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Abstract

Identifying useful microseismic events is one of the key steps in monitoring tunnel rockbursts. Here, we propose a strong noise-

tolerant deep learning (SNTDL) network for the automatic classification of noisy microseismic events. First, to comprehensively

characterize the microseismic events, we extract nine weakly correlated features of the microseismic recordings as the input

of training the SNTDL network. Then, a jump connection and concatenation structure are added to this network, which can

further enhances its generalization ability. Additionally, the SNTDL, AlexNet, Inception, Visual Geometry Group, and ResNet

are compared using the synthetic microseismic recordings with different signal-noise ratios. The results demonstrate that the

SNTDL network has a higher accuracy and stronger noise-tolerant capability than the other approaches. Application to a

dataset collected from a different construction environment confirms that the SNTDL network can still achieve an accurate

classification result, which further verifies that the proposed network has a reliable generalization performance.
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Highlights
Strong noise-tolerant deep learning network for automatic microseismic events classification
Jian He,Huailiang Li,Xianguo Tuo,Xiaotao Wen,Wenzheng Rong,Xin He

• A deep learning network using the jump connection and concatenation structure for noisy microseismic events
classification was proposed.

• The developed network can accurately distinguish the noise signals and useful microseismic events with different
signal-noise ratios.

• Network training by using multiple features extracted from unfiltered datasets can enhance its noise-tolerant and
generalization ability.
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A B S T R A C T
Identifying useful microseismic events is one of the key steps in monitoring tunnel rockbursts. Here,
we propose a strong noise-tolerant deep learning (SNTDL) network for the automatic classification of
noisy microseismic events. The training set, validation set, and test set of the SNTDL network consist
of 27,989 unfiltered microseismic recordings First, to comprehensively characterize the microseismic
events, we extract nine weakly correlated features of the microseismic recordings as the input of
training the SNTDL network. Then, a jump connection and concatenation structure are added to this
network, which can further enhances its generalization ability. Additionally, the SNTDL, AlexNet,
Inception, Visual Geometry Group, and ResNet are compared using the synthetic microseismic
recordings with different signal-noise ratios. The results demonstrate that the SNTDL network has
a higher accuracy and stronger noise-tolerant capability than the other approaches. Application to a
dataset collected from a different construction environment confirms that the SNTDL network can
still achieve an accurate classification result, which further verifies that the proposed network has a
reliable generalization performance.

1. Introduction
Identifying useful microseismic events is the primary

task in rockburst monitoring Zheng, Lu, Peng and Jiang
(2018); Johnson, Ben-Zion, Meng and Vernon (2020). Ow-
ing to the complexity of the underground construction envi-
ronment (e.g., tunnel excavation and mining engineering),
the microseismic monitoring systems are usually contam-
inated by different vibration sources, such as explosives,
machinery, vehicles, and electronics Tang, Zhao, Li and Zhu
(2018); Peng, He, Wang and Jiang (2020); Jiang, Dai, Liu
and Li (2021). Various types of denoising methods have been
developed to suppress the random noise with microseismic
recordings, such as the Kalman filter Chen, Zhang and
Eaton (2020), frequency domain filtering Azarov, Serdyukov
and Gapeev (2020), template matching algorithms Mu, Lee
and Chen (2017); Skoumal, Brudzinski, Currie and Levy
(2014), wavelet transformation Li, Tuo, Wang and Cour-
tois (2019), empirical and variation mode decomposition
Gómez and Velis (2016); Zhang, Dong and Xu (2020),
and fingerprint and similarity threshold algorithms Yoon,
O’Reilly, Bergen and Beroza (2015); Bergen and Beroza
(2019). These approaches have played an important role in
different application fields and are still frequently applied.
However, these methods have difficulty reducing the random
noise that shares a common frequency band with the useful
microseismic events Zhu, Mousavi and Beroza (2019). In
addition, it is also difficult for operators with extensive
professional knowledge and experience to accurately select
useful microseismic events from a series of similar micro-
seismic waveforms Dong, Wesseloo, Potvin and Li (2016).

∗Corresponding author
lihl@cdut.edu.cn (H. Li)

In recent years, researchers have gradually paid more
attention to the use of machine learning to analyze massive
amounts of seismic data Rouet-Leduc, Hulbert, Lubbers,
Barros, Humphreys and Johnson (2017); Corbi, Sandri, Bed-
ford, Funiciello, Brizzi, Rosenau and Lallemand (2019);
Bergen, Johnson, Maarten and Beroza (2019); Mousavi and
Beroza (2020). In addition, serval algorithms have been in-
creasingly used to identify the microseismic events, such as
extreme learning machines Zhang, Jiang, Li and Xu (2019),
the Gaussian mixture model Wang, Tang, Ma, Wang and
Li (2020), logistic regression Pu, Apel and Hall (2020), the
random forest algorithm Provost, Hibert and Malet (2017),
and neural network algorithms Xu, Zhang, Chen, Li and Liu
(2021). Although these studies have laid the foundation for
the development of microseismic data processing, there is
still a large gap regarding the demand for efficient, accurate,
and real-time identification of useful microseismic events for
engineering applications.

In addition, the popular convolutional neural networks
(CNN) has been widely applied to extract low-, medium-
and high-level features from input data using convolu-
tion calculations, which can significantly improve the pre-
processing efficiency of the input data LeCun, Bengio
and Hinton (2015); Afshari Moein, Tormann, Valley and
Wiemer (2018); Liu, Zhang, Zhu, Ellsworth and Li (2020);
Shokouhi, Girkar, Riviere, Shreedharan, Marone, Giles and
Kifer (2021). With the growing interest in improved CNNs,
numerous alternative CNN techniques have been developed
for the microseismic monitoring applications, especially for
microseismic event recognition strategies. Wilkins, Strange,
Duan and Luo (2020) trained a CNN using a large number
of mine microseismic datasets and further demonstrated that
this CNN can achieve a better accuracy than experienced
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seismic experts. Tang, Wang and Tang (2021) successfully
identified single-channel and multi-channel microseismic
events based on a CNN architecture constructed using the
residual skip connections and an attention mechanism. Bi,
Zhang, He, Zhao, Sun and Ma (2021) built a deep CNN
that learns the features of microseismic events from the time
domain and frequency domain based on a dual-channel clas-
sification module and interpretation module, and verified
the effectiveness of this CNN method. The aforementioned
methods can effectively improve the accuracy and reliability
of microseismic event classification when applied to high
quality datasets (usually, the input data need to be filtered),
but there is room for improvement in classifying noisy
microseismic datasets, particularly for the microseismic
recordings with high-noise from the complex engineering
environments.

In this study, we developed and evaluated a strong noise-
tolerant deep learning (SNTDL) network, which can identify
noisy microseismic events in complex tunnel construction
environments. We verified the contributions of the selected
features based on the classification precision, recall, F1-
score, and accuracy of the SNTDL network. Furthermore,
to test the performance of the proposed SNTDL network, we
compared the classification results of our method with the re-
sults obtained using the AlexNet Krizhevsky, Sutskever and
Hinton (2012), Inception Szegedy, Liu, Jia, Sermanet, Reed,
Anguelov, Erhan, Vanhoucke and Rabinovich (2015), Visual
Geometry Group (VGG) Simonyan and Zisserman (2014),
and ResNet He, Zhang, Ren and Sun (2016) approaches.

2. Dataset
2.1. Feature Extraction

The dataset used consists of microseismic events, blast
signals, mechanical noise, and electromagnetic interference
signals, which were collected from a deeply buried tunnel
excavation monitoring project. The sample rate of the mi-
croseismic monitoring system was set to 12,000 Hz. Our
primary purpose was to monitor the stability of the rock
masses and provide a warning of rockburst events in this
microseismic monitoring work. Thus, we divided all of the
recordings into two categories: useful microseismic events
and the other noise signals. Based on the time domain and
frequency domain characteristics of the collected data, the
dataset production was manually labeled, including 13,997
microseismic events and 13,992 noise recordings. We cal-
culated the dynamic and kinematic features of the unfiltered
microseismic recordings, focusing on the waveform, power,
phase, time-frequency spectrum and frequency spectrum,
etc. Table 1 shows the methods of calculating the 10 com-
monly used features.

As is shown in Table 1, the normalization of the wave-
form is conducted to reduce the numerical difference at each
sample point. Hilbert’s marginal spectrum accurately re-
flects the actual frequency compositions of the non-stationary
signals and characterizes the cumulative amplitude distri-
bution of the entire dataset at each frequency point Huang,

Wu, Qu, Long and Shen (2003); Fan, Zhang, Zhang and
Ouyang (2017). The energy ratio is helpful in analyzing
the energy changes before and after the arrival of the seis-
mic waves Mousa, Al-Shuhail and Al-Lehyani (2011). The
instantaneous power is also the most important statistical
indicator of random vibration signals Zengin and Abra-
hamson (2020). The Akaike information criterion (AIC)
is a standard used to determine the fitting performance
of a statistical model Zhang, Thurber and Rowe (2003).
The frequency spectrum curve represents the trigonometric
function component of the specified frequency, and it can
reflects the frequency compositions of the stationary signal.
The phase spectrum reflects the relationship between the
phase and frequency Meng, Guo, Zhang, Li and Zhou
(2008). The instantaneous amplitude, instantaneous phase,
and instantaneous frequency reflect that the changes in the
amplitude, phase, and frequency with time, respectively.
Shoji, Miyoshi, Omura, Kistler, Kasaba, Matsuda, Kasahara,
Matsuoka, Nomura, Ishisaka et al. (2018); Mousavi, Hol-
loway, Olivier and Gandomi (2021).
2.2. Feature Selection

Adding similar features will produce information redun-
dancy when there is a strong correlation between the vari-
ous features, which will result in overfitting of the training
model. Regarding the correlation verification, the classic
Pearson correlation coefficient can be used to effectively
determine the interrelationship between two variables, but
it is only a linear measurement method and has difficulty au-
thentically reflecting the interdependence between different
variables Saccenti, Hendriks and Smilde (2020). Therefore,
the Spearman correlation coefficient was used to determine
the correlation between two features, which has the advan-
tages of not being affected by the data’s dimensions and not
being sensitive to abnormal large numbers Su and Li (2021).

Usually, the greater the absolute value of the correlation
coefficient is, the closer the monotonic relationship between
the two features is. Table 2 presents the average correlation
coefficient between each feature for 1,000 real microseismic
recordings. Clearly, the instantaneous amplitude is strongly
correlated with the instantaneous power and AIC. Therefore,
we excluded the instantaneous amplitude feature to avoid
information redundancy. Finally, a microseismic recording
can be expressed as a 6, 000×9 matrix which consists of the
waveform, marginal spectrum, energy ratio, instantaneous
power, AIC, frequency spectrum, phase spectrum, instanta-
neous phase, and instantaneous frequency.

3. Model Training and Evaluation
Since the Alexnet provided a new idea for deep learning

network algorithms, deeper network structures have been
developed rapidly. In the field of image recognition, deep
residual networks that introduce substantial skip or bypass
connections have been found to be more effective in miti-
gating the gradient vanishing He et al. (2016). Based on a
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Table 1
The calculation methods and parameters for different features.

Features Definition Parameters

Waveform x(t) =
xo(t) − �

�

x(t) is the normalized data, xo(t) is the original
data, � is the mean of xo(t), � is the standard
deviation of xo(t).

Marginal spectrum ℎ(!) = ∫ T
0 H(!, t) dt

ℎ(!) is the Hilbert marginal spectrum of x(t),
H(!, t) is the Hilbert spectrum of x(t), and T is
the time.

Energy ratio E =

[

∑T2
t=T1

x2(t)
]

1
2 + �!

[

∑T1
t=T0

x2(t)
]

1
2 + �!

E is the energy ratio in two time windows, ! =
1
N

[

∑T
t=0 x

2(t)
]

is the relative energy of the signal,

N is the sample length of the signal, and � is a
stability coefficient.

Instantaneous power IP = |x (t)|2 IP is the instantaneous power of x(t).

Akaike information criterion
AIC (k) = klog {var [x (1, k)]}
+ (N − k − 1) log {var [x (k + 1, N)]}

AIC is a statistical measure for estimating
the quality of time series models fitting. k =
1, 2,… , N , var represents variance calculation.

Frequency spectrum FS =
|F (!)|
N

FS is the frequency spectrum of x(t), and F (!) is
the image function obtained by using the Fourier
transform of x(t).

Phase spectrum PS = arctan (F (!)) PS is the phase spectrum of x(t).

Instantaneous amplitude � (t) =
√

x2 (t) + ℎ2 (t)
�(t) is the instantaneous amplitude of x(t), and
ℎ(t) is the imaginary part produced by using the
Hilbert transformation.

Instantaneous phase ' (t) = arctan
ℎ (t)
x (t)

'(t) is the instantaneous phase of x(t).

Instantaneous frequency ! (t) =
d' (t)
dt

!(t) is the instantaneous frequency of x(t).

Table 2
The correlation coefficient between two different features.

Feature waveform ℎ (!) E IP AIC FS PS � (t) ' (t) ! (t)

waveform 1.0000 0.0051 0.0220 0.0008 0.0131 0.0178 0.0016 0.0108 0.0078 0.1247
ℎ (!) 1.0000 0.0212 0.1300 0.2972 0.2348 0.0058 0.1920 0.0247 0.1185

E 1.0000 0.0090 0.0158 0.0012 0.0161 0.0055 0.1563 0.0052
IP 1.0000 0.2611 0.1428 0.0108 0.7819 0.0013 0.1044

AIC 1.0000 0.2676 0.0039 0.7777 0.0025 0.1796
FS 1.0000 0.0065 0.3356 0.0178 0.1277
PS 1.0000 0.0096 0.0034 0.0181
� (t) 1.0000 0.0086 0.0664
' (t) 1.0000 0.2892
! (t) 1.0000

CNN, the ResNet is usually composed of input, output, con-
volution, pooling, activation, straightening, and fully con-
nected layers O’Shea, Roy and Clancy (2018). The SNTDL
model proposed in this study is a derivation of the ResNet.
Figure 1(a) illustrates the residual unit of the trained SNTDL
network, which consists of convolution, maximum pooling,
skip connection and concatenation structure. Figure 1(b)
shows a residual block, including two residual units. Figure
1(c) shows the detailed structure of the SNTDL network,
which consists of 4 residual blocks and 6,871,762 param-
eters. The ReLu activation function is used to increase the

sparsity of the neural network and the nonlinear relationship
between the different layers. A drop operation is also used
between the two fully connected layers, which resulted in
50% of the neurons being dormant. In addition, we chose
the Adam optimizer to guide the network and update the
parameters during the training process. The initial learning
rate was set to 0.001. The learning rate of the optimizer
decreases as the number of iterations increases.

We randomly subdivided the 27,989 microseismic record-
ings collected from the Grand Canyon Tunnel into a training
set, validation set, and test set, which accounted for 80%,

J. He, H.L. Li, X.G. Tuo et, X.T. Wen, W.Z. Rong, X.H.: Preprint submitted to Elsevier Page 3 of 8
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Figure 1: The detailed structure diagram of the proposed SNTDL network. (a) A single-channel recording with a duration of
500ms, the corresponding features of the useful microseismic signal are shown on the left subgraph, and those of the noisy
recording are shown on the right subgraph; (b) the structure of the SNTDL network, the residual block is used to extract the
deep features, and the final full connected layers is applied to determine that the received signal is or not a useful microseismic
signal; (c) the residual block used in the SNTDL network, which includes convolution, pooling, concatenation and residual units.

10%, and 10% of the entire dataset, respectively Saad,
Huang, Chen, Savvaidis, Fomel, Pham and Chen (2021).
As is shown in Figure 2(a), the entire training process was
accomplished by performing 150 epochs. The validation
accuracy increased from 74.1% to 98.3%, and the loss
decreased from 0.52 to 0.05. The SNTDL network exhibited
a good stability during the training process, and no over-
fitting phenomenon occurred.

The test set consisted of 1,400 valid microseismic event
recordings and 1,399 noise recordings. We evaluated the
ability of the SNTDL network to identify microseismic
events based on the precision, recall, F1-score, and accuracy
Mousavi, Zhu, Sheng and Beroza (2019), which are defined
in Equation 1−4. As is shown in Figure 2(b), for the test set,
the SNTDL network accurately classified most of the test
samples, and the recognition precision, recall, and F1-score
of the SNTDL network are 97.66%, 98.21%, and 97.93%,
respectively. The overall recognition accuracy of the test set
was 97.93%. In addition, the area under the curve (AUC)
of the SNTDL model for identifying microseismic events is
0.9887, which means that the model has a robust verification
performance.

Precision = TP
TP + FP

(1)

Recall = TP
TP + FN

(2)

F1-score = 2 × Precision × Recall
P recision + Recall

(3)

Accuracy = TP + TN
TP + TN + FP + FN

(4)
in which, TP and FP are the true positive and false positive,
respectively, and TN and FN are the true negative and false
negative, respectively.

4. Results and Discussion
4.1. Feature Contributions

We designed a set of experiments to confirm that each
of the aforementioned nine features made a definite contri-
bution to the final prediction results of the SNTDL network

J. He, H.L. Li, X.G. Tuo et, X.T. Wen, W.Z. Rong, X.H.: Preprint submitted to Elsevier Page 4 of 8
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Figure 2: Training process and test results of the SNTDL network. (a) Accuracy and loss varying with epochs during the SNTDL
network training; (b) confusion matrix obtained from the test results of the SNTDL network.

because there are too many input features in the proposed
SNTDL network. Only one feature was extracted from the
input during the training of the SNTDL network, and the
corresponding input of the validation set and test set also
contained only one correlated feature. The classification
results are shown in Figure 3(a), in which the horizontal
coordinates indicate the used features contained in the train-
ing set, validation set, and test set for each experiment.
As can be seen from the calculated recognition precision,
recall, F1-score, and accuracy, each of the extracted nine
features made significant and different contributions to the
proposed SNTDL network. Then, we constructed a new
training set, including eight features, as the input to train the
SNTDL network. The eight selected features are obtained by
successively removing one feature from the aforementioned
nine features, and the corresponding input of the validation
set and test set also consisted of the correlated eight features.
The classification results are shown in Figure 3(b), and the
removed feature corresponds to the Figure 3(a). As can be
seen from Figure 3, if one of the nine features in Figure
3(a) yields a better classification result, it will produce a
worse classification result so this corresponding feature was
removed in Figure 3(b). Thus, this feature made a larger
contribution to the SNTDL network. In this sense, the wave-
form feature and Hilbert marginal spectrum feature have the
greatest impacts on the classification results, followed by the
instantaneous power, AIC, and frequency spectrum features.
4.2. Noise-tolerant Performance

To verify the noise-tolerant performance of the SNTDL
network, we constructed 17 test sets by adding the white
Gaussian noise to the synthetic microseismic recordings
with different signal-to-noise ratios (SNRs), and the corre-
sponding SNRs were set within the range of −12 dB to 20
dB. The 17 constructed test sets were used to compare the
SNTDL network with other popular deep learning networks,
including the 8-layer AlexNet, 10-layer Inception, 16-layer

VGG, and 18-layer ResNet. As is shown in Figure 4(a), the
classification precisions of the AlexNet, Inception, VGG,
and ResNet are close to zero while their SNRs are set
between −12 dB and −6 dB, due to that these networks
wrongly identified the useful signals as noise. As can be
seen from Figure 4(b), when the SNR was set to −2 dB,
the recall of the useful microseismic events for the proposed
SNTDL network was 87.8%, the recalls of the AlexNet,
Inception, VGG, and ResNet were 1.5%, 1.4%, 1.9%, and
4.1%, respectively. In addition, as is shown in Figure 4(c)
and Figure 4(d), when the SNR was reduced to −4 dB, the
F1-score and the accuracy of the SNTDL network were still
90%. Moreover, the recall of the SNTDL network was still
1.9% until that the SNR decreased to −12 dB, which further
confirms that the SNTDL network has a better noise-tolerant
performance than the other networks.
4.3. Generalization

To verify the generalization ability of the proposed
SNTDL network, we applied the SNTDL network to a series
of microseismic recordings, which were collected from a
different underground tunnel excavation monitoring project.
These microseismic recordings were manually marked to
form a dataset containing 1,000 useful microseismic events
and 1,000 noise signals. The data acquisition system used
was same as that of the aforementioned training microseis-
mic recordings, but the sample rate was different (6000
Hz). Additionally, the construction machinery and TNT
equivalent used in the two construction regions were also
different. We used the SNTDL network to classify these
subdivided microseismic recordings and compare the pre-
dicted label with the real subdivided label. If the predicted
label was consistent with the real label, the detection result
was regarded as a true positive; otherwise, it was regarded
as a false positive. As a result, the SNTDL network suc-
cessfully distinguished 1,912 events, including 963 useful
microseismic events and 949 noise signals. Furthermore, for

J. He, H.L. Li, X.G. Tuo et, X.T. Wen, W.Z. Rong, X.H.: Preprint submitted to Elsevier Page 5 of 8



Strong noise-tolerant deep learning network for automatic microseismic events classification

Figure 3: The contribution of each feature in the training dataset for the recognition of microseismic events by using the SNTDL
network. (a) The classification precision, recall, F1-score, and accuracy of the SNTDL network while using only one feature in
the training dataset; (b) the classification precision, recall, F1-score, and accuracy of the SNTDL network while removing one
feature in the training dataset.

this labeled dataset, the classification precision, recall, F1-
score, and accuracy of the SNTDL network were 94.97%,
96.30%, 95.63%, and 95.60%, respectively. In this sense, the
proposed SNTDL network can keep a reliabe identification
performance for different microseismic recordings, which
further reveals that the SNTDL network has a favorable
generalization ability.

5. Conclusions
In this study, a strong noise-tolerant deep learning (SNTDL)

network for classifying the noisy microseismic recordings
was proposed. To enhance the noise-tolerant ability of
the proposed SNTDL network, we extracted nine weakly
correlated features of the microseismic recording as the
training input of the SNTDL network instead of the original
microseismic recordings. In addition, we also confirmed
that each of the used nine features used made a definite
contribution to the final classification results of the proposed
SNTDL network. Moreover, the added skip connection,
concatenation structure, and deep structure of 6,871,762
parameters also improved the noise-tolerant performance
while training the SNTDL network. We compared the noise-
tolerant ability of the proposed SNTDL with those of the
AlexNet, Inception, VGG, and ResNet, and the results
indicate that the proposed SNTDL has a better noise-tolerant
performance. Furthermore, the corresponding classification
F1-score and the accuracy are still 90%, while the SNR
is reduced to −4 dB. We applied the proposed SNTDL
network to a series of completely independent and labeled
microseismic recordings, and the SNTDL network still
achieved an accurate classification result, which further ver-
ifies that the SNTDL network has a favorable generalization
performance. In summary, the proposed SNTDL network

can provide a robust classification of noisy microseismic
recordings, which can make a significant contribution to the
real-time monitoring of microseismic events.
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