles) around the British Isles used

in this paper to record ambient noise data. The recorded data were cross-correlated to provide

inter-receiver traveltimes of Love waves at different periods of 4, 6, 8, 9, 10, 11, 12, 15 s (Galetti

et al., 2017). We use these data to perform shear wave group velocity depth inversion beneath

the East Irish Sea within the black box, via a two-step scheme (see main text for details). (b)

One dispersion curve picked from 2D tomographic inversion results of normalizing flows at the

geographical point 4◦W, 53.5◦N, marked by the blue star in (a).



traveltime data at different periods of 4, 6, 8, 9, 10, 11, 12 and 15 s. For each period we423

perform 2D surface wave tomography, restricting the imaging region to within longitude424

9◦W – 3◦E and latitude 48◦N – 61◦N, and parametrise the velocity model using a reg-425

ular grid of 37 × 40 cells with a spacing of 0.33◦ in both longitude and latitude direc-426

tions. The prior distribution is chosen to be a Uniform distribution, and its lower and427

upper bounds are chosen according to Galetti et al. (2017). The likelihood function is428

chosen to be a Gaussian distribution, and the traveltime data error of each inter-receiver429

path is estimated from daily cross-correlations (Galetti et al., 2017). Considering the di-430

mensionality of this fully non-linear inverse problem, we only use three variational meth-431

ods: ADVI, normalizing flows and SVGD to perform tomography at each period; we do432

not perform MH-McMC, as the results using that algorithm did not converge acceptably433

even after drawing 15 million samples in total with 10 chains using 660 hours of elapsed434

time (Zhao et al., 2021). Previously, Zhao et al. (2021) performed Love wave tomogra-435

phy at 10 s period to compare the performance of different algorithms. In this study we436

run tomography at all periods, and use these tomographic results to construct disper-437

sion curves at each geographical location. These curves form the dataset that is used to438

drive the depth inversion (more details on the latter are given below).439

Figure 8 shows average velocity maps of the Love wave tomography results using440

normalizing flows at all of the analysed periods, and Figure 9 shows the corresponding441

uncertainty results. In order to aid the comparison of velocity structures and uncertain-442

ties between the various periods, the same colour scales are used for all of the mean and443

standard deviation maps in Figures 8 and 9, respectively. Some small structures in Fig-444

ures 8 and 9 are a bit different compared to those from reversible jump McMC in Galetti445

et al. (2017) (which uses exactly the same traveltime data for Love wave group veloc-446

ity tomography). This is due to different parametrisations used in the two studies: Galetti447

et al. (2017) used a variable parametrisation using Voronoi cells to discretize the veloc-448

ity model, whereas we use a fixed regularly-gridded parametrisation. Nevertheless, the449

main features of the mean velocity and uncertainty maps show good consistency with450

the known geology and previous tomographic studies of the British Isles (Nicolson et al.,451

2012, 2014; Galetti et al., 2015, 2017). For example, from the tomographic results (es-452

pecially at smaller periods which usually provide velocity information in the shallow sub-453

surface), we observe a low velocity structure beneath the East Irish Sea within longitude454

6◦W – 2◦W and latitude 53◦N – 55◦N, marked by the black boxes in Figure 7a and Fig-455



Figure 8. Mean Love wave group velocity maps of the British Isles, interpolated between grid

cell locations in the results obtained using normalizing flows at different periods between 4 s and

15 s. All of the mean maps are plotted using the same velocity range for better comparison, and

the corresponding period is shown above each map. The black boxes indicate the target region

where we pick dispersion curves and perform depth inversion in the second step.



Figure 9. Standard deviation maps of the British Isles, interpolated between grid cell lo-

cations in the results obtained using normalizing flows at different periods between 4 s and 15

s, each of which corresponds to one mean velocity map in Figure 8. All the uncertainty maps

are plotted using the same range for better comparison, and the corresponding period is shown

above each map. The black boxes indicate the target region where we pick dispersion curves and

perform depth inversion in the second step.



ures 8 and 9. This low velocity anomaly corresponds to the East Irish sedimentary sed-456

imentary basins (Galetti et al., 2017).457

In the second inversion step we focus on the East Irish Sea basins (inside the black458

box in Figure 7a) and perform dispersion inversion to estimate the 3D shear wave ve-459

locity structure at depth using the results from traveltime tomography in the first step.460

To perform the depth inversion, we construct a dataset of group velocity dispersion curves461

from the tomographic results. At each geographic point inside the black box in Figure462

7a, a dispersion curve can be constructed by taking group velocity values from the 2D463

mean maps, and uncertainty values from the 2D standard deviation maps at each pe-464

riod. For example, Figure 7b shows one dispersion curve picked from the 2D tomogra-465

phy results in Figures 8 and 9 at 4◦W, 53.5◦N, the geographical location marked by the466

blue star in Figure 7a. Given the regular gridded parametrisation scheme we used in the467

first step, we pick 91 dispersion curves inside the black box around the East Irish Sea.468

In order to include lateral spatial correlations in the inversion results, we use the469

3D reversible jump Markov chain Monte Carlo (rj-McMC) algorithm of X. Zhang et al.470

(2018) to perform dispersion inversion in this step. The method parametrises the sub-471

surface velocity model with a 3D Voronoi tessellation, which varies both in shape and472

number of cells during the inversion. For a given 3D velocity model, the forward prob-473

lem consists of extracting 1D shear velocity profiles over depth beneath each geograph-474

ical point, and calculating a group velocity dispersion curve for that 1D structure using475

a modal approximation (Saito, 1988). Since we obtained different results from the three476

variational methods in the first step, we obtain three different sets of dispersion curve477

data for the second step. We therefore perform three independent dispersion inversions478

to examine the effect of using different algorithms and to reduce the algorithmic bias im-479

posed on our final answer, similar to the approach taken in the synthetic example. For480

each inversion, the prior distribution is set to be a Uniform distribution on shear veloc-481

ity in the subsurface between 0.5 and 6 km/s. The prior pdf on the number of Voronoi482

cells is selected to be a discrete Uniform distribution between 20 and 600 to address the483

complexity of the shear velocity structure beneath the East Irish Sea. The likelihood func-484

tion is set to be a Gaussian distribution around the measured data. We perform each485

inversion by running 16 Markov chains with 3 million iterations, discarding the first 1486

million samples from each chain as burn-in, and only retaining every 200th sample there-487



Figure 10. 3D rj-McMC inversion results of shear wave velocity structure constrained by 91

dispersion curves picked from the 2D surface wave tomography results obtained using normalizing

flows (within the black boxes in Figures 8 and 9). (a) Mean and (b) standard deviation maps of

horizontal slices between 2 km and 12 km depth.

after to calculate statistics of the posterior distribution and to apply interrogation the-488

ory.489

Considering that each posterior sample is defined using a different 3D Voronoi model490

parametrisation, we first project all samples onto a regular grid of pixels. In this test,491

we define a 3D regular grid with a spacing of 0.33◦ in both latitude and longitude di-492

rections and 0.2 km in depth. We then compute the mean group velocity and standard493

deviation maps across the set of retained samples. Figures 10a and 10b show horizon-494

tal slices of the (pixelated) mean and uncertainty maps of the dispersion inversion re-495

sults between 2 km and 12 km depth, from the inversion result using dispersion data from496

normalizing flows (Figures 8 and 9). The average shear velocity increases with depth,497

and the uncertainty also increases since the resolution of Love wave data is lower in the498

deeper Earth. Again, in Figure 10 we observe similar features compared to those rep-499

resent by Galetti et al. (2017), which proves the credibility of our results.500



From the mean velocity maps in Figure 10a, we can observe a low velocity struc-501

ture beneath the East Irish Sea down to about 8 km depth, which is interpreted to be502

the East Irish Sea sedimentary basins in previous studies (Mellett et al., 2015; Galetti503

et al., 2017). Based on the three inversion results, we attempt to answer scientific ques-504

tions about these sedimentary basins using the interrogation procedure tested above.505

5.2 Estimating the area of the East Irish Sea basins in the shallow sub-506

surface507

We first estimate the area of the East Irish Sea sedimentary basins in the shallow508

subsurface using the top cell of the 3D inversion results which extends from surface down509

to 200m depth. Figure 11 displays the top cell of the three inversion results. From left510

to right, each column stands for the average velocity (top row) and uncertainty (bottom511

row) maps of the inversion results using dispersion curve data picked from 2D tomographic512

results obtained using (a) ADVI, (b) normalizing flows and (c) SVGD (the three vari-513

ational methods used in the first step only provide different dispersion curves for the sec-514

ond step, and we use the same 3D rj-McMC algorithm for all depth inversions in the sec-515

ond step).516

The geological structure beneath the Irish Sea can be divided into a number of bedrock517

basins, representing depositional zones for the bedrock formations. The largest basins518

are Triassic in age and comprise the East Irish Sea basins (around 5◦W - 3◦W and 53.3◦N519

- 55◦N: Mellett et al., 2015). Thus we pose a question: what is the area of the East Irish520

Sea basins at this depth? We have a reference answer to this question, which is estimated521

from a shallow subsurface geological survey (Mellett et al., 2015), and which enables us522

to validate interrogation theory with real data.523

It is known that sedimentary basins often have lower velocities compared to their524

surrounding regions, thus our question is equivalent to estimating the area of the con-525

tinuous low velocity body at this depth. We therefore apply exactly the same procedure526

as we implemented in the synthetic examples above to find the optimal answer. We first527

define a mask, as marked by the black boxes in Figure 11, meaning that we only con-528

sider the seismic velocity information inside the mask. The North, East and South bound-529

aries of the mask are determined by the coastline of mainland Britain, whereas the West530

boundary is defined based on the bedrock geology beneath the Irish Sea (Mellett et al.,531



Figure 11. Mean (top row) and uncertainty (bottom row) maps of the top cell (from 0 to

200 m) of 3D shear wave velocity inversion results using dispersion curve data constructed from

2D tomography results obtained using (a) ADVI, (b) normalizing flows and (c) SVGD. In each

figure, the black box displays the region where we calculate the area of the sedimentary basins.

Black stars and red crosses are used to define the best threshold to discriminate low from high

velocities with minimal bias.



2015). We select some points that are likely to belong to the East Irish Sea sedimentary532

basins (black stars in Figure 11), and another set of points that are highly likely to be533

outside the basins (red crosses in Figure 11). Given those grid cells, we calculate the best534

velocity threshold that discriminates low from high velocities with minimal bias using535

the same data-driven method as used in the synthetic test.536

Similarly, we define our target function T (m|f(m), C,Q) as the area of the largest537

continuous low velocity body inside the mask, and calculate the target function for each538

posterior sample from each algorithm. Figures 12a – 12c display the posterior distribu-539

tions of the target function calculated using the inversion results from ADVI, normal-540

izing flows and SVGD. In each figure, the mean value of the posterior target function541

(the optimal answer considering only each individual algorithm) is denoted by the dashed542

black line as well as the number below the legend, and the reference answer (1.12×104km2
543

estimated from Mellett et al., 2015) is denoted by the red line in each figure.544

Given the forward function f(m) used in the second inversion step, we define prior545

probabilities p(C|f(m)) for different algorithms. We assign p(C|f(m)) as 0.30 for ADVI546

and 0.35 for normalizing flows and SVGD (where these different algorithms were used547

for 2D surface wave tomography). The reason we only downweight ADVI slightly is that548

in this example, the role of these three methods is only to provide different datasets (mean549

and uncertainty values for dispersion curves) used in the second step depth inversion,550

in which we use the same algorithm: 3D rj-McMC. Previous studies (X. Zhang & Cur-551

tis, 2020a; Zhao et al., 2021) and the synthetic examples above have shown that, ADVI552

can provide an accurate mean model but a biased uncertainty result; that is the disper-553

sion curves (the observed dataset for the second step) constructed by ADVI would have554

accurate mean values but inaccurate data uncertainty estimates. We treat these inac-555

curate data errors as additional unknowns and adjust their values adaptively and hier-556

archically by a scaling value during 3D rj-McMC inversion (Bodin et al., 2012; Galetti557

et al., 2017; X. Zhang et al., 2018), so the absolute data uncertainty level of the disper-558

sion curves should have far less effect on inversion results. By using equation 3, we cal-559

culate the final optimal answer that considers the effect of different algorithms: 1.22×560

104 km2, which provides reasonable accuracy compared to the reference value for this561

question derived from the geological study (1.12× 104 km2 – Mellett et al., 2015).562



Figure 12. Posterior target functions for the area of the East Irish Sea basins at the shal-

low subsurface obtained from (a) ADVI, (b) normalizing flows, (c) SVGD and (d) prior distri-

bution, respectively. In each figure, the red line denotes the reference answer to this question

(1.12 × 104 km2) estimated from surface geology (Mellett et al., 2015), and the dashed black

line denotes the mean value of each histogram, which is also displayed by the number below the

legend.

We note that in Figures 12a – 12c, the three posterior target functions span a very563

broad range (even the entire answer space from 0 to 3.0×104 km2 that is close to the564

total area of the defined mask), and the optimal answer we obtained also appears to be565

close to the mean value of the upper and lower bounds of the answer space (1.5×104 km2).566

In principle one might argue that this is because the surface wave data used in this ex-567

ample (from 4 s to 15 s period) are relatively insensitive to the near surface at a depth568

of up to 200 m; hence the posterior samples may not be well constrained by the data,569

leading to a broadly distributed set of target function values which happen to have the570

same mean as the true answer. To investigate, we apply the same interrogation proce-571

dure using the same velocity threshold as above, to 2 million samples drawn from the572

Uniform prior distribution, and display the histogram of the calculated target function573

in Figure 12d. Obviously, the posterior target distributions and the optimal answers ob-574

tained from the three inversion results in Figures 12a – 12c are significantly more infor-575

mative than that estimated from the prior probability distribution which gives an ex-576

tremely poor answer for the area of sediment. This shows that while it is true that the577

uncertainty on the final answer is high, the surface wave data are certainly far more in-578

formative than the answer that could be obtained from our prior information alone.579

Since interrogation theory provides an optimal answer that is close to the answer580

obtained from an entirely different method based on interpreting surface geology, we have581

increased confidence in the result. This example as well as the synthetic tests therefore582

go some way towards validating interrogation theory as a practical method to answer583



scientific questions. In the next section, we apply the theory to answer a real-world sci-584

entific question where we do not know the true answer.585

5.3 Estimating the volume of the East Irish Sea basins586

We wish to answer a 3D volume-type question about the true Earth: what is the587

total volume of the offshore East Irish Sea sedimentary basins? In this example we need588

to define a 3D mask inside which we calculate the volume of the basins. As displayed589

by the black boxes in Figures 10a and 10b, we define such a 3D mask with fixed shape590

in the depth direction from the surface down to 8 km depth to fully encompass the off-591

shore sediments while excluding most of the land. In the horizontal direction, the bound-592

aries of the mask are defined based on the coastline of mainland Britain as well as on593

the inversion results in Figure 10.594

The target function of this 3D example should account for the volume of the low595

velocity bodies inside the mask, since sedimentary basins often have relatively lower ve-596

locities compared to the surrounding regions. In contrast to 2D cases above where we597

used a fixed threshold to discriminate low from high velocities, we now need threshold598

values that vary with depth to allow for the significant velocity changes that occur be-599

tween different depths due to pressure and temperature increases. We use the following600

method to obtain such depth-dependent threshold values. Firstly, we calculate 5 inde-601

pendent velocity threshold values at 5 fixed depths of 0 (surface), 2, 4, 6 and 8 km re-602

spectively, using exactly the same data-driven method as what we did in the 2D exam-603

ples, and the obtained optimal threshold values are displayed by the red dots in Figure604

13. We further interpolate between these 5 points to obtain the dashed red line in Fig-605

ure 13. Each velocity value on this line is used as the optimal depth-dependent thresh-606

old that discriminates low from high velocities at the corresponding depth. The blue line607

in Figure 13 shows the average velocity value at different depths from the surface to 8608

km. Although these two curves are not exactly the same (and there is no reason why they609

shoud be), they present similar feature of velocity increasing versus depth, which increases610

our confidence in the obtained depth-dependent threshold curve.611

Given the obtained depth-dependent threshold curve, we classify every pixel inside612

the 3D mask as a low or high velocity grid cell, retain low velocity pixels and find the613

continuous low velocity bodies. In contrast to the 2D cases where we treat the largest614



Figure 13. Mean velocity values at different depths from the surface to 8 km (blue line) and

the optimal depth-dependent threshold curve to discriminate low from high velocity values with

minimal bias (dashed red line).

Figure 14. Vertical sections of a posterior sample drawn from the inversion results. The top

row shows the vertical section at 53.67◦N latitude, and the bottom row shows that at 4.33◦W

longitude. (a) Two vertical slices of this posterior sample. (b) The same vertical slices as in (a)

after applying the 3D mask. (c) Two continuous low velocity bodies classified by the depth-

dependent threshold curve. (d) The largest continuous low velocity body that starts from surface,

whose volume is treated as the target function of this posterior sample.



Figure 15. Posterior target functions for the volume of the East Irish Sea basins obtained

from (a) ADVI, (b) normalizing flows and (c) SVGD, respectively. In each figure, the dashed

black line denotes the posterior mean value of each algorithm, which is also displayed by the

number below each legend, and the red line denotes the final estimated answer to this 3D ques-

tion (1.065× 105 km3).

continuous low velocity body as the target function, we need to consider additional ge-615

ological prior information when defining the target function for this 3D question. To il-616

lustrate, Figure 14 presents vertical slices of one posterior sample drawn from the 3D in-617

version results. The top row shows the depth slice at 53.67◦N latitude, and the bottom618

row shows the vertical section at 4.33◦W longitude. The two depth slices of this poste-619

rior sample are shown in Figure 14a, and the same slices after applying the 3D mask are620

displayed in Figure 14b. By comparing each velocity value with the depth-dependent thresh-621

old curve, we retain low velocity pixels and obtain two continuous low velocity bodies622

(Figure 14c). Given that we seek to estimate the volume of sedimentary basins, and con-623

sidering that the basins in question have been observed to are often assumed to exist at624

least at the surface rather than only in deeper parts of the crust, we define the target625

function as the largest continuous low velocity body that starts from the surface. There-626

fore we interpret the upper low velocity body as the sedimentary basins of interest (shown627

in Figure 14d) and calculate its volume as the target function of this posterior sample,628

even though the lower one is larger.629

We calculate this target function for each posterior sample obtained from ADVI,630

normalizing flows and SVGD, and display their posterior target histograms in Figure 15.631

The mean value of each posterior histogram represents the optimal answer estimated from632

each corresponding algorithm, which is denoted by the black dashed line and the num-633

ber below the legend in each figure. We substitute those values and the 3 prior proba-634



bilities p(C|f(m)) into equation 3, and obtain the final estimated answer to our ques-635

tion: 1.065× 105 km3 (the red lines in Figure 15).636

6 Discussion637

We used interrogation theory to answer real-world, unanswered scientific questions638

about the Earth based on Bayesian inversion results represented by posterior probabil-639

ity distributions. Previously, similar questions were usually answered by interpreting mean640

or maximum likelihood models directly. In the synthetic example, we have proved that641

direct interpretation of the mean model alone provides an inaccurate answer, especially642

under a coarse model parametrisation. The true Earth has infinitely fine structure, whereas643

we often use a relatively coarser parametrisation to reduce the dimensionality of the in-644

version problem. It is therefore likely that the answer obtained in this way is always bi-645

ased at some level. On the other hand, the examples presented above show that the op-646

timal answer obtained from interrogation theory is very close to the true (reference) an-647

swer, despite the relatively coarse model parametrisation (the grid size) employed.648

The above result arises because the target function T (m|f(m), C,Q), which projects649

model parameter m into target space T where the question can be answered directly, is650

applied stochastically. In the synthetic example, consider a fixed pixel that spans the bound-651

ary of the true velocity anomaly. In some samples it is classified as part of the low ve-652

locity anomaly by the defined target function (suppose we label those pixels as 1), while653

in other samples it is not (we label them as 0). By applying equation 3, we account for654

the posterior mean of those labels, resulting in a fraction between [0, 1], which denotes655

the probability that this pixel belongs to the low velocity anomaly. For comparison, if656

we only interpret the mean model (or any other single model) alone, this same pixel al-657

ways either belongs or does not belong to the low velocity anomaly, so it always contributes658

either 1 or 0. As a result, the effective resolution of the answer obtained from interro-659

gation theory can be much higher than might be apparent from the grid cell size alone,660

since we consider all of the posterior samples together in a statistical manner. Thus the661

answer is still accurate even when using a coarser parametrisation as observed in the sup-662

porting information associated with this paper.663

Bayesian non-linear inversion is many times more expensive than linearised inver-664

sion, especially for high dimensional problems due to the curse of dimensionality (Curtis665



& Lomax, 2001). Typically geophysicists only present, publish and use a small amount666

of the statistical information obtained from Bayesian inversion results, such as mean and667

point-wise standard deviations; most of the valuable information within the posterior pdf668

is discarded, which can introduce errors and biases when answering questions. This pa-669

per shows that interrogation theory provides a way to make use of all posterior samples670

obtained from Bayesian inversion, in a way that gives answers of improved accuracy. This671

goes some way to justifying the computational expense of solving inverse problems non-672

linearly and probabilistically.673

We considered the effect of different computational inversion algorithms C, and com-674

bined them to calculate optimal answers (equation 3). Thus the uncertainty caused by675

the use of any single algorithm was taken into account and the bias of the obtained an-676

swer was reduced. On the other hand, all of the above examples only used a single for-677

ward function f(m), the fast marching method (together with a modal approximation678

for the 3D example) to map model parameter m into the corresponding data d. Future679

improvements in interrogation applications might focus on involving different forward680

models to answer area-type (or volume-type) questions, for example using full wave sim-681

ulators as the forward model and using full waveform inversion to solve Bayesian inverse682

problems (Gebraad et al., 2020; X. Zhang & Curtis, 2020b, 2021), such that we can re-683

duce the uncertainty caused by different model-data relationships.684

Prior information is often critical in order to define a reasonable target function.685

In the synthetic example we defined the largest continuous low velocity body to be the686

low velocity anomaly of interest rather than simply including all of the low velocity bod-687

ies inside the mask. In the field data test, we interpreted sedimentary basins as low ve-688

locity bodies considering that basins often have relatively lower velocities compared to689

their surrounding rocks, and further interpreted the largest continuous low velocity body690

that starts from the surface to be the 3D basins of interest since these basins have been691

observed in the near surface geologically. The target function will always be more ac-692

curate if we consider more realistic prior information, and thus the optimal answer should693

be more reliable.694

In the field data test, we used interrogation theory to find the best answer a∗ con-695

ditioned on a particular traveltime dataset d and a fixed design Ed (receiver stations in696

Figure 7). In reality, it is common that the (predefined) design used to collect data is697



not the optimal one for the question posed because when networks are established it is698

always difficult to define a design that can best answer all questions that may be of in-699

terest in future. Interrogation theory provides a methodology to solve design problems700

to create an experiment that optimises information on one or more questions, but this701

does not remove the need to define the questions up front.702

For real-world applications, it is possible that our ultimate question may not be703

addressed clearly within one interrogation procedure. To better answer the original ques-704

tion, a set of new questions are usually posed to provide more background knowledge,705

and a sequential interrogation process is required until a satisfactory answer is obtained.706

For more details about sequential interrogation, we suggest readers refer to Arnold and707

Curtis (2018).708

Interrogation theory as presented in Arnold and Curtis (2018) appears to be highly709

structured and formalized. One purpose of this paper is to translate the theory into us-710

able form, and to provide a concrete example of answering a specific type of question.711

One of the main theoretical advances of Arnold and Curtis (2018) was to introduce the712

target function in order to allow utilities to be defined in a simpler, more tractable form,713

even when a variety of parametrizations and forward functions are considered. A key rev-714

elation from our examples above is that much of the skill and work involved in answer-715

ing real-world questions may be spent defining and calculating those target function val-716

ues in a clear and unbiased manner. We hope to use interrogation theory to answer a717

wide range of real-world scientific questions in future.718

7 Conclusion719

In this paper, we use interrogation theory to answer a specific type of question about720

the Earth: to estimate the shape, area or volume of a subsurface structure by interro-721

gating probabilistic Bayesian tomographic results. We establish an interrogation proce-722

dure by using a 2D synthetic example. By considering the effect of different computa-723

tional algorithms, we reduce the bias of the optimal answer and obtain an accurate es-724

timation of the question. The results using different parametrisations show that the same725

question can be answered accurately even on a relatively coarse grid, which reduces the726

computational cost of Bayesian inversion by orders of magnitude. We further apply in-727

terrogation theory to answer realistic questions about the East Irish Sea basins. The first728



application to estimate the horizontal area of the shallow part of the basins validates the729

theory, as the answer coincides to within 10% of that obtained from surface geological730

survey mapping. Finally, we use the method to estimate the total volume of the East731

Irish Sea basins for which no previously published answer exist. The theory established732

here is quite general, and can be applied to find answers for many other real-world sci-733

entific questions.734

8 Open Research735

Data associated with the field data example are available at British Geological Sur-736
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again. All of the other inversion settings are the same as those used in the finer grid

test and in Zhao, Curtis, and Zhang (2021), and the corresponding inversion results are

shown in Figure S1. Figures S1a – S1d show the mean (top row) and uncertainty (bottom

row) maps of the posterior distributions from automatic differential variational inference

(ADVI) (Kucukelbir et al., 2017), normalizing flows (Rezende & Mohamed, 2015), Stein

variational gradient descent (SVGD) (Liu & Wang, 2016) and Metropolis Hastings McMC

(MH-McMC) (Tarantola, 2005), respectively. From the four mean velocity maps, we

still observe a low velocity anomaly at the centre of the model. However, if we answer

the question Q by interpreting the 4 mean velocity maps directly, we would obtain an

estimated answer of 9 km2 from all of the four inversion results, which is strongly biased

compared to the true answer (12.56 km2).

Now using interrogation theory to find the optimal answer, we define a similar mask as

for the finer grid test in the main text, shown in Figure S1e. We select some high and low

velocity points from the inversion results (black stars and red crosses in Figure S1), and

calculate the optimal velocity threshold for this parametrisation: 1.644 km/s. Then we

calculate the area of the largest continuous low velocity body inside the mask as the target

function value. The corresponding posterior target functions for the four algorithms are

displayed in Figure S2. The dashed black line and the value at the top-left corner in each

figure mark the mean value of each posterior target histogram, which is interpreted as the

optimal answer obtained from each specific algorithm. The red line stands for the true

answer to this question. Both the posterior histograms and their corresponding mean

values in Figure S2 are quite similar to those obtained from the finer grid parametrisation

in Figure 6 in the main text. The final answer of the coarser grid parametrisation (12.37
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: X - 3

km2) is very close to the true answer (12.56 km2), as well as that estimated from the finer

grid parametrisation (12.89 km2).

We thus obtain an accurate answer using interrogation theory using either parametrisa-

tion. By contrast interpreting the mean map alone provides a severely erroneous answer (9

km2). This makes interrogation theory more attractive for answering scientific questions

since we obtain an accurate answer to the question even under a coarse parametrisa-

tion, which usually offers orders of magnitudes of computational cost reduction in real

problems.
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Figure S1. (a) - (d) Pixel-by-Pixel mean (top row) and standard deviation (bottom

row) maps of the posterior distributions obtained using ADVI, normalizing flows, SVGD

and MH-McMC with a coarser grid parametrisation of 1 km in both directions. (e) The

posterior mean and uncertainty maps of MH-McMC after applying the mask introduced

in the main text. Red crosses and black stars in each figure denote the selected pixels

used to define the threshold value to discriminate low and high velocities.

January 24, 2022, 9:45am



: X - 5

Figure S2. Posterior distributions of the target function for ADVI, normalizing flows,

SVGD and MH-McMC with the coarser grid parametrisation in Figure S1. The posterior

mean of each target function is displayed at the top-left corner, and is also marked by the

dashed black line in each figure. The true answer to this question (12.56 km2) is denoted

by the red line.
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