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Abstract

The small-scale microphysical processes governing the formation of precipitation particles cannot be resolved explicitly by

cloud resolving and climate models. Instead, they are represented by microphysics schemes that are based on a combination

of theoretical knowledge, statistical assumptions, and fitting to data (“tuning”). Historically, tuning was done in an ad-

hoc fashion, leading to parameter choices that are not explainable or repeatable. Recent work has treated it as an inverse

problem that can be solved by Bayesian inference. The posterior distribution of the parameters given the data—the solution

of Bayesian inference—is found through computationally expensive sampling methods, which require over O(10ˆ5) evaluations

of the forward model; this is prohibitive for many models. We present a proof-of-concept of Bayesian learning applied to a new

bulk microphysics scheme named “Cloudy”, using the recently developed Calibrate-Emulate-Sample (CES) algorithm. Cloudy

models collision-coalescence and collisional breakup of cloud droplets with an adjustable number of prognostic moments and

with easily modifiable assumptions for the cloud droplet mass distribution and the collision kernel. The CES algorithm uses

machine learning tools to accelerate Bayesian inference by reducing the number of forward evaluations needed to O(10ˆ2). It

also exhibits a smoothing effect when forward evaluations are polluted by noise. In a suite of perfect-model experiments, we show

that CES enables computationally efficient Bayesian inference of parameters in Cloudy from noisy observations of moments of

the droplet mass distribution. In an additional imperfect-model experiment, a collision kernel parameter is successfully learned

from output generated by a Lagrangian particle-based microphysics model.
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Key Points:8

• Historically, microphysics schemes were tuned to data in an ad-hoc way, result-9

ing in parameter values that are not repeatable or explainable10

• Bayesian inference puts uncertainty quantification and parameter learning on solid11

mathematical grounds, but is computationally expensive12

• We present a proof-of-concept of computationally efficient Bayesian learning ap-13

plied to a new bulk microphysics scheme called “Cloudy”14
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Abstract15

The small-scale microphysical processes governing the formation of precipitation16

particles cannot be resolved explicitly by cloud resolving and climate models. Instead,17

they are represented by microphysics schemes that are based on a combination of the-18

oretical knowledge, statistical assumptions, and fitting to data (“tuning”). Historically,19

tuning was done in an ad-hoc fashion, leading to parameter choices that are not explain-20

able or repeatable. Recent work has treated it as an inverse problem that can be solved21

by Bayesian inference. The posterior distribution of the parameters given the data—the22

solution of Bayesian inference—is found through computationally expensive sampling23

methods, which require over O(105) evaluations of the forward model; this is prohibitive24

for many models.25

We present a proof-of-concept of Bayesian learning applied to a new bulk micro-26

physics scheme named “Cloudy,” using the recently developed Calibrate-Emulate-Sample27

(CES) algorithm. Cloudy models collision-coalescence and collisional breakup of cloud28

droplets with an adjustable number of prognostic moments and with easily modifiable29

assumptions for the cloud droplet mass distribution and the collision kernel. The CES30

algorithm uses machine learning tools to accelerate Bayesian inference by reducing the31

number of forward evaluations needed to O(102). It also exhibits a smoothing effect when32

forward evaluations are polluted by noise. In a suite of perfect-model experiments, we33

show that CES enables computationally efficient Bayesian inference of parameters in Cloudy34

from noisy observations of moments of the droplet mass distribution. In an additional35

imperfect-model experiment, a collision kernel parameter is successfully learned from out-36

put generated by a Lagrangian particle-based microphysics model.37

Plain Language Summary38

Clouds contain gazillions of cloud droplets, which grow by colliding and sticking39

together with each other, and eventually they become big enough to fall out as rain. Keep-40

ing track of every one of these droplet in weather and climate models is impossible, so41

the formation of rain has to be represented by simplified models, so-called “microphysics42

schemes”. These schemes have become a bit like black boxes, with baked-in statistical43

assumptions and some empirical parameters whose values are somewhat obscure and not44

explainable. We show that we can use a method called Bayesian inference to determine45

the values of these parameters in a way that is both mathematically sound and reason-46

ably fast. The idea of Bayesian inference is to come up with a first guess about the pos-47

sible values of the parameters, and then to systematically refine that guess using observed48

data. We apply this method to a new microphysics scheme that we developed and named49

“Cloudy”. To be honest, the data we use for our experiments are not real observations50

from, say, satellites, but are generated by Cloudy itself. With real observations, the prob-51

lem becomes hairier, so what we do here is only a proof-of-concept — but hey, it’s a start!52

1 Introduction53

Cloud microphysics comprises all processes controlling the formation and growth54

of cloud droplets and ice crystals and their fallout as precipitation. These processes play55

a key role in the climate system, affecting surface precipitation, latent heating and cool-56

ing, cloud radiative properties, and cloud chemistry. Due to the small scales on which57

they occur (sub-microns to centimeters), explicitly simulating the growth of individual58

cloud particles in a turbulent cloud requires model resolutions at least as small as the59

Kolmogorov scale, which is about 1 mm in the Earth’s atmosphere. With horizontal grid60

spacings of about 10-50 km, state-of-the-art climate models are (and will remain) orders61

of magnitude too coarse to resolve the vast number of hydrometeors—typically about62

108 in 1 m3 of cloudy air—on a global scale.63
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Instead, global climate models (GCMs) represent microphysical processes by means64

of statistical parameterizations, which are developed based on a combination of phys-65

ical understanding, statistical assumptions, heuristics, and tuning to observations. GCMs66

typically employ so-called bulk schemes, which assume some functional form of the cloud67

droplet size distribution (DSD) and step one or more statistical moments of the distri-68

bution forward in time. More computationally expensive representations of microphysics69

include bin schemes, which partition the DSD into discrete size bins and model the pro-70

cesses affecting the particles in each bin. More recent developments include Lagrangian71

particle-based schemes (e.g., Andrejczuk et al., 2010; Riechelmann et al., 2012; Shima72

et al., 2009, 2019), which simulate an ensemble of computational particles (“super-particles”73

or “super-droplets”), each representing a large number of real cloud and precipitation74

particles. The closest approximations to “ab initio” calculations of microphysical pro-75

cesses are performed by direct numerical simulations (DNS), which track the motion and76

growth of each individual cloud particle. To do that, they need to resolve the smallest77

scales of turbulence (millimeter and submillimeter scales), which limits typical domain78

sizes to less than 1 m3.79

Morrison, van Lier-Walqui, Fridlind, et al. (2020) provide an overview of the dif-80

ferent approaches to the numerical modeling of microphysics and argue that the Lagrangian81

particle-based methods overcome several shortcomings of traditional bulk and bin schemes.82

A particularly attractive property of Lagrangian schemes is that in the limiting case where83

each computational particle represents a single real particle and the model resolution ap-84

proaches that of a DNS, the Lagrangian scheme converges to the particle-by-particle DNS85

(Dziekan & Pawlowska, 2017). Due to their computational cost, though, Lagrangian particle-86

based methods will likely not replace the bulk schemes in global models within the next87

1–2 decades. However, Lagrangian particle-based schemes can be used for cloud mod-88

eling and, as shown in this study, they can provide a benchmark for testing bulk schemes.89

All three types of microphysics schemes (bulk, bin, and Lagrangian) rely on em-90

pirical parameters to compute process rates. Ultimately, this is a consequence of the fact91

that there is no known complete set of equations governing these microscopic processes,92

i.e., there is no microphysics analog to the Navier-Stokes equations. Given the limited93

theoretical knowledge, data and observations play a crucial role in constraining the val-94

ues of empirical parameters. Historically, the process of determining (“tuning”) these95

values has not been approached in a systematic and transparent way. However, a num-96

ber of recent studies demonstrate the use of Bayesian techniques to parameter estima-97

tion in bulk microphysics schemes (e.g., Posselt & Vukicevic, 2010; Posselt, 2016; van98

Lier-Walqui et al., 2014). In a two-part paper, Morrison, van Lier-Walqui, Kumjian, and99

Prat (2020) introduce the Bayesian Observationally-constrained Statistical-physical Scheme100

(BOSS), a framework for the bulk parameterization of microphysics, which is designed101

to learn microphysical parameter distributions from data by means of Bayesian infer-102

ence. The second part (van Lier-Walqui et al., 2020) gives a demonstration in the form103

of a perfect-model experiment, which shows that BOSS can be used in conjunction with104

a Markov chain Monte Carlo (MCMC) sampling algorithm to estimate parameters from105

synthetically generated rain observations. A key feature of BOSS is its adjustable com-106

plexity: While traditional schemes have fixed numbers of prognostic moments, BOSS al-107

lows the number of prognostic moments to be chosen flexibly, depending on the appli-108

cation and the observations available.109

In a similar vein, to model parametric uncertainty with a strong mathematical foun-110

dation, we use a Bayesian framework, where model parameters are described by random111

variables. We propose a prior form of the distributions and refine them systematically112

with observed data, using a process known as Bayesian inference, Bayesian calibration,113

or uncertainty quantification. As in Schneider et al. (2017), we use the word “data” for114

any information source that is used as a ground truth against which a microphysics scheme115

is compared and calibrated, including both observations of natural clouds (e.g., satel-116
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lite products or in-situ airborne observations) and output of higher-resolution or more117

physical model simulations. There is also much to be gained from using a perfect-model118

setting in a proof-of-concept, where the same model is used for both generating data and119

for inversion; however, the resulting parameter learning results will necessarily be op-120

timistic. The standard tool of Bayesian inference is MCMC sampling, which represents121

this data-refined distribution empirically by providing a large set of samples drawn from122

it. The main drawback of MCMC methods is their computational cost: They require large123

numbers of model evaluations (typically about 105 to 106), which is not feasible for ex-124

pensive models such as GCMs.125

Recent work by Cleary et al. (2021) presents a method to perform an approximate126

Bayesian inversion of computationally expensive models for which derivatives are not read-127

ily available and whose evaluations may be polluted by noise, for example, from chaotic128

internal variability. This three-step method called Calibrate-Emulate-Sample (CES) has129

been shown to be effective for inferring parameter distributions in a convection scheme130

of a GCM exhibiting these properties (Dunbar et al., 2021; Howland et al., 2021). The131

calibrate step of the algorithm consists of ensemble Kalman inversion or variants such132

as the ensemble Kalman sampler (EKS; Garbuno-Inigo, Hoffmann, et al., 2020), which133

are used to find pairs of parameters and their respective model outputs, automatically134

focusing on a region of the parameter space that is likely to have produced the observed135

data. In the emulate step, a Gaussian process (Rasmussen & Williams, 2006) is trained136

on these parameter-output pairs and serves as a surrogate (emulator) of the original (ex-137

pensive) forward model. In the sampling step, the fast-to-evaluate emulator is used in138

the likelihood of an MCMC algorithm to sample the posterior distribution in a compu-139

tationally efficient manner.140

The goal of this study is twofold: First, we introduce a new bulk microphysics frame-141

work that was designed for consistent representation of microphysical processes across142

models with different resolutions and physics. The model, called “Cloudy” (available at143

https://github.com/CliMA/Cloudy.jl), is broadly similar to BOSS (Morrison, van144

Lier-Walqui, Kumjian, & Prat, 2020; van Lier-Walqui et al., 2020), e.g., in that the num-145

ber of prognostic moments is modifiable and that it can learn from data; however, there146

are also a few important differences, e.g., in that Cloudy allows for separate learning of147

collision kernels and DSDs, hence facilitating the finding of physically realizable solu-148

tions. Cloudy currently simulates collision-coalescence and collisional breakup of cloud149

droplets (with future development plans including an extension to other warm-rain pro-150

cesses and ice microphysics), in a way that the governing equations for the moments of151

the DSD can easily be related to the specific properties of collision kernels.152

The second goal is to demonstrate that parameters in Cloudy can be learned from153

data in a computationally efficient way, through the approximate Bayesian inversion per-154

formed by CES. We present a suite of perfect-model experiments (where Cloudy itself155

is used to generate the data used for Bayesian inversion), as well as an experiment us-156

ing data from simulations generated by PySDM (Bartman et al., 2021), a high-performance157

Python implementation of the super-droplet method (SDM) for representing liquid mi-158

crophysics (package available at https://github.com/atmos-cloud-sim-uj/PySDM),159

with an additional process added to represent droplet breakup. In the spirit of a proof-160

of-concept, both Cloudy and PySDM are run in a computationally cheap zero-dimensional161

“box” framework.162

This paper is organized as follows: Section 2 describes the underlying concepts and163

equations of Cloudy. In Section 3, we give a brief introduction to the Bayesian approach164

to solving inverse problems, together with an overview of the CES method. Section 4165

explains the model experiments, including a summary of the PySDM model. The results166

of the experiments are shown in Section 5. The paper concludes with a summary of the167

findings in Section 6.168
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2 Cloudy Model Description169

Cloudy is a flexible bulk microphysics model that simulates collision-coalescence170

and collisional breakup of cloud droplets. By “flexible,” we mean the following:171

• The number of prognostic moments can be adjusted to the requirements of the172

cloud droplet mass distribution function and availability of data for calibration.173

• A modular design facilitates experimenting with different collision kernels and cloud174

droplet mass distribution functions.175

• It is set up for Bayesian inference, i.e., parameters of collision kernels do not have176

to be fixed but instead can be learned from data.177

The three main inputs required to run the model are: an initial droplet mass distribu-178

tion function, a collision kernel specifying the rate of collisions between particles, and179

a coalescence efficiency defining the fraction of collisions that result in coalescence of the180

particles into one larger drop, as opposed to collisions that result in breakup of the par-181

ticles into smaller fragments. Cloudy then simulates how the distribution (characterized182

by a set of n prognostic moments) evolves over time as a result of the droplet interac-183

tions defined by the given collision kernel and coalescence efficiency. The number of prog-184

nostic moments is determined ab initio by the type of the cloud droplet mass distribu-185

tion to be simulated (e.g., a Gamma distribution or a mixture of Gamma distributions).186

Assuming a fixed distribution type is the central closure assumption made in Cloudy;187

the number of prognostic moments has to be chosen such that the distribution param-188

eters can be computed from the prognostic moments. Note that not all distributions can189

be inferred uniquely from their moments; for example, a lognormal distribution is not190

uniquely defined by its moments because its moment generating function does not con-191

verge.192

The mathematical core of the model consists of two equations: the stochastic col-193

lection equation (SCE; Smoluchowski, 1916) and the stochastic breakup equation (SBE;194

e.g., Pruppacher & Klett, 1978), both expressed in terms of the DSD moments. The SCE195

describes the time rate of change of f = f(m, t), the mass distribution function of liq-196

uid water droplets, due to the process of collision and coalescence. The distribution f197

depends on droplet mass m and time t; generally, it will also depend on position in space,198

but we neglect this dependence in our zero-dimensional setting here. The mass distri-199

bution function is defined such that f(m, t) dm denotes the number of droplets with masses200

in the interval [m,m+dm] per unit volume at time t. We will mostly refer to f(m, t)201

by the term “particle mass distribution” (PMD) rather than by “droplet size distribu-202

tion,” even though the two expressions could be used interchangeably for spherical wa-203

ter droplets (the only type of droplet considered in this study), where there is a one-to-204

one map between droplet size and droplet mass. By deviating from the traditional ter-205

minology, we account for the possibility that a future version of Cloudy may include non-206

spherical and non-liquid particles.207

Following Beheng (2010), the SCE can be written as

∂f(m, t)

∂t

∣∣∣∣
coal

=
1

2

∫ ∞

m′=0

f(m′, t)f(m−m′, t)C(m′,m−m′) dm′−f(m, t)

∫ ∞

m′=0

f(m′, t)C(m,m′) dm′.

(1)
The collection kernel C(m′,m′′) = K(m′,m′′)Ec(m

′,m′′) (units: cubic centimeters per208

particle per second) describes the rate at which two droplets of masses m′ and m′′ come209

into contact and coalesce. It is the product of the collision kernel K(m′,m′′) and the di-210

mensionless coalescence efficiency Ec(m
′,m′′), which denotes the fraction of droplets that211

coalesce into a drop of mass m′+m′′ upon colliding with each other. Throughout this212

paper, we will assume Ec to have a constant value, even though in reality it depends on213

the kinetic energy of the two colliding droplets (e.g., Low & List, 1982; Beard & Ochs,214

1995). The first term on the right-hand side of Eq. (1) describes the rate of increase of215
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the number of drops having a mass m due to collision and coalescence of drops of masses216

m′ and m−m′ (where the factor 1
2 avoids double counting); the second term describes217

the rate of reduction of drops of mass m due to collision and coalescence of drops hav-218

ing a mass m with other drops.219

The SBE describes the time evolution of the PMD due to collision-induced breakup
and is given by

∂f(m, t)

∂t

∣∣∣∣
breakup

=
1

2

∫ ∞

m′=0

f(m′, t) dm′
∫ ∞

m′′=0

f(m′′, t)B(m′,m′′)P (m;m′,m′′) dm′′

− f(m, t)

∫ ∞

m′′=0

f(m′′, t)B(m′,m′′)

m + m′′ dm′′
∫ m+m′′

m′=0

m′P (m′;m,m′′) dm′.

(2)
The breakup kernel B(m′,m′′) = K(m′,m′′)(1 − Ec(m

′,m′′)) (units: cubic centime-
ters per particle per second) defines the rate at which two droplets of masses m′ and m′′

come into contact and break apart. The function P (m,m′,m′′) is the mass distribution
function of the fragments m produced by collisional breakup of two droplets of masses
m′ and m′′, with P (m,m′,m′′) dm giving the number of drops in the mass interval be-
tween m and m+dm resulting from the breakup. We use the exponential fragment dis-
tribution introduced by Feingold et al. (1988),

P (m;m′,m′′) = ν2(m′ + m′′) exp(−νm), (3)

where ν = (qM0/M1); M0 (cm−3) is the initial value of the zeroth PMD moment (i.e.,220

the initial number of droplets), M1 (g cm−3) is the first PMD moment (i.e., the water221

content), and q is a positive integer characterizing the fragment concentration.222

Conservation of mass dictates that the mass of the sum of all fragments must equal
the mass of the two colliding drops, i.e.,∫ m′+m′′

0

mP (m; ,m′,m′′) dm = m′ + m′′. (4)

If the fragment distribution conserves mass exactly, the last integral in Eq. (2) evalu-223

ates to m+m′′ and, after division by the denominator of the previous term, results in224

a multiplication by 1. However, the fragment distribution by Feingold et al. (1988) used225

in this study does not fulfill conservation of mass exactly, so the last integral in Eq. (2)226

cannot be omitted.227

We will rewrite Eqs. (1) and (2) in terms of the moments Mk of f(m, t), which are
the prognostic microphysical variables in Cloudy. They are defined by

Mk =

∫ ∞

0

mkf(m, t)dm. (5)

The time rate of change of the k-th moment of f is obtained by multiplying Eqs. (1) and (2)
by mk and integrating over the droplet mass, which yields

∂Mk

∂t

∣∣∣∣
coal

=
1

2

∫ ∞

0

∫ ∞

0

(
(m + m′)k −mk −m′k

)
C(m,m′)f(m, t)f(m′, t) dm dm′

=: Ik, coal,

∂Mk

∂t

∣∣∣∣
breakup

=
1

2

∫ m′+m′′

0

mkP (m;m′,m′′)dm

∫ ∞

0

f(m′, t) dm′
∫ ∞

0

f(m′′, t)B(m′,m′′) dm′′

−
∫ ∞

0

mkf(m, t) dm

∫ ∞

0

f(m′′, t)B(m,m′′)

m + m′′ dm′′
∫ m+m′′

0

m′P (m′;m,m′′) dm′

=: Ik, breakup.
(6)
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Thus, the time evolution of the kth moment Mk due to collision-coalescence and colli-
sional breakup is given by

∂Mk

∂t
= Ik, coal + Ik, breakup (7)

To step the prognostic moments forward in time, Cloudy computes the right-hand228

side of Eq. (7) using Monte Carlo integration, a technique for numerical integration us-229

ing random numbers. Compared with other numerical integration methods, Monte Carlo230

integration has the following advantages: It converges in any dimension, regardless of231

the smoothness of the integrand, albeit only at a rate of O(
√
N) (where N is the num-232

ber of random samples used to compute the integral). It is also conceptually simple and233

parallelizable. A further desirable feature is the fact that it adds a stochastic element234

to the simulations. The resulting internal model variability provides a straightforward235

way of estimating the covariance of the observational noise needed as input to the CES236

algorithm in a perfect-model setting (see section 3.2). With a deterministic integration237

method such as a numerical quadrature, there would not be any randomness in the sim-238

ulated data, and artificial noise would have to be added to mimic observational noise.239

The drawback of Monte Carlo integration is its computational cost: Many samples—240

thousands or even millions—may be required to obtain results of acceptable accuracy.241

Numerous techniques have been developed to reduce the variance of the Monte Carlo242

estimator, and hence the number of samples needed (e.g., Kleijnen & Rubinstein, 2013).243

For our specific application, 200 samples turned out to produce sufficiently accurate re-244

sults (see Appendix A for implementation details of the Monte Carlo integration). Monte245

Carlo integration can easily be extended to higher dimensions and is therefore typically246

applied to compute high-dimensional integrals, but we use it here to demonstrate that247

CES works even with models that produce noisy output, as well as for its general-purpose248

functionality and robustness with respect to the integrand. For the simple model setup249

presented here, the computational cost of the Monte Carlo integration is easily afford-250

able. The algorithm can even be applied in larger-scale settings as its embarrassingly par-251

allel nature can be exploited very efficiently by GPUs (e.g., Kanzaki, 2011; Borowka et252

al., 2019).253

Evaluating the integrals on the right-hand side of Eq. (7) requires knowledge of the254

PMD function f(m, t). The initial distribution f(m, t = 0) is specified by the user. There255

is a priori no reason to assume that the PMD would retain its functional form as par-256

ticles are colliding, are forming new drops, and are breaking apart. However, to uniquely257

identify the distribution f at each time step, one would have to keep track of infinitely258

many moments of the PMD, which is obviously not practicable. The truncation of this259

infinite system is the moment closure problem, which all moment-based microphysics schemes260

have to address in some form. In Cloudy, as in most bulk microphysics schemes, the clo-261

sure is achieved by assuming an analytic functional form for the PMD, and allowing for262

the parameters of the PMD to change over time while the type of distribution itself is263

kept fixed. Thus, a Cloudy simulation consists of the following steps, which are summa-264

rized in Fig. 1:265

1. The user specifies the collision kernel K(x, y), initial PMD f(m, t = 0; ξ0) with266

distribution parameters ξ0, the coalescence efficiency Ec (assumed to be constant,267

as mentioned above), and the end time tend of the simulation. In addition, a map268

hξ→M and a map h−1
M→ξ have to be supplied. The former defines how to compute269

the prognostic PMD moments M = {Mk}k=1,...,n from the parameters ξ of the270

PMD, and the latter defines the inverse map from the prognostic moments to the271

parameters. Note that except for simple distributions, h−1
M→ξ does not have a closed-272

form representation, and the PMD parameters have to be determined by solving273

an optimization problem.274
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𝐾 𝑥, 𝑦
𝐸! ℎ!→# ℎ!→#

$%

Update moments
𝑀" 𝑡 + 𝑑𝑡

Recover PMD
𝜉(𝑡 + 𝑑𝑡)

Compute change
𝜕𝑀"

𝜕𝑡 = 𝑓𝑛(𝜉)

𝜉#
𝑀"(𝑡 = 0)

𝜉$!"#

Repeat until 𝑡%&'Cloudy Model

Supplied by User

Figure 1. Summary of the computational steps performed by Cloudy and the required user-

defined input. See text for notation.

2. The contributions of collision-coalescence and collisional breakup to the time evo-275

lution of each prognostic moment (right-hand side of Eq. (7); denoted fn(ξ) in276

Fig. 1) is computed.277

3. The prognostic moment are stepped forward in time.278

4. The new parameters of the PMD are computed from the updated moments us-279

ing h−1
M→ξ.280

5. Steps 2–4 are repeated until tend is reached.281

One of the guiding principles in developing Cloudy was to make the scheme amenable282

to learning from data. Its modular design makes it easy to experiment with different ker-283

nels and PMDs, and the number of prognostic moments is determined by the user-provided284

parameter-to-moment map hξ→M . We focus here on learning parameters of the collision285

kernel K(x, y), though alternatively (and with slight modifications of the setup), Cloudy286

can be used to learn parameters of the PMD instead or in addition.287

The approach to the closure problem is a notable difference between Cloudy and288

BOSS. In contrast to Cloudy, BOSS does not assume a functional form for the DSD. In-289

stead, the diagnostic moments are expanded as multivariate generalized power series of290

the set of prognostic moments, and the DSD normalization method of Morrison et al.291

(2019) is used to relate the moments to one another statistically. While the assumption292

of a DSD form results in a loss of generality, it also allows for a clear separation of the293

parameters associated with the physics of collision-coalescence and breakup (as defined294

by the parameters of the collision kernel) from those associated with the droplet pop-295

ulation (as defined by the parameters of the DSD). This improves the interpretability296

of the scheme and helps ensure physical realizability of the simulations.297

3 Methods298

3.1 Bayesian parameter estimation299

The estimation of model parameters such as the coefficients of a collision-coalescence
kernel can be formulated as a Bayesian inverse problem, whose solution—the posterior
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distribution of the unknown parameters given the observed data—is given by Bayes’ rule:

fθ|y(θ|y) =
fy|θ(y|θ)fθ(θ)

fy(y)
∝ fy|θ(y|θ)fθ(θ). (8)

Here, fθ|y(θ|y) is the posterior probability density function (PDF) of the parameters θ300

given the data y, fy|θ(y|θ) is the likelihood function of the data given the parameters,301

fθ(θ) is the prior PDF of the parameters, and the normalization factor fy(y) is the marginal302

PDF of the data. In a Bayesian framework, the unknown parameters are thus modeled303

as random variables, and the posterior distribution can be written in terms of contribu-304

tions from both prior information about the parameters and the likelihood of the observed305

data. Note that sampling the posterior distribution using MCMC methods does not re-306

quire knowledge of the normalization factor fy(y).307

We assume that the data y are linked to the parameter vector θ according to the
additive relationship

y = G(θ) + ηs

= G(θ) + ηy + ηs

= G(θ) + η.

(9)

Here, the forward map G : Rp → Rd maps a parameter vector θ ∈ Rp to a d-dimensional308

output space; the error term ηs denotes structural error, which arises from a model’s in-309

ability to accurately represent its target due to deficiencies in its mathematical struc-310

ture. Because of the randomness introduced by the Monte Carlo integration (see section 2),311

the output of the forward map G is polluted by noise. We can think of G(θ) as noisy ob-312

servations of an underlying “true”, deterministic forward map G: G(θ) = G(θ) + ηy,313

where ηy is observational noise. The total error η ∈ Rd is thus the sum of two terms,314

observational noise ηy and structural error ηs, which are assumed to be independent. The315

choices we make for ηy and ηs will encode our assumptions about structure and origin316

of the error in a given scenario.317

The parameter-to-data map G consists of two components. The main component
is the map Ψ : Ω → Rd, involving a forward simulation of Cloudy using parameters
sampled from a physical parameter domain Ω. The map Ψ can be thought of as a dy-
namical model, whose output depends on p model parameters that we wish to learn (here,
the model parameters to be learned are parameters of collision kernels). So that com-
putational methods interface only with unbounded distributions, we choose to work al-
ways with unbounded parameter distributions θ in tandem with an invertible transfor-
mation function T : Ω→ Rp. The combined map G from parameters to data thus takes
the form

G = Ψ ◦ T −1. (10)

Sampling the posterior distribution (Eq. 8) requires the repeated evaluation of the
data likelihood, whose distribution is given by

fy|θ(y|θ) = fη(y − G(θ)), (11)

where fη is the PDF of the noise η. Initially, only the noisy map G is available, such that318

the likelihood given by Eq. (11) cannot be evaluated. The underlying true model G(θ)319

only becomes accessible through the training of a Gaussian process emulator in the mid-320

dle stage of CES (see section 3.2 and Dunbar et al., 2021)—this emulator learns a smooth321

function which is a surrogate for G(θ).322

We work with two different model-data scenarios. In a first scenario, we consider323

a perfect-model experiment where we assume that there is no structural uncertainty, ηs =324

0. We also choose ηy to be realizations of random noise due to measurement error. When325

using data y that are statistical aggregates such as moments of the PMD or other av-326

erages, and assuming a perfect (unbiased) model, it is reasonable to use a central-limit327
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Table 1. Overview of collision kernels, kernel parameters, their prior distributions and con-

straints. For any element X of a parameter θ living in the unconstrained space, the mapping

to the corresponding parameter value x in the constrained space with a uniform prior is given

approximately by the transformation T −1(X) = (xupper exp(X) + xlower)/(exp(X) + 1).

Kernel Name
Unconstrained
Parameter Prior

Constrained
Parameter Constraint

K(x, y) = b(x + y) Sum-of-masses θ = [B] θ ∼ N (0, 1) ϕ = [b] [blower, bupper] = [102, 104] cm3 g−1 s−1

K(x, y) = a + b(x + y) Sum-of-masses plus constant θ = [A,B] θ ∼ N (0, 1) ϕ = [a, b]
[alower, aupper] = [10−7, 10−5] cm3 s−1

[blower, bupper] = [102, 104] cm3 g−1 s−1

K(x, y) =

{
b(x + y) x < c or y < c

a otherwise
Piecewise θ = [A,B,C] θ ∼ N (0, 1) ϕ = [a, b, c]

[alower, aupper] = [10−7, 10−5] cm3 s−1

[blower, bupper] = [102, 104] cm3 g−1 s−1

[clower, cupper] = [5.0× 10−11, 5.0× 10−9] g

theorem, so that ηy is a draw from a (multivariate) normal random variable with zero328

mean and covariance matrix Γy.329

For each experiment in this scenario, we approximate the observational covariance330

by running the forward model 10 times with true parameter values and estimating Γy331

as the sample covariance matrix of the resulting data, which are 3-dimensional vectors332

of PMD moments (note that in order to give a non-singular estimate of the covariance333

matrix, the number of samples needs to be greater than the dimensionality of the data).334

The data y are taken to be the sample mean of these 10 vectors of PMD moments.335

In a second scenario, the data y are generated by PySDM (see section 4) instead336

of Cloudy. Structural uncertainties arise from the differences between the modeling ap-337

proaches of Cloudy and PySDM (bulk vs. Lagrangian particle-based), with PySDM ar-338

guably simulating droplet-droplet interactions in a more realistic way (e.g., due to the339

lack of a closure assumption).340

Here, we opt for a simple representation of the model discrepancy ηs as a (multi-
variate) normal random variable with constant mean ms ∈ Rd and covariance Γs. Ex-
plicitly, we write this as

y = G(θ) + ms + η̃, where η̃ ∼ N(0,Γy + Γs) (12)

As both PySDM and Cloudy have the same model parameters, we can estimate341

the bias ms by running each model ten times with at the true parameter value and tak-342

ing the difference of the sample means of the resulting output. Apart from the addition343

of a bias term, Eq. (12) also differs from the perfect-model version (Eq. 9) in that the344

covariance of the noise η̃ is the sum of the Cloudy and PySDM noise covariance matri-345

ces.346

In general, assessing a model’s adequacy to reproduce the given data (even when347

the model is perfectly calibrated) is a difficult task (e.g., Brockwell & Davis, 1996; Kennedy348

& O’Hagan, 2001; Weisberg, 2014). Our choice can be seen as a special case of the ap-349

proach followed by Kennedy and O’Hagan (2001), where ηs is modeled with a Gaussian350

process.351

3.2 Calibrate-Emulate-Sample352

The Calibrate-Emulate-Sample (CES) method (Cleary et al., 2021) is designed for353

Bayesian inversion in settings where the forward model is too computationally expen-354

sive and/or noisy for direct sampling of the posterior using, e.g., MCMC. We give a con-355

ceptual overview of CES and refer to Cleary et al. (2021) and Dunbar et al. (2021) for356

more detailed descriptions. The method accelerates Bayesian learning by substantially357

reducing the number of forward model evaluations required from the O(105)–O(106) eval-358

uations typically needed for MCMC to O(102) evaluations. It consists of three stages:359
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• The calibration stage uses ensemble Kalman inversion (EKI; Iglesias et al., 2013)360

or variants thereof such as ensemble Kalman sampling (EKS; Garbuno-Inigo, Hoff-361

mann, et al., 2020; Garbuno-Inigo, Nüsken, & Reich, 2020) to solve the experi-362

mental design problem of choosing good training points for the subsequent em-363

ulation stage. EKI and EKS are derivative-free methods that place training points364

of the parameter-to-data map in the vicinity of where the Bayesian posterior dis-365

tribution of the parameters is concentrated. They are highly parallelizable, scale366

well to high-dimensional problems, and are well suited to dealing with noisy for-367

ward model evaluations (Duncan et al., 2021). In this study, we use EKS, whose368

ensemble approximates the Bayesian posterior.369

• In the emulation stage, the samples from the calibration stage are used to train370

a Gaussian process regression model, which serves as an emulator that approx-371

imates the original parameter-to-data map but is much cheaper to evaluate.372

• The sampling stage uses MCMC methods to sample the posterior distribution373

of the parameters, using the cheap emulator instead of the original (expensive) for-374

ward model.375

Cloudy is very cheap to run in the prototype setting of this paper; thus, CES is not376

necessary from the perspective of computational cost here. But we apply the method377

with an eye toward larger-scale applications in GCMs later, and for the smoothing prop-378

erty of the Gaussian process emulator, which increases robustness with respect to the379

noise induced by the Monte Carlo integration (see section 2 and Dunbar et al. (2021)).380

A proof-of-concept with a cheap model also has the advantage that results can be com-381

pared against traditional techniques of Bayesian inversion (namely, direct MCMC sam-382

pling without an emulator), which would not be feasible with a more computationally383

expensive model.384

4 Experimental Setup385

The goal of the experiments is to demonstrate that kernel parameters in Cloudy386

can be learned from data using the CES method. For this purpose, parameter learning387

is performed in a perfect-model setting, where the data are generated by running Cloudy388

with the “true” parameter values that are then to be learned by Bayesian inversion. This389

setup tests if the true parameters are identifiable in the absence of model uncertainty,390

i.e., in a scenario where the constrained model, with the correct parameters, is able to391

reproduce the data to within noise. In all experiments, the data are values of the zeroth,392

first, and second moment of the PMD at the end time tend of the simulation. The ze-393

roth moment of the PMD is equal to the total number concentration, while the second394

and third moments are proportional to the mass mixing ratio and radar reflectivity fac-395

tor, respectively. Thus, the first three PMD moments are directly related to quantities396

that can be in principle obtained from remote sensing systems.397

We also present an experiment where the data are generated by PySDM (Bartman398

et al., 2021), a Lagrangian super-droplet scheme based on the Monte Carlo algorithm399

by Shima et al. (2009), which models collisional growth of cloud droplets without using400

the stochastic collection equation. Instead, it represents the cloud droplet population by401

a number of computational super-droplets, each corresponding to some multitude of real402

droplets with identical properties (including size and position). The collision and coa-403

lescence of these super-droplets is modeled stochastically: Within each time step, only404

a discrete sample of super-droplet pairs is considered. This is done to reduce the com-405

putational cost from O(N2
s ), which would result from considering all pairs, to O(Ns),406

where Ns is the number of super-droplets. Each of these candidate pairs then collides407

with a probability that depends on the multiplicities of the two colliding super-droplets,408

i.e., on the numbers of real droplets they represent. A comprehensive description of the409
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method is given in Shima et al. (2009), and its implementation in PySDM is detailed in410

Bartman et al. (2021).411

For the purpose of this paper, a simple breakup implementation was added to PySDM.
In this implementation, described in Appendix B, a breakup results in exactly two frag-
ments, each of which carries half of the sum of the masses of the two colliding drops. When
learning from data generated by PySDM, the same breakup implementation is used in
Cloudy, by defining a fragment distribution

P (m,m′,m′′) = 2δ

(
m− m′ + m′′

2

)
, (13)

where δ is the Dirac delta function.412

We will present results of the following experiments (see also Table 1):413

• Collision kernel of the form K(x, y) = b(x+y): The parameter b is learned in a414

perfect-model setting, for b = 2000 cm3 g−1 s−1, 4000 cm3 g−1 s−1, 6000 cm3 g−1 s−1,415

and 8000 cm3 g−1 s−1. In addition to CES, two of these four experiments (b =416

2000 cm3 g−1 s−1 and 4000 cm3 g−1 s−1) are also carried out with a brute-force417

MCMC sampling, to compare results and performance of the two methods. As the418

name suggests, brute-force MCMC sampling involves repeatedly (105 times) eval-419

uating Cloudy itself rather than using the predictions of an emulator.420

• Collision kernel of the form K(x, y) = b(x+y): The parameter b = 2000 cm3 g−1 s−1
421

is learned from data generated by PySDM, using CES.422

• Collision kernel of the form K(x, y) = a+b(x+y): The parameters a and b are423

learned in a perfect-model setting using CES, for a = 4.0 × 10−6 cm3s−1 and424

b = 3000 cm3g−1s−1.425

• Collision kernel of the form

K(x, y) =

{
b(x + y) x < c or y < c,

a otherwise.
(14)

The parameters a, b, and c are learned in a perfect-model setting using CES, for426

a = 2.0× 10−6 cm3 s−1, b = 3000 cm3 g−1 s−1, c = 1.0× 10−9 g.427

The kernels chosen for this suite of experiments represent a sequence of increasingly dif-428

ficult learning tasks (from learning one parameter to learning three parameters) that are429

used to assess the ability of the CES method to retrieve parameters and provide uncer-430

tainty quantification. How realistically these kernels represent droplet-droplet interac-431

tions from a physical perspective is of lesser concern for this purpose, but they are nev-432

ertheless inspired by established kernels: The sum-of-masses kernel K(x, y) = b(x+y)433

is known as a Golovin kernel (Golovin, 1963), while the piecewise defined kernel is a sim-434

pler variant of a Long (1974) kernel, which is quadratic for small droplets and linear for435

large droplets1.436

The PMD is assumed to be a Gamma distribution parameterized by ξ = [N0, α, β],
where N0 is a scaling constant (corresponding to the total number of droplets), α is the
shape parameter, and β is the rate parameter:

f(m, t) =
N0β

α

Γ(α)
mα−1 exp (−βm). (15)

1 To be precise, both the Golovin kernel and the Long kernel are collection kernels, i.e., they represent

the product of a collision kernel and the coalescence efficiency. This study is concerned with learning colli-

sion kernels, but since the coalescence efficiency is simply assumed to be constant, the resulting collection

kernel is proportional to the underlying collision kernel.
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The parameter vector ξ changes over time, as the shape of the distribution evolves. For
Gamma mass distribution functions, specifying the first three moments is sufficient to
uniquely determine the distribution parameters ξ, hence Cloudy solves Eq. (6) for k =
0, 1, 2 (but the number of prognostic moments can be adjusted to the requirements of
any given closure distribution). The map hξ→m from the distribution parameters ξ to
the PMD moments M = [M0,M1,M2] and its inverse h−1

M→ξ are given by

hξ→M (N0, α, β) =

[
N0,

N0α

β
,
N0α(α + 1)

β2

]
= [M0,M1,M2] = M,

h−1
M→ξ(M0,M1,M2) =

[
M0,

1
M0M2

M2
1
− 1

,
M1M0

M0M2 −M2
1

]
= [N0, α, β] = ξ.

(16)

The definition of h−1
M→ξ shows that α goes to zero when the product of M0 and M2 in-437

creases over time (M1 is approximately constant and does not cause much variation in438

the value of α). Small values of α lead to instabilities in Cloudy and eventually cause439

it to crash. The reason is that in the regime of α ≈ 0, the small changes in the prog-440

nostic moments that the adaptive time stepping produces correspond to large changes441

in the underlying distribution parameters. In addition, sampling from Gamma distri-442

butions (which is done in the Monte Carlo approximation of the coalescence and breakup443

integrals described in Appendix A) becomes inaccurate and inefficient when the shape444

parameter is small (e.g., Best, 1983; Liu et al., 2017). Collision-coalescence decreases M0445

and tends to increase M2, while collisional breakup increases M0 and tends to decrease446

M2. The combined effect can be such that M0 grows faster than M2 declines (or vice447

visa), resulting in an increasing product of the two moments. For the experiments pre-448

sented in this paper, we circumvented this problem by choosing the settings (constraints449

for the kernel parameters, duration of the simulations, initial condition, value of the co-450

alescence efficiency) such that the resulting simulations were stable.451

The simulations are initialized with 104 particles with a mean mass and standard452

deviation 0.33×10−9 g, corresponding to initial moments M0 = 104 cm−3, M1 = 3.30×453

10−6 g cm−3, and M2 = 2.18×10−15 g2 cm−3. They are run for a simulation time pe-454

riod of 60 s.455

5 Results456

5.1 Evolution of the PMD moments457

Unless the coalescence efficiency is set to 0 or 1, the time evolution of the PMD is458

the result of two competing processes: Collision-coalescence reduces the number of droplets459

(decreasing M0) and creates larger drops (increasing M2), while collisional breakup gen-460

erates more but smaller droplets (increasing M0 and decreasing M2). Both processes con-461

serve the liquid water mass (M1). To illustrate the effects of differences in the relative462

strength of these two processes, Fig. 2 shows the time evolution of M0, M1, and M2 for463

coalescence efficiencies of 0.8, 0.9, and 1.0 (with a coalescence efficiency of 1.0, there is464

no breakup, i.e., all collisions result in coalescence). For each value of the coalescence465

efficiency in Fig. 2a, 10 simulations with identical collision kernels are run; the result-466

ing spread in the moment evolution is due to the randomness inherent in the Monte Carlo467

integration used to compute Eq. (7). As is to be expected, the number of droplets in the468

simulation without breakup decreases monotonically, moving toward its theoretical limit469

of a single drop containing all the liquid water mass. With a coalescence efficiency of 0.9,470

the droplet number decreases more slowly over the time period shown, and with a co-471

alescence efficiency of 0.8, breakup produces more droplets than coalescence removes. Mass472

is conserved most exactly for the no-breakup simulation, where determining the time rate473

of change of the moments does not involve the computation of the breakup term (Eq. 6).474

For coalescence efficiencies of 0.8 and 0.9, mass is conserved to within 6% of the initial475

mass. These deviations from mass conservation are due to the Monte Carlo approxima-476
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Figure 2. Evolution of the (left) zeroth, (middle) first, and (right) second moment of the

PMD, for different values of the coalescence efficiency Ec (0.8, 0.9, and 1.0). All simulations use

a kernel of the form K(x, y) = b(x + y) . (a) Simulations for each value of Ec are repeated 10

times with the same kernel (b = 2000 cm3g−1s−1). (b) Simulations for each value of Ec are also

repeated 10 times, but each time with a kernel parameter that is randomly drawn from its prior

distribution.

tion to the coalescence and breakup integrals (Eq. 6) and due to numerical time step-477

ping errors.478

In Fig. 2b, each simulation is performed with a new kernel parameter b drawn from479

its prior distribution, such that the observed spread in the moment evolution is due to480

the combined randomness of sampling the kernel parameter and of the Monte Carlo in-481

tegration. The former clearly accounts for a greater share of the variability, as can be482

seen by comparing Figs. 2b and Fig. 2a (note that both figures use the same y axes). Fig-483

ure 2b also shows that the bounds on the kernel parameters (Table 1) are large enough484

for the M0 evolution of different coalescence efficiencies to overlap in some cases.485

5.2 “Sum-of-Masses” Kernel486

Figure 3a shows the posterior distributions generated by the CES method for four487

different values of the parameter b in a sum-of-masses kernel K(x, y) = b(x + y). The488

results are shown in the transformed, “unconstrained” space where the CES algorithm489

takes place and where the prior distribution of the parameter vector θ is defined. In Fig. 3b,490
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the same results are shown in the constrained space where the model input lives. Note491

that our discussion of the posterior distributions is based on Fig. 3a, and all following492

results will be displayed only in the unconstrained space.493

In all four experiments, the maximum a posteriori estimate is a good estimate of494

the true parameter value. The narrowest of the four distributions and hence the most495

certain parameter estimate is obtained for the smallest parameter value (b = 2000 cm3 g−1 s−1),496

while the largest of the four parameter values (b = 8000 cm3 g−1 s−1) results in the497

distribution with the largest spread. The distribution spread reflects the underlying noise498

in the data, which varies with the magnitude of the kernel parameter: the larger its value,499

the larger (in absolute value) the error in the Monte Carlo estimate of the coalescence500

and breakup integrals describing the time rates of change of the distribution moments501

(Eq. 6), and hence the larger the resulting variance in the data. This effect gets multi-502

plied because the adaptive time stepper uses smaller step sizes when the solution is chang-503

ing fast, leading to more evaluations of the coalescence and breakup integrals over the504

course of a simulation (about 10 times more evaluations for b = 8000 cm3 g−1 s−1 than505

for b = 2000 cm3 g−1 s−1).506

While the Gaussian approximation obtained from the ensemble mean and covari-507

ance of the last EKS iteration is a good approximation of the posterior distributions for508

b = 4000 cm3 g−1 s−1 and b = 6000 cm3 g−1 s−1, it underestimates the mass in the509

tails of the posterior for b = 2000 cm3 g−1 s−1 and does not capture the more cusp-510

like shape of the posterior for b = 8000 cm3 g−1 s−1. In all practical applications, the511

shape of the posterior is (by definition) unknown a priori and may differ substantially512

from the Gaussian approximation obtained in the calibration stage. Accurate uncertainty513

quantification thus requires sampling the posterior.514

The results of these four experiments show that the CES method is able to retrieve515

the optimal parameter and provide uncertainty quantification in a perfect-model setting,516

for a one-parameter kernel. For comparison, Fig. 3 also shows the posterior distributions517

obtained from brute-force MCMC sampling without the calibration and emulation stages,518

which is about 103 times slower than CES. The similar shapes of the posterior distribu-519

tions from these two methods confirm that CES produces a high-quality approximation520

to the true solution of this problem. Brute-force sampling was only possible for the two521

smaller parameter values; the higher noise levels in the simulations with the larger pa-522

rameters caused the MCMC algorithm to get stuck in local maxima of the objective func-523

tion. While there are advanced Monte Carlo methods such as simulated annealing (Kirkpatrick524

et al., 1983) that are less susceptible to local trapping, CES has the advantage of per-525

forming well even with simple MCMC implementations, thanks to the smoothing prop-526

erty of the GP emulator.527

Learning the parameter of a sum-of-masses kernel from data generated by PySDM528

results in the posterior distribution shown in Fig. 4. As described in section 3.1, this ex-529

periment differs from the perfect-model experiments in that its underlying equation in-530

cludes a bias term representing the model discrepancy, and an inflated noise represent-531

ing the combined stochasticity of Cloudy and PySDM (Eq. 12). CES is able to provide532

uncertainty quantification and a good estimate of the true parameter value in this mod-533

ified setup. Note however that in the absence of the “gold standard” posterior distribu-534

tion obtained from brute-force MCMC sampling, the quality of the uncertainty quan-535

tification is not easily measured. This underlines the importance of testing any approach536

to uncertainty quantification in a setting that allows for comparison of the resulting pos-537

terior distribution with that obtained from a method such as MCMC, which provably538

converges to the desired posterior distribution (e.g., Robert & Casella, 2005).539
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5.3 “Sum-of-Masses Plus Constant” Kernel540

We will visualize the output of each of the three stages of the CES algorithm us-541

ing the example of the “sum-of-masses plus constant” kernel K(x, y) = a + b(x + y)542

with a = 4× 10−6 cm3 s−1 and b = 3000 cm3 g−1 s−1.543

In the first stage (Fig. 5), the EKS algorithm transforms an initial ensemble of J =544

50 members through successive updates into approximate samples of the posterior dis-545

tribution. The initial ensemble, randomly drawn from the relatively uninformative prior546

distributions of the parameters, is spread broadly over the parameter space. Over the547

course of subsequent iterations (each of which requires 50 model evaluations), the en-548

semble becomes concentrated near the true parameter values, with the sample mean and549

covariance of the ensemble sampled from a Gaussian approximation of the posterior dis-550

tribution. This is a difference to EKI (Iglesias et al., 2013), a closely related optimiza-551

tion method whose iterative updates result in a collapse of the ensemble onto the opti-552

mal parameter. EKS produces better training points for the emulator but in its present553

forms usually requires more iterations.554

The calibration stage generates Nit × J = 500 parameter-data pairs, which are555

used to train the emulator. The Gaussian process emulator predicts the mean and the556

variance at any data point in its input space, conditional on the training data (Fig. 6).557

Thanks to the well chosen training points, which are concentrated around the mean or558

mode of the posterior distribution, the predictions are most confident (have smallest vari-559

ance) near the optimal parameter (around [A,B] = [−0.43,−0.88]), i.e., near the min-560

imum of the objective function.561

The MCMC algorithm samples the posterior distribution using the predictions of562

the emulator instead of actual model evaluations. Figure 7 shows kernel density estimates563

of the MCMC results, with contours containing 5%, 10%, 50%, 75%, 90%, and 99% of564

the posterior mass. The true value (blue dot) is captured within the 5% contour of the565

posterior density, showing that the maximum a posteriori estimate of the parameters ob-566

tained by the CES method is a good approximation of the true optimum. Both the mean567

and shape of the MCMC sampled distribution differ from the distribution of the last EKS568

ensemble (red dots in Figure 5). Since EKS relies on a Gaussian assumption for the pos-569

terior distribution, its output may diverge from the true posterior when that assump-570

tion does not hold.571

5.4 Piecewise Kernel572

The piecewise kernel represents a scenario where the collision rates of droplets smaller573

than some (not precisely known) threshold differ from those of droplets exceeding that574

threshold. Figure 8 shows the posterior distributions for the three parameters of this575

kernel, together with their true values and prior distributions. The difference between576

the prior and posterior distributions reflects the information about the kernel param-577

eters learned from the data. In this example, the largest information gain was achieved578

for the linear rate b, whose posterior shows the smallest uncertainty. However, the in-579

formation gain from the prior to the posterior of the other two parameters is smaller than580

that of previous examples, especially for the mass threshold (parameter c). This reflects581

the difficulty of finding data that provide the necessary constraints on all three param-582

eters of the piecewise kernel, and that make the inverse problem sufficiently well posed.583

For example, if the mass threshold c is not exceeded during a model run, the resulting584

output will only be sensitive to the linear rate b. Similarly, the information content of585

the model output is limited when the mass threshold is too small, when the effect of a586

is much bigger than that of b (or vice versa), etc. Which parameter can best be retrieved587

depends on the choice of true parameter values and their constraints, which has to en-588

sure that the model output produced in the calibration stage is sensitive to all under-589
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a)

b)

Figure 3. Histograms of MCMC samples of the posterior distributions obtained by the

CES algorithm, for the inverse problem of finding the parameter b of a “sum-of-masses” kernel

K(x, y) = b(x + y). The results in (a) are shown in the unbounded space where the CES algo-

rithm is performed; in (b), the same results are shown in the bounded space where the model in-

put lives. Different colors correspond to different values of the true parameter b, each of which is

marked by a vertical black line (from left to right, in the bounded space: b = 2000 cm3 g−1 s−1,

b = 4000 cm3 g−1 s−1, b = 6000 cm3 g−1 s−1, b = 8000 cm3 g−1 s−1). The lines show Gaussian

approximations to the posterior distributions, which are specified by the ensemble mean and

standard deviation of the parameters in the last EKS iteration. All four experiments have the

same prior parameter distribution shown as the dark blue line. The two additional histograms

in grey (for b = 2000 cm3 g−1 s−1 and b = 4000 cm3 g−1 s−1) show the results of brute-force

MCMC sampling.
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Figure 4. Histogram of MCMC samples produced by CES, showing the posterior distribu-

tion of the parameter b of a “sum-of-masses” kernel K(x, y) = b(x + y), given data y gener-

ated by PySDM. The Gaussian approximation to the posterior distributions shown as a line is

specified by the ensemble mean and standard deviation of the parameters in the last EKS iter-

ation. The prior distribution of the parameter is shown in blue, and the true parameter value

(b = 2000 cm3 g−1 s−1 in the bounded space where the model input lives) is marked by a vertical

black line. The plot is shown in the unbounded parameter space.
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Figure 5. Evolution of the ensemble over subsequent EKS iterations, for the “sum-of-masses

plus constant” kernel K(x, y) = a+b(x+y) with a = 4×10−6 cm3 s−1 and b = 3000 cm3 g−1 s−1.

The initial ensemble (iteration 0) is highlighted in light blue; the subsequent eight iterations are

colored in gray; and the final ensemble (iteration 9) is highlighted in red. The intersection of the

dashed green lines represents the true parameter values used to generate observational data. The

plot is shown in the unbounded parameter space.
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Figure 6. Predictions of the Gaussian process emulator for the “sum-of-masses plus constant”

kernel K(x, y) = a + b(x + y) with a = 4 × 10−6 cm3 s−1 and b = 3000 cm3 g−1 s−1: (left)

predicted mean and (right) predicted variance, for (a) M0, (b) M1, and (c) M2. The grey dots

represent training points generated during the calibration stage of CES (there are additional ones

that fall outside the plotting domain). The predictions are shown in the unbounded parameter

space.
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Figure 7. Density plot of MCMC samples of the posterior distribution, for the “sum-of-

masses plus constant” kernel K(x, y) = a + b(x + y) with a = 4 × 10−6cm3 s−1 and

b = 3000 cm3 g−1 s−1. The contours are contain 5%, 10%, 50%, 75%, 90% and 95% of the

sampled distribution. The blue dot marks the true parameters, and the red cross is the average

across ensemble members in the last EKS iteration. The posterior densities are shown in the

unbounded parameter space.
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Figure 8. Histograms of MCMC samples of the posterior distributions obtained by the CES

algorithm, for the parameters a, b, and c of a piecewise kernel (Eq. 14), given the zeroth, first,

and second moment of the PMD at time tend = 60 s. The prior distribution of the parameters is

shown in blue, and the true parameter values are marked by vertical black lines. The Gaussian

approximations to the posterior distributions shown as grey lines are specified bythe ensemble

mean and standard deviation of the parameters in the last EKS iteration. The plot is shown in

the unbounded parameter space.

lying parameters. Choosing prior parameter ranges that give rise to informative data while590

not being overly narrow required some exploration of the parameter space.591

The problem of finding data that are informative enough to constrain microphys-592

ical processes is not limited to this proof-of-concept study, where the only data available593

are moments of the PMD. In fact, the space- and ground-based observations available594

today generally remain incomplete for directly constraining individual microphysical pro-595

cess rates in schemes (Morrison, van Lier-Walqui, Fridlind, et al., 2020), and choosing596

and combining data for use in Bayesian inversion will arguably be the ultimate challenge597

in developing data-informed microphysics schemes.598
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6 Summary and Conclusions599

This paper introduces Cloudy, a flexible microphysics scheme that simulates collision-600

coalescence and collisional breakup of cloud droplets. We have shown how parameters601

of the collision kernels describing these droplet-droplet interactions can be learned from602

data through a computationally efficient Bayesian inversion.603

The main points of this study can be summarized as follows:604

• Cloudy is a bulk scheme for the collision-coalescence and collisional breakup of cloud605

droplets. By virtue of its flexible and modular design, the number of prognostic606

moments can be adjusted to the requirements of the particle mass distribution (PMD),607

and both PMD and collision kernel can easily be changed. Cloudy is broadly sim-608

ilar to BOSS, the scheme introduced by Morrison, van Lier-Walqui, Kumjian, and609

Prat (2020), with important differences in how the closure problem is formulated.610

• We have looked at microphysics parameterizations through the lens of Bayesian611

inverse problems and have configured Cloudy to learn parameters of collision ker-612

nels from data using Calibrate-Emulate-Sample (CES; Cleary et al., 2021).613

• CES is a three-stage approach to Bayesian inversion that is about a factor 1000614

faster than traditional techniques. It makes estimation and uncertainty quantifi-615

cation of unknown parameters possible for computationally expensive and/or noisy616

models.617

• CES is able to retrieve posterior parameter distributions in a suite of perfect-model618

experiments where Cloudy itself generates the data used to constrain the scheme.619

Results of experiments with different collision kernels show that most posterior620

distributions capture the true parameter values within 5% of the posterior mass.621

• Moving beyond perfect-model experiments, we have learned collision kernel pa-622

rameters from output generated by PySDM (Bartman et al., 2021), a Lagrangian623

particle-based microphysics model. In this experiment, we represent model error624

resulting from the closure assumption in Cloudy (an assumption that PySDM does625

not need to make) as a simple bias term. This modification in the setup of the in-626

verse problem allows CES to retrieve the posterior distribution of the “true” pa-627

rameter, not of that which minimizes the mismatch with the PySDM data.628

Taken together, they constitute a proof of concept that informing microphysics schemes629

with data through Bayesian learning is possible in a computationally efficient way. This630

makes data-informed but physics-based approaches to modeling microphysics a more at-631

tractive and viable avenue for future parameterization development. Such approaches632

have been gaining traction in recent years (e.g., van Lier-Walqui et al., 2020; Morrison,633

van Lier-Walqui, Fridlind, et al., 2020) as they incorporate the existing physical under-634

standing of microphysical processes while taking advantage of data and statistical tools635

to bridge knowledge gaps. Bayesian methods are particularly well suited to this task be-636

cause they allow for continuous updates as the physical theory and understanding of these637

processes evolve. However, these strengths can only be brought to bear in combination638

with microphysics schemes that can be constrained in a rigorous and transparent way.639

Ultimately, the goal is to inform these schemes by natural observations of clouds640

and precipitation. This will require methods that account for structural uncertainty, which641

is uncertainty resulting from the inadequacy of a model to reproduce a given set of data642

even with the “correct” parameter values, e.g., because it lacks some processes that have643

been present in producing the data. Neglecting to account for structural uncertainty re-644

sults in parameter estimates that do not necessarily represent the true physics but that645

minimize the mismatch between the model output and the given data and hence max-646

imize the predictive accuracy of the emulator (e.g., Kennedy & O’Hagan, 2001). Meth-647

ods for quantifying structural uncertainty are less well developed than those for para-648

metric uncertainty, but an established approach is to model the structural error as a Gaus-649
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sian process at the interface of model and data (Kennedy & O’Hagan, 2000). An alter-650

native is to use Gaussian processes or other machine learning techniques—for example,651

neural networks or learning from a dictionary of candidate terms (Brunton et al., 2016;652

Schneider et al., 2021)—directly where structural model errors actually occur, for exam-653

ple, in the collision kernel. In our example, the direct correspondence of the collision and654

breakup kernels between Cloudy and PySDM allowed us to instead use a simple addi-655

tive bias term. However, incorporating structural uncertainty in a rigorous way will be656

a crucial element to fully exploit the potential of Bayesian inversion in constraining mi-657

crophysics models.658

Appendix A Monte Carlo Integration659

Monte Carlo integration is a numerical technique that uses random numbers to ap-660

proximate integrals. The core idea is to estimate the integral to be calculated by the sam-661

ple mean of a sequence of random numbers, whose expected value is the exact value of662

the integral. There exist many variants and modifications of Monte Carlo integration that663

aim to reduce the variance of the estimator and hence the number of samples needed to664

achieve the desired accuracy.665

Our goal here is to provide some implementation details of the Monte Carlo inte-666

gration that is used to compute the time rate of change of the PMD moments in Cloudy,667

i.e., the right-hand side of Eq. 7. For a comprehensive treatment of Monte Carlo inte-668

gration, the reader is referred to, e.g., Robert and Casella (2005).669

Suppose that the integrand h(x) (where x ∈ Rd) can be written as a product of
a function T (x) and a probability density p(x). We want to estimate the value of the in-
tegral

I =

∫
h(x) dx =

∫
T (x)p(x) dx = Ep [T (x)] (A1)

Monte Carlo integration consists of generating samples {X1, · · ·XN} from the density
p and approximating the integral (A1) by

ÎN =
1

N

N∑
i=1

T (Xi) (A2)

Due to the strong law of large numbers, ÎN converges to I with probability 1 as N →670

∞. If the variance σ2 of T (Xi) is finite, then the standard error, σ2
x̄, is given by671

σ2
x̄ := E

[
(ÎN − I)2

]
=

σ

N
(A3)

The error is thus independent of the dimension d of the integral.672

To compute the coalescence integral (see Eq. 7; repeated here for convenience),673

Ik,coal =
1

2

∫ ∞

0

∫ ∞

0

(
(m + m′)k −mk −m′k

)
C(m,m′)f(m)f(m′)dm dm′, (A4)

we define674

p1(x, y) =
1

M2
0

f(x)f(y). (A5)

Drawing random samples {Xi}Ni=1 and {Yi}Ni=1 from p1, Ik,coal can be estimated675

by676
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ÎN,k,coal =
M2

0

2N

N∑
i=1

((Xi + Yi)
k −Xk

i − Y k
i )C(Xi, Yi) (A6)

For the computation of the breakup integral Ik,breakup the source and sink term are
treated separately:

Ik, breakup =
1

2

∫ m′+m′′

0

mkP (m;m′,m′′)dm

∫ ∞

0

f(m′) dm′
∫ ∞

0

f(m′′)B(m′,m′′) dm′′

−
∫ ∞

0

mkf(m) dm

∫ ∞

0

f(m′′)B(m,m′′)

m + m′′ dm′′
∫ m+m′′

0

m′P (m′;m,m′′) dm′

=: Isourcek, breakup − Isinkk, breakup

(A7)

Both terms (Isourcek, breakup and Isinkk, breakup) allow for the analytical integration of one677

of the variables, such that the Monte Carlo integration is only applied to the remaining678

double integrals. To achieve this, we make use of the fact that parts of the fragment dis-679

tribution, P (m;m′,m′′) = β2(m′ +m′′) exp(−βm) (Eq. 3), can be combined with mk
680

(for Isourcek, breakup) and m′ (for Isinkk, breakup ) into Gamma distributions with known cumu-681

lative density functions (cdf). We start with the breakup source integral, where intro-682

ducing a normalization factor γ = βαk−2

Γ(αk)
allows for the construction of Gamma(αk, β)683

distributions with density684

p2,k(m) =
βαk

Γ(αk)
mαk−1 exp(−βm), (A8)

with αk = k+1. Outside of p2,k(m), there is no dependence on m left in Isourcek, breakup,685

and so the integral
∫m′+m′′

0
p2,k(m) 1

γ dm = 1
γ can be integrated separately. Its solution686

is the cdf of a Gamma(αk, β) distribution, which for positive integers αk is given by687

F (x;αk, β) = 1−
αk−1∑
i=0

(βx)i

i!
exp(−βx), (A9)

evaluated at x = m′ + m′′. The remaining double integral is then computed us-688

ing the same technique as for the coalescence integral: Drawing random samples {Yi}Ni=1689

and {Zi}Ni=1 from p1(x, y) = 1
M2

0
f(x)f(y), the Monte Carlo estimate of the breakup source690

term is691

ÎsourceN,k, breakup =
M2

0

2γN

N∑
i=1

(Yi + Zi)B(Yi, Zi)F (Yi + Zi;αk, β) (A10)

A similar approach is applied to the breakup sink integral, which is simplified to692

a double integral by the analytic integration of the density of a Gamma(2, β) distribu-693

tion (resulting from the product of m′ and β2 exp(−βm). Drawing random samples {Xi}Ni=1694

and {Zi}Ni=1 from p1, the breakup sink term is approximated by695

ÎsinkN,k, breakup =
M2

0

N

N∑
i=1

Xk
i B(Xi, Zi)F (Xi + Zi; 2, β). (A11)

Putting everything together, the time rate of change of the k-th PMD moment due696

to collision-coalescence and collisional breakup (Eq. 7) is approximated by697
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∂Mk

∂t
= Ik,coal + Ik,breakup

≈ ÎN,k,coal + ÎN,k, breakup

= ÎN,k,coal + ÎsourceN,k, breakup − ÎsinkN,k, breakup.

(A12)

The results shown in this paper were obtained using N = 200 Monte Carlo sam-698

ples.699

Appendix B Superdroplet Breakup700

The superdroplet method to model stochastic collision-coalescence of droplets is701

extended in this work to include a breakup-like process for numerical experiments. As702

breakup introduces a competing process for coalescence, this stochastic breakup imple-703

mentation provides a more realistic set of dynamics to demonstrate the CES algorithm’s704

ability to learn from data. Here we will briefly describe the modifications made to the705

existing package PySDM (Bartman & Arabas, 2021) in order to introduce a breakup-706

like process.707

Maintaining the notation of (Shima et al., 2009), each superdroplet with label in-708

dex i for these box model simulations is assigned a multiplicity ξi and a mass mi. A pair709

α of superdroplets collides and coalesces with scaled probability pα, and a random num-710

ber ϕ is generated to determine the number of coalescences that occur, γα. In the im-711

plementation of PySDM, pα is computed based on a collision rate from kinetic theory712

and a coalescence efficiency Ec, which combined are referred to as the coalescence ker-713

nel. In this new implementation, every time step also includes the potential for collisional714

breakup of a given superdroplet pair. Like pα, the probability of a breakup is computed715

based on the collision rate multiplied with (1 − Ec), and whether the breakup occurs716

is determined based on the generation of a new random number.717

For a collision-coalescence event that occurs for the SD pair α with γα coalescences,
the multiplicities of the superdroplets are updated as follows:

ξj ←− ξj − γαξk

ξk ←− ξk

Mj ←−Mj

Mk ←−Mk + γαMj

(B1)

In this process, the superdroplet j maintains its mass but loses multiplicity to coales-718

cence, while droplets k grow due to coalescence with droplets j.719

As a substitute for collisional breakup, we treat the process as a collisional coales-
cence of two superdroplets followed by spontaneous breakup into nf uniform fragments.
Thus if a breakup is determined to occur, the same quantity γα is computed to deter-
mine the number of pre-coalescences that occur according to the same dynamics described
above. Subsequently, the newly coalesced superdroplet k spontaneously fragments:

ξk ←− nfξk

Mk ←−Mk/nf

(B2)

For the purposes of these simple test cases, nf is set to 2 such that the resulting720

SD has the average mass of the two colliding SDs. However, we note that this choice is721

fundamentally unrealistic, as it would drive the system toward uniformly sized droplets722

that are the average size of the initial distribution. For the numerical experiments pre-723

sented in this paper, the simulation time is chosen to be far shorter than the time re-724

quired for this nonstochastic behavior to become apparent.725
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Appendix C Open Research726

The code for the Calibrate-Emulate-Sample algorithm is available at https://github727

.com/CliMA/CalibrateEmulateSample.jl. The Cloudy repository can be found at https://728

github.com/CliMA/Cloudy.jl.729
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Smoluchowski, M. V. (1916). Drei Vorträge über Diffusion, Brownsche Bewegung854

und Koagulation von Kolloidteilchen. Z. Phys., 17 , 557–585.855

van Lier-Walqui, M., Morrison, H., Kumjian, M. R., Reimel, K. J., Prat, O. P.,856

Lunderman, S., & Morzfeld, M. (2020). A Bayesian approach for statisti-857

cal–physical bulk parameterization of rain microphysics. Part II: Idealized858

Markov chain Monte Carlo experiments. J. Atmos. Sci., 77 (3), 1043–1064. doi:859

10.1175/JAS-D-19-0071.1860

van Lier-Walqui, M., Vukicevic, T., & Posselt, D. J. (2014). Linearization861

of microphysical parameterization uncertainty using multiplicative pro-862

cess perturbation parameters. Mon. Wea. Rev., 142 (1), 401–413. doi:863

10.1175/MWR-D-13-00076.1864

Weisberg, S. (2014). Applied linear regression (Fourth ed.). Hoboken NJ: Wiley.865

–28–


