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Abstract

We examine and contrast the simulation of Sahel rainfall in phases 5 and 6 of the Coupled Model Intercomparison Project

(CMIP5 and CMIP6). On average, both ensembles grossly underestimate the magnitude of low-frequency variability in Sahel

rainfall. But while CMIP5 partially matches the timing and pattern of observed multi-decadal rainfall swings in its historical

simulations, CMIP6 does not. To classify model deficiency, we use the previously-established link between changes in Sahelian

precipitation and the North Atlantic Relative Index (NARI) for sea surface temperature (SST) to partition all influences on

Sahelian precipitation into five components: (1) teleconnections to SST variations; the effects of (2) atmospheric and (3) SST

variability internal to the climate system; (4) the SST response to external radiative forcing; and (5) the “fast” response to

forcing, which is not mediated by SST. CMIP6 atmosphere-only simulations indicate that the fast response to forcing plays

only a small role relative to the predominant effect of observed SST variability on low-frequency Sahel precipitation variability,

and that the strength of the NARI teleconnection is consistent with observations. Applying the lessons of atmosphere-only

models to coupled settings, we imply that the failure of coupled models in simulating 20th century Sahel rainfall derives from

their failure to simulate the observed combination of forced and internal variability in SST. Yet differences between CMIP5 and

CMIP6 Sahel precipitation do not mainly derive from differences in NARI, but from either their fast response to forcing or the

role of other SST patterns.
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ABSTRACT

We examine and contrast the simulation of Sahel rainfall in phases 5 and 6 of the Coupled Model Intercom-
parison Project (CMIP5 and CMIP6). On average, both ensembles grossly underestimate the magnitude
of low-frequency variability in Sahel rainfall. But while CMIP5 partially matches the timing and pattern
of observed multi-decadal rainfall swings in its historical simulations, CMIP6 does not. To classify model
deficiency, we use the previously-established link between changes in Sahelian precipitation and the North
Atlantic Relative Index (NARI) for sea surface temperature (SST) to partition all influences on Sahelian
precipitation into five components: (1) teleconnections to SST variations; the effects of (2) atmospheric and
(3) SST variability internal to the climate system; (4) the SST response to external radiative forcing; and (5)
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the “fast” response to forcing, which is not mediated by SST. CMIP6 atmosphere-only simulations indicate
that the fast response to forcing plays only a small role relative to the predominant effect of observed SST
variability on low-frequency Sahel precipitation variability, and that the strength of the NARI teleconnec-
tion is consistent with observations. Applying the lessons of atmosphere-only models to coupled settings, we
imply that the failure of coupled models in simulating 20th century Sahel rainfall derives from their failure to
simulate the observed combination of forced and internal variability in SST. Yet differences between CMIP5
and CMIP6 Sahel precipitation do not mainly derive from differences in NARI, but from either their fast
response to forcing or the role of other SST patterns.

1. Introduction

The semi-arid region bordering the North African Savanna and the Sahara Desert, known as the Sahel,
received much scientific attention since it experienced unparalleled dramatic rainfall variability in the second
half of the 20th century. The importance of teleconnections between Sahel precipitation and global sea surface
temperature (SST) was demonstrated in the early stages of Sahel climate variability research (Folland et al.
1986; Giannini et al. 2003; Knight et al. 2006; Palmer 1986; Zhang and Delworth 2006), and has been further
reinforced in more recent studies (Okonkwo et al. 2015; Parhi et al. 2016; Park et al. 2016; Pomposi et al.
2015; Pomposi et al. 2016; Rodŕıguez-Fonseca et al. 2015 and references therein). But while the dominant
role of SST in driving the pacing (though not necessarily the full magnitude) of 20th century Sahel rainfall
variability is unquestioned (Biasutti 2019), there is still debate on whether the evolution of SST and the
related Sahel precipitation variability were externally forced (Ackerley et al. 2011; Biasutti 2013; Biasutti
and Giannini 2006; Biasutti et al. 2008; Bonfils et al. 2020; Dong and Sutton 2015; Giannini and Kaplan
2019; Haarsma et al. 2005; Haywood et al. 2013; Held et al. 2005; Hirasawa et al. 2020; Hua et al. 2019; Iles
and Hegerl 2014; Kawase et al. 2010; Marvel et al. 2020; Polson et al. 2014; Undorf et al. 2018; Westervelt
et al. 2017) or the manifestation of variability internal to the climate system (IV, Sutton and Hodson 2005;
Ting et al. 2009; Zhang and Delworth 2006).

Recently, Herman et al. (2020, hereafter H20) investigated multi-model means (MMM) of historical simu-
lations from the Coupled Model Intercomparison Project phase 5 (CMIP5, Taylor et al. 2012), and found
that anthropogenic aerosols (AA) and volcanic aerosols (VA), but not greenhouse gases (GHG), were re-
sponsible for forcing simulated Sahelian precipitation that correlates well with observations, with AA alone
responsible for the low-frequency component of simulated variability. This conclusion appeared consistent
with previous claims that AA emissions, which increased until the 1970s and then decreased in response
to clean air initiatives (Klimont et al. 2013; Smith et al. 2011), caused multi-decadal variability in Sahel
precipitation via changes in Northern Hemisphere surface temperature (Ackerley et al. 2011; Haywood et al.
2013; Hwang et al. 2013; Undorf et al. 2018), or specifically via multidecadal variability in North Atlantic
SST (the Atlantic Multidecadal Variability, AMV; Booth et al. 2012; Hua et al. 2019). However, H20 also
found that the simulated rainfall response to forcing has little low-frequency power relative to observations,
and that simulated IV is unable to account for this difference.

H20 and most other attribution studies do not examine in depth the pathways through which AA (and for that
matter, IV and other external forcing agents) affect Sahel precipitation. Thus, H20 did not determine whether
the discrepancy between CMIP5 simulations and observations represents an underestimate of aerosol indirect
effects and climate feedbacks that amplify the simulated precipitation response to AA, or a fundamental
inability of the models to simulate aspects of the observed climate response to forcing or observed modes of
IV. Identifying the deficiencies in model representation of the pathways by which external forcing and IV
influence the West African Monsoon and Sahel rainfall is essential for attribution of 20th century changes
and also for prediction of this region’s climate future, as model simulations don’t even agree on the sign of
future precipitation changes in the Sahel (Biasutti 2013).

Here, we use the well-established link between SST and Sahel precipitation to decompose the effects of
individual external forcing agents (F) and internal variability (IV) on Sahel precipitation (P) into five path
components, presented in Figure 1: (1) teleconnections that communicate variations in SST to variations in

P (indicated by the arrow
−→
t ); (2) the “fast” atmospheric and land-mediated effect of external forcing (F) on
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P (
−→
f ); (3) the direct effect of atmospheric IV on P (−→a ); (4) the effect of F on SST (−→s ); and (5) the impact

of IV in the coupled climate system on SST (−→o ). The pathF → SST → P is the “slow,” SST-mediated
effect of F on P.

Fig. 1. Causal diagram relating external forcings (F), internal variability (IV), sea surface temperatures
(SST), and Sahelian precipitation (P) via directional causal arrows. Unobserved variables and their causal
effects are presented with dashed lines, while observed variables are presented with solid lines.

Characterization of these path components has been controversial. Firstly, separating the SST response to
forcing (−→s ) from SST variability internal to the climate system (−→o ) has proven difficult (top of diagram). In
particular, there is significant debate over whether observed AMV is a response to external forcing (Booth
et al. 2012; Chang et al. 2011; Hua et al. 2019; Menary et al. 2020; Rotstayn and Lohmann 2002) or mainly
an expression of IV in the Atlantic Meridional Overturning Circulation (AMOC, Han et al. 2016; Knight
et al. 2005; Qin et al. 2020; Rahmstorf et al. 2015; Sutton and Hodson 2005; Ting et al. 2009; Yan et
al. 2019; Zhang 2017; Zhang et al. 2016; Zhang et al. 2013) that is underestimated in models (Yan et al.
2018). This debate has been hard to resolve partially because IV in AMOC and aerosol forcing may have
coincided by chance in the 20thcentury (Qin et al. 2020). Next, examine the bottom of the diagram. The

effect of the observed SST field on Sahel precipitation (
−→
t ) can be directly estimated using atmosphere-only

simulations, but while these simulations capture the pattern of observed Sahel precipitation variability, many
fail to capture its full magnitude (Biasutti 2019; e.g. Hoerling et al. 2006; Scaife et al. 2009). This could
reflect an underestimate in climate models of the strength of SST teleconnections, which could be resolution
dependent (Vellinga et al. 2016), or of land-climate feedbacks that amplify the teleconnections (

−→
t ), such

as vegetation changes (Kucharski et al. 2013). But it could also reflect a significant additional role in the

observations for a fast response to forcing (
−→
f ) that confounds the SST-forced signal[P ← F → SST → P ;

see Pearl et al. (2016) for notation] or coincides with it by chance.

To examine the path components in coupled simulations, we need a parsimonious characterization of the
relationship between SST and Sahel precipitation. Giannini et al. (2013) and Giannini and Kaplan (2019,
hereafter GK19) identify the North Atlantic Relative Index (NARI), defined as the difference between average
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SST in the North Atlantic (NA) and in the Global Tropics (GT), as the dominant SST indicator of 20th

century Sahel rainfall in observations and CMIP5 simulations. There are two main theories relating NARI
to Sahelian precipitation (see Biasutti 2019; Hill 2019 for reviews of competing theories of monsoon rainfall
changes). In the first, the “local view” (Giannini 2010), warming of GT causes even stronger warming
throughout the tropical upper troposphere (Knutson and Manabe 1995; Parhi et al. 2016; Sobel et al.
2002), increasing thermodynamic stability across the tropics and inhibiting convection in an “upped ante”
(Giannini and Kaplan 2019; Neelin et al. 2003) or “tropospheric stabilization” (Giannini et al. 2008; Lu
2009) mechanism. Warming of NA, on the other hand, is expected to thermodynamically increase moisture
supply to the Sahel by increasing specific humidity over the NA, and thus destabilize the atmospheric column
from the bottom up (GK19). The second theory interprets the relationship of Sahel precipitation to NARI,
or, similarly, to the Atlantic meridional temperature gradient or the Interhemispheric Temperature Difference
(ITD), as the result of an energetically-driven shift in the Intertropical Convergence Zone (ITCZ, Donohoe
et al. 2013; Kang et al. 2009; Kang et al. 2008; Knight et al. 2006; Schneider et al. 2014) and the African
rainbelt (e.g. Adam et al. 2016; Biasutti et al. 2018; Camberlin et al. 2001; Caminade and Terray 2010;
Hoerling et al. 2006; Hua et al. 2019; Pomposi et al. 2015; Westervelt et al. 2017). According to both
theories, an increase in NARI should wet the Sahel while a decrease causes drying. Given the prominence
of the NARI teleconnection in the 20th century and the assumption of linearity, we approximate the full
slow response as the product of the NARI response to external forcing and the strength of the NARI-Sahel
teleconnection.

This paper is organized as follows: Section 2 provides details on the simulations and observational data
used in this analysis while Section 3 discusses the methods. In Section 4.a, we update H20’s analysis to the
Coupled Model Intercomparison Project phase 6 (CMIP6, Eyring et al. 2016), examining the total response
to forcing (all paths from F to P) and internal variability (all paths from IV to P). We then evaluate
the performance of the CMIP6 AMIP simulations, decomposing them into the path components from the

bottom half of Figure 1 (
−→
t ,
−→
f , and −→a ) in Section 4.b, and focusing on the NARI teleconnection in Section

4.c. Section 4.d decomposes coupled simulations of NARI into the path components from the top half of
Figure 1 (−→s and−→o ), while Section 4.e evaluates the consistency of the NARI teleconnection established in
Section 4.c with coupled simulations. Finally, in Section 4.f, we use simulated NARI and the simulated
NARI teleconnection to decompose the total response of Sahel precipitation to external forcing in coupled
simulations (examined in Section 4.a) into fast and slow components. We discuss how our results fit in with
the existing literature in Section 5 before concluding in Section 6.

2. Data

We examine coupled “historical” simulations from CMIP5 (Taylor et al. 2012) and CMIP6 (Eyring et al.
2016) forced with four sets of forcing agents—AA alone, natural forcing alone (NAT, which includes VA as
well as solar and orbital forcings), GHG alone, and all three simultaneously (ALL)—as well as pre-Industrial
control (piC) simulations, in which all external forcing agents are held constant at pre-Industrial levels.
We additionally examine CMIP6 amip-piForcing (amip-piF) simulations, in which atmospheric models are
forced solely with observed SST, and CMIP6 amip-hist simulations, which are forced with observed SST and
historical ALL radiative forcing. Calculations with CMIP5 utilize the period between 1901 and 2003 while
calculations with CMIP6 extend to 2014.

In H20, we used all available institutions for each forcing subset. Here, in order to provide a more stringent
comparison of the effects of different forcing agents, we exclude institutions from the coupled ensemble that
do not provide AA, GHG, and ALL simulations, and from the AMIP ensemble if they do not provide both
amip-piForcing and amip-hist simulations. We additionally exclude piC simulations that are shorter than
the historical simulations as well as any simulations with data quality issues. Tables S1-S3 enumerate the
simulations used in this analysis.

Precipitation observations are from the Global Precipitation Climatology Center (GPCC, Becker et al.
2013) version2018, and SST observations are from the National Oceanic and Atmospheric Administration’s
(NOAA) Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5, Huang et al. 2017).
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We analyze precipitation over the Sahel (12°-18°N and 20°W-40°E) and the SST indices of GK19: the North
Atlantic (NA, 10°-40°N and 75°-15°W), the Global Tropics (GT, ocean surface in the latitude band 20°S-
20°N), and the North Atlantic Relative index (NARI, the difference between NA and GT). All indices are
spatially- and seasonally-averaged for July-September (JAS).

3. Methods

The multi-model mean (MMM) for a set of simulations consists of a 3-tiered weighted average over (1)
individual simulations (runs) from each model, (2) models from each research institution, and (3) institutions
in that ensemble. Details of the weighting are provided in H20; the results are robust to differences in
weighting. Time series are not detrended, and anomalies are calculated relative to the period 1901-1950.

To evaluate the performance of the simulations relative to observations, we compute correlations (r), which
capture similarity in frequency and phase, and root mean squared errors standardized by observed variance
(sRMSE), which measure yearly differences in magnitude between the simulations and observations. An
sRMSE of 0 represents a perfect match between simulations and observations, and 1 would result from
comparing the observations with a constant time series.

To estimate uncertainty in the forced MMMs and associated metrics, we apply a bootstrapping technique
to the last tier of the MMM as described in H20, yielding a probability distribution function (pdf) about
the MMM and each metric. Due to the finite number of simulations, these pdfs underestimate the true
magnitude of the uncertainty. We evaluate significance by applying a randomized bootstrapping technique,
which increases the effective sample size, to the piC simulations with one significant improvement over H20:
instead of using just one subset of each piC simulation at a random offset in the first tier of the MMM
in each bootstrapping iteration, we take enough subsets to match the number of that model’s historical
runs. Done this way, the confidence intervals calculated using piC simulations accurately represent noise
in the forced MMMs. PiC pdfs from the same ensemble differ slightly because many institutions provide a
different number of simulations for different subsets of forcing agents (see Table S2). Where the piC pdfs
and confidence intervals are similar enough, they are presented together with a single grey dotted curve and
dashed line; when they differ, they are presented in the colors associated with the relevant forcings.

We perform a residual consistency test, which compares the power spectra (PS) of individual simulations
to that of observations, with one significant modification over H20: we calculate the PS using the multi-
taper method. Confidence intervals for the PS for observations and MMMs are given by the multi-taper
method, without accounting for the uncertainty in the MMMs themselves. Mean PS by model are colored
by climatological rainfall bias given by those simulations. The multi-model mean of these PS, or the “tiered
mean”, is calculated using the three tiers from the definition of the MMM, but without weights, since spectral
power is not attenuated when averaging PS.

4. Results

a. Changes in CMIP6: Total Precipitation Response to Forcing and Internal Variability

If Sahelian precipitation is a linear combination of IV in the coupled climate system and variability forced
by external agents, then the MMM over coupled simulations with differing initial conditions filters out
atmospheric and oceanic IV (−→a and−→o ), leaving the fast and slow precipitation responses to external radiative

forcing (
−→
f andF → SST → P ). Figure 2 compares observed Sahelian precipitation anomalies (black, left

ordinates) to the MMM anomalies of simulated Sahelian precipitation (right, amplified colored ordinates)
in CMIP5 (dotted curves) and CMIP6 (solid curves) for four sets of forcing agents: ALL (a, blue), AA
(b, magenta), natural forcing (c, “NAT,” brown and red), and GHG (d, green). The figure also presents
the bootstrapping 95% confidence intervals of the forced CMIP6 MMMs (blue, magenta, brown, and green
shaded areas) and of MMMs over the CMIP6 piC simulations (yellow shaded areas) on the right ordinates.
The width of the yellow shaded areas represents the magnitude of noise deriving from coincident IV in the
MMMs. Differences in its width between panels arise from varying numbers of simulations for the different
forcing subsets (see Methods and Table S2).
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Fig. 2. Observed (black, left ordinates) and simulated (colored, right ordinates) Sahelian precipitation
anomalies, forced with ALL (a, blue), AA (b, magenta), NAT (c, brown/red), and GHG (d, green). The
CMIP6 MMMs are presented with solid curves surrounded by shaded areas demarking the bootstrapping
confidence interval, while the CMIP5 MMMs are presented with dotted curves. The yellow shaded area is
the confidence interval of randomized bootstrapped MMMs of CMIP6 piC simulations, and represents the
magnitude of noise in the CMIP6 MMMs. Hemispherically asymmetric volcanic forcing from Haywood et
al noted in panel (c). A negative sign denotes an eruption that cooled the northern hemisphere more than
the southern hemisphere while a positive sign denotes the opposite, aligning with the sign of the expected
Sahelian precipitation response to the eruption. Panel (a) additionally shows the CMIP6 ALL MMM when
restricted to models, rather than institutions, that provide AA simulations (blue dashed curve), and a 20-
year running mean of the sum of the AA, NAT, and GHG MMMs for CMIP5 (lavender dashed curve) and
CMIP6 (burgundy dashed curve). The label shows the number of institutions used for each CMIP6 MMM
(N), the correlation of the CMIP6 MMM with observations (r), and the standardized root mean squared
error of the CMIP6 MMM with observations (sRMSE).

In the AA experiments (panel b), CMIP6 is anomalously wetter than CMIP5 in the 1970s and around 2000,
but otherwise looks similar to CMIP5: precipitation declines in the mid-century and then recovers after the
clean air acts, preceding the timing of observed variability by about 10 years. There are some differences in
the NAT experiments between CMIP5 and CMIP6 (panel c), but the largest variations in both ensembles
are interannual episodes that are clearly associated with volcanic eruptions. In the GHG experiments (panel
d), CMIP6 shows anomalous wetting after 1970 that wasn’t present in CMIP5.

Similar changes can be seen in the ALL simulations (panel a): while CMIP5 reaches peak drought in 1982
– close to the observed precipitation minimum – CMIP6 dries very little and only until 1970, after which
it displays an anomalously wetter climate than CMIP5 through the end of the century. But while the
precipitation responses to different forcing agents appear to add linearly in CMIP5 (compare the lavender
dashed curve to the blue dotted curve), the late century wetting in CMIP6 is larger than the sum of GHG

6
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and AA wetting (burgundy dashed curve; including NAT does not help.) This effect is robust to differences
in model availability for the different sets of forcing agents (see figure caption and light blue dashed curve).
Thus, in the ALL simulations, CMIP6 displays slightly less drying from AA compared to CMIP5, more
wetting from GHG, and additional wetting after 1990 from a non-linear interaction between forcings.

As a result of these changes, the response to forcing in CMIP6 is a poor match to observations. Figure 3 dis-
plays the correlation (panel a, “r”) and sRMSE (panel b) between observations and simulated MMMs (dots)
and bootstrapped MMMs (curves) from CMIP6 (ALL in blue, AA in magenta, NAT in brown, and GHG in
green solid curves) and CMIP5 (ALL and AA in blue and magenta dotted-dashed curves; other simulations
omitted for clarity) from 1901 to the end of the simulations (2003 for CMIP5 and 2014 for CMIP6). The
dotted curves present the randomized bootstrapping distributions for the CMIP6 piC simulations, and the
vertical dashed lines mark the one-sided p=0.05 significance level given by these distributions. Recall that
correlation measures similarity in timing between simulations and observations where 1 is a perfect match,
and sRMSE measures the amplitude of differences between the simulations and observations where 0 is a
perfect match.

Fig. 3. Correlations (a) and standardized RMSE (b) between observations and historical and AMIP sim-
ulations from CMIP6 (1901-2014, solid) and those simulations from CMIP5 that outperform the CMIP6
historical simulations (1901-2003, dotted-dashed, legend entries include “5”). Dots and stars denote the
statistic between the MMM and observations, while the curves denote the bootstrapping pdfs. The dotted
grey curves display the bootstrapping pdfs for the same statistics applied to a MMM over the CMIP6 piC
simulations, and the grey dashed lines mark the one-sided p=0.05 significance level given by the piC dis-
tribution. Colored dotted curves and dashed lines show the piC distributions associated with those subsets
of forcing agents for which the piC distribution differs noticeably from those of the other subsets of forcing
agents.

CMIP5’s AA (r = 0.24, sRMSE = 0.97) and ALL (r = 0.37, sRMSE = 0.95) MMMs achieve significance
in both metrics – a fact that, in isolation, is consistent with the suggestion that AA may explain observed
variability but underestimate its magnitude. Instead, in CMIP6, AA (r = 0.04, sRMSE = 1.01) and ALL
(r = 0.04, sRMSE = 1.02) do not perform statistically better than noise, and GHG performs significantly
worse (r = -0.17, sRMSE = 1.03). The additional years included in the CMIP6 simulations (2004-2014)
cannot explain the entire deterioration of performance between CMIP5 and CMIP6: even when restricted to
CMIP5’s time period, CMIP6 ALL and AA simulations both perform worse than CMIP5 in both metrics (r
= 0.07 and sRMSE = 1.00 for AA, r = 0.13 and sRMSE = 0.99 for ALL). Most of the remaining deterioration
in performance for AA is due to reduced drying in the 1970s in CMIP6. In CMIP6, NAT (r = 0.19, sRMSE
= 0.98) is the only forcing that performs significantly well. We conclude that aside from episodic responses to
volcanic eruptions, the ensemble of coupled CMIP6 simulations has no significant skill in simulating historical
Sahel rainfall in response to external forcing.

As in CMIP5, the simulated forced component of precipitation changes in CMIP6—given by the MMM—
has a much smaller variance than observations (note the amplification of the right ordinates in Figure 2).
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However, the poor performance of the CMIP6 simulations makes it clear that amplifying the simulated forced
component will not help explain observed precipitation.

For simulated atmospheric and oceanic IV (−→a and−→o ) to explain observed precipitation variability, it is not
enough that observed yearly Sahelian precipitation anomalies fall within the range of individual simulations
(not shown)—the latter must also match the distinctive low-frequency power of the observations. In Figure
4 we compare the power spectra (PS) of piC simulations (colored brown to turquoise by model climatological
rainfall) to the observed PS (solid black) and the PS of the ALL-residual (observations minus the ALL MMM,
dotted-dashed black). In the observations and the residual, variance at periods longer than about 20 years
(low-frequency) is roughly 5 times as large as the high-frequency variance. Low-frequency variability in the
piC simulations is smaller than, and inconsistent with, either observed or residual variability. Moreover, it is
similar in magnitude to simulated high frequency variability, suggesting that IV in simulated Sahel rainfall
derives mostly from atmospheric (−→a ), rather than oceanic (−→o ), IV, or that simulated oceanic IV is too
white (Eade et al. 2021). Because the shape of the spectrum is wrong, even a bias correction that inflates
simulated internal variability would not bring simulations and observations into alignment.

Fig. 4. PS of observed Sahelian precipitation (solid black curve) and the residual of observations and the
ALL MMM (dotted-dashed black curve) and associated 95% confidence intervals (grey shading), compared
to the average PS by model of piC simulations (brown to turquoise). Mean piC PS are colored by the
average yearly piC precipitation by model, where brown simulations are drier than observed, and turquoise
simulations are wetter than observed.

We must conclude that no linear combination of the simulated forced signal (which correlates poorly with
observations) and simulated IV (which has insufficient low-frequency variance) in coupled CMIP6 simulations
can explain observed Sahel variability during the 20th century. Thus, model deficiency cannot be blamed
solely on the simulation of climate feedbacks: the CMIP6 ensemble displays a fundamental inability to
simulate the observed fast and slow Sahelian precipitation responses to forcing, observed low-frequency IV,
or both. To identify the proximate cause of this failure, in the next three sections we examine each causal
path component identified in Figure 1.

b. AMIP simulations: the Response to SST, Atmospheric Internal Variability, and the Fast Response to

8



P
os

te
d

on
22

N
ov

20
22

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
50

99
61

.1
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Forcing (
−→
t ,−→a , and

−→
f )

To isolate the effect of SST on the Sahel (
−→
t ), we examine precipitation in the CMIP6 amip-piForcing

simulations, which force atmosphere-only models with the observed SST history (containing both internal,
−→o , and forced,−→s , oceanic variability) and constant preindustrial external radiative forcing (no

−→
f ). The

MMM of simulated Sahel precipitation filters out atmospheric IV (−→a ), leaving the precipitation response to
the entire observed SST field. It is displayed in Figure 5a (orange) and compared to observations (black)
on the same ordinates. Overall, the performance of the amip-piF MMM is much better than that of the
coupled simulations: it achieves a high correlation (r = 0.60) and a low sRMSE (0.81, see orange curves
in Figure 3). The good match with observations is achieved mostly at low frequencies: though it doesn’t
accurately capture many interannual episodes—notably including the precipitation minimum in 1984—the
MMM appears to capture the magnitude of low-frequency variability, even including wetting in the 50s
and early 60s, which is missing from the coupled MMM. This can be seen more quantitatively by spectral
analysis. In Figure 6a, the PS of the amip-piF MMM (dashed orange curve) and its 95% confidence interval
(orange shaded areas), are compared to those of observations (black). Unlike previous generations of AMIP
experiments (e.g. Scaife et al. 2009), the PS of the simulated MMM is roughly consistent with observations.

Fig. 5. Observed (black) and simulated (colored) Sahelian precipitation anomalies, forced with observed

9
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SST alone (a, amip-piF, orange) and with observed SST and all external forcing agents (b, amip-hist, dark
green). The shaded areas denote the bootstrapping confidence intervals about the simulated MMMs. Panel
(a) additionally displays observed NARI (light blue, right ordinates). The right ordinates for panel (a) are
scaled by the inverse of the simulated amip-piF teleconnection strength (see Section 4.c) so that when read
on the left ordinates, NARI represents its predicted impact on precipitation. Panel (c) compares observed
precipitation (left ordinates) to the implied simulated fast component in AMIP simulations (amip-hist –
amip-piF, purple, right ordinates). As in Figure 2, panel (c) denotes hemispherically asymmetric volcanic
eruptions, where the sign denotes the sign of the expected Sahelian precipitation response to the eruption.

Fig. 6. PS of observed Sahelian precipitation (black) and associated 95% confidence interval (black shading)
compared to the PS of amip-piF simulations (a) and amip-hist simulations (b). As in Figure 4, mean PS
by model are colored by average yearly precipitation, where brown is drier than observed, grey is observed,
and turquoise is wetter than observed. The mean PS across models is displayed in orange for amip-piF (a)
and in green for amip-hist (b). The dashed lines show the PS of the MMMs with associated 95% confidence
intervals (colored shaded areas).

The curves colored brown to turquoise in Figure 6 show the average by model of the PS of individual
simulations, colored by climatological Sahelian precipitation bias. We note that wet-biased simulations
(turquoise) have more power than dry-biased simulations (brown), consistent with the expected relation
between the mean and variance of precipitation. The tiered mean over these PS is presented in solid orange;
it contains atmospheric IV (−→a ) in addition to SST-forced variability (

−→
t ). Though it is not statistically

different from the MMM PS, atmospheric white noise gives it slightly more power at all frequencies, and
thus it is clearly consistent with the observed PS (black). Global SST forcing, while unable to explain much
of observed high frequency variability in Sahelian precipitation (note the low power of the dashed orange
curve at periods below 20 years), is able to reproduce the pattern and, in combination with atmospheric IV,
the full magnitude of observed multi-decadal precipitation variability.

We now estimate the “fast” precipitation response to ALL in the CMIP6 AMIP simulations (Figure 5c,

purple,
−→
f ) by subtracting the MMM of amip-piF simulations (a, orange) from that of amip-hist simulations

(b, green), the latter of which are forced with historical SST and historical external radiative forcing. The
AMIP “fast” MMM shows some episodic variability that is consistent with the coupled NAT MMM, and
a wetting trend after 1985. On its own, it is only weakly correlated to observations (r = 0.12, sRMSE =
1.02), and it has relatively low amplitude. When combined with SST forcing in the amip-hist simulations,
it has little effect: correlation stays at 0.60 and sRMSE is reduced from 0.81 only to 0.80 (compare green
and orange curves in Figure 3) and spectral properties are virtually unchanged (Figure 6). The best linear
fit to observed precipitation would combine the amip-piF MMM with the fast response to forcing scaled
down by a factor of 0.3 ± 0.2. The fast response may be overestimated in AMIP simulations because the
radiative forcing has directly contributed to generating observed SST which is prescribed in the simulations,
and because the magnitude of the radiative forcing itself may be overestimated, as suggested by Menary et
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al. (2020).

The high performance of the amip-piF simulations and the small impact of the potentially overestimated fast
response to forcing suggest that the principal deficiency in simulating low-frequency Sahelian precipitation
variability in coupled models stems from a deficiency in simulating the observed combination of forced and
internal variability in SST, and not from a failure to reproduce the observed teleconnection strength or fast
response to forcing.

c. The NARI Teleconnection: AMIP Simulations and Observations (
−→
t )

We next determine the strength of the linear NARI-Sahel teleconnection and investigate how well it represents
the effect of global SST on Sahel precipitation in simulations and observations. Observed NARI anomalies
relative to the 1901-1950 mean are presented in Figure 5a in light blue on the right ordinates. NARI
correlates well with SST-forced Sahelian precipitation in the amip-piF simulations (orange, left ordinates;r =
0.52 ± 0.10, r = 0.60 for the actual MMM), but still leaves 64% of its variance unexplained, suggesting
influences from other SST patterns or non-linear or non-stationary effects (Losada et al. 2012). Some of
the unexplained variance is at faster timescales than those of our interest, but not all. Let’s assume that
the influences of NARI and other ocean basins on Sahel precipitation are linear and add linearly, and that
the NARI teleconnection is unconfounded by the influence of other ocean basins; then we can measure the
strength of the NARI teleconnection by the regression coefficient of the amip-piF precipitation MMM, which
contains only SST-forced variability, on NARI. This calculation yields a regression slope of 0.87±0.26 mm

day∗C .
This value is affected by both high- and low-frequency variability, which is appropriate if the teleconnection is,
indeed, linear. The left ordinates in Figure 5a are scaled relative to the right ordinates by this teleconnection
strength so that, when read on the left ordinates, the light blue curve represents the expected precipitation
response to NARI. This view highlights how NARI captures the timing of simulated low-frequency variability,
even though it fails to explain the full magnitude of simulated dry anomalies after 1975. In the rest of this
paper we use the NARI teleconnection as the best linear representative of the simulated influence of SST on
Sahel precipitation in the 20th century.

The teleconnection strength calculated from the amip-piF simulations is not directly comparable to observa-
tions, because the latter includes the fast precipitation response to forcing, which can confound estimates of
the teleconnection. A comparison can be drawn between the apparent teleconnection strength in the amip-
hist simulations (0.93 ± 0.41) and in observations (1.04). The consistency lends credence to our previous
suggestion that simulated SST teleconnections to Sahel rainfall appear to have the appropriate strength in
CMIP6, at least in the amip simulations.

d. Forced and Internal SST Variability in Coupled Simulations (−→s and −→o )

We now examine simulation of forced (−→s ) and internal (−→o ) SST variability. Figure 7 compares observations
(black) to the simulated SST response to forcing (−→s )—represented by MMM anomalies (colors)—for NARI
(right column) and its constituent ocean basins – the North Atlantic (NA, left column) and the Global
Tropics (GT, middle column). The yellow shaded areas show the bootstrapping 95% confidence intervals
of the piC simulations for statistical significance, while the other shaded areas denote uncertainty in the
CMIP5 and CMIP6 MMMs. As above, CMIP5 MMM anomalies are presented in dotted curves and CMIP6
in solid curves, color-coded according to their forcing.
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y. Fig. 7. Observed (black) and simulated CMIP5 and CMIP6 SST anomalies (relative to 1901-1950) for the
North Atlantic (NA, left column), the Global Tropics (GT, middle column), and the North Atlantic Relative
Index (NARI, right column) when forced with ALL (blue, top row), AA (magenta, second row), NAT
(brown/red, third row), and GHG (green, bottom row). The CMIP6 MMMs are presented with solid curves
while the CMIP5 MMMs are presented with dotted curves. Both are surrounded by shaded areas demarking
the bootstrapping confidence interval. Panels (a) and (c) additionally display a 20-year running mean of the
sum of simulated NA and NARI over the individual forcing simulations for CMIP6 (burgundy dashed curve)
with associated bootstrapping confidence interval (burgundy shaded area). Including NA in the sum makes
little difference. For NA and GT under AA and NAT (middle two rows and left two columns), the orange
curve displays detrended observations, calculated by subtracting simulated GHG-forced SST (bottom row)
from observations in that ocean basin. The yellow shaded area is the confidence interval when bootstrapping
the MMM of CMIP6 piC simulations, and represents the magnitude of noise in the CMIP6 MMMs. A
horizontal black dashed line marks 0 anomaly, which represents the average SST from 1901-1950. The y
labels show the number of institutions that were used for each subset of forcing agents in CMIP6 (N, see
Table S2), and the subplot titles display the correlation (r) and sRMSE between the MMM and observations
for CMIP6.

Observed NARI (panel c, black) shows strong multi-decadal variability throughout the century. In the ALL
simulations (top row, blue), the temporal evolution of NARI (c) matches the observations with some skill
(r=0.40, sRMSE = 0.92 for CMIP6), but fails to capture the full magnitude of observed cooling in the
1970s and 80s or, more prominently, any multi-decadal variability prior to 1960. Moreover, its GT and NA
components do not match very well either the observed, roughly linear warming trend in GT (b), or the
marked multi-decadal variability in NA (a). In both CMIP5 and CMIP6 ALL simulations, the simulations of
GT (b, blue) are anomalously colder than observations between 1960 and 2000, when simulated AA cooling
(e, magenta) is the strongest and not yet compensated by GHG warming (k, green), leading us to question
whether the match of simulated and observed NARI in this period happens due to compensating errors. For
NA, the match between observations and the ALL-forced response is better in the later part of the record,
but worse in the first half. During the period prior to 1960, according to both CMIP ensembles, GHG
warming (j, green) masks AA cooling (d, magenta) to produce a roughly constant temperature in the ALL
simulations (a, blue). The simulated cold episode in 1964 is due to the eruption of Agung in 1963 (g, brown
and red), and it is only after the mid 1960’s that increased GHG warming overtakes stagnating AA cooling
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to produce pronounced warming in fairly good accord with observations. Much of the observed variability
in NA (a, black) thus does not seem to be a response to external radiative forcing.

The AA forcing had appeared to explain observed low-frequency Sahel precipitation variability in H20, but
we now see that it might be the right result for the wrong reason. AA (second row, magenta) produce
low-frequency NARI variability (f), but this simulated NARI is a poor match to observations (f, r=0.10,
sRMSE = 1.04 for CMIP5; r=0.07, sRMSE=1.09 for CMIP6; a performance statistically worse than noise).
The difference between simulations and observations is even more stark in NARI’s constituent ocean basins.
We can attempt to compare AA-forced NA and GT to an observed “GHG-residual” (that is, the observation
minus the GHG-forced MMM, presented in orange instead of black), which represents our best estimate of
the sum of observed oceanic IV and the observed responses to aerosols. This index shows marked, roughly
stationary low-frequency variability in NA (d, orange), which contrasts with a more monotonic behavior in
the simulated NA index (magenta). In particular, we note that the AA simulations display an especially
steep decline in NA SST between ˜1940 and 1980, but monotonic cooling throughout the century. Though
legislation to curb pollution reduced AA loading in the northern hemisphere after 1970 (Hirasawa et al.
2020), simulated NA doesn’t warm at all before 2010. Overall, the effect of reducing AA emissions in both
CMIP ensembles is to halt the cooling of NA, not to cause actual warming. This is consistent with estimates
of the hemispheric difference in total absorbed solar radiation in AA simulations in CMIP6, which level off,
but do not decrease, after 1970 (Menary et al. 2020).

Could internal SST variability (−→o ) explain the difference between the simulated response to forcing and
observations in these ocean basins? In Figure 8, we present the mean PS of SST for piC simulations from
each CMIP6 model (colder than observed models are in blue and warmer than observed models are in red).
We compare these PS to the PS for observed SST (solid black), the GHG-residual (dotted-dashed black),
and/or the ALL-residual (dotted black), avoiding time series with dramatic trends (see subplot legends).
Simulated IV in most of the CMIP6 models used in this study does not match residual or observed low-
frequency variability in NA (a), GT (b), or NARI (c). In CMIP5, SSTs are colder and IV at all frequencies is
larger than in CMIP6, but no model shows an increase in spectral power at low frequencies for any SST index
(not shown). There are, however, three CMIP6 models for which low-frequency IV in NA is not inconsistent
with model physics: CNRM-ESM2-1 p1 (pink), IPSL-CM6A-LR p1 (blue), and CNRM-CM6-1 p1 (grey).
Certainly, either the simulated SST response to forcing, simulated oceanic internal variability, or both, are
not well represented in the CMIP ensembles, and this is the primary reason that coupled CMIP simulations
cannot reproduce observed 20th century Sahel rainfall.

Fig. 8. PS of observed SST (solid black), observed SST – GHG MMM (dotted-dashed black), observed SST
– ALL MMM (dotted black) and associated 95% confidence intervals (black shading) in NA (a), GT (b),
and NARI (c), compared to the PS of piC simulations. Similar to Figure 4, mean PS by model are colored
by average SST, where blue is colder than observed, grey is observed, and red is warmer than observed.

However, deficiencies in simulating SST cannot explain the difference in simulated externally forced precip-
itation variability between CMIP5 and CMIP6. The only notable difference in simulated SST between the
two ensembles is that CMIP6 warms NA (and therefore NARI) less than CMIP5 in the GHG simulations
(Figure 7j and l). As in simulated Sahel precipitation, warming of NA and NARI in CMIP6 ALL simulations
is larger than the smoothed sum of simulated SST change in the individual-forcing simulations (burgundy
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dashed curve), which, aside from volcanic eruptions, remains below the confidence interval for the CMIP6
MMM (dark blue shaded area) from 1950 onward (this discrepancy is, again, robust to differences in model
availability for the different sets of forcing agents). Thus, a non-linear interaction between forcing agents in
CMIP6 balances the additional SST warming in CMIP5 in the ALL simulations, and the difference in cou-
pled simulations of Sahel rainfall between CMIP5 and CMIP6 must derive from changes in the fast response
to forcing, SST teleconnections, or both.

e. The NARI teleconnection in Coupled Simulations

Now that we have examined SST in the coupled simulations, we may determine whether the teleconnection
strength estimated from amip-piF simulations is consistent with coupled simulations. This is verified by the
fact that the amip-piF teleconnection strength falls within the range of teleconnection strengths calculated
from individual piC simulations in CMIP5 (0.5 ± 0.6) and CMIP6 (0.4 ± 0.6), but the ranges are large
(possibly because the increased presence of atmospheric and oceanic IV and decreased variance of NARI in
the individual piC simulations obscures the teleconnection). As a second test, we compare the confounded
teleconnection strength in the amip-hist simulations (0.93 ± 0.41) to that of bootstrapped MMMs in the
coupled ALL simulations in CMIP5 (0.66 ± 0.28) and CMIP6 (1.5 ± 0.3). The confounded teleconnection
strength in amip-hist simulations is consistent with the confounded estimate in CMIP5, but is smaller than
and inconsistent with the confounded estimate in CMIP6. This may be because NARI variability in the
coupled simulations is smaller relative to the magnitude of external radiative forcing than it is in the amip-hist
simulations. If this is the cause for the apparent inconsistency, we may still confirm the NARI teleconnection
strength in CMIP6 simulations by showing that the implied fast response to forcing is consistent with the
fast response from the amip-hist simulations.

f. Fast and Slow Responses to Forcing in Coupled Simulations (
−→
f andF → SST → P )

Under the assumption that the dominant simulated path of SST influence on the Sahel is captured by a linear
relationship with NARI, we estimate the slow response to forcing in coupled simulations as the simulated
NARI MMM scaled by the teleconnection strength derived from uncoupled simulations (0.87 mm

day C , Section

4.c), so that a warm (cold) NARI predicts a wet (dry) Sahel. In Figure 9, simulated NARI (as in Figure 7,
right column) is displayed on the left ordinates in light blue (CMIP6) and turquoise (CMIP5). The right
ordinates are scaled by the teleconnection strength so that, when read on the right ordinates, simulated
NARI represents the estimated slow component of the precipitation response to forcing. Also on the right
ordinates are the total simulated precipitation responses to forcing (as in Figure 2) in CMIP5 (right column)
and CMIP6 simulations (left column), colored by forcing agents. The simulated precipitation responses to
forcing (colors) match the estimated slow response to forcing (turquoise) reasonably well: the main differences
appear after about 1970 in CMIP5 and 1990 in CMIP6.
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Fig. 9. Simulated Sahel precipitation (right ordinates, same as Figure 2) MMMs (solid and dotted curves)
and associated 95% confidence intervals (shaded areas) in CMIP5 (right column) and CMIP6 (left column)
when forced with ALL (blue, top row), AA (magenta, second row), NAT (brown/red, third row), and GHG
(green, bottom row), compared to simulated NARI (left ordinates, light blue and turquoise, same as Figure
7). The right ordinates are scaled such that a 1°C change in NARI corresponds to a 0.87 mm/day change in
precipitation, given by the teleconnection strength in the CMIP6 amip-piF simulations (see Section 4.c).

We expect the differences between the simulated Sahel and the rescaled NARI to estimate the simulated fast
response to forcing, but this would imply a fast response to ALL in CMIP5 (Figure 9e) that is inconsistent
with the uncoupled estimate (purple, Figure 5c): instead of wetting the Sahel, it consists of a drying response
to increasing GHG of−0.0042 ± 0.0036 mm

day∗year (Figure 9h). Whether we should interpret this as a fast
response or a non-NARI-mediated response to SST, this component of the forced response helps delay and
increase the severity of the minimum in precipitation in ALL relative to the AA simulations.

The estimated fast responses for CMIP6 are displayed in Figure 10 in a fashion similar to Figure 2, and
are compared to the fast response obtained as the difference between amip-hist and amip-piF simulations
(purple, as in Figure 5c). Unlike the fast response in CMIP5, the ALL fast response in CMIP6 matches the
AMIP fast response significantly better than noise (r = 0.51, sRMSE = 0.87), giving us confidence that
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the NARI teleconnection strength estimated from amip-piF is valid in CMIP6 coupled simulations. Like the
amip-hist fast response, the ALL fast response in CMIP6 displays wetting after 1980 that is roughly equal
to the sum (burgundy dashed curve) of the fast responses to AA (b, magenta) and GHG (d, green). The
simulated fast wetting after 1980 in the ALL simulations (a, blue) is smaller than in the AMIP simulations, as
expected if amip-hist is double-counting radiative forcing, but is still larger than our estimate of the optimal
value (0.3 times the AMIP fast response), consistent with claims that the strength of radiative forcing is
overestimated in the coupled simulations.

Fig. 10. Compares the fast Sahelian precipitation response to forcing in AMIP simulations (purple, as
in Figure 5c) to the estimated fast component of the precipitation MMMs in coupled CMIP6 simulations
(precipitation – 0.87*NARI; the difference between the colored and light blue curves in the left column of
Figure 9) forced with ALL (a, blue), AA (b, magenta), NAT (c, brown), and GHG (d, green). Similar to
Figure 2, the colored shaded areas denote the bootstrapping confidence interval of this difference, and the
yellow shaded areas, which represent the magnitude of noise in the fast MMMs, are the confidence intervals of
the MMM of randomized bootstrapped differences between precipitation and 0.87*NARI in piC simulations.
Panel (a) additionally shows a 20-year running mean of the sum of the AA, NAT, and GHG fast MMMs
(burgundy dashed curve). The label shows the number of institutions used for each CMIP6 MMM (N), the
correlation of the fast MMM with the AMIP fast response (r), and the standardized root mean squared error
of the CMIP6 MMM with observations (sRMSE).

Though NARI in the GHG simulations differs between CMIP5 and CMIP6, most of the difference in simulated
forced precipitation between CMIP5 and CMIP6 is not mediated by a linear relationship with NARI, and
can be attributed to the fact that the GHG- and AA-induced drying in CMIP5 is replaced with AA- and
GHG-induced wetting in CMIP6. Whether the GHG-induced drying in CMIP5 is a fast response to forcing
or a response mediated by SST in ocean basins other than the Atlantic cannot be firmly established by this
analysis, but we offer our perspective below.

5. Discussion

Using SST (and specifically NARI) as a mediator, we have established that the failure of CMIP coupled
models to simulate observed Sahel rainfall stems from their inability to simulate observed SST, especially
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NA, and that the differences in simulation of Sahel rainfall between CMIP5 and CMIP6 stem from differences
in mechanisms not mediated by a linear teleconnection with NARI. (Let’s denote the difference between
simulated precipitation and scaled NARI as PnonNARI). We initially suggested that PnonNARI provides
a good measure of the fast (non-SST-related) response to forcing because of the prominence of the NARI-
Sahel teleconnection in observations and AMIP-style simulations of the 20th century. But without examining
further mediators, we cannot decisively rule out the possibility that PnonNARI captures teleconnections with
other ocean basins or nonlinearities in the NARI teleconnection. Which explanation is most likely?

The PnonNARI indices in CMIP5 and CMIP6 are nearly opposite. If we assume that both represent a fast
response to forcing, we need to conclude that increasing GHG (or reducing AA) lead to fast wetting in
CMIP6, but drying in CMIP5.

The interpretation of PnonNARI in CMIP6 as a fast response is more consistent with theory. First, increasing
rainfall is consistent with theory linking reduced aerosol concentrations to fast surface warming and decreas-
ing optical depth of the atmosphere (Allen and Ingram 2002; Rosenfeld et al. 2008), although a couple
highly non-linear simulations suggest the fast precipitation response of the Sahel to changing AA in the 20th

century was drying whether AA forcing was increasing or decreasing (Hirasawa et al. 2020). Second, it is
generally accepted that the fast response of the Sahel to GHG is wetting (e.g. Biasutti 2013; Gaetani et
al. 2017; Giannini 2010; Haarsma et al. 2005). The good match in the estimated fast response between
coupled CMIP6 simulations and the amip-hist simulations increases our confidence that the deviations from
the NARI-mediated slow response to forcing in CMIP6 really reflect a fast response to forcing. The same
cannot be said for CMIP5.

We noted in Section 4.c that NARI only explains 36% of simulated SST-forced variability in the amip-piF
simulations, leaving room for the influence of other ocean basins or SST indices on Sahel precipitation.
Indeed, this is consistent with GK19: while they argue that NARI is the primary indicator for 20th century
Sahel rainfall, they also argue that p1, which is approximately (NA+GT)/2 and is intended to capture
the effects of uniform global warming, plays a secondary—but important—role in the 20th century and
a dominant role in the future. In CMIP5, PnonNARImay capture not the fast responses to forcing, but
slow drying in response to uniform global warming, consistent with previous literature (e.g. Gaetani et al.
2017). In this read, the differences in simulation of Sahel rainfall between CMIP5 and CMIP6 are due to
a combination of changes in the fast response to forcing and the influence of SST patterns not captured by
NARI.

6. Summary and Conclusions

In this paper, we decompose simulated Sahelian precipitation into (1) teleconnections with SST, (2) fast,
atmospheric- and land-mediated responses to forcing, (3) atmospheric noise, (4) forced SST variability, and
(5) internal SST variability, in order to determine why the 5th and 6th generations of CMIP differ in their
simulation of Sahel rainfall, and why both ensembles are inconsistent with observed Sahel precipitation
variability.

CMIP6 atmospheric simulations forced with observed SST alone capture observed Sahel precipitation quite
well (r=0.6), and, in combination with atmospheric white noise, are able to reproduce the power of observed
low-frequency variability. This is a welcome improvement from previous generations of climate models.
Including radiative forcing alongside observed SST barely changes simulated precipitation, suggesting that
the fast response is small and plays a secondary role to SST-forced precipitation variability. We summarize
the Sahel teleconnections with global SST as a linear relationship with an index of the warming of the North
Atlantic relative to the global Tropics (NARI), which explains about 36% of the simulated precipitation
response to observed SST. The simulated NARI teleconnection is measured as 0.87± 0.26 mm

day∗C , consistent
with the strength of the observed teleconnection. We conclude that the observed SST history and simulated
teleconnections in atmospheric simulations are together necessary and sufficient to capture the timing and
magnitude of the low-frequency droughts and pluvials in 20thcentury Sahel rainfall.

In coupled simulations, the NARI-Sahel teleconnection is consistent with AMIP simulations, but NARI’s
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variability – which mostly comes from North Atlantic SST (NA) – differs from the observed. In simulations,
AA cause a cooling trend and GHG cause a warming trend with magnitudes comprable to the observed,
but no combination of forcing agents produces a decadal-scale oscillation in NA in either CMIP5 or CMIP6,
and only three CMIP6 models (out of 25 CMIP5 and 30 CMIP6 models) are able to generate internal SST
variability commensurate to the residual (the difference between total and radiatively forced) low-frequency
variability. How do we reconcile our results with those claiming that the observed Atlantic Multidecadal
Variability (AMV) is externally forced (mainly by AA; Bellomo et al. 2018; Booth et al. 2012; Hirasawa et
al. 2020; Hua et al. 2019; Murphy et al. 2017)? The discrepancy can be explained because these studies
examine only one or two models (Booth et al. 2012; Hirasawa et al. 2020) or subtract a linear trend from
simulated NA before comparing to observations (Bellomo et al. 2018; Hua et al. 2019; Murphy et al. 2017),
thus inducing low-frequency variability in the simulated monotonic decreasing step function. Moreover, a
prominent role for internal variability cannot yet be dismissed, as suggested by Yan et al. (2018), who,
consistent with our analysis, find that most models do not capture observed AMOC variability. The NARI-
mediated slow response to external radiative forcing is to dry the Sahel slightly in the 60s and to wet it
immediately afterwards; this does not, in isolation, explain the timing or magnitude of the observed drought
or recovery. Furthermore, forced NARI variability is small in the first half of the century. We are led to
conclude that either the pattern of the simulated SST response to forcing in coupled models is incorrect
or the Sahelian precipitation response to internal SST variability overshadowed the response to external
radiative forcing in the 20thcentury, at least up to the mid-1960s.

While we can ascribe the deficiency of 20th century Sahel rainfall simulations in both CMIP5 and CMIP6
coupled models to their simulations of SST, NARI is not the main explanation for the differences in forced
Sahel rainfall between the two ensembles, since it is quite similar in CMIP5 and CMIP6 ALL simulations.
The difference, rather, is in PnonNARI: the component of Sahel rainfall that comes either from the influence
of other SST patterns or from the fast response to forcing. CMIP6 underperforms relative to CMIP5 because
PnonNARI includes substantial fast wetting responses to increasing GHG and decreasing AA, comparable in
magnitude to the NARI-related component. In contrast, PnonNARI in CMIP5 is drying, likely in response
to uniform SST warming. Sahel drying in response to uniform warming is strong in models that simulate
a deeper ascent profile, but weak otherwise (Hill et al 2017), so it is possible that newer parameterizations
and higher resolution have changed the sensitivity to this forcing in the latest generation of models.

This work has shown that, while there has been progress in the simulation of the Sahel’s response to global
SST, much remains uncertain in the simulation of the pathways of Sahel multi-decadal variability, especially
in the amplitude and timing of forced and natural SST anomalies in the Atlantic and in the fast and slow
response of rainfall to GHG forcing. Differing mechanisms can lead to similar time evolutions in observations
and simulations; to avoid this pitfall, future work should focus on evaluating in more detail the hypothesized
pathways of the Sahel response to anthropogenic emissions and oceanic internal variability in order to further
categorize model performance and improve predictions of the future.
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Observational data from the Global Precipitation Climatology Center (GPCC, Becker et
al. 2013) and the National Oceanic and Atmospheric Administration’s (NOAA) Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5, Huang et al. 2017) are
freely available online (see https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html and
https://www.ncei.noaa.gov/products/extended-reconstructed-sst, respectively). CMIP5 (CMIP5, Tay-
lor et al. 2012) and CMIP6 (Eyring et al. 2016) model data is freely available through the Earth System
Grid (see https://esgf-node.llnl.gov/projects/esgf-llnl/).
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ABSTRACT 10 

We examine and contrast the simulation of Sahel rainfall in phases 5 and 6 of the Coupled 11 

Model Intercomparison Project (CMIP5 and CMIP6). On average, both ensembles grossly 12 

underestimate the magnitude of low-frequency variability in Sahel rainfall. But while CMIP5 13 

partially matches the timing and pattern of observed multi-decadal rainfall swings in its 14 

historical simulations, CMIP6 does not. To classify model deficiency, we use the previously-15 

established link between changes in Sahelian precipitation and the North Atlantic Relative 16 

Index (NARI) for sea surface temperature (SST) to partition all influences on Sahelian 17 

precipitation into five components: (1) teleconnections to SST variations; the effects of (2) 18 

atmospheric and (3) SST variability internal to the climate system; (4) the SST response to 19 

external radiative forcing; and (5) the “fast” response to forcing, which is not mediated by 20 

SST. CMIP6 atmosphere-only simulations indicate that the fast response to forcing plays 21 

only a small role relative to the predominant effect of observed SST variability on low-22 

frequency Sahel precipitation variability, and that the strength of the NARI teleconnection is 23 

consistent with observations. Applying the lessons of atmosphere-only models to coupled 24 

settings, we imply that the failure of coupled models in simulating 20th century Sahel rainfall 25 

derives from their failure to simulate the observed combination of forced and internal 26 

variability in SST. Yet differences between CMIP5 and CMIP6 Sahel precipitation do not 27 

mainly derive from differences in NARI, but from either their fast response to forcing or the 28 

role of other SST patterns.  29 

1. Introduction 30 

The semi-arid region bordering the North African Savanna and the Sahara Desert, known 31 

as the Sahel, received much scientific attention since it experienced unparalleled dramatic 32 

rainfall variability in the second half of the 20th century. The importance of teleconnections 33 

between Sahel precipitation and global sea surface temperature (SST) was demonstrated in 34 

the early stages of Sahel climate variability research (Folland et al. 1986; Giannini et al. 35 

2003; Knight et al. 2006; Palmer 1986; Zhang and Delworth 2006), and has been further 36 

reinforced in more recent studies (Okonkwo et al. 2015; Parhi et al. 2016; Park et al. 2016; 37 

Pomposi et al. 2015; Pomposi et al. 2016; Rodríguez-Fonseca et al. 2015 and references 38 

therein). But while the dominant role of SST in driving the pacing (though not necessarily the 39 

full magnitude) of 20th century Sahel rainfall variability is unquestioned (Biasutti 2019), 40 

there is still debate on whether the evolution of SST and the related Sahel precipitation 41 
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variability were externally forced (Ackerley et al. 2011; Biasutti 2013; Biasutti and Giannini 42 

2006; Biasutti et al. 2008; Bonfils et al. 2020; Dong and Sutton 2015; Giannini and Kaplan 43 

2019; Haarsma et al. 2005; Haywood et al. 2013; Held et al. 2005; Hirasawa et al. 2020; Hua 44 

et al. 2019; Iles and Hegerl 2014; Kawase et al. 2010; Marvel et al. 2020; Polson et al. 2014; 45 

Undorf et al. 2018; Westervelt et al. 2017) or the manifestation of variability internal to the 46 

climate system (IV, Sutton and Hodson 2005; Ting et al. 2009; Zhang and Delworth 2006).  47 

Recently, Herman et al. (2020, hereafter H20) investigated multi-model means (MMM) 48 

of historical simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5, 49 

Taylor et al. 2012), and found that anthropogenic aerosols (AA) and volcanic aerosols (VA), 50 

but not greenhouse gases (GHG), were responsible for forcing simulated Sahelian 51 

precipitation that correlates well with observations, with AA alone responsible for the low-52 

frequency component of simulated variability. This conclusion appeared consistent with 53 

previous claims that AA emissions, which increased until the 1970s and then decreased in 54 

response to clean air initiatives (Klimont et al. 2013; Smith et al. 2011), caused multi-decadal 55 

variability in Sahel precipitation via changes in Northern Hemisphere surface temperature 56 

(Ackerley et al. 2011; Haywood et al. 2013; Hwang et al. 2013; Undorf et al. 2018), or 57 

specifically via multidecadal variability in North Atlantic SST (the Atlantic Multidecadal 58 

Variability, AMV; Booth et al. 2012; Hua et al. 2019). However, H20 also found that the 59 

simulated rainfall response to forcing has little low-frequency power relative to observations, 60 

and that simulated IV is unable to account for this difference.  61 

H20 and most other attribution studies do not examine in depth the pathways through 62 

which AA (and for that matter, IV and other external forcing agents) affect Sahel 63 

precipitation. Thus, H20 did not determine whether the discrepancy between CMIP5 64 

simulations and observations represents an underestimate of aerosol indirect effects and 65 

climate feedbacks that amplify the simulated precipitation response to AA, or a fundamental 66 

inability of the models to simulate aspects of the observed climate response to forcing or 67 

observed modes of IV. Identifying the deficiencies in model representation of the pathways 68 

by which external forcing and IV influence the West African Monsoon and Sahel rainfall is 69 

essential for attribution of 20th century changes and also for prediction of this region’s 70 

climate future, as model simulations don’t even agree on the sign of future precipitation 71 

changes in the Sahel (Biasutti 2013).  72 
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Here, we use the well-established link between SST and Sahel precipitation to decompose 73 

the effects of individual external forcing agents (F) and internal variability (IV) on Sahel 74 

precipitation (P) into five path components, presented in Figure 1: (1) teleconnections that 75 

communicate variations in SST to variations in P (indicated by the arrow t⃗); (2) the “fast” 76 

atmospheric and land-mediated effect of external forcing (F) on P (f⃗); (3) the direct effect of 77 

atmospheric IV on P (a%⃗ ); (4) the effect of F on SST (s⃗); and (5) the impact of IV in the 78 

coupled climate system on SST (o%⃗ ). The path F → SST → P is the “slow,” SST-mediated 79 

effect of F on P.  80 

 81 

Fig. 1. Causal diagram relating external forcings (F), internal variability (IV), sea surface 82 
temperatures (SST), and Sahelian precipitation (P) via directional causal arrows. Unobserved 83 
variables and their causal effects are presented with dashed lines, while observed variables 84 
are presented with solid lines. 85 

Characterization of these path components has been controversial. Firstly, separating the 86 

SST response to forcing (s⃗) from SST variability internal to the climate system (o%⃗ ) has proven 87 

difficult (top of diagram). In particular, there is significant debate over whether observed 88 

AMV is a response to external forcing (Booth et al. 2012; Chang et al. 2011; Hua et al. 2019; 89 

Menary et al. 2020; Rotstayn and Lohmann 2002) or mainly an expression of IV in the 90 

Atlantic Meridional Overturning Circulation (AMOC, Han et al. 2016; Knight et al. 2005; 91 

Qin et al. 2020; Rahmstorf et al. 2015; Sutton and Hodson 2005; Ting et al. 2009; Yan et al. 92 

2019; Zhang 2017; Zhang et al. 2016; Zhang et al. 2013) that is underestimated in models 93 

(Yan et al. 2018). This debate has been hard to resolve partially because IV in AMOC and 94 

aerosol forcing may have coincided by chance in the 20th century (Qin et al. 2020). Next, 95 

examine the bottom of the diagram. The effect of the observed SST field on Sahel 96 

precipitation (t⃗) can be directly estimated using atmosphere-only simulations, but while these 97 

simulations capture the pattern of observed Sahel precipitation variability, many fail to 98 

capture its full magnitude (Biasutti 2019; e.g. Hoerling et al. 2006; Scaife et al. 2009). This 99 

could reflect an underestimate in climate models of the strength of SST teleconnections, 100 

which could be resolution dependent (Vellinga et al. 2016), or of land-climate feedbacks that 101 
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amplify the teleconnections (t⃗), such as vegetation changes (Kucharski et al. 2013). But it 102 

could also reflect a significant additional role in the observations for a fast response to 103 

forcing (f⃗) that confounds the SST-forced signal [P ← F → SST → P; see Pearl et al. (2016) 104 

for notation] or coincides with it by chance.  105 

To examine the path components in coupled simulations, we need a parsimonious 106 

characterization of the relationship between SST and Sahel precipitation. Giannini et al. 107 

(2013) and Giannini and Kaplan (2019, hereafter GK19) identify the North Atlantic Relative 108 

Index (NARI), defined as the difference between average SST in the North Atlantic (NA) and 109 

in the Global Tropics (GT), as the dominant SST indicator of 20th century Sahel rainfall in 110 

observations and CMIP5 simulations. There are two main theories relating NARI to Sahelian 111 

precipitation (see Biasutti 2019; Hill 2019 for reviews of competing theories of monsoon 112 

rainfall changes). In the first, the “local view” (Giannini 2010), warming of GT causes even 113 

stronger warming throughout the tropical upper troposphere (Knutson and Manabe 1995; 114 

Parhi et al. 2016; Sobel et al. 2002), increasing thermodynamic stability across the tropics 115 

and inhibiting convection in an “upped ante” (Giannini and Kaplan 2019; Neelin et al. 2003) 116 

or “tropospheric stabilization” (Giannini et al. 2008; Lu 2009) mechanism. Warming of NA, 117 

on the other hand, is expected to thermodynamically increase moisture supply to the Sahel by 118 

increasing specific humidity over the NA, and thus destabilize the atmospheric column from 119 

the bottom up (GK19). The second theory interprets the relationship of Sahel precipitation to 120 

NARI, or, similarly, to the Atlantic meridional temperature gradient or the Interhemispheric 121 

Temperature Difference (ITD), as the result of an energetically-driven shift in the 122 

Intertropical Convergence Zone (ITCZ, Donohoe et al. 2013; Kang et al. 2009; Kang et al. 123 

2008; Knight et al. 2006; Schneider et al. 2014) and the African rainbelt (e.g. Adam et al. 124 

2016; Biasutti et al. 2018; Camberlin et al. 2001; Caminade and Terray 2010; Hoerling et al. 125 

2006; Hua et al. 2019; Pomposi et al. 2015; Westervelt et al. 2017). According to both 126 

theories, an increase in NARI should wet the Sahel while a decrease causes drying. Given the 127 

prominence of the NARI teleconnection in the 20th century and the assumption of linearity, 128 

we approximate the full slow response as the product of the NARI response to external 129 

forcing and the strength of the NARI-Sahel teleconnection.  130 

This paper is organized as follows: Section 2 provides details on the simulations and 131 

observational data used in this analysis while Section 3 discusses the methods. In Section 4.a, 132 

we update H20’s analysis to the Coupled Model Intercomparison Project phase 6 (CMIP6, 133 
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Eyring et al. 2016), examining the total response to forcing (all paths from F to P) and 134 

internal variability (all paths from IV to P). We then evaluate the performance of the CMIP6 135 

AMIP simulations, decomposing them into the path components from the bottom half of 136 

Figure 1 (t⃗, f⃗, and a%⃗ ) in Section 4.b, and focusing on the NARI teleconnection in Section 4.c. 137 

Section 4.d decomposes coupled simulations of NARI into the path components from the top 138 

half of Figure 1 (s⃗ and o%⃗ ), while Section 4.e evaluates the consistency of the NARI 139 

teleconnection established in Section 4.c with coupled simulations. Finally, in Section 4.f, we 140 

use simulated NARI and the simulated NARI teleconnection to decompose the total response 141 

of Sahel precipitation to external forcing in coupled simulations (examined in Section 4.a) 142 

into fast and slow components. We discuss how our results fit in with the existing literature in 143 

Section 5 before concluding in Section 6. 144 

2. Data 145 

We examine coupled “historical” simulations from CMIP5 (Taylor et al. 2012) and 146 

CMIP6 (Eyring et al. 2016) forced with four sets of forcing agents—AA alone, natural 147 

forcing alone (NAT, which includes VA as well as solar and orbital forcings), GHG alone, 148 

and all three simultaneously (ALL)—as well as pre-Industrial control (piC) simulations, in 149 

which all external forcing agents are held constant at pre-Industrial levels. We additionally 150 

examine CMIP6 amip-piForcing (amip-piF) simulations, in which atmospheric models are 151 

forced solely with observed SST, and CMIP6 amip-hist simulations, which are forced with 152 

observed SST and historical ALL radiative forcing. Calculations with CMIP5 utilize the 153 

period between 1901 and 2003 while calculations with CMIP6 extend to 2014.  154 

In H20, we used all available institutions for each forcing subset. Here, in order to 155 

provide a more stringent comparison of the effects of different forcing agents, we exclude 156 

institutions from the coupled ensemble that do not provide AA, GHG, and ALL simulations, 157 

and from the AMIP ensemble if they do not provide both amip-piForcing and amip-hist 158 

simulations. We additionally exclude piC simulations that are shorter than the historical 159 

simulations as well as any simulations with data quality issues. Tables S1-S3 enumerate the 160 

simulations used in this analysis.  161 

Precipitation observations are from the Global Precipitation Climatology Center (GPCC, 162 

Becker et al. 2013) version2018, and SST observations are from the National Oceanic and 163 
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Atmospheric Administration’s (NOAA) Extended Reconstructed Sea Surface Temperature, 164 

Version 5 (ERSSTv5, Huang et al. 2017). 165 

We analyze precipitation over the Sahel (12°-18°N and 20°W-40°E) and the SST indices 166 

of GK19: the North Atlantic (NA, 10°-40°N and 75°-15°W), the Global Tropics (GT, ocean 167 

surface in the latitude band 20°S-20°N), and the North Atlantic Relative index (NARI, the 168 

difference between NA and GT). All indices are spatially- and seasonally-averaged for July-169 

September (JAS).  170 

3. Methods 171 

The multi-model mean (MMM) for a set of simulations consists of a 3-tiered weighted 172 

average over (1) individual simulations (runs) from each model, (2) models from each 173 

research institution, and (3) institutions in that ensemble. Details of the weighting are 174 

provided in H20; the results are robust to differences in weighting. Time series are not 175 

detrended, and anomalies are calculated relative to the period 1901-1950. 176 

To evaluate the performance of the simulations relative to observations, we compute 177 

correlations (r), which capture similarity in frequency and phase, and root mean squared 178 

errors standardized by observed variance (sRMSE), which measure yearly differences in 179 

magnitude between the simulations and observations. An sRMSE of 0 represents a perfect 180 

match between simulations and observations, and 1 would result from comparing the 181 

observations with a constant time series. 182 

To estimate uncertainty in the forced MMMs and associated metrics, we apply a 183 

bootstrapping technique to the last tier of the MMM as described in H20, yielding a 184 

probability distribution function (pdf) about the MMM and each metric. Due to the finite 185 

number of simulations, these pdfs underestimate the true magnitude of the uncertainty. We 186 

evaluate significance by applying a randomized bootstrapping technique, which increases the 187 

effective sample size, to the piC simulations with one significant improvement over H20: 188 

instead of using just one subset of each piC simulation at a random offset in the first tier of 189 

the MMM in each bootstrapping iteration, we take enough subsets to match the number of 190 

that model’s historical runs. Done this way, the confidence intervals calculated using piC 191 

simulations accurately represent noise in the forced MMMs. PiC pdfs from the same 192 

ensemble differ slightly because many institutions provide a different number of simulations 193 

for different subsets of forcing agents (see Table S2). Where the piC pdfs and confidence 194 
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intervals are similar enough, they are presented together with a single grey dotted curve and 195 

dashed line; when they differ, they are presented in the colors associated with the relevant 196 

forcings. 197 

We perform a residual consistency test, which compares the power spectra (PS) of 198 

individual simulations to that of observations, with one significant modification over H20: we 199 

calculate the PS using the multi-taper method. Confidence intervals for the PS for 200 

observations and MMMs are given by the multi-taper method, without accounting for the 201 

uncertainty in the MMMs themselves. Mean PS by model are colored by climatological 202 

rainfall bias given by those simulations. The multi-model mean of these PS, or the “tiered 203 

mean”, is calculated using the three tiers from the definition of the MMM, but without 204 

weights, since spectral power is not attenuated when averaging PS. 205 

4. Results 206 

a. Changes in CMIP6: Total Precipitation Response to Forcing and Internal Variability 207 

If Sahelian precipitation is a linear combination of IV in the coupled climate system and 208 

variability forced by external agents, then the MMM over coupled simulations with differing 209 

initial conditions filters out atmospheric and oceanic IV (a%⃗  and o%⃗ ), leaving the fast and slow 210 

precipitation responses to external radiative forcing (f⃗ and F → SST → P). Figure 2 compares 211 

observed Sahelian precipitation anomalies (black, left ordinates) to the MMM anomalies of 212 

simulated Sahelian precipitation (right, amplified colored ordinates) in CMIP5 (dotted 213 

curves) and CMIP6 (solid curves) for four sets of forcing agents: ALL (a, blue), AA (b, 214 

magenta), natural forcing (c, “NAT,” brown and red), and GHG (d, green). The figure also 215 

presents the bootstrapping 95% confidence intervals of the forced CMIP6 MMMs (blue, 216 

magenta, brown, and green shaded areas) and of MMMs over the CMIP6 piC simulations 217 

(yellow shaded areas) on the right ordinates. The width of the yellow shaded areas represents 218 

the magnitude of noise deriving from coincident IV in the MMMs. Differences in its width 219 

between panels arise from varying numbers of simulations for the different forcing subsets 220 

(see Methods and Table S2).  221 
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 222 

Fig. 2. Observed (black, left ordinates) and simulated (colored, right ordinates) Sahelian 223 
precipitation anomalies, forced with ALL (a, blue), AA (b, magenta), NAT (c, brown/red), 224 
and GHG (d, green). The CMIP6 MMMs are presented with solid curves surrounded by 225 
shaded areas demarking the bootstrapping confidence interval, while the CMIP5 MMMs are 226 
presented with dotted curves. The yellow shaded area is the confidence interval of 227 
randomized bootstrapped MMMs of CMIP6 piC simulations, and represents the magnitude of 228 
noise in the CMIP6 MMMs. Hemispherically asymmetric volcanic forcing from Haywood et 229 
al noted in panel (c). A negative sign denotes an eruption that cooled the northern hemisphere 230 
more than the southern hemisphere while a positive sign denotes the opposite, aligning with 231 
the sign of the expected Sahelian precipitation response to the eruption. Panel (a) additionally 232 
shows the CMIP6 ALL MMM when restricted to models, rather than institutions, that 233 
provide AA simulations (blue dashed curve), and a 20-year running mean of the sum of the 234 
AA, NAT, and GHG MMMs for CMIP5 (lavender dashed curve) and CMIP6 (burgundy 235 
dashed curve). The label shows the number of institutions used for each CMIP6 MMM (N), 236 
the correlation of the CMIP6 MMM with observations (r), and the standardized root mean 237 
squared error of the CMIP6 MMM with observations (sRMSE). 238 

In the AA experiments (panel b), CMIP6 is anomalously wetter than CMIP5 in the 1970s 239 

and around 2000, but otherwise looks similar to CMIP5: precipitation declines in the mid-240 

century and then recovers after the clean air acts, preceding the timing of observed variability 241 
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by about 10 years. There are some differences in the NAT experiments between CMIP5 and 242 

CMIP6 (panel c), but the largest variations in both ensembles are interannual episodes that 243 

are clearly associated with volcanic eruptions. In the GHG experiments (panel d), CMIP6 244 

shows anomalous wetting after 1970 that wasn’t present in CMIP5.  245 

Similar changes can be seen in the ALL simulations (panel a): while CMIP5 reaches peak 246 

drought in 1982 – close to the observed precipitation minimum – CMIP6 dries very little and 247 

only until 1970, after which it displays an anomalously wetter climate than CMIP5 through 248 

the end of the century. But while the precipitation responses to different forcing agents 249 

appear to add linearly in CMIP5 (compare the lavender dashed curve to the blue dotted 250 

curve), the late century wetting in CMIP6 is larger than the sum of GHG and AA wetting 251 

(burgundy dashed curve; including NAT does not help.) This effect is robust to differences in 252 

model availability for the different sets of forcing agents (see figure caption and light blue 253 

dashed curve). Thus, in the ALL simulations, CMIP6 displays slightly less drying from AA 254 

compared to CMIP5, more wetting from GHG, and additional wetting after 1990 from a non-255 

linear interaction between forcings.  256 

As a result of these changes, the response to forcing in CMIP6 is a poor match to 257 

observations. Figure 3 displays the correlation (panel a, “r”) and sRMSE (panel b) between 258 

observations and simulated MMMs (dots) and bootstrapped MMMs (curves) from CMIP6 259 

(ALL in blue, AA in magenta, NAT in brown, and GHG in green solid curves) and CMIP5 260 

(ALL and AA in blue and magenta dotted-dashed curves; other simulations omitted for 261 

clarity) from 1901 to the end of the simulations (2003 for CMIP5 and 2014 for CMIP6). The 262 

dotted curves present the randomized bootstrapping distributions for the CMIP6 piC 263 

simulations, and the vertical dashed lines mark the one-sided p=0.05 significance level given 264 

by these distributions. Recall that correlation measures similarity in timing between 265 

simulations and observations where 1 is a perfect match, and sRMSE measures the amplitude 266 

of differences between the simulations and observations where 0 is a perfect match.  267 
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 268 

Fig. 3. Correlations (a) and standardized RMSE (b) between observations and historical 269 
and AMIP simulations from CMIP6 (1901-2014, solid) and those simulations from CMIP5 270 
that outperform the CMIP6 historical simulations (1901-2003, dotted-dashed, legend entries 271 
include “5”). Dots and stars denote the statistic between the MMM and observations, while 272 
the curves denote the bootstrapping pdfs. The dotted grey curves display the bootstrapping 273 
pdfs for the same statistics applied to a MMM over the CMIP6 piC simulations, and the grey 274 
dashed lines mark the one-sided p=0.05 significance level given by the piC distribution. 275 
Colored dotted curves and dashed lines show the piC distributions associated with those 276 
subsets of forcing agents for which the piC distribution differs noticeably from those of the 277 
other subsets of forcing agents.   278 

CMIP5’s AA (r = 0.24, sRMSE = 0.97) and ALL (r = 0.37, sRMSE = 0.95) MMMs 279 

achieve significance in both metrics – a fact that, in isolation, is consistent with the 280 

suggestion that AA may explain observed variability but underestimate its magnitude. 281 

Instead, in CMIP6, AA (r = 0.04, sRMSE = 1.01) and ALL (r = 0.04, sRMSE = 1.02) do not 282 

perform statistically better than noise, and GHG performs significantly worse (r = -0.17, 283 

sRMSE = 1.03). The additional years included in the CMIP6 simulations (2004-2014) cannot 284 

explain the entire deterioration of performance between CMIP5 and CMIP6: even when 285 

restricted to CMIP5’s time period, CMIP6 ALL and AA simulations both perform worse than 286 

CMIP5 in both metrics (r = 0.07 and sRMSE = 1.00 for AA, r = 0.13 and sRMSE = 0.99 for 287 

ALL). Most of the remaining deterioration in performance for AA is due to reduced drying in 288 

the 1970s in CMIP6. In CMIP6, NAT (r = 0.19, sRMSE = 0.98) is the only forcing that 289 

performs significantly well. We conclude that aside from episodic responses to volcanic 290 

eruptions, the ensemble of coupled CMIP6 simulations has no significant skill in simulating 291 

historical Sahel rainfall in response to external forcing.  292 

As in CMIP5, the simulated forced component of precipitation changes in CMIP6—given 293 

by the MMM—has a much smaller variance than observations (note the amplification of the 294 

right ordinates in Figure 2). However, the poor performance of the CMIP6 simulations makes 295 
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it clear that amplifying the simulated forced component will not help explain observed 296 

precipitation.  297 

For simulated atmospheric and oceanic IV (a%⃗  and o%⃗ ) to explain observed precipitation 298 

variability, it is not enough that observed yearly Sahelian precipitation anomalies fall within 299 

the range of individual simulations (not shown)—the latter must also match the distinctive 300 

low-frequency power of the observations. In Figure 4 we compare the power spectra (PS) of 301 

piC simulations (colored brown to turquoise by model climatological rainfall) to the observed 302 

PS (solid black) and the PS of the ALL-residual (observations minus the ALL MMM, dotted-303 

dashed black). In the observations and the residual, variance at periods longer than about 20 304 

years (low-frequency) is roughly 5 times as large as the high-frequency variance. Low-305 

frequency variability in the piC simulations is smaller than, and inconsistent with, either 306 

observed or residual variability. Moreover, it is similar in magnitude to simulated high 307 

frequency variability, suggesting that IV in simulated Sahel rainfall derives mostly from 308 

atmospheric (a%⃗ ), rather than oceanic (o%⃗ ), IV, or that simulated oceanic IV is too white (Eade 309 

et al. 2021). Because the shape of the spectrum is wrong, even a bias correction that inflates 310 

simulated internal variability would not bring simulations and observations into alignment.  311 

 312 

Fig. 4. PS of observed Sahelian precipitation (solid black curve) and the residual of 313 
observations and the ALL MMM (dotted-dashed black curve) and associated 95% confidence 314 
intervals (grey shading), compared to the average PS by model of piC simulations (brown to 315 
turquoise). Mean piC PS are colored by the average yearly piC precipitation by model, where 316 
brown simulations are drier than observed, and turquoise simulations are wetter than 317 
observed.  318 

We must conclude that no linear combination of the simulated forced signal (which 319 

correlates poorly with observations) and simulated IV (which has insufficient low-frequency 320 

variance) in coupled CMIP6 simulations can explain observed Sahel variability during the 321 

20th century. Thus, model deficiency cannot be blamed solely on the simulation of climate 322 
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feedbacks: the CMIP6 ensemble displays a fundamental inability to simulate the observed 323 

fast and slow Sahelian precipitation responses to forcing, observed low-frequency IV, or 324 

both. To identify the proximate cause of this failure, in the next three sections we examine 325 

each causal path component identified in Figure 1.  326 

b. AMIP simulations: the Response to SST, Atmospheric Internal Variability, and the Fast 327 

Response to Forcing (𝑡, 𝑎⃗, and 𝑓) 328 

To isolate the effect of SST on the Sahel (t⃗), we examine precipitation in the CMIP6 329 

amip-piForcing simulations, which force atmosphere-only models with the observed SST 330 

history (containing both internal, o%⃗ , and forced, s⃗, oceanic variability) and constant 331 

preindustrial external radiative forcing (no f⃗). The MMM of simulated Sahel precipitation 332 

filters out atmospheric IV (a%⃗ ), leaving the precipitation response to the entire observed SST 333 

field. It is displayed in Figure 5a (orange) and compared to observations (black) on the same 334 

ordinates. Overall, the performance of the amip-piF MMM is much better than that of the 335 

coupled simulations: it achieves a high correlation (r = 0.60) and a low sRMSE (0.81, see 336 

orange curves in Figure 3). The good match with observations is achieved mostly at low 337 

frequencies: though it doesn’t accurately capture many interannual episodes—notably 338 

including the precipitation minimum in 1984—the MMM appears to capture the magnitude 339 

of low-frequency variability, even including wetting in the 50s and early 60s, which is 340 

missing from the coupled MMM. This can be seen more quantitatively by spectral analysis. 341 

In Figure 6a, the PS of the amip-piF MMM (dashed orange curve) and its 95% confidence 342 

interval (orange shaded areas), are compared to those of observations (black). Unlike 343 

previous generations of AMIP experiments (e.g. Scaife et al. 2009), the PS of the simulated 344 

MMM is roughly consistent with observations.  345 
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 346 

Fig. 5. Observed (black) and simulated (colored) Sahelian precipitation anomalies, forced 347 
with observed SST alone (a, amip-piF, orange) and with observed SST and all external 348 
forcing agents (b, amip-hist, dark green). The shaded areas denote the bootstrapping 349 
confidence intervals about the simulated MMMs. Panel (a) additionally displays observed 350 
NARI (light blue, right ordinates). The right ordinates for panel (a) are scaled by the inverse 351 
of the simulated amip-piF teleconnection strength (see Section 4.c) so that when read on the 352 
left ordinates, NARI represents its predicted impact on precipitation. Panel (c) compares 353 
observed precipitation (left ordinates) to the implied simulated fast component in AMIP 354 
simulations (amip-hist – amip-piF, purple, right ordinates). As in Figure 2, panel (c) denotes 355 
hemispherically asymmetric volcanic eruptions, where the sign denotes the sign of the 356 
expected Sahelian precipitation response to the eruption. 357 

 358 
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Fig. 6. PS of observed Sahelian precipitation (black) and associated 95% confidence 359 
interval (black shading) compared to the PS of amip-piF simulations (a) and amip-hist 360 
simulations (b). As in Figure 4, mean PS by model are colored by average yearly 361 
precipitation, where brown is drier than observed, grey is observed, and turquoise is wetter 362 
than observed. The mean PS across models is displayed in orange for amip-piF (a) and in 363 
green for amip-hist (b). The dashed lines show the PS of the MMMs with associated 95% 364 
confidence intervals (colored shaded areas). 365 

The curves colored brown to turquoise in Figure 6 show the average by model of the PS 366 

of individual simulations, colored by climatological Sahelian precipitation bias. We note that 367 

wet-biased simulations (turquoise) have more power than dry-biased simulations (brown), 368 

consistent with the expected relation between the mean and variance of precipitation. The 369 

tiered mean over these PS is presented in solid orange; it contains atmospheric IV (a%⃗ ) in 370 

addition to SST-forced variability (t⃗). Though it is not statistically different from the MMM 371 

PS, atmospheric white noise gives it slightly more power at all frequencies, and thus it is 372 

clearly consistent with the observed PS (black). Global SST forcing, while unable to explain 373 

much of observed high frequency variability in Sahelian precipitation (note the low power of 374 

the dashed orange curve at periods below 20 years), is able to reproduce the pattern and, in 375 

combination with atmospheric IV, the full magnitude of observed multi-decadal precipitation 376 

variability.  377 

We now estimate the “fast” precipitation response to ALL in the CMIP6 AMIP 378 

simulations (Figure 5c, purple, f⃗) by subtracting the MMM of amip-piF simulations (a, 379 

orange) from that of amip-hist simulations (b, green), the latter of which are forced with 380 

historical SST and historical external radiative forcing. The AMIP “fast” MMM shows some 381 

episodic variability that is consistent with the coupled NAT MMM, and a wetting trend after 382 

1985. On its own, it is only weakly correlated to observations (r = 0.12, sRMSE = 1.02), and 383 

it has relatively low amplitude. When combined with SST forcing in the amip-hist 384 

simulations, it has little effect: correlation stays at 0.60 and sRMSE is reduced from 0.81 only 385 

to 0.80 (compare green and orange curves in Figure 3) and spectral properties are virtually 386 

unchanged (Figure 6). The best linear fit to observed precipitation would combine the amip-387 

piF MMM with the fast response to forcing scaled down by a factor of 0.3 ± 0.2. The fast 388 

response may be overestimated in AMIP simulations because the radiative forcing has 389 

directly contributed to generating observed SST which is prescribed in the simulations, and 390 

because the magnitude of the radiative forcing itself may be overestimated, as suggested by 391 

Menary et al. (2020). 392 
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The high performance of the amip-piF simulations and the small impact of the potentially 393 

overestimated fast response to forcing suggest that the principal deficiency in simulating low-394 

frequency Sahelian precipitation variability in coupled models stems from a deficiency in 395 

simulating the observed combination of forced and internal variability in SST, and not from a 396 

failure to reproduce the observed teleconnection strength or fast response to forcing. 397 

c. The NARI Teleconnection: AMIP Simulations and Observations (𝑡) 398 

We next determine the strength of the linear NARI-Sahel teleconnection and investigate 399 

how well it represents the effect of global SST on Sahel precipitation in simulations and 400 

observations. Observed NARI anomalies relative to the 1901-1950 mean are presented in 401 

Figure 5a in light blue on the right ordinates. NARI correlates well with SST-forced Sahelian 402 

precipitation in the amip-piF simulations (orange, left ordinates; r	 = 	0.52 ± 0.10, r =403 

0.60	for	the	actual	MMM), but still leaves 64% of its variance unexplained, suggesting 404 

influences from other SST patterns or non-linear or non-stationary effects (Losada et al. 405 

2012).  Some of the unexplained variance is at faster timescales than those of our interest, but 406 

not all. Let’s assume that the influences of NARI and other ocean basins on Sahel 407 

precipitation are linear and add linearly, and that the NARI teleconnection is unconfounded 408 

by the influence of other ocean basins; then we can measure the strength of the NARI 409 

teleconnection by the regression coefficient of the amip-piF precipitation MMM, which 410 

contains only SST-forced variability, on NARI. This calculation yields a regression slope of  411 

0.87 ± 0.26 !!
"#$∗°'

. This value is affected by both high- and low-frequency variability, which 412 

is appropriate if the teleconnection is, indeed, linear. The left ordinates in Figure 5a are scaled 413 

relative to the right ordinates by this teleconnection strength so that, when read on the left 414 

ordinates, the light blue curve represents the expected precipitation response to NARI. This 415 

view highlights how NARI captures the timing of simulated low-frequency variability, even 416 

though it fails to explain the full magnitude of simulated dry anomalies after 1975. In the rest 417 

of this paper we use the NARI teleconnection as the best linear representative of the 418 

simulated influence of SST on Sahel precipitation in the 20th century. 419 

The teleconnection strength calculated from the amip-piF simulations is not directly 420 

comparable to observations, because the latter includes the fast precipitation response to 421 

forcing, which can confound estimates of the teleconnection. A comparison can be drawn 422 

between the apparent teleconnection strength in the amip-hist simulations (0.93 ± 0.41) and 423 
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in observations (1.04). The consistency lends credence to our previous suggestion that 424 

simulated SST teleconnections to Sahel rainfall appear to have the appropriate strength in 425 

CMIP6, at least in the amip simulations. 426 

d. Forced and Internal SST Variability in Coupled Simulations (𝑠 and 𝑜⃗) 427 

We now examine simulation of forced (s⃗) and internal (o%⃗ ) SST variability. Figure 7 428 

compares observations (black) to the simulated SST response to forcing (s⃗)—represented by 429 

MMM anomalies (colors)—for NARI (right column) and its constituent ocean basins – the 430 

North Atlantic (NA, left column) and the Global Tropics (GT, middle column). The yellow 431 

shaded areas show the bootstrapping 95% confidence intervals of the piC simulations for 432 

statistical significance, while the other shaded areas denote uncertainty in the CMIP5 and 433 

CMIP6 MMMs. As above, CMIP5 MMM anomalies are presented in dotted curves and 434 

CMIP6 in solid curves, color-coded according to their forcing.  435 

 436 

Fig. 7. Observed (black) and simulated CMIP5 and CMIP6 SST anomalies (relative to 437 
1901-1950) for the North Atlantic (NA, left column), the Global Tropics (GT, middle 438 
column), and the North Atlantic Relative Index (NARI, right column) when forced with ALL 439 
(blue, top row), AA (magenta, second row), NAT (brown/red, third row), and GHG (green, 440 
bottom row). The CMIP6 MMMs are presented with solid curves while the CMIP5 MMMs 441 
are presented with dotted curves. Both are surrounded by shaded areas demarking the 442 
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bootstrapping confidence interval. Panels (a) and (c) additionally display a 20-year running 443 
mean of the sum of simulated NA and NARI over the individual forcing simulations for 444 
CMIP6 (burgundy dashed curve) with associated bootstrapping confidence interval 445 
(burgundy shaded area). Including NA in the sum makes little difference. For NA and GT 446 
under AA and NAT (middle two rows and left two columns), the orange curve displays 447 
detrended observations, calculated by subtracting simulated GHG-forced SST (bottom row) 448 
from observations in that ocean basin. The yellow shaded area is the confidence interval 449 
when bootstrapping the MMM of CMIP6 piC simulations, and represents the magnitude of 450 
noise in the CMIP6 MMMs. A horizontal black dashed line marks 0 anomaly, which 451 
represents the average SST from 1901-1950. The y labels show the number of institutions 452 
that were used for each subset of forcing agents in CMIP6 (N, see Table S2), and the subplot 453 
titles display the correlation (r) and sRMSE between the MMM and observations for CMIP6. 454 

Observed NARI (panel c, black) shows strong multi-decadal variability throughout the 455 

century. In the ALL simulations (top row, blue), the temporal evolution of NARI (c) matches 456 

the observations with some skill (r=0.40, sRMSE = 0.92 for CMIP6), but fails to capture the 457 

full magnitude of observed cooling in the 1970s and 80s or, more prominently, any multi-458 

decadal variability prior to 1960. Moreover, its GT and NA components do not match very 459 

well either the observed, roughly linear warming trend in GT (b), or the marked multi-460 

decadal variability in NA (a). In both CMIP5 and CMIP6 ALL simulations, the simulations 461 

of GT (b, blue) are anomalously colder than observations between 1960 and 2000, when 462 

simulated AA cooling (e, magenta) is the strongest and not yet compensated by GHG 463 

warming (k, green), leading us to question whether the match of simulated and observed 464 

NARI in this period happens due to compensating errors. For NA, the match between 465 

observations and the ALL-forced response is better in the later part of the record, but worse 466 

in the first half. During the period prior to 1960, according to both CMIP ensembles, GHG 467 

warming (j, green) masks AA cooling (d, magenta) to produce a roughly constant 468 

temperature in the ALL simulations (a, blue). The simulated cold episode in 1964 is due to 469 

the eruption of Agung in 1963 (g, brown and red), and it is only after the mid 1960’s that 470 

increased GHG warming overtakes stagnating AA cooling to produce pronounced warming 471 

in fairly good accord with observations. Much of the observed variability in NA (a, black) 472 

thus does not seem to be a response to external radiative forcing.   473 

The AA forcing had appeared to explain observed low-frequency Sahel precipitation 474 

variability in H20, but we now see that it might be the right result for the wrong reason. AA 475 

(second row, magenta) produce low-frequency NARI variability (f), but this simulated NARI 476 

is a poor match to observations (f, r=0.10, sRMSE = 1.04 for CMIP5; r=0.07, sRMSE=1.09 477 

for CMIP6; a performance statistically worse than noise). The difference between simulations 478 
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and observations is even more stark in NARI’s constituent ocean basins. We can attempt to 479 

compare AA-forced NA and GT to an observed “GHG-residual” (that is, the observation 480 

minus the GHG-forced MMM, presented in orange instead of black), which represents our 481 

best estimate of the sum of observed oceanic IV and the observed responses to aerosols. This 482 

index shows marked, roughly stationary low-frequency variability in NA (d, orange), which 483 

contrasts with a more monotonic behavior in the simulated NA index (magenta). In 484 

particular, we note that the AA simulations display an especially steep decline in NA SST 485 

between ~1940 and 1980, but monotonic cooling throughout the century. Though legislation 486 

to curb pollution reduced AA loading in the northern hemisphere after 1970 (Hirasawa et al. 487 

2020), simulated NA doesn’t warm at all before 2010. Overall, the effect of reducing AA 488 

emissions in both CMIP ensembles is to halt the cooling of NA, not to cause actual warming. 489 

This is consistent with estimates of the hemispheric difference in total absorbed solar 490 

radiation in AA simulations in CMIP6, which level off, but do not decrease, after 1970 491 

(Menary et al. 2020).  492 

Could internal SST variability (o%⃗ ) explain the difference between the simulated response 493 

to forcing and observations in these ocean basins? In Figure 8, we present the mean PS of 494 

SST for piC simulations from each CMIP6 model (colder than observed models are in blue 495 

and warmer than observed models are in red). We compare these PS to the PS for observed 496 

SST (solid black), the GHG-residual (dotted-dashed black), and/or the ALL-residual (dotted 497 

black), avoiding time series with dramatic trends (see subplot legends). Simulated IV in most 498 

of the CMIP6 models used in this study does not match residual or observed low-frequency 499 

variability in NA (a), GT (b), or NARI (c). In CMIP5, SSTs are colder and IV at all 500 

frequencies is larger than in CMIP6, but no model shows an increase in spectral power at low 501 

frequencies for any SST index (not shown). There are, however, three CMIP6 models for 502 

which low-frequency IV in NA is not inconsistent with model physics: CNRM-ESM2-1 p1 503 

(pink), IPSL-CM6A-LR p1 (blue), and CNRM-CM6-1 p1 (grey). Certainly, either the 504 

simulated SST response to forcing, simulated oceanic internal variability, or both, are not 505 

well represented in the CMIP ensembles, and this is the primary reason that coupled CMIP 506 

simulations cannot reproduce observed 20th century Sahel rainfall.  507 
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 508 

Fig. 8. PS of observed SST (solid black), observed SST – GHG MMM (dotted-dashed 509 
black), observed SST – ALL MMM (dotted black) and associated 95% confidence intervals 510 
(black shading) in NA (a), GT (b), and NARI (c), compared to the PS of piC simulations. 511 
Similar to Figure 4, mean PS by model are colored by average SST, where blue is colder than 512 
observed, grey is observed, and red is warmer than observed. 513 

However, deficiencies in simulating SST cannot explain the difference in simulated 514 

externally forced precipitation variability between CMIP5 and CMIP6. The only notable 515 

difference in simulated SST between the two ensembles is that CMIP6 warms NA (and 516 

therefore NARI) less than CMIP5 in the GHG simulations (Figure 7j and l). As in simulated 517 

Sahel precipitation, warming of NA and NARI in CMIP6 ALL simulations is larger than the 518 

smoothed sum of simulated SST change in the individual-forcing simulations (burgundy 519 

dashed curve), which, aside from volcanic eruptions, remains below the confidence interval 520 

for the CMIP6 MMM (dark blue shaded area) from 1950 onward (this discrepancy is, again, 521 

robust to differences in model availability for the different sets of forcing agents). Thus, a 522 

non-linear interaction between forcing agents in CMIP6 balances the additional SST warming 523 

in CMIP5 in the ALL simulations, and the difference in coupled simulations of Sahel rainfall 524 

between CMIP5 and CMIP6 must derive from changes in the fast response to forcing, SST 525 

teleconnections, or both. 526 

e. The NARI teleconnection in Coupled Simulations 527 

Now that we have examined SST in the coupled simulations, we may determine whether 528 

the teleconnection strength estimated from amip-piF simulations is consistent with coupled 529 

simulations. This is verified by the fact that the amip-piF teleconnection strength falls within 530 

the range of teleconnection strengths calculated from individual piC simulations in CMIP5 531 

(0.5 ± 0.6) and CMIP6 (0.4 ± 0.6), but the ranges are large (possibly because the increased 532 

presence of atmospheric and oceanic IV and decreased variance of NARI in the individual 533 

piC simulations obscures the teleconnection). As a second test, we compare the confounded 534 

teleconnection strength in the amip-hist simulations (0.93 ± 0.41) to that of bootstrapped 535 
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MMMs in the coupled ALL simulations in CMIP5 (0.66 ± 0.28) and CMIP6 (1.5 ± 0.3). 536 

The confounded teleconnection strength in amip-hist simulations is consistent with the 537 

confounded estimate in CMIP5, but is smaller than and inconsistent with the confounded 538 

estimate in CMIP6. This may be because NARI variability in the coupled simulations is 539 

smaller relative to the magnitude of external radiative forcing than it is in the amip-hist 540 

simulations. If this is the cause for the apparent inconsistency, we may still confirm the NARI 541 

teleconnection strength in CMIP6 simulations by showing that the implied fast response to 542 

forcing is consistent with the fast response from the amip-hist simulations. 543 

f. Fast and Slow Responses to Forcing in Coupled Simulations (𝑓 and 𝐹 → 𝑆𝑆𝑇 → 𝑃) 544 

Under the assumption that the dominant simulated path of SST influence on the Sahel is 545 

captured by a linear relationship with NARI, we estimate the slow response to forcing in 546 

coupled simulations as the simulated NARI MMM scaled by the teleconnection strength 547 

derived from uncoupled simulations (0.87 !!
"#$	°'

, Section 4.c), so that a warm (cold) NARI 548 

predicts a wet (dry) Sahel. In Figure 9, simulated NARI (as in Figure 7, right column) is 549 

displayed on the left ordinates in light blue (CMIP6) and turquoise (CMIP5). The right 550 

ordinates are scaled by the teleconnection strength so that, when read on the right ordinates, 551 

simulated NARI represents the estimated slow component of the precipitation response to 552 

forcing. Also on the right ordinates are the total simulated precipitation responses to forcing 553 

(as in Figure 2) in CMIP5 (right column) and CMIP6 simulations (left column), colored by 554 

forcing agents. The simulated precipitation responses to forcing (colors) match the estimated 555 

slow response to forcing (turquoise) reasonably well: the main differences appear after about 556 

1970 in CMIP5 and 1990 in CMIP6.  557 
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 558 

Fig. 9. Simulated Sahel precipitation (right ordinates, same as Figure 2) MMMs (solid 559 
and dotted curves) and associated 95% confidence intervals (shaded areas) in CMIP5 (right 560 
column) and CMIP6 (left column) when forced with ALL (blue, top row), AA (magenta, 561 
second row), NAT (brown/red, third row), and GHG (green, bottom row), compared to 562 
simulated NARI (left ordinates, light blue and turquoise, same as Figure 7). The right 563 
ordinates are scaled such that a 1°C change in NARI corresponds to a 0.87 mm/day change in 564 
precipitation, given by the teleconnection strength in the CMIP6 amip-piF simulations (see 565 
Section 4.c).  566 

We expect the differences between the simulated Sahel and the rescaled NARI to estimate 567 

the simulated fast response to forcing, but this would imply a fast response to ALL in CMIP5 568 

(Figure 9e) that is inconsistent with the uncoupled estimate (purple, Figure 5c): instead of 569 

wetting the Sahel, it consists of a drying response to increasing GHG of −0.0042 ±570 

0.0036	 !!
"#$∗$)#*

 (Figure 9h). Whether we should interpret this as a fast response or a non-571 

NARI-mediated response to SST, this component of the forced response helps delay and 572 

increase the severity of the minimum in precipitation in ALL relative to the AA simulations. 573 

The estimated fast responses for CMIP6 are displayed in Figure 10 in a fashion similar to 574 

Figure 2, and are compared to the fast response obtained as the difference between amip-hist 575 

and amip-piF simulations (purple, as in Figure 5c). Unlike the fast response in CMIP5, the 576 

ALL fast response in CMIP6 matches the AMIP fast response significantly better than noise 577 
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(r = 0.51, sRMSE = 0.87), giving us confidence that the NARI teleconnection strength 578 

estimated from amip-piF is valid in CMIP6 coupled simulations. Like the amip-hist fast 579 

response, the ALL fast response in CMIP6 displays wetting after 1980 that is roughly equal 580 

to the sum (burgundy dashed curve) of the fast responses to AA (b, magenta) and GHG (d, 581 

green). The simulated fast wetting after 1980 in the ALL simulations (a, blue) is smaller than 582 

in the AMIP simulations, as expected if amip-hist is double-counting radiative forcing, but is 583 

still larger than our estimate of the optimal value (0.3 times the AMIP fast response), 584 

consistent with claims that the strength of radiative forcing is overestimated in the coupled 585 

simulations.  586 

 587 

Fig. 10. Compares the fast Sahelian precipitation response to forcing in AMIP simulations 588 
(purple, as in Figure 5c) to the estimated fast component of the precipitation MMMs in 589 
coupled CMIP6 simulations (precipitation – 0.87*NARI; the difference between the colored 590 
and light blue curves in the left column of Figure 9) forced with ALL (a, blue), AA (b, 591 
magenta), NAT (c, brown), and GHG (d, green). Similar to Figure 2, the colored shaded areas 592 
denote the bootstrapping confidence interval of this difference, and the yellow shaded areas, 593 
which represent the magnitude of noise in the fast MMMs, are the confidence intervals of the 594 
MMM of randomized bootstrapped differences between precipitation and 0.87*NARI in piC 595 
simulations. Panel (a) additionally shows a 20-year running mean of the sum of the AA, 596 
NAT, and GHG fast MMMs (burgundy dashed curve). The label shows the number of 597 
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institutions used for each CMIP6 MMM (N), the correlation of the fast MMM with the AMIP 598 
fast response (r), and the standardized root mean squared error of the CMIP6 MMM with 599 
observations (sRMSE). 600 

Though NARI in the GHG simulations differs between CMIP5 and CMIP6, most of the 601 

difference in simulated forced precipitation between CMIP5 and CMIP6 is not mediated by a 602 

linear relationship with NARI, and can be attributed to the fact that the GHG- and AA-603 

induced drying in CMIP5 is replaced with AA- and GHG-induced wetting in CMIP6. 604 

Whether the GHG-induced drying in CMIP5 is a fast response to forcing or a response 605 

mediated by SST in ocean basins other than the Atlantic cannot be firmly established by this 606 

analysis, but we offer our perspective below. 607 

5. Discussion 608 

Using SST (and specifically NARI) as a mediator, we have established that the failure of 609 

CMIP coupled models to simulate observed Sahel rainfall stems from their inability to 610 

simulate observed SST, especially NA, and that the differences in simulation of Sahel rainfall 611 

between CMIP5 and CMIP6 stem from differences in mechanisms not mediated by a linear 612 

teleconnection with NARI. (Let’s denote the difference between simulated precipitation and 613 

scaled NARI as PnonNARI). We initially suggested that PnonNARI provides a good measure of the 614 

fast (non-SST-related) response to forcing because of the prominence of the NARI-Sahel 615 

teleconnection in observations and AMIP-style simulations of the 20th century. But without 616 

examining further mediators, we cannot decisively rule out the possibility that PnonNARI 617 

captures teleconnections with other ocean basins or nonlinearities in the NARI 618 

teleconnection. Which explanation is most likely? 619 

The PnonNARI indices in CMIP5 and CMIP6 are nearly opposite. If we assume that both 620 

represent a fast response to forcing, we need to conclude that increasing GHG (or reducing 621 

AA) lead to fast wetting in CMIP6, but drying in CMIP5.  622 

The interpretation of PnonNARI in CMIP6 as a fast response is more consistent with theory. 623 

First, increasing rainfall is consistent with theory linking reduced aerosol concentrations to 624 

fast surface warming and decreasing optical depth of the atmosphere (Allen and Ingram 625 

2002; Rosenfeld et al. 2008), although a couple highly non-linear simulations suggest the fast 626 

precipitation response of the Sahel to changing AA in the 20th century was drying whether 627 

AA forcing was increasing or decreasing (Hirasawa et al. 2020). Second, it is generally 628 

accepted that the fast response of the Sahel to GHG is wetting (e.g. Biasutti 2013; Gaetani et 629 
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al. 2017; Giannini 2010; Haarsma et al. 2005). The good match in the estimated fast response 630 

between coupled CMIP6 simulations and the amip-hist simulations increases our confidence 631 

that the deviations from the NARI-mediated slow response to forcing in CMIP6 really reflect 632 

a fast response to forcing. The same cannot be said for CMIP5.  633 

We noted in Section 4.c that NARI only explains 36% of simulated SST-forced 634 

variability in the amip-piF simulations, leaving room for the influence of other ocean basins 635 

or SST indices on Sahel precipitation. Indeed, this is consistent with GK19: while they argue 636 

that NARI is the primary indicator for 20th century Sahel rainfall, they also argue that p1, 637 

which is approximately (NA+GT)/2 and is intended to capture the effects of uniform global 638 

warming, plays a secondary—but important—role in the 20th century and a dominant role in 639 

the future. In CMIP5,  PnonNARI may capture not the fast responses to forcing, but slow drying 640 

in response to uniform global warming, consistent with previous literature (e.g. Gaetani et al. 641 

2017). In this read, the differences in simulation of Sahel rainfall between CMIP5 and CMIP6 642 

are due to a combination of changes in the fast response to forcing and the influence of SST 643 

patterns not captured by NARI. 644 

6. Summary and Conclusions 645 

In this paper, we decompose simulated Sahelian precipitation into (1) teleconnections 646 

with SST, (2) fast, atmospheric- and land-mediated responses to forcing, (3) atmospheric 647 

noise, (4) forced SST variability, and (5) internal SST variability, in order to determine why 648 

the 5th and 6th generations of CMIP differ in their simulation of Sahel rainfall, and why both 649 

ensembles are inconsistent with observed Sahel precipitation variability.  650 

CMIP6 atmospheric simulations forced with observed SST alone capture observed Sahel 651 

precipitation quite well (r=0.6), and, in combination with atmospheric white noise, are able to 652 

reproduce the power of observed low-frequency variability. This is a welcome improvement 653 

from previous generations of climate models. Including radiative forcing alongside observed 654 

SST barely changes simulated precipitation, suggesting that the fast response is small and 655 

plays a secondary role to SST-forced precipitation variability. We summarize the Sahel 656 

teleconnections with global SST as a linear relationship with an index of the warming of the 657 

North Atlantic relative to the global Tropics (NARI), which explains about 36% of the 658 

simulated precipitation response to observed SST. The simulated NARI teleconnection is 659 

measured as 0.87 ± 0.26 !!
"#$∗°'

, consistent with the strength of the observed teleconnection. 660 
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We conclude that the observed SST history and simulated teleconnections in atmospheric 661 

simulations are together necessary and sufficient to capture the timing and magnitude of the 662 

low-frequency droughts and pluvials in 20th century Sahel rainfall.  663 

In coupled simulations, the NARI-Sahel teleconnection is consistent with AMIP 664 

simulations, but NARI’s variability – which mostly comes from North Atlantic SST (NA) – 665 

differs from the observed. In simulations, AA cause a cooling trend and GHG cause a 666 

warming trend with magnitudes comprable to the observed, but no combination of forcing 667 

agents produces a decadal-scale oscillation in NA in either CMIP5 or CMIP6, and only three 668 

CMIP6 models (out of 25 CMIP5 and 30 CMIP6 models) are able to generate internal SST 669 

variability commensurate to the residual (the difference between total and radiatively forced) 670 

low-frequency variability. How do we reconcile our results with those claiming that the 671 

observed Atlantic Multidecadal Variability (AMV) is externally forced (mainly by AA; 672 

Bellomo et al. 2018; Booth et al. 2012; Hirasawa et al. 2020; Hua et al. 2019; Murphy et al. 673 

2017)? The discrepancy can be explained because these studies examine only one or two 674 

models (Booth et al. 2012; Hirasawa et al. 2020) or subtract a linear trend from simulated NA 675 

before comparing to observations (Bellomo et al. 2018; Hua et al. 2019; Murphy et al. 2017), 676 

thus inducing low-frequency variability in the simulated monotonic decreasing step function. 677 

Moreover, a prominent role for internal variability cannot yet be dismissed, as suggested by 678 

Yan et al. (2018), who, consistent with our analysis, find that most models do not capture 679 

observed AMOC variability. The NARI-mediated slow response to external radiative forcing 680 

is to dry the Sahel slightly in the 60s and to wet it immediately afterwards; this does not, in 681 

isolation, explain the timing or magnitude of the observed drought or recovery. Furthermore, 682 

forced NARI variability is small in the first half of the century. We are led to conclude that 683 

either the pattern of the simulated SST response to forcing in coupled models is incorrect or 684 

the Sahelian precipitation response to internal SST variability overshadowed the response to 685 

external radiative forcing in the 20th century, at least up to the mid-1960s.  686 

While we can ascribe the deficiency of 20th century Sahel rainfall simulations in both 687 

CMIP5 and CMIP6 coupled models to their simulations of SST, NARI is not the main 688 

explanation for the differences in forced Sahel rainfall between the two ensembles, since it is 689 

quite similar in CMIP5 and CMIP6 ALL simulations. The difference, rather, is in PnonNARI: 690 

the component of Sahel rainfall that comes either from the influence of other SST patterns or 691 

from the fast response to forcing. CMIP6 underperforms relative to CMIP5 because PnonNARI 692 
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includes substantial fast wetting responses to increasing GHG and decreasing AA, 693 

comparable in magnitude to the NARI-related component. In contrast, PnonNARI in CMIP5 is 694 

drying, likely in response to uniform SST warming. Sahel drying in response to uniform 695 

warming is strong in models that simulate a deeper ascent profile, but weak otherwise (Hill et 696 

al 2017), so it is possible that newer parameterizations and higher resolution have changed 697 

the sensitivity to this forcing in the latest generation of models.  698 

This work has shown that, while there has been progress in the simulation of the Sahel’s 699 

response to global SST, much remains uncertain in the simulation of the pathways of Sahel 700 

multi-decadal variability, especially in the amplitude and timing of forced and natural SST 701 

anomalies in the Atlantic and in the fast and slow response of rainfall to GHG forcing. 702 

Differing mechanisms can lead to similar time evolutions in observations and simulations; to 703 

avoid this pitfall, future work should focus on evaluating in more detail the hypothesized 704 

pathways of the Sahel response to anthropogenic emissions and oceanic internal variability in 705 

order to further categorize model performance and improve predictions of the future. 706 
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Observational data from the Global Precipitation Climatology Center (GPCC, Becker et 724 

al. 2013) and the National Oceanic and Atmospheric Administration’s (NOAA) Extended 725 

Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5, Huang et al. 2017) are freely 726 

available online (see https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html and 727 

https://www.ncei.noaa.gov/products/extended-reconstructed-sst, respectively). CMIP5 728 

(CMIP5, Taylor et al. 2012) and CMIP6 (Eyring et al. 2016) model data is freely available 729 

through the Earth System Grid (see https://esgf-node.llnl.gov/projects/esgf-llnl/). 730 
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