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Abstract

Surge-type glaciers are present in many cold environments in the world. These glaciers experience a dramatic increase in velocity

over short time periods, the surge, followed by an extended period of slow movement, the quiescence. The detailed processes

that control this intermittent behaviour remain elusive. We develop a machine learning framework to classify surge-type

glaciers, based on their location, exposure, geometry, surface mass balance and runoff. We apply this approach to the Svalbard

archipelago, a region with a relatively homogeneous climate. We compare the performance of logistic regression, random forest,

and extreme gradient boosting (XGBoost) machine learning models that we apply to a newly combined database of glaciers in

Svalbard. Based on the most accurate model, XGBoost, we compute surge probabilities along glacier centerlines and quantify

the relative importance of several controlling features. Results show that the surface and bed slopes, ice thickness, glacier width,

surface mass balance and runoff along glacier centerlines are the most significant features explaining surge probability for glaciers

in Svalbard. A thicker and wider glacier with a low surface slope has a higher probability to be classified as surge-type, which is

in good agreement with the existing theories of surging. Finally, we build a probability map of surge-type glaciers in Svalbard.

Our methodology could be extended to classify surge-type glaciers in other areas of the world.
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Abstract8

Surge-type glaciers are present in many cold environments in the world. These glaciers9

experience a dramatic increase in velocity over short time periods, the surge, followed10

by an extended period of slow movement, the quiescence. The detailed processes that11

control this intermittent behaviour remain elusive. We develop a machine learning frame-12

work to classify surge-type glaciers, based on their location, exposure, geometry, surface13

mass balance and runoff. We apply this approach to the Svalbard archipelago, a region14

with a relatively homogeneous climate. We compare the performance of logistic regres-15

sion, random forest, and extreme gradient boosting (XGBoost) machine learning mod-16

els that we apply to a newly combined database of glaciers in Svalbard. Based on the17

most accurate model, XGBoost, we compute surge probabilities along glacier centerlines18

and quantify the relative importance of several controlling features. Results show that19

the surface and bed slopes, ice thickness, glacier width, surface mass balance and runoff20

along glacier centerlines are the most significant features explaining surge probability for21

glaciers in Svalbard. A thicker and wider glacier with a low surface slope has a higher22

probability to be classified as surge-type, which is in good agreement with the existing23

theories of surging. Finally, we build a probability map of surge-type glaciers in Sval-24

bard. Our methodology could be extended to classify surge-type glaciers in other areas25

of the world.26

Plain Language Summary27

Around 1% of the glaciers in the world exhibit intermittent phases of accelerated28

motion, called surge. These accelerations are not fully understood. They may lead to29

dramatic glacier advances over rivers and damming up lakes that are then prone to a sud-30

den and possibly catastrophic drainage. Glacier surge dynamics also contributes to un-31

certainties concerning sea-level rise projections. The Svalbard archipelago, located in the32

high Arctic, hosts more than one hundred surging glaciers. By combining several data-33

sets and analysing them statistically using several machine learning techniques, we cal-34

culate the probability for every glaciers to experience surge events. Our results show that35

some specific combinations of the surface and bed slopes values, glacier width and ice36

thickness control glacier surge probability. To a smaller extent climatic parameters such37

as the mass a glacier may lose or gain during the year and the amount of melt water avail-38

able also contribute to the surge probability. These findings are in good agreement with39

existing theories of surge dynamics. We finally produce the first probabilistic map of surg-40

ing for all the glaciers in Svalbard and suggest that our method is applicable to other41

areas in the world.42

Key points43

• We establish a machine learning framework to evaluate the probability of glacier44

surge.45

• We build a combined database of glaciers in Svalbard that contains thirteen fea-46

tures.47

• We quantify the relative importance of relevant features on the surge probabil-48

ity.49

• We compute the first map of glacier surge probability in Svalbard.50

1 Introduction51

Glacier instabilities, such as surges, are primary contributors to uncertainties of fu-52

ture sea-level rise projections (Pörtner et al., 2019). Surge-type glaciers exhibit long pe-53

riods of quiescence and short periods of accelerated motion, often leading to rapid ice54

loss (Meier & Post, 1969; Cuffey & Paterson, 2010). They represent approximately 1%55
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of the glaciers in the world (Sevestre & Benn, 2015) and a considerable hazard poten-56

tial (Kääb et al., 2018, 2021). Surges can occur at quasi-regular time intervals and a huge57

spatial variability has been observed, with surging and non-surging glaciers located next58

to each other (Cuffey & Paterson, 2010; Meier & Post, 1969; Bhambri et al., 2017). Thus,59

identifying surge-type glaciers may contribute to a reduction in the uncertainties of fu-60

ture sea-level rise and may provide better hazard mitigation (e.g., surges related to glacier61

lake outburst floods (Bazai et al., 2021)). In the present study, we use the term surge62

for quasi-cyclic increases of ice flow velocity that “result from oscillations in conditions63

at the bed of the glacier” (Benn & Evans, 2014).64

Surge dynamics is considered to be governed by the hydro-mechanical interactions65

between a glacier and its bed (Cuffey & Paterson, 2010; Thøgersen et al., 2019; Benn66

et al., 2019). Due to the limited accessibility of subglacial environments, the physical pro-67

cesses at the ice-bed interface are difficult to measure. Recently, two approaches have68

been proposed to unify the theories of glacier instabilities (Fig. 11). On the one hand,69

Benn et al. (2019) proposed that a glacier remains stable when the variations of enthalpy70

at the glacier bed, which impact the ice flow, are in equilibrium with the variations of71

ice mass. Enthalpy increases through geothermal and frictional heating and decreases72

by heat conduction and melt water exiting the system. If the ice mass and enthalpy bud-73

get are out of equilibrium, the glacier dynamic will alternate between periods of quies-74

cence and surge phases. On the other hand, Thøgersen et al. (2019, 2021) developed an75

evolution model for subglacial friction based on the rate-and-state friction law (Dieterich,76

1992), suggesting that large enough perturbations can propagate and cause a glacier surge.77

They concluded that a better understanding of the feedback between the subglacial drainage78

and basal friction is critical to describe such perturbations. Other studies have exam-79

ined the rate-and-state friction law to describe mechanical processes at the ice-bed in-80

terface (L. Zoet et al., 2020; L. K. Zoet & Iverson, 2020). Based on these two approaches,81

enthalpy budget and rate-and-state friction, we select a series of features detailed below,82

which have been proposed to control the process of glacier surge. In the following, we83

use the term features to denominate physical parameters that may have an effect on glacier84

surging.85

Previous studies have established that surge-type glaciers have the following prop-86

erties: 1) they are more likely to be longer and/or wider (Clarke et al., 1986; Clarke, 1991;87

Jiskoot et al., 1998; Barrand & Murray, 2006) than non-surging glaciers; 2) their bed and88

surface slopes are likely to appear as important features but are often highly correlated89

with other features (Clarke et al., 1986; Clarke, 1991); 3) their bed contains more likely90

younger and mechanically weaker lithologies than hard beds (Jiskoot et al., 1998, 2000);91

4) they are clustered in climatic envelopes between cold-dry and warm-humid environ-92

ments (Sevestre & Benn, 2015); and 5) they are more likely polythermal (Jiskoot et al.,93

2000). Based upon these studies, Sevestre and Benn (2015) built an entropy maximiza-94

tion model to qualitatively classify the glaciers in the Randolph Glacier Inventory database95

Consortium (2017) into five surging categories, from no surge to surge-type. However,96

statistical studies of glacier surges have two limitations: 1) they use integrated features97

for entire glaciers, and 2) except for Barrand and Murray (2006), none of them exposes98

the used methodology to competing methods. Although Barrand and Murray (2006) ex-99

plored differences between generalized linear models and the features that are included100

in each model, their study does not compare different types of models.101

Here, we investigate the surging probability of glaciers in Svalbard and identify the102

controlling features. By limiting the geographical extent of our study area to a climat-103

ically relative homogeneous setting, we exclude overall climatic controls (Sevestre & Benn,104

2015) and aim to isolate the non-climatic influences. The climate in Svalbard is assumed105

to be relatively homogeneous compare to other regions. Around 22% of Svalbard’s glaciers106

are surge-type, which represents a relatively large proportion of the 1,615 glaciers of this107

region reported in the Randolph Glacier Inventory (Consortium, 2017). We propose a108
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framework to regularize the evaluation of several machine learning models for determin-109

ing glacier surge probability. Selecting the best performing model, the Extreme Gradi-110

ent Boosting (XGBoost) (T. Chen & Guestrin, 2016), we identify the features that con-111

trol the classification of surge-type glaciers. By applying this framework on a custom-112

built database, we produce a map of surge probability for Svalbard glaciers. Using this113

model, we demonstrate that geometrical features have a high impact on the classifica-114

tion and these findings are discussed in the context of the existing glacier surge theories.115

The machine-learning framework can be easily applied for assessing the surge probabil-116

ity of glaciers in other regions of the world, when new data are available and/or can be117

adapted to other fields (e.g. landslides, earthquakes dynamics).118

100 km

NORDAUSTLANDET

SPITSBERGEN

EDGEØYA

10°E 15°E 20°E 25°E

30°E

77°N

78°N

79°N

80°N

81°N RGI 0: Surge not-observed
RGI 1: Possible surge
RGI 2: Probable surge
RGI 3: Observed surge

Figure 1: Classification of glaciers in Svalbard in the Randolph Glaciological Inventory
database (Consortium, 2017). This database contains five classes that characterize the
surge potential of glaciers (Sevestre & Benn, 2015) : Not observed (0), Possible (1), Prob-
able (2), Observed (3), Not assigned (9). The class 9 is not represented in the Svalbard
region).

2 Data and methods to assess the surge probability of glaciers in Sval-119

bard120

We develop a machine learning framework for classifying surge-type glaciers. This121

framework includes the development of a custom-built database, a method for training122
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machine learning models consistent with best machine learning practices, methods for123

evaluating the model outputs (i.e., the probability for a glacier to be classified as surge-124

type), and finally a method for mapping the surge probability of Svalbard glaciers. Ad-125

ditionally, we identify the key features that control the predictions of the models.126

We build a glacier database by combining the Randolph Glacier Inventory (Consortium,127

2017), geometrical features (Maussion et al., 2019; Fürst et al., 2018), and climatic data128

(Pelt et al., 2019). These data are discretized along the glacier centerlines. After discretiz-129

ing and post-processing the data, the custom-build database combines 981 glaciers which130

are discretized along 97,140 points over Svalbard.131

The database is used in three different supervised machine learning models: logis-132

tic regression, random forest, and XGBoost. Data are split between training and test-133

ing data-sets. Training data are used to teach the machine learning models whether a134

glacier is surge-type. Testing data are used to evaluate the ability of the models to clas-135

sify surge-type glaciers.136

These models are evaluated using multiple statistic metrics, such as the area un-137

der the Receiver Operator Characteristic curve (Hanley & McNeil, 1982)). After the mod-138

els are evaluated, the best model, in our case XGBoost, is used to calculate the surge139

probability of each centerline point in each glacier. These values are then used to build140

a probability map of surge glaciers in Svalbard.141

In addition to generating the probability map, we identify the features in the train-142

ing data-set that most strongly control the classification. We calculate the feature im-143

portance scores for each model. We also perform a recursive feature elimination to quan-144

tify the contribution of each features in the model performance (X.-w. Chen & Jeong,145

2007), and finally we use the Shapley Additive values (Lundberg & Lee, 2017). The sketch146

in Figure 2 illustrates our framework.147

2.1 Data148

2.1.1 Randolph Glacier Inventory features149

The Randolph Glacier Inventory (Consortium, 2017) is a globally complete database150

of digital outlines of glaciers worldwide, excluding the ice sheets. This database was de-151

veloped to provide better estimates of past and future surface mass balance of glaciers152

(Pfeffer et al., 2014). It includes integrated features such as glacier surface area and length.153

Glaciers are classified into five different surging categories: 0 - Surge not observed, 1 -154

Possible surge-type, 2 - Probable surge-type, 3 - Surge Observed, 9 - Not surging (Fig.155

1). This classification has been established following the work of Sevestre and Benn (2015).156

While the classes 0 and 3 are based on field observations, the classes 1 and 2 are based157

on statistical modeling Sevestre and Benn (2015). However, no quantitative predictions158

of surge probability are assessed.159

The Randolph Glacier Inventory is distributed through the Global Land Ice Mea-160

surements from Space, and the National Snow and Ice Data Center (GLIMS/NSIDC)161

website (Consortium, 2017). It is continuously developed and new versions are released162

regularly. In the present study, we use the most recent version (v6.0) for the Svalbard163

region, which is the region 7 in this database. From the Randolph Glacier Inventory, we164

use only the unique identifier allocated for each glacier in Svalbard (RGIId), the corre-165

sponding glacier name and the surging class (Fig. 2). Other features present in the Ran-166

dolph Glacier Inventory, such as the surface area and the length of glaciers, are not used167

because these are integrated features across each glaciers while we focus in this study168

on discretized variables along glacier centerlines.169
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Figure 2: Workflow of the machine learning methods used to classify surge-type glaciers.
Once the raw data are collected, the features are interpolated along the centerlines points.
The database is then filtered and separated into a train data-set and a test data-set. Data
are re-sampled to obtain balanced classes between surge-type and non-surge-type glaciers.
The machine learning model are run and evaluated. The best model is XGBoost after
evaluation. By looking at the contribution of each feature contribution in the model, the
surge probability map of glaciers in Svalbard is produced.

2.1.2 Geometric features170

Many studies investigating glacier surges have highlighted the importance of ge-171

ometrical features (Sevestre & Benn, 2015; Hamilton & Dowdeswell, 1996; Jiskoot et al.,172

1998, 2000; Clarke et al., 1986; Clarke, 1991; Björnsson et al., 2003; Barrand & Murray,173

2006). In the present study, we include the width, the thickness, the bed elevation and174

the surface elevation of each glacier, and the associated bed and surface slopes. The ge-175

ometrical widths have been computed using the Open Global Glacier Model (Maussion176

et al., 2019)). This model is open-source and is partly used to simulate past and future177

changes of any glacier in the world. Glacier outlines are extracted from the Randolph178

Glacier Inventory and projected onto a local glacier grid. The spatial resolution depends179

on the size of the glacier (Maussion et al., 2019). The geometrical widths are computed180

by intersecting lines perpendicular to the flow lines at each grid point with the glacier181

outlines and the tributary catchment areas (Maussion et al., 2019). The detailed work-182

flow is described in Maussion et al. (2019).183
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The bed elevation and glacier thickness are retrieved from Fürst et al. (2018). These184

authors presented a first version of the ice-free topography (SVIFT1.0), which was com-185

puted using a mass conservation approach for mapping glacier ice thickness. This database186

is built from more than one million point measurements. In total, it corresponds to an187

accumulated length of 700 km of measured thickness profiles. The reconstructed ice thick-188

ness corresponds to the status of the glaciers in year 2010 (Fürst et al., 2018). We also189

estimated the surface and bed slopes by calculating the gradient between two successive190

points along the centerlines of the surface and bed elevation data.191

2.1.3 Climatic features192

We added climatic features to the database, i.e. runoff and surface mass balance.193

Pelt et al. (2019) created a long-term (1957-2018) dataset of surface mass balance for194

the glaciers, snow conditions, and runoff with a 1 km × 1 km spatial resolution and 3-195

hours temporal resolution over Svalbard. These authors used a coupled energy balance–subsurface196

model, forced with down-scaled regional climate model fields, and apply it to both glacier-197

covered and land areas in Svalbard. In our study, we characterize surface mass balance198

by spatially distributed values of the Equilibrium Line Altitude (ELA) and mass bal-199

ance gradient. The runoff is the local discharge corresponding to the available water com-200

ing from rainfall and melt at the bed after accounting for retention by refreezing and liq-201

uid water storage (Pelt et al., 2019). We use the latest computed data corresponding to202

year 2018.203

2.2 Data management204

2.2.1 Discretization205

Using the Open Global Glacier Model, we computed the centerline coordinates for206

each glacier in Svalbard with the algorithm developed by Kienholz et al. (2014) and mod-207

ified by Maussion et al. (2019). Once the termini and the heads of each glacier are iden-208

tified, the least-cost route is calculated to derive the centerlines. The centerline points209

are not equidistant after this calculation. Then, the centerlines points are interpolated210

to be equidistant from each other. Depending on the size of each glacier, the distance211

between successive points varies between 20 and 400m for different glaciers. Some glacier212

catchments contain a main glacier accompanied by its tributary glaciers and so several213

centerlines are computed for the same catchment. In our study, we use the longest cen-214

terline as the main centerline of the principal glacier. Once the centerlines have been ex-215

tracted, we interpolate or extrapolate all other data along the centerlines coordinates.216

2.2.2 Custom-built database of Svalbard glaciers217

The database is the combination of all the features discretized along the center-218

lines. Since the climatic data have a spatial resolution of 1 km x 1km, we exclude all the219

glaciers with a surface area less than 1 km2 and a length less than one kilometer.220

As a consequence, our custom-built database contains 981 glaciers which are dis-221

cretized along 97,140 points: 70,937 points belong to the class “Not Observed Surging”,222

10,598 belong to the class “Possible Surge”, 4,361 belong to the class“Probable Surge-223

type”, and 11,244 belong to the class “Observed Surging”. The database contains thir-224

teen features: the Randolph Glacier Inventory identifier (1), the corresponding glacier225

name (2), the surging class (3), the bed elevation and slope (4, 5), the surface elevation226

and slope (6, 7), the thickness (8), the surface mass balance (9), the glacier width (10),227

the width divided by the thickness (11), and the driving stress (12). A random number228

is also added as a dummy feature (13) that does not have a physical interpretation and229

is used here to verify that the model is not taking it into consideration during the clas-230

sification.231
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We exclude the glacier identifier and the glacier name features from the analysis232

resulting in eleven features for training the machine learning models. Figure 3 displays233

the correlations between these features. The features clustered in the upper left corner234

of the correlation matrix show high positive or negative correlations. Following the di-235

agonal of the matrix towards the lower right corner, the correlations are decreasing. The236

bed elevation, thickness, width, runoff, bed and surface slope are highly correlated with237

each other. The driving stress, width times thickness (W×H), and the dummy features238

show correlation values close to 0, indicating that they are not correlated to other fea-239

tures.240
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Figure 3: Correlation matrix between the most important features using only the training
data. The colors shows the value of the coefficient of correlation.

2.3 Machine learning modelling241

2.3.1 Training and testing data-sets242

The training data-set is organized in the following ways: 1) only glaciers classified243

as Not-Observed surge (class 0) or Observed surge (class 3) in the Randolph Glacier In-244

ventory are used; 2) the training data-set is resampled such that it contains an equal num-245

ber of surge-type and non-surge-type glaciers; and 3) the training and testing data-sets246

are split such that all the data of a given glacier belong either to the training data-set247

or to the testing data-set, but not to both. We only use glaciers from the classes Not-248

Observed (0) and Observed (3) surge to avoid systematic errors that may be associated249

with glaciers labeled in the Randolph Glacier Inventory as having some likelihood to be250
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surge-type but no direct evidence of surging behavior has been observed (i.e. Possible251

surge (1) and Probable surge (2) classes).252

The glaciers classes are highly unbalanced with almost seven times more glaciers253

of the Not-Observed surge class than Observed surge class. An unbalanced training data-254

set can lead to erroneous results in classification problems (Ganganwar, 2012). There-255

fore, we under-sampled the Not-Observed surge glaciers such that the data-set contains256

a 50%-50% distribution of non-surging and surging glaciers. This data-set is then split257

into a training and a testing set, respectively 70% and 30% of the database. We justify258

this split using 50 bootstrap simulations using 50 different training and testing sets, the259

split in the data-set using this proportion is considered acceptable (Fig. A1).260

2.3.2 Machine learning models261

We use three different supervised machine learning models: logistic regression, ran-262

dom forest and Extreme Gradient Boosting (hereafter, XGBoost). Using a data-set with263

a known outcome (i.e., whether a glacier is surge-type or not), we train models to iden-264

tify this outcome. Each model requires selecting at least one hyperparameter (e.g., the265

depth of decision trees used in a random forest). We selected the values of the hyper-266

parameters after an exhaustive grid search (Supplementary Material, Section Appendix267

B).268

Logistic regression269

Logistic regression is commonly used in machine learning for classification tasks.
This algorithm produces a probabilistic estimate of whether a particular set of input fea-
tures belongs to a class or not. Logistic regression has been used in several studies in glaciol-
ogy to better understand glacier surges (e.g., Jiskoot et al. (2000); Barrand and Mur-
ray (2006)). We used the logistic regression equation (Nelder & Wedderburn, 1972):

` = log
p

1 − p
= β0 + βX (1)

where β and β0 are parameters that weight the impact of the input features X. p = P (Y =270

1) is the response of one binary feature Y . We implemented this method using the scikit-271

learn library in Python (Pedregosa et al., 2011). The inverse regularization length C is272

set to 1x10−5 and the penalty to L2 (Table B1, Section Appendix B).273

Random forest274

Random forest is a tree-based ensemble machine learning technique that is constructed
by a multitude of decision trees. Each tree in the random forests is producing a class pre-
diction and the class with the most votes becomes the model prediction (Breiman, 1999).
We implemented the random forest models with the scikit-learn library of Python (Pedregosa
et al., 2011), and using the Gini impurity:

Gini =

C∑
i=1

fi(1 − fi) (2)

where fi is the frequency of the label i at a node and C is the number of unique labels.275

We used 1000 trees in the forests with a maximum depth of 2 and the number of fea-276

tures to consider when looking at the best split is the square root of the number of fea-277

tures (Table B1, Section Appendix B).278

Extreme Gradient Boosting - XGBoost279

Boosting is an ensemble technique where new models are added to correct the er-
rors made by pre-existing models. The models are added sequentially until no further
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improvements is made. The algorithm attributes more weights to the misclassified data
to improve the predictions. To minimize the loss function, the algorithm uses gradient
descent (Hastie et al., 2009). We use a specific implementation of gradient boosting called
Extreme Gradient Boosting (XGBoost) (T. Chen & Guestrin, 2016). XGBoost is an im-
plementation of a stochastic gradient boosting machine (Friedman, 2001, 2002; T. Chen
et al., 2015; T. Chen & Guestrin, 2016). XGBoost can use a variety of learners as its base
learners such as linear models or decision trees (T. Chen & Guestrin, 2016). We use de-
cision trees as the base learners. The gradient boosted equation is formulated as follows:

log
p

1 − p
= F0 +

M∑
m=1

rmXFmX (3)

where m is the iteration index over M maximum iterations. Fm(X) is the current iter-280

ation fitted to the previous iterations residuals rm. F0 is the base estimate.281

We implemented XGBoost using the xgboost library in Python (T. Chen & Guestrin,282

2016). The objective is the logistic regression, we define 20000 boosting learners, trees283

have a maximum depth of 2, and the minimum child weight is 1 (Tab. B1, Sect. Appendix284

B).285

2.3.3 Evaluation of the models286

We use evaluation metrics based on comparison to random chance. These evalu-287

ation metrics include the Area Under The Curve (AUC) (Hanley & McNeil, 1982), the288

precision and recall, and the F1-score. Each of these metrics is used widely in machine289

learning studies (Hastie et al., 2009).290

The AUC value is within the range [0.5–1.0], where the minimum value represents291

the performance of a random classifier and the maximum value would correspond to a292

perfect classifier. A value of 0.5 would suggest no discrimination between surge-type and293

no surge-type glaciers. AUC values between 0.70 and 0.80 are considered acceptable for294

classification (Hosmer Jr et al., 2013).295

The ROC curve is the true positive rate TPrate against the false positive rate FPrate:

TPrate =
TP

TP + TN
(4)

FPrate =
FP

FP + FN
(5)

where TP stands for true positive, TN for true negative, FP for false positive and FN296

for false negative. False positive indicates predictions that have been labelled as surge-297

type while the true label should have been non-surge-type. The true positives correspond298

to surge-type glaciers that have been labelled correctly. The same logic applies for false299

negative and true negative rates.300

The performance of a classifier with respect to test data can be assessed by the value
of the precision, which is the ratio of correctly predicted positive observations to the to-
tal predicted positive observations:

Precision =
TP

TP + FP
, (6)

and the value of the recall, which is the ratio of correctly predicted positive observations
to the all observations in an actual class:

Recall =
TP

TP + FN
(7)
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2.4 Explanation for prediction301

Over the thirteen features present in our custom-built database, we do not use the302

glacier name and the glacier number in the Randolph Glaciological Inventory. We ex-303

amine how the eleven remaining features impact model decision in several ways: 1) we304

compute the relative feature importances across all models and compare them, 2) we ex-305

amine two feature importances relevant to XGBoost (gain and weight), the model that306

has the highest performance, 3) we calculate the Shapely Additive values for the XG-307

Boost model.308

We compare the feature importances of three models in a stacked diagram (Fig.309

7). For each model, the features importance score is calculated and the scores are summed310

together for the three models. The feature importance score informs on the gain of in-311

formation a feature gives to the model for classification (a detailed description of the fea-312

ture importances can be found in the Supplementary Material, Section Appendix C). For313

comparison purpose, we normalised all the scores using a min-max normalisation. To add314

more weight on best performing models, the feature importance scores are multiplied by315

the AUC of each corresponding models. For XGBoost, only the gain scores are taken into316

account.317

Another way to evaluate the feature contributions to the model predictions is to318

compute the Shapley Additive exPlanations (SHAP) values (Lundberg & Lee, 2017). SHAP319

values quantify the impact of having a certain value for a given feature in comparison320

to the prediction the model would have made if that feature had some baseline value.321

SHAP values allow for 1) a global interpretation of the predictions by analyzing how much322

each predictor contributes positively or negatively to the target feature; 2) a local inter-323

pretation because each observation gets its own SHAP value while most of the traditional324

feature importance algorithms only show results across an entire class. Based on the value325

of the features, SHAP analysis allocates a positive or a negative impact on the model326

output, e.g. a high value of a certain feature has a positive impact on the model output327

meaning that a high value will influence the model towards a high potential of surging.328

2.5 Interpolation of a surge probability map329

The surge probability is assessed for each discrete centerline point of a glacier us-330

ing the XGBoost model. Only the XGBoost model is used to produce the map because331

results show it is the best-fit model (see Section 3 for more details). We average the cen-332

terline points probabilities to produce a single probability per glacier centerline. If the333

average probability along the centerline is under 0.5, the glacier is not considered to be334

surge-type. If the average probability along the centerline is equal or larger than 0.5 the335

glacier is considered to be surge-type. The Randolph Glacier Inventory surge-type classes336

are shown in the map of Fig. 1. The average probability per glacier calculated in the present337

study is shown in the map of Figure 5. We also examine a subset of discretized glacier338

centerlines in Nordaustlandet Island (Fig. 5, inset). This step is useful to show that surge339

probabilities are varying along the centerline of a glacier, highlighting the potential trig-340

gering zone where a surge may develop.341

3 Results342

3.1 Machine learning models evaluation343

All three models (logistic regression, random forest, XGBoost) perform better than344

random chance (Fig. 4 a.) with testing AUC values ranging from 0.69 to 0.74 (mean AUCs345

calculated for 50 different training and testing data-sets). XGBoost shows the highest346

precision (0.85, Fig. 4 b.) and lowest False Positive Rate (0.23, Fig. 4 d.) of all the mod-347

els. This model demonstrates a lower recall (0.63) than logistic regression (0.68) and ran-348

dom forest (0.69) (Fig. 4 c.). Given these superior fit statistics for XGBoost, we choose349
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this model to calculate the probabilities along glacier centerlines and to produce the surge-350

type glacier classification map.351
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Figure 4: Boxplot representing the a) Area Under the Curves (AUC), b) precision score,
c) recall score, and d) false positive rate for each of the three machine learning models.
The scores have been calculated for 50 different training and testing data-sets. The or-
ange line corresponds to the median while the box corresponds to the interquartile range.
Both extremes indicates the minimum and the maximum value and the dots indicate the
presence of outliers.

3.2 Surge probability map of Svalbard glaciers352

Using the XGBoost model, we compute the surge probability of glaciers in Sval-353

bard. The predicted probability map (Fig. 5) indicates the presence of surge-type glaciers354

in the entire archipelago. This map has been computed from averaging the probability355

of every point along the centerline for each glacier. The map with centerline points can356

be found in the supplementary material, Section Appendix D, Fig. D1. However, pref-357

erential zones of surge can be identified in e.g. Nordaustlandet island, Torell Land. Other358

areas, e.g. Nordensköld Land, Andree Land, do not gather a significant number of surge-359
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Figure 5: Averaged probability map for each glacier to be classified as surge-type in the
XGBoost model. The zoom in the Austfonna ice cap shows how the average probability
has been computed. First, a probability is calculated at every point along the center-
line of every glacier. Then, we average the probabilities to surge of every point along the
centerline to obtain an average surging probability for a given glacier.

type glaciers. The XGBoost model classifies 162 glaciers as surge-type out of 981 (see360

Section 2.1 for more details on the data-set). While some glacier centerlines present a361

uniform probability distribution, some others see their probabilities for surging evolve362

along the centerline (Fig. 5, inset).363

In addition to the probability map, we compare our results to the existing Ran-364

dolph Glacier Inventory classifications for surge-type glaciers. Figure 6a) shows the cu-365

mulative frequency distribution of probabilities to surge calculated by the XGBoost model.366

The cumulative frequency distributions of the two classes with low surge potential in the367

Randolph Glacier Inventory (0: surge not observed, 1: possible surge) appear very sim-368

ilar. The same observation applies for the two classes with high surge potential (2: prob-369

able surge, 3: observed surge). These results are supported by the histogram in the in-370

set of Fig. (6b)) which shows two distinct classes, non-surge type and surge-type glaciers.371

The non surge-type class is however better defined than the surge-type class.372
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Figure 6: Cumulative frequency distribution for a glacier to be surge-type labeled by the
classes defined in the Randolph Glacier Inventory. The inset shows the distribution of
the probabilities. The vertical line indicates a 50% probability from which we separate
surge-type from non surge-type glaciers.

3.3 Importance of geometrical and climatic features373

Figure 7 shows the combined importance for each feature used in each model (lo-374

gistic regression, random forest, XGBoost). For all three models the width, thickness,375

and surface slope are the most important features explaining most of the models’ pre-376

dictions. The surface mass balance, the width × height (W×H), the surface elevation,377

the driving stress, and the dummy features do not have a high impact on the model pre-378

diction. The runoff, bed elevation, and bed slope explain partially the predictions.379

Beyond the comparison of features between each model, we also examine the fea-380

ture importances for the best-fit model, XGBoost. Figure 8 shows the feature importance381

scores computed with the gain and weight implementation for the XGBoost model. The382

width of the glacier adds a considerable amount of information when it is selected on the383

trees, while the surface slope and the thickness are the features that are selected the most.384

The thickness, runoff, and the bed elevation add more information than the surface mass385

balance, W×H, surface elevation, driving stress that are equally not significantly impor-386

tant to assess the surging potential of glaciers in Svalbard. The dummy feature appears387

in all cases to be the least important feature, as expected.388

Using recursive feature elimination, we find that five to six features are needed for389

the model to reach the highest AUC values (Fig. 9). To predict the surging potential390

of a glacier in Svalbard, the surface and bed slope, thickness, surface mass balance, runoff391

and width need to be considered. The driving stress, surface elevation and the dummy392

features do not have a significant impact on the model performance.393
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Figure 7: Feature importances for the logistic regression, random forest and XGBoost
models stacked together. The F-score of each features has been normalised and multiplied
by the AUC value. The features are organized from left to right from the most to the
least important, according to XGBoost score.

3.4 Feature values and local impact on prediction394

Using SHAP value analysis (Fig. 10), we find that some features have clear pat-395

terns. Higher values of glacier surface slopes, surface mass balance, and in some cases396

bed elevations all decrease the probability to be classified as a surge-type. Lower values397

of width, bed elevation, surface elevation, thickness, run off, bed slope, and W×H also398

decrease the probability for a glacier to be classified as surge-type. In contrast, high val-399

ues of width, in some cases bed elevation, surface elevation, thickness, and W×H increase400

the probability for a glacier to be surge-type. Low values of surface slope and surface401

mass balance are likely to increase the probability of a glacier to be classified as surge-402

type. Some features do not show clear separation between the values and the correspond-403
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Figure 8: Feature importance of XGBoost model: (a) gain, (b) weight.

ing impact on the model: the bed and surface elevation, the driving stress and the dummy404

feature (this should be expected for the dummy feature). To summarize, a thicker and405

wider glacier with a low surface slope, surface mass balance, and high runoff has more406

potential to be classified as surge-type.407

4 Discussion408

4.1 Evaluation of the surge-type classification framework409

We calculate surging probabilities for glaciers in Svalbard after an evaluation of the410

best performing model, XGBoost. The discretization of the glaciers along centerlines in-411

creases the number of data points used to train and test models (981 glaciers correspond-412

ing to 97,140 points). The availability of data provides better insights into the relation-413

ships between features used as input for machine learning algorithms (Halevy et al., 2009).414

As explored in other fields (e.g., (Fatichi et al., 2016)), complex natural systems cannot415

always be simplified using integrated features. For example, the glacier surface slope can416

vary along the centerline, which will change the driving stress. Averaging the slope in417

this case would misinform the model on changes that could impact model classification.418

In addition, discretized features enhance the spatial variability of the glaciers. A longer419

glacier will be constituted by a higher number of points along its centerline than a smaller420

glacier.421

The framework presented here uses a model comparison and an evaluation method422

grounded in the best machine learning practices (Hastie et al., 2009). Previous statis-423

tical studies aiming at understanding surging glaciers used only one model, i.e. univari-424

ate or multivariate regression (Clarke et al., 1986; Clarke, 1991; Hamilton & Dowdeswell,425

–16–



manuscript submitted to JGR: Solid Earth

Widt
h

Th
ick

ne
ss

Ru
no

ff
Su

rfa
ce

 sl
op

e
Be

d e
lev

ati
on CM
B

WxH
Be

d s
lop

e
Driv

ing
 st

res
s

Su
rfa

ce
 el

ev
ati

on
Dum

my

Featuresgain

0.75

0.76

0.77

0.78

AU
C

Su
rfa

ce
 sl

op
e

Th
ick

ne
ss

Be
d s

lop
e

Ru
no

ff
Be

d e
lev

ati
on

CM
B

Su
rfa

ce
 el

ev
ati

on
Widt

h
Driv

ing
 st

res
s

WxH Dum
my

Featuresweight

Figure 9: Results of recursive feature elimination show that four to five features explain
most of the gain of information in the classification of surge-type glaciers. The number of
features is added according to their order in the feature importance.

1996; Jiskoot et al., 2000; Barrand & Murray, 2006) or maximum entropy (Sevestre &426

Benn, 2015). To our knowledge, this is the first study that compares the performances427

of several machine learning models to classify surge-type glaciers. Comparing model pro-428

vides more confidence on the results of the best one. Numerical modeling studies have429

compared several models to determine the most accurate one for a defined task (e.g., (Hock430

et al., 2019)). The approach we take is similar. While a single model, XGBoost, is used431

in the final production of the classification map, we rely on the plurality of model results432

to support our understanding of what the models learned (e.g., Fig 7).433

As every machine learning model, the performance of XGBoost is tied to the qual-434

ity of the input features. We use mostly features resulting from numerical simulations,435

and therefore, by nature, containing bias and errors. XGBoost is then trained with fea-436

tures that are not considered ground-truth (as opposed to field measurements). In ad-437

dition, the error associated with the modeling data is unknown. The resulting AUC of438

XGBoost probably cannot be higher because the training is biased by the input features.439
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In addition, the spatial resolution of individual features differs, e.g., the bed elevation440

has been computed on a 100m resolution whereas the runoff and surface mass balance441

have been calculated on a 1km resolution grid. The features used in the models repre-442

sent as well a snapshot for a particular point in time and may therefore represent dif-443

ferent stages in the surge-cycle. While the topographic data (Fürst et al., 2018) repre-444

sent the state of Svalbard in 2010, the climatic data (Pelt et al., 2019) represents the year445

2018. Although we want to capture which features could cause a transient behaviour while446

using a snapshot in time, we consider that there are no better data available since sim-447

ulating surges in real glacier geometry represents a real challenge.448

4.2 Feature importance informs on theories of glacier surging449

The important features in our models are the glacier width, the ice thickness, the450

surface and bed slopes, the runoff, and the surface mass balance to a smaller extent (Fig.451

11). The width and the thickness have been shown to be important in previous statis-452

tical studies (Clarke, 1991; Barrand & Murray, 2006; Jiskoot et al., 2003) together with453

the surface slope (Sevestre & Benn, 2015; Jiskoot et al., 1998, 2000, 2003). Although XG-454

Boost models predict that lower slope will drive the prediction towards increasing the455

probability for the point to be surge-type as in Sevestre and Benn (2015), Jiskoot et al.456

(1998) found the opposite. The surface and bed slopes, and the ice thickness are features457

controlling the dynamic of a glacier through the hydraulic gradient and the driving stress.458

Both are known to play a crucial role in surging theories (Kamb, 1987; Fowler, 1989; Benn459

et al., 2019; Thøgersen et al., 2019). Although the features controlling the surge clas-460

sification are in good agreement with previous statistical studies, the features we use in461

our model rely on more recent observations or modelling studies. In addition, by discretiz-462

ing the features along the centerlines of the glaciers, we significantly increase the num-463
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ber of points, permitting a more robust statistical analysis. Thøgersen et al. (2021) high-464

light that in the context of a velocity weakening regime, the friction along the glacier mar-465

gins is less important with an increasing glacier width. Therefore, wider glaciers should466

be more likely to be of surge-type which is in good agreement with the SHAP summary467

result (Figure 10).468

To a smaller extent, the surface mass balance is also influencing the classification.469

However, we are not considering that this feature is important on assessing the surge prob-470

ability for glaciers due to the negligible increase of the AUC during the recursive feature471

elimination (Fig. 9), as found in Jiskoot et al. (2000). The surface mass balance is highly472

correlated to other features in the model, e.g. the surface elevation and the runoff, mean-473

ing that the effect of the surface mass balance is likely captured already into other fea-474

tures. However, in the interior parts of Svalbard, glaciers in drier areas show lower prob-475

abilities to be surge-type as opposed to the higher probabilities observed on the coast,476

in areas with more precipitation. A large glacier have a large accumulation area, receiv-477

ing more precipitation than a small glacier with a small accumulation basin. Thus, the478

size of glaciers depends as well on the amount of precipitation. Therefore, the geomet-479

rical features capture already a major part of the climatic influence. The climatic fea-480

tures do not appear primarily important because their effect is already captured into ge-481

ometrical features.482

In Svalbard, we expect that climatic features are not playing a central role on the483

prediction since, compared to other regions in the world, because the climate is relatively484

homogeneous within the archipelago.485

If more observations at the interface between the ice and the bed would become486

available, they could be incorporated directly into our framework, helping on assessing487

the underlying physical processes leading to glacier surge.488

Our framework can be used in other regions of the world. Our model has been trained489

on Svalbard and shows good performance scores. One could apply the trained model to490

a testing data-set in another region of world. If the performance score decreases dras-491

tically, one could infer that the predictions should be controlled by different features than492

in Svalbard, highlighting another surging mechanism or a different relation between ge-493

ometric features and climatic conditions.494

4.3 Quantification of surging probabilities495

To our knowledge, we produce the first map aiming at quantifying the surge prob-496

ability of glaciers. The map together with the associated probabilities add new informa-497

tion to the Randolph Glacier Inventory surging classes. Beyond the previous binary dis-498

tinction between surge-type or non surge-type glaciers, our approach quantifies these classes499

along a continuous scale with robust statistical methods. We propose that the four qual-500

itative classes in Svalbard can be combined into two statistically-informed classes: glaciers501

that have a probability to surge equal or larger than 50% can be classified as surge-type,502

and glaciers that present a probability lower than 50% can be classified as non-surge-503

type.504

Our results suggest that some glaciers are misclassified in the Randolph Glacier In-505

ventory. The glaciers listed in the Table 1 have a probability higher than 50% to be surge-506

type in our model, while in the Randolph Glacier Inventory they are currently labelled507

as Not observed, Possible or Probable surge. Recent field observations have shown that508

all these glaciers have been seen surging, confirming the high probabilities computed in509

our model.510
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Table 1: Comparison of several glaciers where surge has been observed, their correspond-
ing label in the Randolph Glacier Inventory (RGI) classification, and the probability
estimates of our XGBoost model.

RGIId Name RGI 6.0 (classes) Probability XGBoost Reference

RGI60-07.00276 Arnesenbreen Possible 67% Leclercq et al. (2021)
RGI60-07.00296 Strongbreen Probable 72% Leclercq et al. (2021)
RGI60-07.00440 Svalisbreen Not Observed 64% Leclercq et al. (2021)
RGI60-07.00241 Penckbreen Possible 65% Leclercq et al. (2021)
RGI60-07.00501 Aavatsmarkbreen Possible 70% Luckman et al. (2015)
RGI60-07.00296 Morsnevbreen Probable 72% Benn et al. (2019)
RGI60-07.00027 Austfonna Basin 3 Probable 71% Schellenberger et al. (2017)
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Figure 11: Sketch of the features that have been implemented in our model and new
features that could be implemented for evaluating the surging potential of glaciers.

5 Conclusions and perspectives511

We present a framework based on machine learning models as well as a newly com-512

bined database to perform probabilistic glacier hazard mapping. The framework involves513

discretizing features along glacier centerlines. The most important features that explain514

glacier surge, i.e. the width, the thickness, the runoff, the surface and bed slopes and the515

surface mass balance are aligned with theories of glacier surge. Our framework allows516

a quantitative assessment of the surge potential of glaciers in Svalbard, that complements517

the previously established classification in the Randolph Glacier Inventory. Several new518

glaciers have been identified as surging glaciers with our model and confirmed by inde-519

pendent observations, which strengthens the robustness of our approach.520

To complement theories of glacier surge, new features might be added to our frame-521

work, i.e. the thickness of the underlying till, the internal reflection horizons imaging the522

transition between cold and temperate ice, the basal temperature and geothermal gra-523
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dient, and the lithology of the underlying bed. Monitoring efforts are encouraged to be524

pursued towards this goal (Fig. 11). Our method to compute probabilistic glacier haz-525

ard mapping based on machine learning methods and a discretized database could also526

be applied to other regions of the world and/or adapted to other field (e.g. landslides527

and earthquakes dynamics).528
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Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M.,677

Poloczanska, E., & Weyer, N. (2019). The ocean and cryosphere in a changing678

climate. Geneva: Intergovernmental Panel on Climate Change.679
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Appendix A Boostrapping results700

Figure A1: Evaluation of model consistency. (a) We perform the model calculation on
fifty different training sets selected randomly and calculate the Area Under the Curve
(AUC) for the training and the testing models. (b) The training and testing sets can be
separated following different proportions. We performed different splits from 10% of the
data-set belonging to the training set to 90% of the data-set belonging to the training
set. We calculated the AUC. (c) K-Fold cross validation performed on 10 folds and the
associated AUC for the train and the test set.

Appendix B Exhaustive grid search for hyper-parameters tuning701

Hyperparameters define the structure of a model. For example, the hyperparam-702

eters of a random forest model would describe how many trees to grow, the depth of those703

trees, and the algorithm to use to grow the trees. Hyperparameters are separate from704

the data used to train the model and their values cannot be estimated from the data while705

they need to be set before the learning process begins. To optimize the hyperparame-706

ters we used the exhaustive grid search method. It considers several possibilities for each707

hyperparameters and try every combination possible before choosing the combination708

that returns a lower error score. This method should be guided by cross-validation on709

the training set. The exhaustive grid search is run using the scikit-learn library of Python710

(Pedregosa et al., 2011). Table B1 displays the three different models evaluated in our711

study and the hyperparameters that have been selected by the exhaustive grid search.712

The best values for these hyperparameter are shown in the last column.713

Table B1: Results of the exhaustive grid search for hyperparameter tuning and the corre-
sponding Area Under the Curve (AUC).

Method Hyperparameter Best value AUC

Logistic regression
C 1x10−5

0.70
Penalty L2

Random forest
Number of trees 1000

0.71
Maximum depth 2

XGBoost
Maximum depth 2

0.75
Minimum child weight 1
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Appendix C Detailed description of feature importances714

To better understand how the surge probabilities are calculated and can be cor-715

related to surging mechanisms, the relative contribution of each feature can be analysed716

by calculating the feature importance. Each one of the three machine learning models717

we used calculate differently the feature importances. We detail mostly how feature im-718

portance is implemented in XGBoost since this model performs the best for the assess-719

ment of surging potential for Svalbard glaciers. In XGBoost, after the trees are built,720

the model reports directly the feature importance instead of the coefficient values com-721

monly reported in logistic regression. Each time a feature is used in a tree, the tree will722

split optimally to a certain location to increase the accuracy, so-called the gain. For each723

specific feature, the feature importance corresponds to the average gain across all deci-724

sion making. Different implementation are proposed to estimate the contribution of each725

feature in the model decision. We focused on the gain and weight. The gain is the im-726

provement in accuracy brought by a feature to the branches. A higher value implies that727

the feature is more important for generating a prediction. The weight corresponds to the728

number of times a feature is used to split the data across the tree. To assess how many729

features are needed to maximize the AUC, we performed a recursive feature elimination.730

Initially, the model is trained and tested with the features that had the highest feature731

importance score. Then, at every iteration, the model is trained and tested adding one732

more feature and this process is repeated until the maximum number of features is reached.733

The AUC is saved at every iteration and the recursive feature elimination is performed734

using the scores computed with the weight and the gain method.735

Appendix D Centerline probability736
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Figure D1: Probability map for each point of glacier centerlines to be classified as surge-
type in the XGBoost model.
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