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Abstract

Many marine activities, such as designing ocean structures and planning marine operations, require the characterization of sea

state climate. This study investigates the statistical relationship between wind and sea states, considering its spatiotemporal

behavior. A transfer function is established between wind fields over the North Atlantic (predictors) and the significant wave

height (predictand) in a location in the Bay of Biscay off the French coast. The developed method takes into consideration

both wind seas and swells by including local and global predictors. The global predictors’ spatiotemporal structure is defined

to account for the non-local and non-instantaneous relationship between wind and waves, using a fully data-driven approach.

Weather types are constructed using a regression guided-clustering method, and the resulting clusters correspond to different

wave systems (swells and wind seas). Then, in each weather type, a penalized linear regression model is fitted between the

predictor and the predictand. The validation analysis proves the model’s skill in predicting the significant wave height (RMSE

= 0.27m); furthermore, the interpretability of the model is discussed.
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Abstract13

Many marine activities, such as designing ocean structures and planning marine oper-14

ations, require the characterization of sea state climate. This study investigates the sta-15

tistical relationship between wind and sea states, considering its spatiotemporal behav-16

ior. A transfer function is established between wind fields over the North Atlantic (pre-17

dictors) and the significant wave height (predictand) in a location in the Bay of Biscay18

off the French coast. The developed method takes into consideration both wind seas and19

swells by including local and global predictors. The global predictors’ spatiotemporal struc-20

ture is defined to account for the non-local and non-instantaneous relationship between21

wind and waves, using a fully data-driven approach. Weather types are constructed us-22

ing a regression guided-clustering method, and the resulting clusters correspond to dif-23

ferent wave systems (swells and wind seas). Then, in each weather type, a penalized lin-24

ear regression model is fitted between the predictor and the predictand. The validation25

analysis proves the model’s skill in predicting the significant wave height (RMSE = 0.27m);26

furthermore, the interpretability of the model is discussed.27

Plain Language Summary28

Ocean wave climate has a significant impact on human activities and its understand-29

ing is of socio-economic and environmental importance. In this study, we propose a sta-30

tistical model that predicts the significant wave height, in a location in the Bay of Bis-31

cay, using the North Atlantic wind fields. At first, we define the predictors of the model32

to account for both wind seas and swells. Then, a weather-type based approach is used33

to construct the link between the predictors and Hs. The proposed method allows to un-34

derstand the spatiotemporal relationship between wind and waves and predicts well both35

wind seas and swells.36

1 Introduction37

A sea state is a statistical description of the sea surface waves generated by wind38

at a given time and location. The sea state is characterized by a superposition of wind39

seas and swells (Ardhuin & Orfila, 2018). The local wind generates wind seas, whereas40

swells are generated in distant areas. Significant wave height (Hs), defined as four times41

the zeroth moment of the wave power spectrum, is commonly used to describe the sea42

state. Thus, Hs is an essential measure of wave height and provides information about43

the wave energy of a given sea state.44

Sea state climate characterization has received increasing interest in the past decades.45

High-quality wave data is essential for many marine applications, such as designing coastal46

and offshore structures and planning marine operations. Traditional in situ measurements47

obtained from buoys provide the most reliable data for sea state parameters; however,48

they are only available for the last decades, and they are limited spatially. Numerical49

models (Hasselmann et al., 1973; Tolman et al., 2009) provide deterministic simulations50

of spectral wave models from which sea state parameters are extracted. They are a valu-51

able source of data and provide decades of records; although they are computationally52

expensive and sensitive to the quality of forcing fields (wind, currents, and water levels)53

(Roland & Ardhuin, 2014).54

Statistical models constitute an alternative to numerical models for constructing55

the wind-waves relationship. These models are not computationally expensive, and once56

the statistical relationship is estimated, future predictions can be made by assuming that57

this relationship will stay the same in the future. Models of this kind are known in the58

literature under the name of statistical downscaling (SD) models (Maraun et al., 2010).59

General Circulation Models (GCMs) are the primary tools that provide future projec-60

tions of atmospheric variables. However, on the one hand, these models generally do not61
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provide ocean sea state parameters. On the other hand, GCMs provide coarse spatial62

resolution simulations, making them unsuitable for most impact assessment applications.63

To bridge the gap between what GCMs provide and what industry and policymakers re-64

quire, SD models establish an empirical relationship between large-scale atmospheric and65

local mesoscale variables. Besides their computational efficiency, SD models have been66

compared with numerical models in various studies for ocean wave parameters and other67

climate variables. Wang et al. (2010) compared these methods in terms of climatolog-68

ical characteristics of the present period using ERA-40 wave data. They found that the69

statistical models are better at reproducing the observed climate than the dynamical mod-70

els. Laugel et al. (2014) analyzed these methods for climate projections. The study shows71

that the statistical downscaling approaches can reproduce both the present climatology72

and future projections. In addition, they estimate the uncertainties associated with the73

choice of general circulation models (GCMs) or climate scenarios. However, some chal-74

lenges remain in modeling the relationship between wind and sea state parameters.75

Wind waves are generated by the surface wind. However, it is not only the local76

wind that defines local waves. Wind from distant regions generates waves that may take77

days to arrive at the target point; thus, the relationship between wind and waves is nei-78

ther local nor instantaneous. Therefore, it is necessary to consider a large wave gener-79

ation area to understand the wave dynamics at a particular location. The ESTELA (Eval-80

uation of Source and Travel-time of wave Energy reaching a Local Area) (Pérez et al.,81

2014) is a method that defines the wave generation area and wave travel time at any ocean82

location worldwide. Using its spectral information, the method selects the fraction of en-83

ergy that travels to the target point from selected source points. The present study uses84

an entirely data-driven approach to define wave generation area. It is based on estimat-85

ing waves’ travel time from each source to the target point using the maximum corre-86

lation between the significant wave height and wind conditions. Therefore, this method87

is not computationally expensive, and only wind data and Hs at the target point are needed.88

Statistical downscaling models have to take into consideration both wind sea and89

swells, which is challenging in swell-dominated areas (Hemer et al., 2012). Therefore, given90

the non-instantaneous and non-local relationship between wind and waves, the quality91

of SD approaches relies on the quality of the definition of atmospheric predictors. Camus,92

Menéndez, et al. (2014) used a weather types-based SD model to downscale wave param-93

eters in the northwest of Spain. Predictors were defined as the average over three days94

of the sea level pressure (SLP) and its gradient to account for the superposition of swells.95

The ESTELA method can help the design of statistical and dynamical downscaling mod-96

els. For example, Camus, Méndez, et al. (2014) and Hegermiller et al. (2017) used the97

ESTELA approach to define the spatiotemporal coverage of predictors used in their SD98

framework.99

After defining the predictors, the statistical relationship between predictors and100

the predictand can be modeled using either multiple linear regression (Casas-Prat et al.,101

2014), weather types (Camus, Menéndez, et al., 2014), or nonlinear models like neural102

networks (Baño-Medina et al., 2020). In the case of high-dimensionality and multicollinear-103

ity, they may learn well the underlying physical relationships that generate the data; how-104

ever, they lack the capability of generalizing to new data (overfitting) and may be dif-105

ficult to interpret. To improve generalization, penalized approaches like Ridge (Hoerl &106

Kennard, 1970) and LASSO (Tibshirani, 1996), have been proposed. Furthermore, the107

physical interpretability of statistical models applied to climate is of major interest. In-108

terpretable models provide transparent information about climate and can be trustfully109

applicable for decision making (Kashinath et al., 2021).110

Weather types-based SD approaches consist in finding the leading atmospheric cir-111

culation patterns and then fitting a different model between the predictor and predic-112

tand in each weather type (Maraun et al., 2010). Weather types can be found by using113

a clustering algorithm on the predictor (Camus, Menéndez, et al., 2014). This method114
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constructs clusters without accounting for the local environment. Cannon (2012) pro-115

posed a method that accounts for both local and global climate conditions by using a116

regression-guided clustering algorithm. Instead of using an unsupervised algorithm on117

atmospheric variables, they used the clustering algorithm on atmospheric data combined118

with predictions of a regression model that links atmospheric variables with local vari-119

ables.120

This study provides a framework for the wind to waves relationship using an en-121

tirely statistical approach. The statistical relationship, henceforth called the transfer func-122

tion, is a function that links the space-time wind fields over North-Atlantic (predictors)123

and the significant wave height (predictand) at a single site located in the Bay of Bis-124

cay off the French coast. The developed methodology considers wind sea and swells and125

provides additional information about the spatiotemporal relationship between wind and126

waves. The main contribution of this work, on one hand, it provides a fully data-driven127

approach that estimates the travel time of waves from any source point to a target point,128

which is an essential information for the definition of predictors. On the other hand, it129

proposes a regression-guided clustering algorithm that account for both global and lo-130

cal climate to construct weather types.131

This paper is structured as follows. After describing the data in Section 2, the lo-132

cal predictors are defined in Section 3. Then, in Section 4, the construction of the global133

predictors is described. Next, in Section 5, the statistical model that combines the lo-134

cal and global predictors is presented. Then, Section 6 presents the results of the SD model.135

Finally, the study is concluded in Section 7.136

2 Data137

The atmospheric data used in this work to construct predictors is extracted from138

the Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010). CFSR is a global139

reanalysis, developed at the National Centers for Environmental Prediction (NCEP), that140

covers the period from 1979 to the present with hourly time step and spatial resolution141

of 0.5°by 0.5°. Extracted data consists of hourly 10m zonal and meridional wind com-142

ponents in the north Atlantic (Figure 1).143

The historical wave data used in this work is the sea-state hindcast database HOMERE144

(Boudière et al., 2013) based on the WAVEWATCH III model forced by CFSR wind. The145

database covers the English Channel and the Bay of Biscay with unstructured compu-146

tational mesh. It contains 37 parameters and the frequency spectra on high spatial res-147

olution, ranging from 200 m to 10 km, with a one-hour time step.148

The point of interest is located in the Bay of Biscay (figure 1) at (25.4°N, 1.6°W).149

Waves at this point are related to both large-scale conditions in the North Atlantic (swells)150

and to local conditions (wind seas) (Charles et al., 2012). Swell conditions are generally151

dominant; however, the highest Hs are generated by strong local storms. To identify dif-152

ferent wave systems, energy spectral partitioning methods are used. Homere uses the wa-153

tershed algorithm (Tracy et al., 2007) to separate wind sea and different swells.154

The temporal resolution of both predictors and predictand is upscaled from hourly155

to 3 hourly resolutions to facilitate the analysis. Both datasets comprise a common pe-156

riod of 23 years, from 1994 to 2016.157

3 Local predictor158

Wind speed, duration, and the fetch have an important impact on the character-159

istics of the wind sea (Ardhuin & Orfila, 2018). Hereafter, at time t the variables U(t),160

F (t), U(t − 1), and F (t − 1) are considered to construct the local predictors. U(t) is161

the wind speed at the target point and F (t) is the fetch length at time t, calculated as162
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Figure 1. CFSR zonal component in the considered area in 1994-01-01 00h:00. The black

point represents the point of interest.

the minimum of the distance from the target point to shore in the direction from which163

the wind is blowing and 500km. Lagged wind conditions are considered because they pro-164

vide information about the temporal variability of the wind and, thus, the duration of165

wind conditions.166

To investigate the capability of local variables to explain Hs, the polynomial re-167

gression model168

Hs(t) = βl
0 +X l(t)βl + ϵl(t) (1)169

is considered. Where X l is the local predictor:170

X l(t) = {U(t), U2(t), U3(t), U2(t)F (t), U(t−1), U2(t−1), U3(t−1), U2(t−1)F (t−1)} (2)171

βl
0 and βl are model coefficients, and ϵl(t) is the model error. Model 2 contains polyno-172

mial terms and interactions between local variables in order to take into account non-173

linear relationships between Hs and predictors.174

The model is fitted using data from 1994 to 2011 and is assessed in a validation175

period from 2014 to 2016 using the Pearson correlation r, root mean square error (RMSE),176

and bias:177

r =

∑n
t=1(Ĥs(t)− Ĥs)(Hs(t)−Hs)

σĤs
σHs

(3)178

RMSE =

√∑n
t=1(Ĥs(t)−Hs(t))2

n
(4)179

BIAS =

∑n
t=1(Ĥs(t)−Hs(t))

n
(5)180

where Ĥs(t) is the predicted Hs at time t, Ĥs and Hs are the mean of observed and181

predicted Hs, respectively; σĤs
and σHs are the standard deviation of predicted and ob-182

served Hs, respectively; and n is the number of observations.183
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Figure 2. Results of the local model 2 in the validation and calibration period.

Figure 3. Wind projection representation. The original wind vector V at each source point

is projected into the component B defined by the bearing b of the target point from the source

point in a great circle path (black dashed line). The great circle is drawn arbitrarily to explain

the method and may not be the actual circle path.

Results of the local model 1 are shown in Figure 2. The model poorly predicts small184

values of Hs, which is expected given that local predictors do not consider swell systems185

propagated from distant areas. In contrast, the model is better in predicting large val-186

ues of Hs which can be explained by the fact that extremes are mainly generated by lo-187

cal wind.188

4 Global predictor189

In order to take swells into account, a global predictor which describes wind con-190

dition over the north Atlantic has to be considered. Wind data has two components, the191

zonal and meridional components. Each of the two components in space and time car-192

ries more or less information about the waves observed at the target point at a given date.193

However, using all of them as inputs to a statistical model is computationally challeng-194

ing, given the high dimensionality of the data, and may lead to hardly interpretable re-195

sults due to the strong correlation between wind conditions at closed locations in space196
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and time. This section defines the global predictor related to the spatio-temporal domain197

of the wave generation area.198

4.1 Spatial coverage199

Following Pérez et al. (2014), the spatial coverage of the global predictor is based200

on the assumption that deep-water waves travel along a great circle path. Therefore, the201

wave generation area is limited by neglecting grid points whose paths are blocked by land.202

Furthermore, small islands are not taken into consideration.203

4.2 Wind projection204

To reduce the dimension of the atmospheric variables and to create a more inter-205

pretable model, wind components at each grid point are projected into the bearing of206

the target point in a great circle path (Figure 3) using the equation:207

W = U cos2s
(
1

2
(b− θ)

)
(6)208

where W is the projected wind, U is the wind speed, s the spread parameter (Ian R. Young209

1999 (“Chapter 5 - Fetch and Duration Limited Growth”, 1999)), b the great circle bear-210

ing, and θ is the wind direction.211

The parameter s controls the amount of wind energy spread in a particular direc-212

tion; the greater s, the less the wind energy spread is. The spread parameter s should213

not be too large to avoid losing too much information, especially for grid points near the214

target point; Hereafter, s is chosen to be equal to 1. Methods to select s for each source215

point were tested; however, this does not improve numerical results (not shown). Fig-216

ure 4 illustrates the mean of the projected wind in the four seasons. Strong winds that217

blow towards the direction to the target point are observed in winter and mostly in the218

area around 50°N, 40°W.219

4.3 Temporal coverage220

According to the dispersion relation, the group velocity of waves is expressed as221

Cg =
gT

4π
(7)222

where g is the gravitational velocity and T the period. For example, swells whose pe-223

riod is around 15s have a group velocity of 11.73m/s, traveling 50% faster than a 10s224

ocean wave and it takes them about five days to cross the Atlantic from Cape Hatteras225

to the Bay of Biscay (Ardhuin & Orfila, 2018). Therefore, waves generated at a location226

j and time t might take time tj to arrive at the target point.227

At each location j and time t, the predictor is defined as the mean of the squared228

lagged projected wind in a time window, so that229

Xg
j (t; tj , αj) =

1
2αj+1

∑t−tj+αj

i=t−tj−αj
W 2

j (i), (8)230

tj + αj + 1 ≤ t ≤ tj − αj + n231

where αj controls the length of the time window, tj is the mean travel time of waves,232

Wj is the projected wind at location j, and n the total number of observations. Hence-233

forth, the parameter αj is called the temporal width despite the fact that the length of234

the temporal wind is equal to 2αj+1. Remark that the relationship between the pro-235

jected wind and Hs seems to be a square relationship (Figure 5) so that in equation (8)236

the squared projected wind is considered.237

The parameters tj and αj may be estimated jointly for all locations by minimiz-238

ing an objective function (least squares, for example); however, such an approach would239
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Figure 4. Mean projected wind in the winter, spring, summer, and autumn.

Figure 5. Projected wind at point located in (45.5°N, 3.5°W) versus Hs and the estimated

curve line using the model Hs = aW 2 + b

–8–
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Figure 6. Estimated travel time of waves and the temporal width using equation 9

be non-polynomial and computationally unfeasible due to the combinatorial explosion.240

Therefore, tj and αj are estimated independently for each location using the maximum241

Pearson correlation between the global predictor and Hs, so that242

(t̂j , α̂j) = argmax
tj ,αj

(
corr(Hs, X

g
j (tj , αj))

)
. (9)243

244

Figure 6 shows the estimated travel time of waves and the temporal width. Glob-245

ally, the two parameters are spatially smooth and interpretable. Regions below 35°N seem246

to have incoherent values of travel time, which may be explained by the fact that waves247

generated by the wind at these areas have small contributions to the Hs observed at the248

target location. As expected, the two parameters increase as the distance between the249

source and target point increases.250

Waves generated at a source point situated at (37.5°N, -70.5°W), which is 5642km251

far from the target point, can take on average 180h (about 7 and half days) to reach the252

target point. These waves travel at a velocity of 8.7m/s; thus, according to the disper-253

sion equation (7), they have an average period of 11.1s. On one hand, considering t̂j+254

α̂j as the maximum travel time of the waves, at the same source point, waves can also255

take 225h (about 9 days) to reach the target point, with a velocity of 7m/s and a pe-256

riod of 9s. On the other hand, the minimum wave travel time (t̂j−α̂j) at the same point257

is 135h (about 5 and a half days) with a velocity of 11.6m/s and a period of 14.8s. There-258

fore, tj−αj and tj+αj can be interpreted as the propagation time of long-period waves259

and short-period waves, respectively.260

5 Wind-waves model261

5.1 Linear regression model262

After defining the predictors, this section presents the statistical downscaling model.263

Firstly, the linear model that combines the local and the global predictor is considered264

Hs(t) = X l(t)βl +Xg(t)βg + ϵ(t) (10)265

where βl and βg are local coefficients and global coefficients, respectively. Here βl is not266

necessarily the same as in equation (1). X l
t is the local predictor defined in equation (2),267

Xg
t the global predictor defined in equation (8), and ϵ(t) is the model error.268

5.2 Model fitting269

Model (10) can be fitted using least squares method; given by270

(β̂ls) = (XTX)−1XTHs (11)271
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where X = (X l, Xg) and β̂ = (β̂l, β̂g).272

The least-squares estimates in equation (11) are the best linear unbiased estimates273

of the parameters. However, since the global predictor is high dimensional (a 67108×274

5651 matrix), and its variables are highly correlated, the matrix XTX may be ill-conditioned.275

Thus, the least-squares estimates become highly sensitive to Hs variations. To address276

this issue, ridge regression (Hoerl & Kennard, 1970) minimizes the penalized residual sum277

of squares278

argmin
β

∥∥X lβl +Xgβg −Hs

∥∥2 + λ∥βg∥2 (12)279

where λ ≥ 0 is the regularization parameter. Remark that the regularization is not ap-280

plied to the parameters associated to the local predictor. The parameter λ allows to take281

into consideration the bias-variance trade-off. It can also be viewed as a smoothing pa-282

rameter, meaning that the greater λ is, the smoother βg is. A sufficiently smooth βg may283

be more interpretable and can help, for example, to identify the source of energy and the284

contribution of each source point to Hs. However, choosing too large values of λ reduces285

the prediction performance of the model.286

5.3 Regression-guided clustering287

Using the global predictor to construct weather types leads to clusters that only288

account for the global atmospheric circulation and not for the local environment (not289

shown). This subsection describes a regression-guided clustering method that considers290

both the global predictor and the predictand.291

After estimating the coefficients, the contribution of a source point j at time t to292

Hs at the target point, is defined as Xg
j (t)β̂

g
j . The matrix of contributions Xβg is de-293

fined as294

Xβg (t, j) = Xg
j (t)β̂

g
j . (13)295

We expect swell systems coming from contributions from distant areas whereas, wind296

sea will be associated to local contributions. A natural question that arises is whether297

we can identify these wave systems by using Xβg . Subsequently, the k-means clustering298

algorithm is used on Xβ̂g to obtain the weather types (WTs). Finally, the link function299

can be constructed by fitting the linear regression model (10) at each class. Therefore,300

Model (10) now becomes301

Hs(t) = X l(t)βl
i +Xg(t)βg

i + ϵi(t), ∀t ∈ Ii i = 1, ...,K (14)302

where βl
i and βg

i are local and global coefficients for the class i. Ii is all time indices that303

are in class i and K is the total number of WTs.304

5.4 The case of two weather types305

The hyper-parameters of the model (14) are λ , the number of WTs K, and also306

the K regularization parameters λks associated to the different weather types (given that,307

at each weather type a ridge regression is fitted). Given the number of hyper-parameters,308

it is not computationally feasible to explore all the possible combinations and optimize309

them simultaneously using for example cross-validation as it usually done in the statis-310

tical literature. Instead, we propose the simpler approach described below. At first, we311

select λ considering only two WTs, then the number of WT for this fixed value of λ, fi-312

nally λks are fixed for all weather types.313

The most usual approach to choose the regularization parameter λ of the ridge re-314

gression consists in performing cross-validation and take the value of λ which minimizes315

a prediction error, typically the RMSE. In the current work, in addition to forecast ac-316

curacy, we also intend to obtain a physically interpretable model. Interpretabilty will be317
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Figure 7. Results of cross-validation: RMSE (green line) and classification accuracy (purple

line) versus the logarithm of λ. The red and blue dots correspond to the minimum of RMSE and

maximum of accuracy, respectively. The interval for each criterion is defined as the its minimum

and maximum.

Figure 8. Estimated global coefficients βg using ridge regression with λ that gives the maxi-

mum accuracy (left panel) and minimum RMSE (right panel).

quantified as follows. First, the k-means clustering algorithm is used on the contribu-318

tions Xβg to identify the leading two clusters. The resulting clusters are then compared319

with the sea state classification obtained using the energy spectrum partitioning in Homere.320

The sea states chosen for the comparison are wind sea and swell and the agreement be-321

tween the two clustering is measured using the classification accuracy322

accuracy = correct predictions/ sample size (15)323

324

Figure 7 shows that the value of λ that gives the optimal classification accuracy325

is greater than the one that gives the optimal RMSE. Figure 8 shows the estimated global326

coefficients βg using the two different optimal values of the regularization parameter λ.327

The coefficients obtained using λ that gives the maximum classification accuracy are smoother328

than the ones obtained when minimizing the RMSE and generally decrease as the dis-329

tance between the source and target points increases. The optimal λ based on classifi-330

cation is chosen in this study, given that it gives interpretable coefficients, and consid-331

ering that RMSE does not increase a lot when using λ that gives the maximum accu-332

racy (0.31m to 0.33m).333
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Figure 9. Time series of Hs depending on the clusters (left panel) and empirical density

(right panel) in the calibration period.

Figure 10. Mean of Xβg minus the global mean for the cluster 1 (left panel) and cluster 2

(right panel).

classes 1 2

swell 47074 6388

wind sea 974 3904

Table 1. Contingency table of k-means clusters (1 and 2) and Homere sea states classes (swell

and sea state) in the calibration period.
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Figure 11. RMSE versus the number of WTs for the validation period.

Figure 9 shows times series of Hs and the corresponding empirical density with re-334

spect to the clusters in the calibration period. The most probable cluster is the first one335

(82%) which corresponds mostly to swells and the second cluster corresponds to wind336

seas (Table 1). To understand the difference between the two clusters, we define the anomaly337

of Xβg in each cluster 1 and 2 as xβg (1) and xβg (2), respectively338

xβg (1) = X̄βg (1)− X̄βg (16)339

xβg (2) = X̄βg (2)− X̄βg340

where X̄βg (1) and X̄βg (2) are the mean of Xβg at cluster 1 and 2, respectively and X̄βg341

is the global mean of Xβg . For the first cluster, the local wind around the target point342

contributes less than the global mean in Hs (Figure 10) and grid points that are far con-343

tribute more, as expected when swell systems are dominating. In contrast, in the sec-344

ond cluster, generally associated to wind sea, local wind contributes more than the global345

mean in Hs.346

6 Results347

The clusters obtained in the last section seem to be interpretable and correspond348

to sea state classes of Homere (accuracy = 0.87). However, the number of sea states K349

may be greater than 2; therefore, a validation analysis is done to select the optimal num-350

ber of WTs. To do that, for each number of WTs (from 1 to 8), model (14) is fitted us-351

ing the calibration period and evaluated using the validation period. Figure 11 illustrates352

the RMSE of Hs as a function of the number of WTs. The optimal number of WTs is353

5, and the RMSE seems to decrease significantly from 1 to 5 WTs.354

Figure 12 shows the time series of Hs and its empirical density as a function of the355

five WTs. The resulting WTs depend on the value of Hs; for example, the first WT cor-356

responds to small values of Hs, and the fifth one corresponds to extremes. The other clus-357

ters (2 to 4) correspond to intermediate values Hs, in increasing order. The bottom right358

panel of Figure 12 shows the frequency of occurrence of WTs. The first WT is the most359

likely, and the fifth one has the smallest probability of occurrence. The transition ma-360

trix in the bottom left panel shows that the self-transition probabilities are greater than361

0.9 for all WTs, meaning that the WTs are consistent in time. Remark that some tran-362

sition probabilities are precisely zero; for example, the transition probabilities from the363
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Figure 12. Top left panel: time series of Hs as a function of WTs. Top right: empirical

density of Hs as a function of WTs. Bottom left: transition matrix of WTs. Bottom right: Fre-

quency of occurrence of WTs. All figures correspond to the calibration period.
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Figure 13. Mean of Xβg minus the global mean for the five WTs.

1st to the 4th and the 5th WT are equal to zero. This means that the probability to be364

in extreme sea states after being in the first WT is zero.365

Figure 13 shows the mean of Xβg at each WT where366

xβg (i) = X̄βg (i)− X̄βg , i = 1, .., 5 (17)367

where X̄βg (i) is the mean of Xβg at the ith WT and X̄βg is the global mean of Xβg . For368

the 1st and 2nd WT, contributions of source points far from the target points are greater369

than the global mean. Therefore, these two classes correspond to swells. In the 3th WT,370

the local wind contributes more, with moderate winds, in the variance of Hs. The 4th371

one can be considered a composition of wind sea and swells given that local and far sources372

points contribute to the variance of Hs. Finally, the 5th WT corresponds to the wind373

sea where the local source points contribute with the highest intensities of winds creat-374

ing the highest waves.375

The monthly variability of WTs is shown in the left panel of figure 14. As expected,376

the 5th and 4th WTs occur primarily in winter (December-January-February), and the377

1st WT, which corresponds mainly to swells, often occurs during summer. The winter378

long-term variability of frequency of occurrence of WTs is shown in the right panel of379

figure 14. The continuous black line corresponds to the mean annual winter of NAO in-380

dex (Barnston & Livezey, 1987) from 1994 to 2016. The horizontal black line indicates381

when NAO is greater or less than zero. The long-term variability of weather types seems382
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Figure 14. Monthly and annual (in December-january-february) frequency occurrence of

WTs in the calibration period. The continuous black line corresponds to the mean annual win-

ter (DJF) time series of NAO (North Atlantic Oscillation) index and the horizontal black line

indicates when NAO is less or greater than zero. When the continuous black line is below the

horizontal line, the NAO is less than zero.

Figure 15. Observed versus predicted values of Hs using the model (14) in the validation and

calibration period.

to be related to NAO index. For example, the winter of the year 2010 experienced less383

extreme waves and the NAO index is less than zero. Whereas, the most extreme sea states384

are observed in 2014 where the NAO is greater than zero.385

Figure 15 and 16 show results of model (14). The model performs well in predict-386

ing Hs. The RMSE in the validation period is 0.272m for an Hs of mean 1.97m and stan-387

dard deviation of 1.1m . Comparing these results with those of the local model in Fig-388

ure 2, it appears that considering the global predictor is important to explain the vari-389

ability of Hs. Figure 17 illustrates the performance of the downscaling model at each390

weather type in the validation period. It can be seen that the model in WT 1, 2, and391

4 explains less the variability of Hs compared with the model in WT 3 and 5. This can392

be explained by the fact that in these WTs, the model has to take into consideration sources393

points that cover the swell generation as seen in Figure 13. In contrast, in WT 4 and 5,394

the model takes into account mainly local sources points as waves are mainly generated395

by local wind (Figure 13).396
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Figure 16. Time series of observed and predicted values of Hs in the validation period.

7 Conclusions397

This study proposes a method that describes the spatiotemporal relationship be-398

tween wind and the significant wave height (Hs). At first, the local model, based on a399

linear regression between the local wind and Hs, is constructed. However, the model poorly400

explains the variability of Hs given that the model does not consider the swell genera-401

tion. Therefore, the global predictor was defined to account for both wind sea and swells.402

The global predictor is based on the projected wind, which is the wind that goes from403

source points to the target point in a great circle path. After wind projection, the spa-404

tial coverage of the predictor is defined based on the assumption that waves travel along405

a great circle path. Then its temporal coverage is defined based on two parameters, called406

the travel time of waves and the temporal width. Both parameters exhibit spatial struc-407

ture and increase as the distance between the source and target points increases.408

The statistical downscaling model combines the local and global predictor to pre-409

dict Hs using a weather type model. The weather types were constructed using a regression-410

guided clustering algorithm. The comparison between the Homere sea state classes (wind411

sea and swell) and two clusters obtained by the clustering algorithm shows a significant412

resemblance. The predictive model consists of fitting ridge regression between the pre-413

dictors and the predictand on each WT, and the validation analysis shows that the op-414

timal number of WTs is five. The obtained weather types are interpretable and corre-415

spond to different wave systems, and the results of the downscaling model show its skill416

in predicting Hs. This statistical downscaling method can be extended to other locations.417

However, for close locations, it will be redundant to define the global predictor and weather418

types for each location. Therefore, only the local predictor may be adapted to each lo-419

cation.420

The methodology presented in this study consists of different steps, from estimat-421

ing the travel time of waves to finding the weather types. Travel time of waves and weather422

types can be considered as latent variables and they may be estimated for example us-423

ing the EM (Expectation-Maximization) algorithm where variables are evaluated based424

on the prediction of Hs, which can lead to optimal estimations. However, given the com-425

plexity of the problem and the high dimensionality of data this solution can be challeng-426

ing.427
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Figure 17. Left panel: histogram of observed versus predicted Hs at each WT. Right panel:

scatter plot of observed versus predicted Hs. Both in the validation period.
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The hindcast data Homere is available in their website: https://marc.ifremer429

.fr/produits/rejeu d etats de mer homere. The wind data is available from the CFSR430

website: https://climatedataguide.ucar.edu/climate-data/climate-forecast-system431

-reanalysis-cfsr. Finally, NAO index is obtained from the National Oceanic and At-432

mospheric Administration website: https://www.cpc.ncep.noaa.gov/products/precip/433

CWlink/pna/nao.shtml.434

The processed data used in this work can be found in: https://doi.org/10.5281/435

zenodo.5845423 and the R notebooks are available in: https://doi.org/10.5281/zenodo436

.5845250437
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