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Abstract

The Madden-Julian Oscillation (MJO) is a major source of predictability on the sub-seasonal (10- to 90-days) time scale. An

improved forecast of the MJO, may have important socioeconomic impacts due to the influence of MJO on both, tropical and

extratropical weather extremes. Although in the last decades state-of-the-art climate models have proved their capability for

forecasting the MJO exceeding the 5 weeks prediction skill, there is still room for improving the prediction. In this study we

use Multiple Linear Regression and an Artificial Neural Network as post-processing methods to improve one of the currently

best dynamical models developed by the European Centre for Medium-Range Weather Forecast (ECMWF). We show that the

post-processing with the machine learning algorithm employed leads to an improvement of the MJO prediction. The largest

improvement is in the prediction of the MJO geographical location and intensity.
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Abstract20

The Madden-Julian Oscillation (MJO) is a major source of predictability on the sub-seasonal21

(10- to 90-days) time scale. An improved forecast of the MJO, may have important so-22

cioeconomic impacts due to the influence of MJO on both, tropical and extratropical weather23

extremes. Although in the last decades state-of-the-art climate models have proved their24

capability for forecasting the MJO exceeding the 5 weeks prediction skill, there is still25

room for improving the prediction. In this study we use Multiple Linear Regression and26

an Artificial Neural Network as post-processing methods to improve one of the currently27

best dynamical models developed by the European Centre for Medium-Range Weather28

Forecast (ECMWF). We show that the post-processing with the machine learning algo-29

rithm employed leads to an improvement of the MJO prediction. The largest improve-30

ment is in the prediction of the MJO geographical location and intensity.31

Plain Language Summary32

The Madden-Julian Oscillation (MJO) has important socioeconomic impacts due to its33

influence on both, tropical and extratropical weather extremes. Although in the last decades34

state-of-the-art climate models have proved their capability for forecasting the MJO ex-35

ceeding the 5 weeks prediction skill, there is still room for improvement. In this study36

we use artificial intelligence to correct the predictions provided by one of the currently37

best climate models, developed by the European Centre for Medium-Range Weather Fore-38

cast (ECMWF). We show that artificial intelligence leads to an improved prediction of39

the MJO geographical location and intensity.40

1 Introduction41

The Madden-Julian Oscillation (MJO) with its 30- to 60-day oscillation is the major sub-42

seasonal fluctuation in tropical weather (Madden & Julian, 1971, 1972; Vitart, 2009; Lau43

& Waliser, 2011; Zhang et al., 2013; Ferranti et al., 2018). It is the main source of intra-44

seasonal fluctuations in the Indian monsoon (Taraphdar et al., 2018; Dı́az et al., 2020),45

and is also known to modulate the tropical cyclogenesis (Camargo et al., 2009; Klotzbach,46

2010; Fowler & Pritchard, 2020), to have a two-way interaction with El Niño-Southern47

Oscillation (ENSO) (Bergman et al., 2001), to influence the Asian-Australian monsoon (Wheeler48

et al., 2009), and be influenced by the quasi-biennial oscillation (Wang et al., 2019; Mar-49

tin, Son, et al., 2021). Moreover, the MJO not only affects the tropical weather, but also50

the extra-tropical weather through teleconnections (Alvarez et al., 2017; Ungerovich et51

al., 2021). Therefore, MJO has a large impact on the economy, society, and agriculture,52

motivating the wide interest in its prediction.53

Many efforts have been made in this direction in the last decades, with dynamical mod-54

els leading to the current best forecasts (Jiang et al., 2020), but despite the continuous55

progress of the dynamical models, there is still room for improvement in the MJO pre-56

diction (Zhang et al., 2013; Jiang et al., 2020).57

In particular, an improvement of the prediction skill when MJO crosses the Maritime58

Continent (MC) barrier (C.-H. Wu & Hsu, 2009; H.-M. Kim et al., 2016; Barrett et al.,59

2021) will be of practical importance due to the influence of MJO on ENSO, as an im-60

proved MJO prediction may contribute to improving the prediction of ENSO.61

Machine Learning (ML) algorithms have been extensively used in many fields, and they62

are gaining a foothold in weather and climate modeling (O’Gorman & Dwyer, 2018; Di-63

jkstra et al., 2019; Tseng et al., 2020; Gagne II et al., 2020; Silini et al., 2021) among oth-64

ers. Although MJO predictions obtained using ML models do not outperform dynam-65

ical models (Silini et al., 2021; Martin, Barnes, & Maloney, 2021), a hybrid approach,66

combining dynamical models and ML techniques, may improve the results. In this way,67
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it is possible to use dynamical models that have been developed across decades, based68

on physical phenomena, in combination with data-driven ML techniques, an approach69

that has shown its ability to reduce the gap between observations and dynamical mod-70

els’ forecasts (Rasp & Lerch, 2018; McGovern et al., 2019; Scheuerer et al., 2020; Haupt71

et al., 2021; Vannitsem et al., 2021).72

Recently, it has been shown that bias correction in linear dynamics (J. Wu & Jin, 2021),73

and using Long Short-Term Memory (LSTM) networks on multi-model means (H. Kim74

et al., 2021), improved the MJO prediction.75

Currently, the best forecast dynamical model in terms of MJO prediction skill is the one76

developed by the European Centre for Medium-Range Weather Forecast (ECMWF) (Jiang77

et al., 2020). Therefore, in this study we attempt to improve ECMWF forecasts by us-78

ing Multiple Linear Regression (MLR) and Artificial Neural Networks (ANNs), as post-79

processing tools.80

To quantify the forecast skill we use four metrics, namely the bivariate correlation co-81

efficient (COR), the bivariate root-mean-square error (RMSE), with threshold values COR=0.582

and RMSE=1.4, as well as the amplitude error and the phase error (Rashid et al., 2011).83

We apply the post-processing ML techniques to the ensemble mean of ECMWF, and we84

show that ANNs is able to correct the dynamical model forecasts leading to an improved85

MJO prediction. In particular, it improves the prediction of the MJO over the MC and86

its amplitude, while the phase errors obtained with the two post-processing techniques87

are similar.88

2 Data, Methods and Models89

2.1 RMM Data90

For this study, we use the Real-time Multivariate MJO (RMM) index (Wheeler & Hen-91

don, 2004) as labels for the supervised learning method, which is used to characterize92

the MJO geographical position and intensity. The first two principal components of the93

combined empirical orthogonal functions (EOFs) of outgoing longwave radiation (OLR),94

zonal wind at 200 and 850 hPa averaged between 15◦N and 15◦S are labeled RMM1 and95

RMM2. With a polar transformation, it is possible to define the MJO phase and am-96

plitude. The phase is divided into 8 classes, each corresponding to a different sector of97

the phase diagram defining the observed MJO life cycle. The amplitude, describing the98

MJO intensity, when smaller than 1 defines a non-active MJO. The ERA5 RMM1 and99

RMM2 from 13th June 1999 to 29th June 2019 were downloaded from (ECMWF RMM100

reforecasts data, 2021). This time window is selected to match the ECMWF reforecasts,101

presented in the previous section.102

2.2 ECMWF RMM reforecasts103

The samples used as input for the ANN and to assess the model performance, are ECMWF104

reforecasts with Cyrcle 46r1 freely available from (ECMWF RMM reforecasts data, 2021).105

This dataset is composed of 110 initial dates per year for 20 years, between the 13th June106

1999 and the 29th June 2019. In total there are 2200 starting dates, from which a 46-107

lead-days prediction is available. The dataset provides the prediction of four variables:108

the first two principal components of the RMM index, and their polar transformation.109

For each starting day and variable there are 12 time series of 46 points. One is the con-110

trolled forecast (cf) corresponding to a forecast without any perturbations, then there111

are 10 perturbed forecasts members (pf) which have slightly different initial conditions112

from the cf to take into consideration errors in observations and the chaotic nature of113

weather. Finally there is the ensemble mean (em), which corresponds to the mean of the114

11 members (cf + 10 pf). In this particular study, we made use solely of the em data115

–3–
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2.3 Prediction skill116

To know how good a model is in predicting, we present here the metrics that will be used.117

For sake of comparison, we use the same metrics adopted in (H. Kim et al., 2018), which118

are adapted from (Lin et al., 2008; Rashid et al., 2011), where they define the COR and119

RMSE as follows:120

COR(τ) =

∑N
t=1[a1(t)b1(t, τ) + a2(t)b2(t, τ)]√∑N

t=1[a21(t) + a22(t)]
√∑N

t=1[b21(t, τ) + b22(t, τ)]
, (1)

RMSE(τ) =

√√√√ 1

N

N∑
t=1

[|a1(t)− b1(t, τ)|2 + |a2(t)− b2(t, τ)|2], (2)

where a1(t) and a2(t) correspond to the observed RMM1 and RMM2 at time t, while121

b1(t, τ) and b2(t, τ) will be the respective forecasts for time step t for a lead time of τ122

days, and N is the number of forecasts. The bivariate correlation coefficient expresses123

the strength of the linear relationship between the forecasts and the observations, while124

the root-mean-square error compares the difference between the values of the forecasts125

and the observations.126

In this study we use COR=0.5 and RMSE=1.4 as prediction skill thresholds (Rashid et127

al., 2011). The RMM prediction skill is defined as the time in which the COR takes a128

value below 0.5 and RMSE gets above 1.4. For a given lead time, the COR and RMSE129

are the average value up to that lead time.130

2.4 Amplitude and phase error131

To characterize the MJO it is convenient to perform a change of coordinates from carte-132

sian to polar (RMM1, RMM2)→(A, ϕ). The MJO amplitude A(t), describing its inten-133

sity, can be written as:134

A(t) =
√
RMM12(t) +RMM22(t), (3)

while the MJO phase ϕ(t), describing the geographical position of the enhanced rain-135

fall region center, can be written as:136

ϕ(t) = tan−1

(
RMM2(t)

RMM1(t)

)
. (4)

By definition (Rashid et al., 2011), the amplitude error for a given lead time EA(τ) can137

be expressed as138

EA(τ) =
1

N

N∑
t=1

(Apred(t, τ)−Aobs(t)), (5)

where N represents the number of predicted days, Aobs(t) is the observations amplitude139

at time t and Apred(t, τ) is the predictions amplitude at time t with a lead time of τ days.140

The phase error Eϕ(τ) is defined by141

Eϕ(τ) =
1

N

N∑
t=1

tan−1

(
a1(t)b2(t, τ)− a2(t)b1(t, τ)

a1(t)b1(t, τ)

)
, (6)

where a1(t) and a2(t) correspond to the observed RMM1 and RMM2 at time t, while142

b1(t, τ) and b2(t, τ) correspond to the predicted RMM1 and RMM2 at time t with a lead143
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Figure 1. ANN architecture employed for this study.

time of τ days. These two metrics allow us to analyze in more detail the model perfor-144

mance to predict the MJO, in conjunction with COR and RMSE.145

2.5 Post-processing methods146

The post-processing machine learning tool built for this study is a fully connected feed-147

forward neural network (FFNN) composed of an input layer containing Nin neurons, a148

single hidden layer with Nh neurons, and an output layer with Nout neurons, as shown149

in Fig 1. The activation function used is the Rectified Linear Unit (ReLU), which trans-150

forms the weighted sum of the input values by returning 0 in case of a negative-sum, and151

the result of the sum otherwise. Dealing with a supervised regression problem, the mean-152

squared error (MSE) is extensively employed as loss function, and it is used in the frame-153

work of this study to compare the neural network output with the observations (labels).154

An adaptive optimizer (Adam) is selected to automatically manage the learning rate dur-155

ing the training phase.156

We use an adaptive number of neurons depending on the number of days we want to fore-157

cast. The ECMWF reforecasts provide predictions up to a lead time of 46 days for both158

RMM1 and RMM2, and we build a different network for each lead time. This means that159

the number of output neurons Nout can fall between 2 and 92 because we use both RMM1160

and RMM2.161

After selecting the number of output neurons (which is even and in fact defines our lead162

time, τ = Nh/2), we adapt the number of input Nin and hidden neurons Nh as follows.163

As input, the networks receive the ECMWF reforecasts, which also limit the number of164

input neurons Nin in the range between 2 and 92. After training the networks with dif-165

ferent Nin, we found the best result is obtained with Nin = Nout + 6 with an upper166

limit of 92. Using all 92 inputs, the prediction skill for short lead times slightly decreases.167

For simplicity, a fixed number of 92 inputs could also be used. An interpretation of the168

reason behind this result is that to correct the prediction values for a given day, the fu-169

ture predicted values can help up to some extent. To correct the prediction of a given170

day, for each RMM we use the predicted values of up to 3 days after that particular day.171

To avoid overfitting, we want the number of hidden neurons to be relatively small, for172

this reason after some tests, we select Nh = Nin/2. The training has been performed173

over 100 epochs which allows to not overfit the model, and the model performance is tested174

using a walk-forward validation, where we found the best minimum number of samples,175

out of 2200 available, to be 1700. From the minimum number of samples, the train set176
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is then extended by 100 samples (∼ 1 year) for each run and tested on the subsequent177

200 samples (∼ 2 years). Other methods to avoid overfitting could also be used, such178

as early stopping or drop-out.179

The MLR corrects the RMMs separately, using the ECMWF predictions as input and180

the ERA5 observations as output, with the same walk-forward validation used for the181

ANNs.182

3 Results and Analysis183

The first part of this section will be devoted to the results obtained for the MJO am-184

plitude and phase. In the second part we present the prediction skill assessment using185

the COR 0.5 level, and RMSE 1.4 level as metrics, while in the last part of the section186

we show how the different forecast methods perform for different MJO initial phases.187

The results are obtained training the ANN from 13th of June 1999 using a walk-forward188

validation, and averaging the error obtained by testing over different unseen time win-189

dows from 5th December 2014 to 29th June 2019. The size of the windows is defined by190

the selected number of initial days from which the ECMWF forecast starts. Due to the191

bi-weekly acquisition of ECMWF, this means that each window of 200 points corresponds192

to 2 years approximately. Each member of the ensemble over which the average is per-193

formed, corresponds to a test set used for the walk-forward validation. Different sizes194

of the test set between 100 and 500 samples have been tested, leading to prediction skills195

that vary sensibly. For this reason, it is important to take into account that results may196

vary depending on the test set and its size, albeit preserving the same general result: the197

post-processing corrections improve the ECMWF forecasts.198

In Fig. 2, we show the error on the MJO amplitude for events starting with an ampli-199

tude larger than 1. We can notice an underestimation of the amplitude as expected (Jiang200

et al., 2020). Nevertheless, the post-processed amplitudes are closer to the observed ones,201

with respect to the raw ECMWF forecast. The maximum improvement occurs for a lead202

time of 28 days when the ECMWF-ANN model has a RMSE similar to the RMSE of203

the uncorrected ECMWF at a lead time of 20 days.204

By the definition of the amplitude error, errors of opposite sign could potentially can-205

cel out resulting in misleading conclusions. For this reason in Fig. 2 we also provide the206

RMSE of the amplitude error, which shows a similar behavior as before. Both post-processing207

techniques improve the results, with the ANN bringing the highest benefits in terms of208

the magnitude of error reduction, and the forecasting horizon of the improvement.209

In Fig. 3, we present the MJO phase error. The post-processing techniques provide an210

improved prediction, during which all three models predict a negative phase. A positive211

phase error indicates a faster propagating MJO, while a negative error represents a slower212

propagation. The ECMWF forecast shows an overall slower propagation of the MJO with213

respect to the observations, and both post-processing corrections provides an increment214

of the MJO speed prediction. In particular, at the 18 days lead time we can notice an215

increment of the ECMWF phase error, which MLR and ML tend to correct.216

Fig. 4, shows the COR and RMSE of the ECMWF ensemble mean forecasts, the MLR,217

and ANN post-processing. A COR of 0.5 is taken here as baseline for useful prediction218

skill. It is possible to notice that the improvement provided by both post-processing meth-219

ods slightly increases with the lead time. ML post-processing is the overall best of the220

three methods. All models COR are overlapped up to 2 weeks, from which the ML post-221

processing diverges from the other two up to 3 weeks, when the MLR diverges from the222

ECMWF prediction, joining the ML prediction up to 5 weeks. Using the previously se-223

lected parameters used to build and train the ANN architecture (number of neurons per224

layer, minimum sample size, test set size, etc.), Fig. 4 displays a prediction skill improve-225
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21st Nov 2018 5th Dec 2018

Figure 2. MJO amplitude error (left) and amplitude RMSE (right) as a function of the lead

time for events starting with an amplitude larger than 1. The color indicates the forecast model,

the black line corresponds to the ECMWF forecast, the blue line corresponds to the MLR correc-

tion of the ECMWF forecast, while the orange line corresponds to the post-processed ECMWF

forecast with an ANN.

21st Nov 2018 5th Dec 2018

Figure 3. MJO phase error for events starting with an amplitude larger than 1. The color

indicates the forecast model, the black line corresponds to the ECMWF forecast, the blue line

corresponds to the MLR correction of the ECMWF forecast, while the orange line corresponds to

the post-processed ECMWF forecast with an ANN.
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21st Nov 2018 5th Dec 2018

Figure 4. COR (left) and RMSE (right) as a function of the forecast lead time for events

starting with an amplitude larger than 1. The color indicates the forecast model and the red

dashed line indicates the prediction skill threshold of COR=0.5 and RMSE=1.4. The black line

corresponds to the ECMWF forecast, the blue line corresponds to the post-processed ECMWF

forecast with MLR, while in orange it is shown the post-processed ECMWF forecast with an

ANN.

ment at the COR=0.5 level of about 1 day. In terms of RMSE, up to a lead time of 4226

weeks, neither post-processing technique crosses the RMSE-threshold of 1.4, and they227

both improve the prediction skill with respect to the ECMWF model alone.228

In Fig. 5, we display the comparison between the observations, the ECMWF forecast,229

and its corrections, in a Wheeler-Hendon phase diagram for two different starting dates230

of the same MJO event. The dots are marked every 7 days to identify the weeks. In the231

left panel, the 3 weeks prediction starts on the 21st November 2018 and displays its pro-232

gression from the Western Hemisphere over the Indian Ocean. It is possible to notice that233

both post-processing techniques display very similar prediction, with a slightly larger am-234

plitude than ECMWF, closer to the observations for all lead times. In the right panel,235

the 3 weeks prediction starts on the 5th December 2018 in the Indian Ocean. We can236

see a drop of accuracy in the ECMWF prediction, and the MLR post-processing, approach-237

ing the MC. The ML correction instead preserves a larger amplitude, closer to the ob-238

servations.239

It is also possible to notice that while the speed of the MJO event is well predicted in240

the left panel, in the right one there is a drop of the MJO speed forecast over the Indian241

Ocean and MC.242

Here we presented an example of a strongly active MJO event, where the corrections clearly243

improve the ECMWF prediction and it is among the best found. All predictions from244

the 12th of December 2014 to the 18th of June 2019, can be found in (Silini, 2021b). Look-245

ing at these results it is possible to appreciate the general improvement provided by the246

post-processing corrections.247

Finally we study the amplitude error, the phase error, the COR, and RMSE, as a func-248

tion of the different initial phases of MJO. As displayed in Fig. 6, applying post-processing249

methods improves the amplitude error for all initial phases. The MLR provides an im-250

provement with respect to the ECMWF model, but the ML correction leads to the low-251

est error. Concerning the initial phases, we find the lowest amplitude error when an MJO252

event starts over the MC, while the largest is found in phase 2, over the Indian Ocean.253

With the MJO propagating at an average speed of 5 ms−1, events starting in phase 2254

will cross the MC in 2-3 weeks time (H.-M. Kim et al., 2014). The phase error displays255
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Figure 5. Wheeler-Hendon phase diagram for two different starting dates of the same MJO

event, and a 3 weeks prediction. The left panel starting date is the 21st November 2018. The

MJO enhanced rainfall region travels across the western Hemisphere and Indian Ocean. The

right panel starting date is the 5th of December 2018, and represents a 3 weeks prediction ap-

proaching and traveling over the MC. The rotation of the event in the phase diagram is counter-

clockwise, and the dots are included every 7 days, marking the different weeks.

a large worsening of the MJO localization prediction, when the forecast starts between256

the MC and Western Pacific (phase 6-8). This observation is consistent with Fig. 5, where257

we noticed a drop in the accuracy of the MJO speed prediction over the Indian Ocean258

and MC. The COR finds its maximum when starting over the MC continent, consistently259

with the amplitude error. The ML correction has the highest COR except for phase 8,260

where MLR leads to the highest one. The RMSE is very consistent with the COR, in261

which we find the the minimum in phase 4, and the ML correction having the lowest er-262

ror, except for phase 8. Overall, we can conclude that the ML post-processing is worth263

applying especially to reduce the error on the amplitude prediction, while MLR could264

be useful for a better prediction of the MJO location.265

4 Conclusions266

We employed a MLR and a ML algorithm to perform a post-processing correction of the267

prediction of the dynamical model that currently holds the highest MJO prediction skill (Jiang268

et al., 2020), developed by ECMWF.269

The largest improvement is found in the MJO amplitude and phase individually, which270

decreases the underestimation of the amplitude, providing a more accurate predicted ge-271

ographical location of the MJO. The amplitude and phase estimation are improved for272

all lead times up to 5 weeks.273

We obtained an improved prediction skill of about 1 day for a COR of 0.5.274

Plotting the forecasts in a Wheeler-Hendon phase diagram we found an improvement pre-275

dicting the MJO propagation, notably across the MC, which helps overcome the MC bar-276

rier.277
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Considering the results obtained for each initial MJO phase, we found that both post-278

processing tools improve the prediction, with the ML correction being the best.279

The ML technique provides an improvement over MLR for all initial phases except phase280

8. In the case of phase forecast it might be also sufficient to use MLR instead of ML. This281

suggests a predominance of linear corrections to improve the MJO phase forecast.282

This study confirms the potential of post-processing techniques to reduce the knowledge283

and bias gap between dynamical models forecasts and observations, providing advance-284

ment in MJO prediction.285

As future work, it would be interesting to test a stochastic approach to post-processing286

(as in (Rasp & Lerch, 2018), which would allow to obtain a probabilistic forecast287

Although the improvement provided by the MLR and ML techniques, a post-processing288

method will always strongly rely on the accuracy of the dynamical model’s forecasts. For289

this reason, it is crucial to work on both dynamical models and machine learning meth-290

ods to progress.291

5 Data availability292

The RMM data, and the ECMWF reforecasts can be freely downloaded from (ECMWF293

RMM reforecasts data, 2021).294

6 Code availability295

The Keras TensorFlow (Abadi et al., 2015) trained FFNN can be found in (Silini, 2021a).296
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