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Abstract

Parameter estimation is one of the most challenging tasks in large-scale distributed modeling, because of the high dimensionality

of the parameter space. Relating model parameters to catchment/landscape characteristics reduces the number of parameters,

enhances physical realism, and allows the transfer of hydrological model parameters in time and space. This study presents

the first large-scale application of automatic parameter transfer function (TF) estimation for a complex hydrological model.

The Function Space Optimization (FSO) method can automatically estimate TF structures and coefficients for distributed

models. We apply FSO to the mesoscale Hydrologic Model (mHM, mhm-ufz.org), which is the only available distributed model

that includes a priori defined TFs for all its parameters. FSO is used to estimate new TFs for the parameters “saturated

hydraulic conductivity” and “field capacity”, which both influence a range of hydrological processes. The setup of mHM from

a previous study serves as a benchmark. The estimated TFs resulted in predictions in 222 validation basins with a median

NSE of 0.68, showing that even with 5 years of calibration data, high performance in ungauged basins can be achieved. The

performance is similar to the benchmark results, showing that the automatic TFs can achieve comparable results to TFs that

were developed over years using expert knowledge. In summary, the findings present a step towards automatic TF estimation

of model parameters for distributed models.
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Abstract17

Parameter estimation is one of the most challenging tasks in large-scale distributed mod-18

eling, because of the high dimensionality of the parameter space. Relating model param-19

eters to catchment/landscape characteristics reduces the number of parameters, enhances20

physical realism, and allows the transfer of hydrological model parameters in time and21

space. This study presents the first large-scale application of automatic parameter trans-22

fer function (TF) estimation for a complex hydrological model. The Function Space Op-23

timization (FSO) method can automatically estimate TF structures and coefficients for24

distributed models. We apply FSO to the mesoscale Hydrologic Model (mHM, mhm-ufz25

.org), which is the only available distributed model that includes a priori defined TFs26

for all its parameters. FSO is used to estimate new TFs for the parameters “saturated27

hydraulic conductivity” and “field capacity”, which both influence a range of hydrolog-28

ical processes. The setup of mHM from a previous study serves as a benchmark.29

The estimated TFs resulted in predictions in 222 validation basins with a median30

NSE of 0.68, showing that even with 5 years of calibration data, high performance in un-31

gauged basins can be achieved. The performance is similar to the benchmark results, show-32

ing that the automatic TFs can achieve comparable results to TFs that were developed33

over years using expert knowledge. In summary, the findings present a step towards au-34

tomatic TF estimation of model parameters for distributed models.35

1 Introduction36

Large-domain, spatially contiguous hydrological and land surface models are im-37

portant tools for managing our water supplies. Hydrological information on the conti-38

nental or global scale is needed to handle new emerging international and global water39

management challenges, which include topics like water allocation in international, na-40

tional, and large river basins, operational flood forecasting services, global water secu-41

rity or the influence of climate extremes on water resources (Archfield et al., 2015). These42

applications are particularly challenging in areas without hydrologic measurements, which43

includes a majority of basins worldwide that are effectively ungauged (Hrachowitz et al.,44

2013). This results in the need for further development in large-domain hydrological mod-45

eling to simulate water fluxes and states in both gauged and ungauged basins in differ-46

ent climates in a spatially consistent manner (Rakovec et al., 2019).47

In 1982, Jim Dooge stated that ”the parameterization of hydrologic processes to48

the grid-scale of general circulation models is a problem that has not been tackled, let49

alone solved” (Dooge, 1982) and shortly after that Leavesley et al. (1983) concluded that50

optimization of distributed parameters of hydrological models is an ”ill-posed” problem51

due to the large number of degrees of freedom. Since then, model parameterization is52

still one of the major unsolved problems in hydrology (Blöschl et al., 2019). One way53

to potentially solve this problem is to relate hydrological model parameters/structures54

to landscape properties (e.g., K. J. Beven & Franks, 1999; K. Beven, 2002; Hundecha55

& Bárdossy, 2004; Samaniego et al., 2010; Clark et al., 2016). This approach is strongly56

related to the idea of regionalization - the geographical migration of hydrological model57

structures (Buytaert & Beven, 2009). This task is however nontrivial and Clark et al.58

(2017) still described it as one of the unsolved challenges for hydrological model param-59

eter estimation.60

One potential solution to this problem are parameter transfer functions (TFs) as61

mathematical expressions to formulate the relationship between model parameters and62

physiographic characteristics (e.g. elevation, slope, soil texture, vegetation characteris-63

tics, etc.) of the catchment (Hundecha & Bárdossy, 2004; Samaniego et al., 2010; Ku-64

mar et al., 2013). By defining TFs for all parameters, we expect to induce three attrac-65

tive properties into the hydrological model:66
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1. The model has a significantly lower number of free parameters that is indepen-67

dent of the size of the model domain, facilitating parameter optimization.68

2. The model can be transferred across time and space.69

3. The model parameters reflect physical properties of the catchment and result in70

physical meaningful model states.71

The first property would lead to a tremendous decrease in effort to set up and run dis-72

tributed hydrological models. The problem of estimation of distributed parameters - an73

ill-posed problem because of the large number of model parameters - would potentially74

be solved. The second property would allow for prediction in ungauged basins and other75

time periods (Hrachowitz et al., 2013). Finally, the third property would allow the us-76

age of model states and parameter fields to gain further insights into the hydrological77

properties and status of a catchment, which are generally extremely difficult or impos-78

sible to measure over such large areas (e.g. catchment-wide soil moisture, soil proper-79

ties, evapotranspiration). The first two properties would result from TFs that are only80

dependent on a few numerical coefficients and predict discharge equally well in calibra-81

tion and validation basins and time periods. The third property can potentially be achieved82

by the constrained setting of using TFs for parameters with a clear physical meaning and83

by relevant physiographic catchment characteristics as inputs.84

Generally, the implementation of TFs for the estimation of distributed model pa-85

rameters can be seen as a promising step towards adequately addressing critical water86

cycle science questions and global applications of hyperresolution hydrological and land87

surface models (Wood et al., 2011; K. J. Beven & Cloke, 2012). A corresponding require-88

ment for hyperresolution models was also stated by Bierkens (2015): hydrological mod-89

els should be able to make predictions ”everywhere”, but the predictions should be ”lo-90

cally relevant”. For these reasons, Bierkens (2015) suggested that the multiscale param-91

eter regionalization technique (MPR), which uses TFs at its input data’s native spatial92

resolution to scale model parameters to the required spatial scale, could be a way for-93

ward. Overall, this will be an important step in the direction towards the application94

and parameterization of global hyperresolution models.95

In a previous study, we developed a method to automatically estimate transfer func-96

tions from data called Function Space Optimization (FSO) (Feigl et al., 2020), which fur-97

ther developed ideas first proposed by Klotz et al. (2017) and Klotz (2020). FSO is based98

on a text-generating neural network that is used to transfer the search for a best fitting99

transfer function in a continuous optimization problem. While other approaches consist100

of applying or adapting TFs by modifying their parameter (i.e. numeric coefficients) (e.g.,101

Samaniego et al., 2010; Kumar et al., 2013; Imhoff et al., 2020; Pinnington et al., 2021),102

FSO can additionally change the functional form of the TF. So far, FSO was thoroughly103

tested on synthetic data by Feigl et al. (2020) and some initial results of a real-world ap-104

plication were presented in Feigl et al. (2021).105

The mesoscale Hydrological Model (mHM) (Samaniego et al., 2010; Kumar et al.,106

2013; Thober et al., 2019) is a distributed hydrological model that was already applied107

in numerous studies and for a wide range of different tasks, covering different hydrocli-108

matic conditions (e.g., Kumar et al., 2013; Thober et al., 2018; Peichl et al., 2018; Samaniego109

et al., 2019; Jing et al., 2020; Imhoff et al., 2020; Saha et al., 2021). mHM is unique, as110

it has already TFs defined for all its parameters, which were chosen by Samaniego et al.111

(2010); Kumar et al. (2013); Thober et al. (2019) based on pedo-transfer functions from112

literature, a ”step-wise” method (Samaniego & Bárdossy, 2005) and a ”trial-and-error”113

approach. This makes mHM an ideal model for testing FSO because we can compare114

the automatically estimated TFs with those chosen by expert knowledge and tested rig-115

orously in multiple studies.116

Besides the choice of model, choosing a benchmark study that applied mHM over117

multiple basins and in a prediction in ungauged basins (PUB) setting is important for118
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objectively assessing the FSO performance. For this purpose, we chose the study by Zink119

et al. (2017) because it included a state-of-the-art optimization and application of mHM120

over a large number of basins. Zink et al. (2017) estimated 100 global mHM parameters121

sets, i.e., the numerical coefficients of all mHM TFs, for 7 large basins located in Ger-122

many with 5 years of data, which they then applied on 222 validation basins in Germany123

with a mean of 42 years years of data.124

This study assesses the performance and further develops the FSO approach and125

thus presents the next step in direction of regularizing the parameter space by using land-126

scape information for distributed hydrological models. Its originality includes (i) further127

improvements of the FSO method, (ii) a large-scale application of automatic TF esti-128

mation using real-world data and benchmark for comparison, and (iii) a detailed descrip-129

tion of challenges, potential limitations, and a way forward for automatic TF estimation.130

2 Function Space Optimization (FSO)131

2.1 Methodology132

FSO is an optimization method for TFs of distributed models introduced by Feigl133

et al. (2020). It is based on the idea of transferring the search for a mathematical equa-134

tion into a continuous optimization problem. All steps of the FSO optimization loop are135

shown in Figure 1. As in any continuous optimization problem, an optimization algo-136

rithm (optimizer, Figure 1 top) is used to find the point in a continuous vector space that137

minimizes or maximizes an objective function. However, the main difference between FSO138

and continuous optimization is that we are not interested in the numeric values that are139

optimized. We are only interested in the TFs that can be generated from them with the140

text generating neural network.141

FSO uses the decoder of a variational autoencoder (VAE; Kingma & Welling, 2013)142

to generate TFs from a numeric vector. The VAE network is trained to encode and de-143

code the information of TF strings and their resulting parameter distribution into a nu-144

meric vector. Data for training is generated using a context free grammar (Knuth, 1965),145

which defines the possible structures, operators, functions, and variables that compose146

a TF. The variables consist of distributed (e.g. gridded) physiographic properties, that147

are the basis for parameter estimation. After generating new TFs from Function Space,148

the hydrological model is applied using the parameter maps generated from these TFs.149

The prediction of this model can then be used to compute a loss, which is based on a150

user-defined objective function that is evaluated in each calibration basin, e.g. NSE (Nash151

& Sutcliffe, 1970), KGE (Gupta et al., 2009). This loss is then used by the optimizer to152

choose the next point in Function Space for evaluation.153

To enable the unbiased estimation of universally applicable TFs, FSO uses two types154

of scaling. First, all physiographic properties are scaled to [0,1] before being applied in155

a TF. Second, the resulting TF values are scaled to the parameter bounds. Both scal-156

ing operations use min-max scaling, which needs a minimum and maximum value for both157

the initial value range and the projected value range. The initial value range for the phys-158

iographic variables is chosen to be their physical bounds, e.g. sand content [0, 100]. The159

initial value range for the TF values is chosen using the VAE training data and is the160

same for all generated TFs. A detailed description of FSO and all its preprocessing steps161

are given in Feigl et al. (2020).162

We further developed the FSO VAE architecture to improve the encoding of long163

function strings. This should result in a Function Space with a smoother loss surface and164

thus making it a more adequate search space for optimization. A detailed depiction and165

description of the new network architecture is shown in Appendix A.166
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Figure 1. A depiction of the Function Space Optimization loop. Starting from the top going

clockwise: The optimizer selects the next point in Function Space that should be evaluated. The

VAE decoder generates the TFs that are associated with this point in Function Space. The do-

main of the TFs comprises physiographic properties (e.g. elevation, slope, soil texture, vegetation

characteristics) and are used to generate parameter maps. These parameter maps are used as

input for the distributed hydrological model to produce predictions (e.g. discharge, evapotranspi-

ration), which results in a loss that represents the aggregated loss of all modeled basins. This loss

is then used by the optimizer to decide on the next point in Function Space to be evaluated.

2.2 Linking FSO with the mesoscale Hydrologic Model (mHM)167

The mesoscale Hydrologic Model (mHM; Samaniego et al., 2010; Kumar et al., 2013;168

Samaniego et al., 2019; Thober et al., 2019) is a distributed hydrological model that sim-169

ulates hydrological processes on a multi-layer grid. It uses the multiscale parameter re-170

gionalization method (MPR; Samaniego et al., 2010; Schweppe et al., 2021) and thus uses171

TFs for all its parameters. The applied numerical approximations and conceptualiza-172

tions are based on the HBV model (Bergström, 1995) and include the processes inter-173

ception, snow accumulation, snowmelt, infiltration, surface runoff, soil water retention,174

runoff generation, evaporation, percolation, baseflow, and routing. A detailed descrip-175

tion can be found in Samaniego et al. (2010).176

In this study we apply FSO to estimate new TFs for the mHM parameters KS (sat-177

urated hydraulic conductivity, [cm/day]) and FieldCap (field capacity, [-]). These pa-178

rameters affect the storage and conductivity of soil water and have a high sensitivity for179

streamflow estimation (Cuntz et al., 2015; Höllering et al., 2018). We want to minimize180

the effect of parameter dependency because this is the first large-scale application of FSO181

with real-world data. Therefore, we focus only on the estimation of these two TFs, which182
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allows for a more in-depth analysis of the results. The current version of mHM estimates183

KS using a TF that was developed by Cosby et al. (1984):184

KS −mHM = γ1 exp(γ2 + γ3ν1 − γ4ν2) log(10), (1)

which is a function of the sand ν1 and the clay ν2 content of the soil and numerical co-185

efficients γ1toγ4. The current mHM parameter FieldCap is estimated using a TF by Twarakavi186

et al. (2009):187

FieldCapmHM = ThetaS exp(γ5(γ6 + log10(KS)) log(vGenun), (2)

where ThetaS is the saturated soil water content, γ5, γ6 are numerical coefficients and188

vGenun refers to the van Genuchten n model parameter (van Genuchten, 1980). While189

mHM KS is only a function of observed physiographic properties, mHM FieldCap is also190

dependent on the other mHM parameters ThetaS and vGenun.191

3 Experimental design192

3.1 Benchmark and study data193

The results of this study are compared to the results of Zink et al. (2017). In their194

study, they calibrated global mHM parameters, i.e., the numerical coefficients of all mHM195

TFs, using 5 years of data for 7 large basins in Germany. The calibration was conducted196

using the DDS optimization algorithm (Tolson & Shoemaker, 2007) with 2000 iterations197

and was performed 100 times in each of the 7 basins. From these, they selected 100 pa-198

rameter sets that had a Nash-Sutcliffe model efficiency (Nash & Sutcliffe, 1970) exceed-199

ing 0.65 in all 7 basins. Finally, they validated these 100 parameter sets using 42 years200

of data of 222 smaller basins across Germany. This provides an estimate of the mHM201

performance in an ungauged setting. We choose the same data and experimental setup202

as Zink et al. (2017) to make results comparable.203

All meteorological forcings, physiographic properties, and discharge observations204

are taken from Zink et al. (2017), which also includes a detailed description of the pre-205

ceding data preparation. The study basins consist of 7 large basins used for calibration206

and 222 smaller validation basins. The calibration basins have a size range of 6 200 km²207

to 47 500 km², while the validation basins have a size range of 100 km² to 8 500 km². The208

area of all calibration basins is shown in Figure 2a and the outlets of all validation basins209

are shown in Figure 2b. Of these 222 validation basins, 80 are located outside and 142210

are located inside the calibration basins area.211

The available variables for TF estimation consist of six physiographic properties212

on a 100 m×100 m grid: sand content in percent (ν1), clay content in percent (ν2), min-213

eral bulk density in g/cm³ (ν3), aspect in degree (ν4), slope in degree (ν5) and elevation214

in m (ν6). The variables ν4, ν5, and ν6 were derived from a 50 m digital elevation model215

(DEM) acquired from the German Federal Agency for Cartography. The soil properties216

are based on a digitalized soil map of the German Federal Institute for Geosciences and217

Natural Resources (BGR) and contain information for different soil horizons.218

The meteorological forcings that are used for running mHM consist of daily fields219

of precipitation and maximum, minimum, and average temperature, which were derived220

from local observations from the German Weather Service (Deutscher Wetterdienst, DWD).221

Daily streamflow data was provided by the European Water Archive (EWA) and the Global222

Runoff Data Center (GRDC). Land cover information was taken from the CORINE land223

cover scenes of the years 1990, 2000, and 2006.224

3.2 mHM setup and objective function225

Following Zink et al. (2017), the resolution of the mHM model is 4 km×4 km and226

each simulation is conducted with a 5-year spin-up period. Calibration data consists of227
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Figure 2. Overview of the study basins in Germany. a The seven large basins used for cali-

bration. b The 222 validation basins shown with the position of their gauges.

the years 2000-2004 of the 7 large basins. The performance of these 7 large basins is val-228

idated in the time period 1965-1999. Transfer in space and time is tested by using data229

between 1955 and 2009 of 222 validation basins, resulting in a mean simulation time pe-230

riod of 42 years and a minimum simulation period of 10 years. The objective function231

Φ for evaluating the mHM performance is chosen to be a combination of the NSE and232

log NSE criteria in form of a power mean:233

Φ = (
1

2

2∑
i=1

φpi )
1
p , (3)

with φ1 = NSE(Qobs, Qsim), φ2 = logNSE(Qobs, Qsim), Qobs and Qsim the observed234

and simulated discharge and p = 6. This objective function was chosen by Zink et al.235

(2017) as it ensures equal improvement of both criteria during a multi-objective opti-236

mization.237

3.3 FSO setup238

FSO is applied to identify the two TFs and their parameters to regionalize KS and239

FieldCap and simultaneously to optimize the numeric coefficients of all other mHM TFs.240

The resulting numeric vector, which represents all optimizable values, consists of 12 di-241

mensions for the two TFs (two 6-dimensional Function Spaces) and 59 dimensions for242

all other parameters.243

Before applying FSO, it is necessary to train the FSO VAE using a set of function244

strings and their resulting parameter distribution. This training data was generated us-245

ing a context free grammar (CFG) that included the physiographic variables, numeric246

values, the operators +, -, *, /, and a range of mathematical functions: the exponential247

function, the logarithm function with base e or 10, trigonometric functions (sin, cos, tan),248

and their arcus and hyperbolic versions, the square root and power functions. The nu-249

meric values were chosen to be in the range [-3, 3], discretized with a 0.05 step size. This250

interval was chosen to allow for a wide range of parameter values to be generated while251

keeping the search space size manageable. Since we use physiographic variables that are252

scaled to the range [0, 1], the numeric values thus can be up to three times larger. The253

CFG is shown in Appendix B, which includes all its building blocks and structural com-254

ponents. This CFG is used to generate 45 million unique TFs that are used to train the255

FSO VAE. To make our results comparable to Zink et al. (2017), we trained two differ-256
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ent FSO VAEs, one for each regionalized parameter. The difference between those two257

are the variables that are used to generate functions: while KS only uses observed phys-258

iographic properties, FieldCap can also use the mHM parameters KS , ThetaS (ν7) and259

vGenun (ν8) as potential inputs. Further technical details of the FSO VAE, including260

all bounds used for scaling, are given in Appendix B.261

FSO aims to find the set of TFs that results in the best performance in all avail-262

able basins. Therefore, Feigl et al. (2020) defined the FSO loss function floss for I basins263

to be a weighted mean with more weight on basins with bad performance:264

floss = −
∑I
i=1 wiΦi∑I
i=1 wi

+ λ(TFs), with each wi = sup Φ− Φi (4)

Here, Φi is the value of the objective function for basin i, wi is the corresponding265

weight and λ(TFs) the penalty for TF lengths. The weights are computed by using the266

supremum of Φ, which is 1 for the above described objective function that is based on267

NSE and log NSE. λ is a function of the number of variables, numerics, operators, paren-268

thesis and functions used in the TFs (the length) and can be computed with λ(TFs) =269

1
M

∑M
m=1 α length(TFm), where α was chosen to be 0.001.270

In our preliminary test runs, we used the dynamically dimensioned search (DDS)271

algorithm (Tolson & Shoemaker, 2007) for optimizing in Function Space. However, we272

noticed that it converged extremely fast (< 500 iterations) potentially as a result of the273

algorithm’s abidance in local minima. Thus we decided on mainly using the shuffled com-274

plex evolution (SCE) algorithm (Duan et al., 1992) for this study. To examine if there275

is a difference between those two, we include one optimization run with the DDS algo-276

rithm. For both optimizers, the optimization is applied for a minimum of 2000 iterations277

and a maximum of 5000 iterations. It will be stopped if after the minimum required it-278

erations there is no further improvement for 1000 iterations. After one of the stopping279

criteria was reached, all numeric coefficients that are present in the two TFs are further280

optimized with 100 iterations of the Genetic Algorithm (Holland, 1975). This additional281

optimization allows only a ±5% change of the numeric coefficients and represents an ad-282

justment that is not bound by the discretization of the numeric coefficients in the FSO283

VAE.284

3.4 Optimization budget and evaluation criteria285

The FSO method is applied 5 times to the 7 calibration basins, resulting in 5 in-286

dependent optimization runs. Four optimization runs will use the SCE algorithm (run287

1-4), while one will use the DDS algorithm (run 5). Their performance will be evaluated288

using the floss, NSE, log NSE, and KGE values.289

The validation results of Zink et al. (2017) will be compared to the best perform-290

ing FSO optimization run. The decision of the best performing optimization run will be291

based on the NSE, log NSE, KGE and percentage bias (PBIAS; Sorooshian et al., 1993)292

values in 20 randomly sampled validation basins (approximately 10% of the validation293

basins). The definition of all performance metrics is given in Appendix C. The random294

validation sample, which is used to define the best FSO run, will be drawn from a strat-295

ified Budkyo curve (Budyko, 1974) to adequately represent the range of different climates296

in the study area. Since the results of Zink et al. (2017) are the NSE distributions for297

all validation basins resulting from the 100 parameter sets, the minimum, maximum, 5%298

quantile, 95% quantile, and median NSE of each basin will be used for comparison.299

Different TFs can potentially result in similar parameter values, thus we will also300

compare the FSO parameter fields to the mHM default parameter fields of the two pa-301
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rameters KS and FieldCap. For this purpose, the 7 calibration basins will be used, as302

they present a contiguous field covering a large part of Germany.303

4 Results304

4.1 Comparison of optimization runs305

This section presents the results of the final parameter sets of each FSO optimiza-306

tion run. The progression during optimization of all 5 FSO runs is shown in Appendix307

D. Figure 3 shows boxplots with the performance of the final parameter sets of all FSO308

runs for the calibration time period (2000-2004) and validation time period (1965-1999)309

in the 7 calibration basins. This also includes the KGE values, which were not part of310

the loss function and thus had no influence on the optimization. Run 2-4 show very sim-311

ilar calibration performance, which differs from run 1 and 5 performances. The median312

calibration NSE values of run 1 with 0.76 and run 5 with 0.79 are similar to the run 2-313

4 medians with a mean of 0.76, but have a much larger variance (σrun1&5 = 0.1, σrun2−4 =314

0.03). This is also the case for run 5 calibration log NSE values, whereas run 1 calibra-315

tion log NSE values also have a lower median compared to all other runs. Log NSE val-316

ues are especially similar in runs 2-4 with median values ranging between 0.79 and 0.81.317

The KGE values show slightly different behavior. Run 2 KGE values for the calibration318

period are lower with a median of 0.68 compared to run 3 and 4 a mean median KGE319

of 0.78.320

The difference between calibration and validation time period of KGE values is neg-321

ligible with a median difference of -0.01. The differences of NSE values with a median322

of -0.03 and the differences of log NSE values with a median of -0.04 are more pronounced.323

Figure 3. Boxplots of different performance metrics of the 5 FSO runs in the 7 training

basins for the calibration (2000-2004) and validation (1965-1999) time periods.

Table 1 shows the FSO estimated TFs for all runs. To ease readability, they do not324

include the scaling factors for variables and TFs which are applied to compute the pa-325

rameter values. Hence, it is difficult to estimate the value range that results from these326

TFs solely from the given function, but it shows the complexity, non-linearity, and used327

physiographic properties.328

The estimated TFs show different lengths and levels of complexity. There is no spe-329

cific physiographic characteristic, which is part of all TFs for either of these two param-330

eters. Even in the TFs of run 2-4, which are very similar in performance, no variable was331

used in every run. The FSO VAE is constrained to not produce constant functions. In-332
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terestingly, this was bypassed by generating a function that includes ν4−ν4, which re-333

sults in a constant value for the run 4 FieldCap TF.334

Table 1. FSO estimated TFs for the mHM parameter KS and FieldCap for the optimization

runs 1-5 and their corresponding value ranges. Some functions were simplified to ease readability

and thus do not necessarily reflect the direct VAE output. All physiographic properties (ν1−6)

and mHM parameters (KS , ν7) are scaled to [0,1] before being used in these TFs. The values

resulting from these TFs are scaled to the parameter value range to generate the final parameter

sets for the model. The physiographic properties are sand content (ν1), clay content (ν2), bulk

density (ν3), aspect (ν4), slope (ν5), elevation (ν6), saturated hydraulic conductivity (KS) and

ThetaS (ν7).

Run KS (cm/day) value range FieldCap (-) value range

1 ν6 − 3.009(ν3 + cosh(ν5)) [1.1, 243.7] cos(ν2)
ν3

+ tanh(ν5) [0.250, 0.299]

2 ν4 − 3.223ν3 − 2.72 [1.1, 67.6] cos(cosh(ν6)2)2.816 [0.222, 0.228]
3 −3.182− cosh(ν3) [105.4, 117.1] KS − (2.682 + ν7 cosh(ν3)) [0.100, 0.139]
4 log10(ν4)− 3.167 [1.1, 177] ν4 − ν4 − 3.286 [0.100, 0.100]
5 0.101

(ν2 arcsin(ν1)−1.0)) − (ν2 + cos(ν6)) [16.2, 102.9] ν5 [0.222, 0.311]

4.2 Sampled validation335

The run used for the benchmarking test with Zink et al. (2017) is based on vali-336

dation performance in 20 sampled basins shown in Figure 4. The previous results already337

showed that there is a distinct difference in performance in run 1 and 5 compared to run338

2-4. This is again visible in the results of the sampled validation, especially in the PBIAS339

values. Run 1 and 5 have large positive median PBIAS values of 22.3% and 27.1%, in-340

dicating model overestimation bias. On the other hand, run 2-4 simulations have low me-341

dian PBIAS values of 5.6%, 4.0%, and 5.7%, respectively.342

Run 2 simulations result in the highest NSE values with a median of 0.63. Median343

log NSE values of runs 2-4 are again very similar with values of 0.55, 0.60, and 0.57, with344

the main difference being that run 2 is the only run that does not include outliers. Me-345

dian KGE values of runs 2-4 are also very similar with values of 0.61, 0.60, and 0.62. With346

the highest NSE, no outliers in the log NSE, and equally high KGE as the other runs,347

run 2 was chosen as the best model run that will be compared to the benchmark in all348

222 validation basins.349

4.3 Validation and benchmark evaluation350

To assess the performance of FSO, the FSO run 2 NSE results are compared to the351

minimum, maximum, 5% quantile, 95% quantile, and median NSE of the 100 parame-352

ter sets applied by Zink et al. (2017) for the 222 validation Basins. Figure 5 shows the353

resulting violin plots and boxplots of NSE values. The NSE medians are almost equal354

for both experiments (run 2 = 0.67, Zink et al. (2017) = 0.68). The main difference can355

be seen in the NSE variance which is lower in the FSO run 2 results (σrun2 = 0.008,356

σZinketal.(2017) = 0.015) and the numbers of outliers of the Zink et al. (2017) simula-357

tions. Testing the differences between these two NSE value distributions using a Kruskal-358

Wallis test (Kruskal & Wallis, 1952) did not show a significant difference (p−value =359

0.457). While the run 2 results are the NSE values of one specific parameter field, the360

Zink et al. (2017) NSE values are the results of 100 different parameter sets. Thereby,361
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Figure 4. Boxplots of different performance metrics of the 5 FSO runs in 20 randomly sam-

pled validation basins. The sampled validation basins were randomly drawn from a stratified

Budyko curve and thus represent the full range of climates in the study region.

Figure 5. Violinplots and boxplots of NSE values of the 222 validation basins for FSO run 2

and the Zink et al. (2017) values. The Zink et al. (2017) values consist of the resulting minimum,

maximum, 5% quantile, 95% quantile and median NSE of their applied 100 parameter sets.

they represent the overall behavior of the original mHM TFs, but individual points can362

not directly be compared to the FSO results.363

Figure 6 shows the spatial NSE patterns of FSO run 2 and median Zink et al. (2017)364

results. The benchmark median NSE seems to be slightly higher in the northernmost365

basins, while FSO run 2 shows higher NSE values in western and central Germany. Other366

than that, no distinct spatial pattern can be observed. The median NSE of basins that367

lie inside the calibration basins is 0.68 and nearly equal to 0.66 for basins outside. The368

same is true for Zink et al. (2017) results with a median NSE inside the calibration basins369

of 0.68 and outside of 0.67.370

To further assess the FSO performance, the relationship between resulting NSE val-371

ues and the validation basins climate, basin area and mean altitude is analyzed. For this372

task, the climate is represented by the basins’ Aridity index (PET/P). Testing for de-373

pendency using a linear regression shows a significant positive association of NSE with374

the basin area (coefficient = 2.155×10−5, p-value < 10−7) and a negative association375

of NSE with the mean altitude (coefficient = −1.2×10−4, p-value = 0.006), but no ex-376

isting association of NSE with aridity (p-value = 0.113).377

4.4 Comparison of parameter fields378

Finally, the FSO generated parameter fields are examined and compared to the de-379

fault mHM parameter fields. In addition to the best performing run (run 2), we will ex-380
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Figure 6. Maps of NSE for the 222 validation basins in Germany. a FSO run 2 results. b

Zink et al. (2017) median results.

amine the resulting parameter fields of run 3 and 4, which produced nearly equally good381

simulations. Figure 7a shows the KS [cm/day] parameter distributions and Figure 7b382

the corresponding parameter fields. These parameter fields have very different charac-383

teristics. Only the spatial patterns of run 2 and the default mHM parameter is some-384

what similar, however, run 2 does not have areas with high KS values (> 150cm/day).385

The TF of run 3 produces nearly constant KS values of around 110 cm/day, while the386

run 4 TF results in values mostly between 150-200 cm/day with isolated lower outliers387

distributed over the whole area.388

Figure 7. Resulting parameter values for the mHM parameter KS (saturated hydraulic con-

ductivity, cm/day) for three FSO runs and the default mHM parameter set for the 7 calibration

basins. a Parameter distributions of FSO run 2-4 and mHM default parameter and b parameter

fields of the 7 calibration basins.
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Figure 8a shows the FieldCap [-] parameter distributions and Figure 8b the cor-389

responding parameter fields. The TFs of two of the FSO runs, run 2 and run 4, predict390

a constant value: FieldCaprun2 = 0.222, FieldCaprun4 = 0.100. Run 3 values show391

more variability with values in the range of [0.10, 0.14]. Default mHM values have a me-392

dian of 0.20 are thus generally higher than run 3 and run 4 FSO values, but lower than393

run 2 values. The default mHM TF for FieldCap results in values with a much higher394

variance compared to all FSO estimated FieldCap TFs.395

Figure 8. Resulting parameter values for the mHM parameter FieldCap (field capacity, -) for

three FSO runs and the default mHM parameter set for the 7 calibration basins. a Parameter

distributions of FSO run 2-4 and mHM default and b parameter fields of the 7 calibration basins.

5 Discussion396

Estimating distributed parameter fields for hydrological models with TFs is poten-397

tially able to significantly reduce the number of free model parameters, make the model398

transferable across time and space and produce physically meaningful parameters and399

model states. The presented results show that with the current FSO approach we are400

able to induce the first two properties in the model. Using the FSO estimated TFs greatly401

reduces the complexity of optimization compared to a model whose parameters are es-402

timated for each pixel or each spatial modeling unit. Furthermore, the model had only403

a slight reduction in performance when applied in validation basins. This is interesting404

and notable as it represents a prediction in ungauged basins (PUB) problem that is in-405

herently difficult for hydrological models to solve. Both these goals are reached by us-406

ing only 5 years of data for training. However, these years include a year with high-impact407

flood events in central Europe (2002) and a year with a significant drought event (2003).408

The findings regarding the third property will be discussed in a following paragraph.409

Of the 5 FSO runs, 3 performed nearly equally well, while 2 runs had lower per-410

formance and already showed issues with convergence during optimization. One of these411

5 runs used the DDS, which we already expected to have convergence issues. This shows412

that optimization in Function Space is difficult and could potentially still be improved413

by a VAE that is able to produce a smoother Function Space for optimization. The cur-414

rent version leads to similar performance results in three out of four times when using415

the SCE for optimization. Reducing the stopping criteria to 500 iterations without im-416

provement would certainly result in discarding a run with convergence issues in an early417
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stage of the optimization. Comparison of the convergence behavior of FSO to other stud-418

ies on large-scale parameter estimation is not possible, since they are neither reported419

for mHM (e.g., Rakovec et al., 2016; Dembélé et al., 2020) nor for other models (e.g., Mizukami420

et al., 2017; López López et al., 2017).421

The FSO estimated TFs perform as well as the benchmark predictions by Zink et422

al. (2017) which is an astonishing result considering its implications. The TFs used by423

Zink et al. (2017) were developed over a span of 10 years using a large amount of liter-424

ature and expert knowledge and were developed in some of the German basins that are425

part of this study (Samaniego et al., 2010; Kumar et al., 2013; Thober et al., 2019; Samaniego426

et al., 2019). Furthermore, the benchmark represents the results of the best 100 param-427

eter sets after an overall of 1.4 million optimization iterations. Hence, this benchmark428

is more like an upper bound that we aim to reach with an automatic setting, rather than429

a threshold we certainly have to cross. The current state of FSO is able to estimate TFs430

that reach this upper bound and would allow for estimating TFs for other models with-431

out the work that was necessary for developing the mHM TFs. This will drastically re-432

duce the time to implement TFs for a new model that is coupled with the FSO and MPR433

method.434

Hydrological model performances are strongly dependent on the basins and the avail-435

able data quality. Therefore, it is important to use a benchmark to adequately interpret436

the results of a study. For this reason, we chose the study of Zink et al. (2017), as it had437

the necessary scope and used the same model. The Zink et al. (2017) benchmark setup438

was the best possible available option but increased the difficulty of the task for two rea-439

sons. One reason was the fact that only quantiles of performance values were available440

from Zink et al. (2017). We do not know whether run 2 actually has a higher performance441

than each individual parameter set of Zink et al. (2017). The second reason can be found442

in the selection of calibration basins. Zink et al. (2017) used 7 very large basins for cal-443

ibration because they only had to optimize a small set of numerical parameters of ex-444

isting TFs. This is a much more constrained optimization problem compared to the es-445

timation of structure and numerical coefficients of TFs. As each basin results in one loss446

value, the most pronounced feedback for optimization would be reached by using a set447

of basins that have a high variance of physiographic properties between them, but a low448

variance inside each basin. Hence, only a few extremely large basins with a high inter-449

nal variance of physiographic properties are not the best starting point. Interestingly,450

FSO-mHM still performs as well as the median of 100 parameter sets with this non-ideal451

selection of calibration basins, pointing to the fact that there is still potential for improve-452

ment from a different calibration setup.453

From the results, it is evident that physical interpretation of the parameter fields454

is still difficult at this point. This is indicated by the three FSO runs (run 2-4) having455

a very similar discharge simulation performance, while having very different parameter456

fields. Looking at different parameter values estimated by the FSO TFs, it is interest-457

ing that all of them produce constant values or nearly constant values for the field ca-458

pacity parameter. Looking into the model states, we could observe that soil water con-459

tent was usually above field capacity in the FSO models. This is equivalent to a model460

simplification, showing that the study region, which does not include arid basins, can461

be represented without using the parameter FieldCap. These parameter sets will most462

likely perform poorly in arid regions. Similarly, the predicted saturated hydraulic con-463

ductivity values were diverse, with only FSO run 2 showing similar patterns compared464

to the default mHM parameters. KS , unlike FieldCap, is not directly used by mHM but465

is used to compute the model parameter Kperco - the K factor for percolation that con-466

trols the amount of water that flows between soil layers. This conceptualization of the467

parameter is on one hand influencing its physical interpretation, which potentially dif-468

fers from the definition of the saturated hydraulic conductivity, but on the other hand,469

potentially makes it easier to find a suitable relationship to the physiographic proper-470
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ties of a catchment. This is especially important as saturated hydraulic conductivities471

at larger scales are difficult to measure or estimate with Pedotransfer functions (Zhang472

& Schaap, 2019).473

While we could have just chosen run 2 parameter fields for comparison, we included474

the slightly lower performing runs as well to show that parameter equifinality still ex-475

ists when applying FSO. This may be primarily a result of using only large basins for476

calibration, which only give coarse feedback during optimization. In our opinion, this477

equifinality will most likely be strongly reduced if an appropriate set of calibration basins478

are selected. This was not possible in this study because we wanted to have a compa-479

rable benchmark. As mentioned above - ideally, these calibration basins should consist480

of a larger number of basins with a high variance of physiographic properties between481

them, but a low variance inside each basin. Still, further constraints using additional bound-482

ary conditions, e.g. soil moisture or ET-fluxes, are certainly helpful for predicting phys-483

ically sound parameter values. Additionally, a wider range of physiographic properties484

used in FSO TFs would produce a larger search space and potentially better perform-485

ing TFs. This could include inputs derived from existing ones, e.g. the Topmodel index486

ln( a
slope (K. J. Beven & Kirkby, 1979), inputs that have shown relevance for other hy-487

drological or soil science prediction tasks, e.g. the relevant inputs used in the SoilGrids488

regression trees (Poggio et al., 2021), or other gridded inputs that represent vegetation,489

soil and climatic properties of the catchments. Furthermore, for future studies, the num-490

ber of TFs estimated with FSO should be increased because we could show that opti-491

mizing two TFs is feasible.492

Recently, there have been two other studies that derived distributed model param-493

eters from physiographic attributes which both applied the Variable Infiltration Capac-494

ity model (VIC, Liang et al., 1994) over the contiguous United States (COThetaS): Mizukami495

et al. (2017) and Tsai et al. (2021). Mizukami et al. (2017) used an MPR based approach496

(MPR-flex) which uses TFs chosen from literature. They concluded that TFs with global497

parameters lead to improve spatial fields, that there is still a large gap in performance498

between a global parameter set and individual basin calibration for the chosen TFs, and499

”though not trivial” different forms of TFs should be evaluated. Overall, Mizukami et500

al. (2017) shows the advantage of the MPR approach, while being limited by TFs from501

literature that were not developed for large-scale modeling systems. Especially since VIC502

uses multiple conceptual parameters, which limits the use of literature-based TFs, this503

study would have benefited from the FSO approach. Tsai et al. (2021) developed a deep504

learning approach for parameter estimation called differentiable parameter learning (dPL).505

dPL estimates parameters by optimizing a neural network that generates model param-506

eters. To optimize this neural network, it is necessary to either have a fully differentiable507

hydrological model or to use a surrogate neural network instead of the hydrological model.508

They show that the dPL approach improves the discharge prediction results of Mizukami509

et al. (2017) from a median NSE of 0.32 to 0.44. Tsai et al. (2021) argue that dPL pro-510

duces better generalizability and physical coherence of the derived parameters based on511

the fact that dPL uses dynamic and static catchment attributes as inputs and improves512

soil moisture simulation compared to a model optimization using calibration with the513

SCE-UA algorithm. dPL is dependent on a well-performing surrogate model, or on re-514

writing the existing model to make it differentiable, which is certainly not feasible for515

most hydrological models. By comparison, we demonstrate that FSO can identify TFs516

that can be applied in an ungauged setting without requiring a differentiable model. While517

MPR-flex and dPL were only tested with the VIC model in a gauged setting, they show518

the current state of approaches for deriving model parameters based on physiographic519

properties of catchment and highlight the complexity of this task.520

This study has some limitations. First, while Zink et al. (2017) only used data from521

the calibration basins to derive the parameter sets, we also used 20 sampled validation522

basins to find the best FSO run. Since we applied FSO multiple times and were also in-523
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terested in the variance of FSO performance, comparing them with data outside the cal-524

ibration basins was necessary. Nevertheless, these sampled validation results showed com-525

parable performance to the calibration and consequently did not strongly influence our526

choice of the best run. Another limitation is the fact that we only use 5 FSO runs, which527

is due to very practical reasons: the resources of the cluster that we used for computa-528

tion are limited. However, we do believe that the 5 runs provide a useful estimate of the529

TF variability. Another limitation is the fact that we compare the performance of one530

FSO derived parameter set with the median performance of 100 parameter sets derived531

by Zink et al. (2017). This certainly shows the general performance of the original mHM532

TFs, but will also lead to a reduction in variance in the performance of Zink et al. (2017)533

due to aggregation. Therefore, from the presented results we cannot conclude that there534

is one specific Zink et al. (2017) parameter set that performs equal, better, or worse than535

the FSO parameter set, but shows that their performance is comparable.536

6 Summary and Conclusions537

In this study, we presented the first large-scale application of FSO for automatic538

transfer function (TF) estimation of a complex distributed hydrological model. We as-539

sessed the performance variability of the FSO method by applying it 5 times, which re-540

sulted in 3 nearly equally well-performing sets of TFs and two with a slightly lower per-541

formance. The final selected TFs resulted in predictions in 222 validation basins with542

a median NSE of 0.68. The performance was equal to the median performance of 100543

predictions of the benchmark study of Zink et al. (2017).544

Overall, this study is a proof-of-concept where we showed that FSO is able to pro-545

duce state-of-the-art results when applied to a complex distributed model, but more work546

is needed to derive physically meaningful parameter fields. We see some important as-547

pects that have the potential to greatly improve TF estimation. First, this includes a548

careful selection of calibration basins, ideally with a wide range of physiographic char-549

acteristics but a low internal variance of these characteristics. Second, it is important550

to include further constraints during optimization in form of additional boundary con-551

ditions, e.g., simultaneously optimizing discharge and evapotranspiration, to further con-552

strain the optimization and allow for physically sound parameter fields. Finally, an ex-553

tension of available physiographic properties available for FSO will potentially allow find-554

ing a better representation for a larger number of model parameters.555

The multiscale parameter regionalization technique (MPR), which uses TFs, was556

described as a promising way forward for global hydrological and Land Surface models.557

With FSO we now have a method that can automatically estimate these TFs for any model,558

which will make it possible to apply global hyperresolution models ”everywhere” in the559

future.560

Appendix A FSO VAE architecture561

The new encoder network of the VAE consists of a word embedding layer (Mikolov562

et al., 2013), bidirectional long short-term memory (LSTM) layers (Hochreiter & Schmid-563

huber, 1997), highway layers (Srivastava et al., 2015) using feedforward neural networks564

(FNN) (White & Rosenblatt, 1963) and the SELU (scaled exponential unit) activation565

function (Klambauer et al., 2017). The new VAE decoder consists of Temporal Convo-566

lutional Network (TCN) layers (Bai et al., 2018) and a FNN using a softmax activation567

function. The function space is chosen to be 6-dimensional and normal distributed. A568

detailed depiction of the VAE architecture is shown in the A1.569
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Appendix B FSO setup details570

B1 Context free grammar (CFG) used to generate training data:571

eq = eq op eq | eq op numeric | eq op var | eq op (eq) | var |
f(var) | f(eq) | (eq)∧(pm numeric) | numeric

op = + | − | ∗ | /
pm = + | −

f = exp | log10 | log | sin | cos | tan | asin | acos | atan | tanh |
cosh | sinh | sqrt | abs

var = bd | sand | clay | slope | aspect | dem | ThetaS | KS | vGenun
numeric = 0.05 | 0.1 | ... | 2.95 | 3.0

B2 Scaling bounds:572

The parameter bounds for the two estimated parameter were chosen to be KS =573

[1.1, 1000] and FieldCap = [0.01, 0.55]. The scaling bounds for the physiographic catch-574

ment properties is shown in table B1.575

Table B1. Scaling bounds for scaling physiographic catchment properties and mHM parame-

ters to [0,1].

Physiographic property Bounds

slope [0, 90]
aspect [0, 360]
bd [0, 2.3]
sand [0, 100]
clay [0, 100]
dem [0, 4000]
vGenu∗n [1, 2]
ThetaS∗ [0.24, 0.51]

∗Estimated from default mHM parameter values.

The bounds for scaling TF outputs to the parameter range are automatically es-576

timated using the FSO VAE training data. The lower bound is the median 10% quantile+577

3×mad(10% quantile) and the upper bound is the median 90% quantile+3×mad(90% quantile),578

where mad denotes the median absolute deviation. Resulting in the ranges KS = [−5.606, 8.481]579

and FieldCap = [−5.498, 8.50].580

B3 Hyperparameter of optimization algorithms:581

The used DDS and SCE algorithms are our own R implementation and the GA al-582

gorithm was taken from the GA R package (Scrucca, 2013).583

• DDS: r = 0.2, iterations = 5000584

• SCE: ncomplex = 5, pointscomplex = 50, pointssimplex = 10, cce.iter = 5,585

elitism = 1, initsample = ”latin”, iterations = 5000586

• GA: pop size = 10, iterations = 100587
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Appendix C Performance metrics overview588

NSE(Qobs, Qsim) = 1−
∑
tQ

t
sim −Qtobs∑

tQ
t
obs − Q̄obs

(C1)

logNSE(Qobs, Qsim) = 1−
∑
t logQtsim − logQtobs∑
t logQtobs − ¯logQobs

(C2)

KGE(Qobs, Qsim) = 1− ED (C3)

ED =
√

((r − 1))2 + ((α− 1))2 + ((β − 1))2

r = Pearson correlation coefficient

α = σsim/σobs

β = µsim/µobs

PBIAS(Qobs, Qsim) = 100× (
∑
t

Qtsim −Qtobs)/
∑
t

Qtobs (C4)

Appendix D Optimization progress589

Figure D1 shows the progression during optimization of all 5 FSO runs. The DDS590

optimizer (run 5) converges rapidly to a comparatively low performance, similar to what591

we have already observed in our preliminary tests. The SCE optimizer (run 1-4) seems592

to have a much more continuous improvement, except for run 1, which shows a similar593

behaviour to the DDS run. These optimization performances suggest that discarding run594

1 and run 5 would be a reasonable choice.595
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