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Abstract

Symmetries and topology have been actively introduced currently to characterize the mode structure of waves in various systems

physics, giving rise to the concepts of topological insulators, topological superconductors and topological photonics, to name

a few. Very recently, the equatorial wave systems have been described from a topological point of view by Delplace et. al.

(Science 358, 1075-1077 (2017)). It was shown that the emergence of unidirectional edge waves (Yanai and Kelvin waves)

can be attributed to the topological bound states. An f-plane model is used to connect the topological invariants, the Chern

numbers, to the existence of these modes. We have extended this analysis by incorporating a beta plane model thereby including

the Earth’s sphericity from beginning. Equatorial beta plane model renders the Poincare and Rossby waves also equatorially

trapped. Further, the effect of moisture balance on the topology of the equatorial waveguide is examined. It is shown that the

presence of a new eastward propagating mode within a low-frequency regime is similar to the observed MJO mode. We explained

how moisture localizes these low-frequency unidirectional oscillations. The topological origin of moist waves is emphasized by

relating their topological invariants, or Chern numbers. From this perspective, equatorial moist waves also show the strong

similarities with bulk-edge correspondence encountered in quantum valley Hall effect and its classical analogues. Our study

shows that the topological origin of MJO-like mode and its localization due to low-level moisture encode essential information

of the tropical climatic systems.
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Figure 1 : Observed wavenumber–frequency 
spectrum of the equatorial symmetric component 

of brightness temperature4 

‣ The flow in the tropical atmosphere is 
characterized by a perturbation in rainfall 
and cloud distribution. 

‣ These perturbations are the manifestations of 
equatorial waves. 

‣ Several authors suggested that these 
equatorial waves are the significant 
physical processes within the tropics, 
which play a crucial role in the large-scale 
dynamics.
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Figure 2 : Comparison of Equatorial waves (Classical Waves) with the Band 
Structure (Quantum Waves) of the Topological Insulator 

Motivation of the study 





‣ We consider the equations of the one-layer Shallow water model in the absence of dissipation 
on  the  equatorial  beta-plane  � ,  with  zonal  ( � )  and  meridional  ( � )  directions 
� .

( f = f0 + βy) x y
{X = (x, y)}

θ
̂n‣ The velocity filed is described by �  , and here � , and  

is the unit vector in the vertical direction, and    is the potential temperature perturbation ︎.
V(x, t) = (u(x, t), v(x, t)) ∇ = (∂/∂x, ∂/∂y)

∂tv + (v . ∇)v + f ̂n × v = − ∇θ
∂tθ + ∇ . (vθ) = 0

(1.a

(1.b

ζ(x, y, t) = ζ(y)ei(ωt−kxx−kyy)

u, v, θ

θ = ̂θu = 0‣ We non-dimensionalised and linearised the above equation of motion at (           and           ) and 
We look for the solution (Eigen modes) in the form of a wave (Planar wave), with amplitudes 
of the fields (                                           ).  

�
∂u
∂t

+ fv +
∂θ
∂x

= 0

�
∂v
∂t

− fu +
∂θ
∂y

= 0

�
∂θ
∂t

+ (
∂u
∂x

+
∂v
∂y

) = 0

Resultant eigenvalue equation

�ω
̂θ
̂u
̂v

=
0 kx ky

kx 0 −if
ky if 0

̂θ
̂u
̂v

( f = f0 + βy)Where 

Theoretical Description



By rearranging the above linear eigenvalue equation 
The dynamical system becomes  

�i∂tΨ = HΨ
Where �Ψ = (v, θ) and  �  is the Hermitian operator H

In a Quantum mechanical context it can be referred as a Hermitian system 
and can easily applied to the Conservative systems (idealized physical 
systems in which the wave amplitude is neither attenuated nor amplified)

The time reversal symmetry is broken due to non-zero Coriolis parameter 
and this broken symmetry generates the gaps in the wave spectrum1

� , � , � , �t → − t x′� → x θ → θ u → − u

(2)

Diagonalization of equation (2) leads to three eigenmodes � , 

�  , where �  and corresponding three eigenvectors 
(wave bands) 

ω0 = 0
ω± = ± k2 + f 2 k2 = k2

x + k2
y

�Ψ+(kx, ky, f ) =
1

2

k

k2 + f 2

kx

k
− i

fky

k k2 + f 2

ky

k
+ i

fkx

k k2 + f 2

�Ψ−(kx, ky, f ) = Ψ+(−kx, − ky, f ) �Ψ0(kx, ky, f ) =
1

k2 + f 2

f
iky

−ikx



‣ We non-dimensionalize the governing equations using the spatial, temporal and potential temperature scales 
defined by

and 

where, 

The parameters Λ: the non-dimensional values of evaporation- wind feedback component. �  represents the strength of moisture 
convergence.  B  and  γ  represents,  the  moisture  relaxation  timescale  and  temperature  scale  respectively.   ε∗  represents  the 
Rayleigh damping parameter.

Γq

‣ We now consider an atmospheric component of the model that describes the dynamics of anomaly circulation of 
the lower troposphere, represented by the Linear shallow water equations describing the horizontal structure of the 
first baroclinic wave motion  on an equatorial ︎ � -plane,  along with vertically integrated moisture equation.β

�
∂u
∂t

+ ϵ*u + fv + γ
∂θ
∂x

= 0

�
∂θ
∂t

+ γ[
∂u
∂x

+
∂v
∂y

] − ηBs = 0

�
∂v
∂t

+ ϵ*v − fu + γ
∂θ
∂y

= 0

�
∂s
∂t

+ Γq[
∂u
∂x

+
∂v
∂y

] + Λu + Bs = 0

(3.a)

(3.b)

(3.c)

(3.d)

Resultant eigenvalue equation

�ω
̂θ
̂u
̂v
̂s

=

0 γkx γky iηB
γkx iϵ* −if 0
γky if iϵ* 0
0 Γqkx + iΛ Γqky iB

̂u
̂v
̂θ
̂s

Again by rearranging the above linear eigenvalue equation

The dynamical system becomes  

�i∂tΨ = ĤΨ
Where �Ψ = (v, θ, s)and  �  is the Non-Hermitian operatorĤ
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Figure 4 : Dispersion Relation (low frequency modes only)




